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3000, chemin de la Côte-Sainte-Catherine
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Abstract : Tactical wireless networks are used in cases where standard telecommunication networks
are unavailable or unusable, e.g. disaster relief operations. We fully model the design of these tactical
networks as a nested optimization problem with a physically-modeled signal and three elementary
data traffic scenarios. Specifically, we consider the problem for tree networks with two channels,
four possible frequencies and multi-beam antennas of 24 beams. We propose a multi-level algorithm
that uses 1) a Tabu Beam Search for the topology design, 2) a simple geometrical heuristic for the
antenna configuration and 3) exact methods, heuristics, meta-heuristics and bounding procedures for
the network configuration. Synthetic experiments suggest that our method finds very good networks
and that it significantly outperforms a previous algorithm.

Keywords : telecommunication, network design, optimization techniques
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1 Introduction

Wireless communication is foundational to all essential technology today. In cases where standard

telecommunication networks are unavailable or unusable, temporary tactical networks must be set

up to support the necessary technological needs. For instance, such tactical networks are crucial for

disaster relief operations and military operations in foreign territory.

More specifically, we are interested in designing a wireless network that connects multiple key

coordinates of a certain region, typically between 10 and 50. These nodes are connected such that

data traffic can be streamed between all pairs of nodes. To this end, each node is equipped with

a radio and two antennas, which can be omni-directional (i.e. with the same signal strength in all

directions), single-beam (i.e. with a beam of signal centered on a specified direction along which the

signal is strongest) or multi-beam (i.e. have a circular grid of individual beams, in our case 24) [1].

The scope of this work is restricted to multi-beam antennas which provide the most difficult version

of this problem.

The radios have two possible channels (one for each antenna) on frequency bands 3+ and 4 re-

spectively. We consider two possible signal frequencies per channel (3+: 2000 MHz and 2400 MHz;

4: 4500 MHz and 5000 MHz). A connection between two or more antennas is characterized by a

channel, a signal frequency as well as a waveform, which is a type of communication protocol. We

consider two waveforms: Point-To-Point (PTP) between two antennas and Point-to-MultiPoint (PMP)

between an antenna and multiple other antennas. These waveforms constrain the network to have a

tree topology. The root of this tree topology is called the master hub and it can have a special role

in the network depending on its use case. The leaves of the tree are called users and the rest of the

nodes are middle hubs.

The quality of a tactical network is evaluated according to which traffic scenario(s) it is expected to

support. In all cases, the network’s bottleneck is its weakest connection in terms of effective throughput

(the direct data transmission speed between two nodes divided by how many data streams use it). We

maximize this bottleneck to have the best possible worst-case data transmission speed in the network,

so that vital information can be relayed among all nodes as quickly as possible.

In practice, usual instances of the problem have around 50 nodes and a solution is typically designed

by hand. With up to around 20 nodes, Mixed Integer Programming formulations of approximated

versions of the problem have had success finding good suboptimal solutions by using Iterated Local

Search [2] and Column Generation [3]. With 10 nodes, exhaustive enumeration is possible.

We consider the full problem with a physically-modeled signal, i.e. this is the version that our

industrial partner Ultra Intelligence & Communications is engaged to give practical solutions. Our

approach separates it into three nested sub-problems. At the highest level, our algorithm uses a Tabu

Beam Search for the topology design. At the mid level, a mix of exhaustive enumeration, meta-

heuristics, heuristics and bounding procedures is used for the network configuration. At the lowest

level, we use an intuitive geometrically-based heuristic to align and configure the antennas.

The paper is organized as follows. In Section 2, we describe how we modeled the tactical wireless

network design problem with multi-beam antennas. In Section 3, we present our multi-level algorithm

for this problem. In Section 4, we give experimental results on the performance of this algorithm on

synthetic data. Finally, concluding remarks are reported in Section 5.

2 Problem description

Given an instance of the problem, we wish to design a tactical network that connects the nodes in a

way that maximizes the bottleneck of the network.
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2.1 Instance

An instance of the problem is defined by a set of nodes V , geographically distributed according to

known (xv, yv) coordinates ∀ v ∈ V , Figure 1(a). Moreover, for every signal frequency f ∈ F =

{2000, 2400, 4500, 5000} and for every pair of nodes u, v ∈ V (with u ̸= v), the two physical properties

that describe the amount of signal that is lost between them are given. They are the path loss pfuv
and fade margin mf

uv, both given in decibels. Since these quantities are the same in both directions,

both pf and mf can be represented as symmetric matrices with zeros on their diagonals.

Figure 1: An Example of the problem

(a) Instance (b) Topology

r

(c) Configured Network

Finally, an instance of the problem also defines a vector of weights (ωA, ωB , ωC) that represent the

relative weights of the three possible network traffic scenarios, used in the computation of the objective

function. They represent how much of each traffic scenario the network is expected to support. These

weights will be explained in more depth with the objective function.

2.2 Network

A network on this instance is made up of

• a tree topology (V,E), Figure 1(b);

• a network configuration, which is comprised of a master hub r ∈ V (the green node in Figure 1(c)),

a waveform assignment that partitions the topology’s edges into PTP and PMP connections and

a channel and frequency assignment which gives each connection a signal frequency;

• the antenna configurations, which include the alignments of every used antenna as well as their

sets of activated beams.

A valid master hub is any node r ∈ V .

A valid topology is an undirected tree (V,E) such that it respects the maximum degree constraint

of at most 11 (for all nodes except the master hub which can have degree 20). This is because, in

practice, we consider that a PMP connection between a node v ∈ V and a set of other nodes W ⊂ V

is limited to |W | = 10 connected nodes. Furthermore, only the master hub can have two different

outgoing PMP connections, as pictured in the example in Figure 1. All other nodes have one ingoing

arc and at most one outgoing PMP connection.

Given a valid topology (V,E), a master hub r ∈ V defines an arborescence (V, E⃗∗) on the topology,

i.e. a directed tree rooted in r. This arborescence defines a single predecessor for every node v ∈ V

except for r. It also defines successors for r and every v that is not a leaf of the topology. For every

node v ∈ V , we define a number dv of descendants (including itself) as

dv = 1 +
∑

w direct successor of v

dw. (1)

Hence, the number dv of descendants of a leaf is equal to 1.
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A valid waveform assignment partitions all the topology’s edges E into individual connections. For

every regular node v ̸= r, the edges between it and all of its successors form a single connection. For

the master hub, they can be partitioned in up to two connections. The connections are either PTP if

they contain a single edge or PMP otherwise. For a given topology and master hub, the number of

valid waveform assignments is equal to the number of partitions of the master hub’s successors in 2

sets.

A valid channel assignment is such that for every node v ∈ V that is in two connections, these

connections must be on a different channel. Because of the tree structure of the network and because

we consider only two channels, there are only two possible channel assignments for a given topology

with a master hub and a waveform assignment. An example of valid channel assignment is given

in Figure 1(c)) where the colors red and blue are used to differentiate the two channels. Given a

valid channel assignment, a valid frequency assignment simply assigns to every connection one of two

possible signal frequencies belonging to its channel (i.e., 2000 MHz or 2400 MHz for the channel on

frequency band 3+ and 4500 MHz or 5000 MHz for the channel on frequency band 4).

For every used antenna a, a valid alignment is an angle ϕa ∈ [0, 2π[ and a valid beam configuration

is a set Ba ⊂ J0, 23K of beams with 0 ≤ |Ba| ≤ 7. If Ba = ∅, then the antenna is set to its omni-mode,

which sends and receives the same amount of signal in all directions.

2.3 Objective

Given every parameter of the network, we use a physically-based signal modeling to compute the direct

throughput TPuv (transmission speed) for every edge [u, v] ∈ E. For each of the three traffic modeling

scenarios A,B and C, we compute a number of data streams nX
uv (with X ∈ {A,B,C}) for every edge

[u, v]. The objective function that we aim to maximize takes into account both the bottleneck and the

mean throughput of each scenario, namely

min
[u,v]∈E

TPuv

nX
uv

and mean
[u,v]∈E

TPuv

nX
uv

for X ∈ {A,B,C},

where mean is the usual arithmetic mean. More detail is given below.

In order to compute the direct throughput of an edge [u, v] ∈ E in a connection with signal

frequency f , we begin by computing the antenna gain gfuv of the antenna a at node u in the direction

of node v and gfvu in the opposite direction. The antenna gain at node u in the direction of node v
with angle ϕa and beam set Ba with |Ba| ≥ 1 is given (in decibels) by

gfuv = 10 log10
∑
b∈Ba

exp10

(
gfuv,b

/
10

)
, (2)

with

gfuv,b = gmax(|Ba|, f) −3
log10

(
cos

(
∆ϕ(ϕa + b 2π24 , xu, yu, xv, yv)

))
+

log10 (cos (∆3dB(f)/2))+
, (3)

where gmax(|Ba|, f) is the gain in decibels in the maximal direction of each beam,

∆ϕ(ϕa + b 2π24 , xu, yu, xv, yv) is the angle deviation between this maximal direction and the node v

relative to node u, ∆3dB(f) is the 3 dB beam width (the width of the beam at which there is a 3 dB

loss in signal) and (·)+ = max{·, 0}. We use

gmax(|Ba|, f) =
{

13− 10 log10(|Ba|), if channel(f) = 3+
15− 10 log10(|Ba|), if channel(f) = 4,

and

∆3dB(f) =

{
60◦, if channel(f) = 3+
50◦, if channel(f) = 4.
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In the case of |Ba| = 0 (the antenna being in omni-mode), the antenna gain is simplified to

gfuv = gmax(0, f) =

{
4, if channel(f) = 3+
6, if channel(f) = 4.

Even if all connected nodes are perfectly aligned to activated beams, we can see that the omni-mode

is more advantageous if more than |Ba| = 7 beams are necessary.

Given the antenna gains in both directions gfuv and gfvu and the path loss pfuv between the two

nodes, we can then compute the signal strength (in decibel-milliwatts)

sfuv = 30 + gfuv + gfvu − pfuv. (4)

These signal strengths are computed between every pair of antennas that use the same frequency

and not only the pairs that are actually connected in the network. The extra signal from the uncon-

nected pairs that use the same frequency creates interference on the actual connections. The resulting

interference between connected nodes u and v on frequency f is given (in milliwatts) by

ifuv =
∑

w ̸=u,v with an antenna
that uses frequency f

(
exp10

(
sfuw
10

)
+ exp10

(
sfwv

10

))
. (5)

With the interference, we can compute the Signal-to-Noise Ratio (SINR) of the connection between

nodes u and v (in decibel-milliwatts) with

Sf
uv = sfuv −mf

uv − 10 log10

(
ifuv + exp10

(
NP

10

))
, (6)

where mf
uv is the fade margin and NP is the receiver antenna’s noise power. Assuming a 20 MHz

bandwidth and a 10 dB noise figure, we use

NP = −174 + 10 log10
(
20 · 106

)
+ 10.

The direct throughput TPuv is then finally taken from Table 1.

Table 1: Direct throughput lookup table

SINR S Throughput

S < 2 0
2 ≤ S < 5 6.5
5 ≤ S < 9 13
9 ≤ S < 11 19.5
11 ≤ S < 15 26
15 ≤ S < 18 39
18 ≤ S < 20 52
20 ≤ S < 25 58.5
25 ≤ S < 29 65

29 ≤ S 78

Since a PMP connection uses the same channel for multiple edges, this channel is shared in time

among the edges because only one edge can communicate at once. A PTP connection, being comprised

of a single edge, does not have to account for channel sharing in its protocol and thus can transmit

more throughput. In order to take this into account, the direct throughput for PTP connections is

multiplied by a factor λPTP = 2.
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The three traffic modeling scenarios we use are the following:

A: a single data stream from any node in the network to any other node (1 single data stream at

once);

B: a data stream from every node to the master hub or, equivalently, from the master hub to every

node (|V | − 1 data streams at once);

C: a data stream from every node to every other node (|V |(|V | − 1) data streams at once).

Since there is one single data stream in traffic scenario A, we set nA
uv = 1 for all edges [u, v] ∈ E.

For traffic scenario B, all nodes are sending traffic to the master hub r except for r itself. Each

edge that is connected to a leaf in the topology is carrying a single data stream. The closer an edge is

to the root r, the more data streams it will carry. We therefore consider the number dv of descendants

of every node v, as defined above, and set nB
uv = dv for all edges [u, v] ∈ E.

For traffic scenario C, all nodes are sending traffic to each other. Each edge is carrying all the signals

of its descendants to the rest of the nodes as well as the signals coming from the other direction. In

this case, we set nC
uv = 2 dv(|V | − dv) for all edges [u, v] ∈ E.

We can now give the explicit form of the objective function. It depends on the topology T , the choice

of the master hub r, the partition π of the successors of r into two sets, the antenna configurations α,

the channel assignment σ and the frequency assignment φ. As explained above, it is a weighted sum

of bottleneck and mean values, namely

O(T, r, π, σ, φ, α) =ωA

(
min

[u,v]∈E
TPuv +

1

Z
mean
[u,v]∈E

TPuv

)
+ ωB

(
min

[u,v]∈E

TPuv

dv
+

1

Z
mean
[u,v]∈E

TPuv

dv

)
+ ωC

(
min

[u,v]∈E

TPuv

2 dv(|V | − dv)
+

1

Z
mean
[u,v]∈E

TPuv

2 dv(|V | − dv)

)
,

(7)

where Z is a normalization constant that we fix equal to half of the maximum direct throughput, that

is Z = 78
2 = 39. Note that the smallest possible number nC

uv = 2dv(|V |−dv) of data streams associated

with an edge [u, v] is |V | − 1 for scenario C (where v is then a leaf) while nA
uv and nB

uv can be equal

to 1. In order to ensure that the magnitude of the values coming from scenario C are comparable to

those of scenarios A and B, we choose the weights ωA, ωB , ωC such that

ωA + ωB +
ωC

|V | − 1
= 1.

The full optimization problem we are trying to solve can be written as

max
valid

topologies T

max
r∈V

max
partitions π of
r’s successors

in 2 sets

max
antenna

configurations α

max
channel

assignments σ

max
frequency

assignments φ

O(T, r, π, α, σ, φ). (8)

Given a valid topology T , Omax(T ) will denote the largest value O(T, r, π, α, σ, φ) over all valid

choices for r, π, α, σ and φ. Hence, Problem (8) can be rewritten as

max
valid

topologies T

Omax(T ). (9)

3 Algorithm

In order to solve Problem (9) we use a scheme that can be roughly described as follows:



Les Cahiers du GERAD G–2023–34 6

• A Tabu Beam Search (TBS) explores the space of valid topologies;

• For a topology T generated by the TBS, we consider valid choices for a master hub r and a

partition π of its successors in two sets. For each choice of r and π, we consider a heuristic

procedure that determines a valid antenna configuration α;

• Given a topology T , a muster hub r, a partition π of the successors of r and an antenna configu-

ration α, we consider the two possible valid channel assignments σ and give procedures to either

generate a valid frequency assignment φ or to bound the value O(T, r, π, α, σ, φ) over all possible

valid frequency assignments.

In the following, we describe in detail the algorithmic choices of these three phases.

3.1 Master hub selection

Let T be a valid topology with maximum degree at most 20 and with at most one vertex of degree

larger than 11. Let R(T ) be the set of nodes in T that are not leaves. If T contains a vertex v of

degree larger than 11, then we set R′(T ) = {v}. Otherwise, for each node v in R(T ), we determine a

number n(v) = pd(v)+pe(v), where pd(v) is the position of v in R(T ) if the set is ordered by increasing

degree, while pe(v) is its position when R(T ) is ordered by decreasing eccentricity. Hence, n(v) has a

high value if v has a large degree and is close to the center of T . We then define R′(T ) as the set of

vertices v in R(T ) with n(v) ≥ medianu∈R(T ) n(u). The nodes in R′(T ) are the only candidates to be

the master hub in T .

3.2 Partition of the successors

As will be explained in Section 3.6, we consider three ways to compute the quality of a topology T .

We compute either an estimation OEst(T ), an upper bound OUB(T ) or a lower bound OLB(T ) on

OMax(T ). When computing OEst(T ) and OUB(T ), we consider all possible partitions of the successors

of the master hub. The way to compute OLB(T ) depends on the degree of the master hub r. If it is

at most 7, then we consider all possible partitions of the successors of r. Otherwise, we use a Greedy

Randomized Adaptive Search Procedure (GRASP). Its initial solution is the partition that leads to

OUB(T ) and the local search is a steepest descent with a neighborhood that considers every way of

switching a successor from one set to the other. The implementation details are described in [1].

3.3 Antenna configuration

Let T be a valid topology, let r be a valid master hub for T and let π be a valid partition of the

successors of r into two sets. As explained in Section 2, for every node u ̸= r, the edges linking u

to its successors form a single connection. For the master hub r, both sets of the partition π form a

connection.

To configure an antenna a at node u ∈ V for its connection to a set W ⊂ V of successors, we use

a simple geometrically-based heuristic that minimizes the number of activated beams Ba ⊆ J0, 23K,
since additional beams decrease the signal strength for all edges in the connection.

If W contains only one successor v of u, a single activated beam Ba = {0} is optimal and the

optimal alignment is the angle between nodes v and u with respect to the azimuth. For the case with

multiple connected nodes (i.e., |W | ≥ 2), we define, for a beam b ∈ J0, 23K with beam 0 starting at an

angle of θ, the angular range Φb(θ) ⊆ [0, 2π[ covered by beam b as

Φb(θ) =

{
[l, u[ , if u > l
[l, 2π[ ∪ [0, u[ , otherwise,

with

l =

(
θ +

2π

24
b

)
mod 2π and u =

(
θ +

2π

24
(b+ 1)

)
mod 2π,



Les Cahiers du GERAD G–2023–34 7

where we assume an effective beam width of 2π
24 . For instance, the range of beam 0 is given by

Φ0(θ) =

{ [
θ, θ + 2π

24

[
, if θ + 2π

24 < 2π
[θ, 2π[ ∪

[
0, θ + 2π

24 − 2π
[
, otherwise.

Let θv be the angle between u and a node v ∈ W . In order to partition the nodes of W into

activated beams, we try, for each v ∈ W , a configuration of the beams in which v is at the minimum

angle of the range covered by beam 0 (i.e. the range of beam 0 is Φ0(θv)). This is depicted in Figure 2

for an antenna with 8 beams (for clarity), with W = {1, 2, 3, 4, 5} and v = 1 or 2.

Figure 2: Two beam partitionings for an example with W = {1, 2, 3, 4, 5} and 8 beams

1

2

3

4
5

u

(a) v = 1 requires 4 activated beams

1

2

3

4
5

u

(b) v = 2 requires 5 activated beams

Let v∗ be equal to the vertex v ∈ W that minimizes the number of required beams (ties are broken

at random). If more than 7 beams must be activated, it is preferable to switch the antenna to its

omni-mode. Otherwise, we set Ba equal to the set of beams that contain at least one vertex of W

when beam 0 starts at angle θv∗ . For instance, in Figure 2(a), the set of activated beams would be

Ba = {0, 2, 4, 5}.

If we set ϕa equal to θv∗ + π
24 , then v∗ will be exactly on the border of beam 0 and will therefore not

be served well. To avoid this, we consider the extra angular space we have at the end of the activated

beams. More precisely, for each v ∈ W , we compute the angular space sv between v and the end of

the beam bv ∈ Ba to which it belongs

sv =

((
θv∗ +

2π

24
(bv + 1)

)
mod 2π − θv

)
mod 2π.

We then set

ϕa =

(
θv∗ +

π

24
− 1

2
min
v∈W

sv

)
mod 2π. (10)

For illustration, the smallest extra angular space in Figure 2(a) comes from node 2 and the corre-

sponding antenna alignement is shown with a red line in Figure 3.

3.4 Channel assignment

Given a valid topology T with a master hub r and a bipartition of its successors in two sets, a valid

channel assignment is such that the connections incident to a node must have different channels. This

subproblem can be modeled as a coloring problem on a graph G, called channel assignment tree, where

each connection is a node, and the connections of each node v in T form a clique in G. Since we

consider only two possible channels, the cliques contain at most two connections and are simply edges

in the channel assignment graph. Moreover, because T is a tree, the graph G is also a tree. The channel

assignment subproblem is thus reduced to a 2-coloring of the nodes of G, which has only two possible

solutions. In our algorithms, we try both valid channel assignments. For illustration, the master hub
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Figure 3: Antenna alignment for the example of Figure 2

1

2

3

4
5

u

in Figure 4(a) is the node incident to a1, a2, b1, b2. It has two connections, one that contains the edges

a1 and a2, and another one that contains the edges b1 and b2. This corresponds to the edge that links

{a1, a2} to {b1, b2} in Figure 4(b). The node at the other extremity of a2 has a connection made of

e1, e2, e3 and another one made of a1, a2, and this induces the edge that links {e1, e2, e3} to {a1, a2}
in Figure 4(b).

Figure 4: Channel assignment is a 2-coloring problem

a1

a2
e1

e2 e3
f

b1

b2 g

c

d1

d2

(a) Edges grouped by connections

{a1, a2}

{e1, e2, e3}
{f}

{b1, b2} {g}

{c}

{d1, d2}

(b) Channel assignment tree G

3.5 Frequency assignment

Let T be a valid topology, let r be a valid master hub for T , let π be a valid partition of the successors

of r into two sets, let α be an antenna configuration, and let σ be a channel assignment. We aim to

determine a valid frequency assignment φ that minimizes O(T, r, π, α, σ, ϕ). This is a difficult problem

since each connection in T has two possible frequency assignments. Exhaustive enumeration is not

applicable for instances of typical practical size. To overcome this issue, we show how to determine

upper and lower bounds on the optimal value of a frequency assignment, and we also describe a simple

way to produce a rough estimation of this optimal value.

Let us start with the upper bounding procedure. Let c(u, v) be the set of valid frequencies for the

edge [u, v]. As already mentioned, c(u, v) = {2000, 2400} if the connection that includes [u, v] uses

band 3+ and c(u, v) = {4500, 5000} if it uses band 4. We modify equations (2), (4) and (6) by ignoring

interference and by replacing pfuv and mf
uv by lower bounds pLB

uv ,mLB
uv and gfuv,b, s

f
uv, S

f
uv by upper

bounds gUB
uv,b, s

UB
uv , SUB

uv where

pLB
uv = min

f∈c(u,v)
pfuv,

mLB
uv = min

f∈c(u,v)
mf

uv,
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gUB
uv = 10 log10

∑
b∈Ba

exp10

maxf∈c(u,v) gmax(|Ba|, f)− 3
log10(cos(∆ϕ(ϕa+b 2π

24 ,xu,yu,xv,yv)))
+

maxf∈c(u,v) log10(cos(∆3dB(f)/2))+

10

 ,

sUB
uv = 30 + gUB

uv + gUB
vu − pLB

uv ,

SUB
uv = sUB

uv −mLB
uv −NP.

An upper bound on the maximal value of O(T, r, π, α, σ, φ) over all valid frequency assignments φ

can be obtained by considering SUB
uv instead of Sf

uv to derive the throughputs.

An estimation on the maximal value of O(T, r, π, α, σ, φ) over all valid frequency assignments φ

can be obtained in a similar way by considering pEst
uv ,mEst

uv , gEst
uv,b, s

Est
uv and SEst

uv , where min
f∈c(u,v)

{·} and

max
f∈c(u,v)

{·} are replaced in the above equations by mean
f∈c(u,v)

{·}.

For getting a lower bound on the maximal value of O(T, r, π, α, σ, φ) over all valid frequency assign-

ments φ, we build a solution with a greedy algorithm that considers the connections in a breadth-first

manner, starting from the master hub all the way to the leaves. At each step, we choose the valid

frequency for the considered connection that maximizes the objective.

3.6 Measuring the quality of a topology

We consider three ways to measure the quality of a topology T . The first one builds a feasible solution

and its value is therefore a lower bound on OMax(T ). To do this, we have to determine a master hub r,

a partition π of its successors, an antenna configuration α, a channel assignment σ and a frequency

assignment φ. We compute O(T, r, π, α, σ, φ) for the following combinations of r, π, α, σ and φ:

• r is any node in R′(T ) (see Section 3.1);

• if r has degree at most 7, we try all partitions π of its successors in two parts, otherwise we

consider only the partitions visited by the GRASP algorithm (see Section 3.2);

• we use the antenna configuration α obtained from T, r, π, as explained in Section 3.3;

• σ is one of the two possible channel assignments (see Section 3.4);

• we use the greedy algorithm to determine a frequency assignment φ (see Section 3.5).

The combination that leads to the largest value O(T, r, π, α, σ, φ) is a feasible solution and OLB(T )

denotes its value, which is a lower bound on OMax(T ).

Determining OLB(T ) is computationally expensive. We therefore consider another function that

estimates the value of OMax(T ). We try the same combinations of r, π, α, σ as above, except that all

partitions π of the successors of the master hub r are tested, regardless of the degree of r. Instead

of using the greedy algorithm for determining a frequency assignment φ, we use SEst
uv to determine

the throughput TPuv (see Section 3.5). In what follows, OEst(T ) will denote the largest estimation of

OMax(T ) for the tested combinations of r, π, α, σ. Intensive tests on instances having up to 30 nodes

have shown that a large proportion of pairs (T, T ′) of topologies verify OMax(T ) > OMax(T ′) if and

only if OEst(T ) > OEst(T ′). Hence, in the algorithm that we have designed to solve Problem (8), we

will use OEst to select topologies in large sets of candidates, and we will then compute lower bounds

on the values of the selected topologies using OLB . This will be explained in more details in the next

section.

Let T ∗ be a set of topologies T with large values OLB(T ). In order to determine whether a topology

T ′ with a large value OEst(T ′) is potentially better than a topology in T ∗, we compute an upper bound

OUB(T ′) on OMax(T ′). If this upper bound is smaller that the minimum value OLB(T ) for T in T ∗, we

know that T ′ is worse than all topologies in T ∗. This upper bound is obtained in a similar way to what

we described to compute OEst. The only difference is that we use SUB
uv to determine the throughput
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TPuv (see Section 3.5). Here also, OUB(T ) will denote the largest upper bound on OMax(T ) for the

tested combinations of r, π, α, σ.

3.7 A Tabu Beam Search

The strategy we have chosen to determine an optimal solution to Problem (8) is a Tabu Beam Search [4]

also called Sequential Fan Candidate List Search. At every iteration, we have a set T of κ ≥ 1 topologies

and we choose κ promising neighbors for each T ∈ T . Among these κ2 generated neighbors, we keep

the κ best ones that constitute the new set T for the next iteration. Each topology in T has an

associated tabu list. When a neighbor T ′ of a topology T ∈ T is kept for the next iteration, we obtain

the tabu list associated with T ′ from that of T by forbidding the move that would bring the search

back to T . With κ = 1, this corresponds to a standard Tabu Search.

For two nodes u and v, we can compute the ideal direct throughput between them, assuming a

perfect alignment of the antenna with only one activated beam, ignoring interference and using a

PMP waveform and using the largest frequency 4500 MHz. If this ideal throughput is null, we do not

consider [u, v] as a potential edge in a topology. We use Enot to denote the set of such pairs (u, v)

with u < v.

The neighborhood N(T ) of a topology T consists of all the topologies that can be obtained by

dropping an edge e and reconnecting the topology by adding another edge e′. The candidate list Le of

edges that can replace e contains all pairs (u, v) with u < v such that u and v are in different connected

components after dropping e, (u, v) /∈ Enot, and the resulting topology has at most one node of degree

larger than 11 and no vertex of degree larger than 20. An example is given in Figure 5.

Figure 5: An Example of a neighbor topology

↔↔

Every considered topology has two associated Tabu lists that contain respectively the edges that

cannot be dropped (Tabu-drop list) and the edges that cannot be added (Tabu-add list). The Tabu-

drop list forbids dropping an edge for 1
2

√
|V | − 1 iterations, which is half of the square root of the

number of edges in the topology. The Tabu-add list forbids adding an edge for
√
|V |(|V | − 1)/2− |Enot|

iterations, which is the square root of the number of edges that can potentially belong to an optimal

topology. To avoid cycling, we add equiprobable values in {−1, 0, 1} to the above Tabu list sizes.

The central procedure of our TBS builds κ promising neighbors of a topology T . This is done as

follows. Let L be the list of pairs (u, v) of nodes with u < v, ordered by increasing value duv, where

duv = mean
f∈{2000,2400,4500,5000}

(pfuv +mf
uv). (11)

The candidate list Le of edges that can replace an edge e in T is a sublist of L. Let ρ ∈ (0, 1] be a

parameter that controls the proportion of neighbors explored at each iteration. We generate a subset

L′
e that contains ⌊ρ |Le|⌋ pairs of Le. These pairs are selected at random with a probability that a pair

is chosen inversely proportional to its position in Le.

For every edge e in T and every pair (u, v) in L′
e, we can produce a neighbor Te,(u,v) of T by

replacing e with [u, v]. Let L(T ) = {(e, (u, v)) | e ∈ T and (u, v) ∈ L′
e}. The elements of L(T )
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are randomly ordered with the only constraint that (e, (u, v)) precedes (e′, (u′, v′)) if e = e′ and

(u, v) precedes (u′, v′) in Le. We then consider the elements of L(T ) sequentially to construct a

set N ′(T ) ⊆ N(T ) of κ promising neighbors of T . Let OEst
best be the largest value of function OEst

encountered so far. In what follows, we say that (e, (u, v)) is tabu if e belongs to the Tabu-drop list of

T or [u, v] belongs to its Tabu-add list, and OEst(Te,(u,v)) ≤ OEst
best. A topology Te,(u,v) can belong to

N ′(T ) only if (e, (u, v)) is not tabu.

The procedure that generates N ′(T ) from T is described in Algorithm 1 that we now explain.

The set N ′(T ) is initialized with the topologies Te,(u,v) of the first κ non-tabu elements (e, (u, v)) of

L(T ). For the next non-tabu elements (e, (u, v)) of L(T ), we check if OEst(Te,(u,v)) > OEst(T ′) where

T ′ = argminT ′′∈N ′(T )O
Est(T ′′), in which case we replace T ′ with Te,(u,v). We also update OEst

best if

OEst(Te,(u,v)) > OEst
best. This process is stopped when a topology is encountered with OEst(Te,(u,v)) >

OEst(T ) or when the end of list L(T ) is reached.

Algorithm 1: Generation of κ promising neighbors of a topology T

1 Let OEst
best be the largest value of function OEst encountered so far

2 Initialize N ′(T ) with the topologies Te,(u,v) associated with the first κ non-tabu elements (e, (u, v)) of L(T ).

3 If N ′(T ) does not contain any topology T ′ with OEst(T ′) > OEst(T )
4 Repeat
5 Select the next non-tabu element (e, (u, v)) in L(T )

6 If OEst(Te,(u,v)) > OEst(T ′), where T ′ = argminT ′′∈N′(T ) O
Est(T ′′)

7 replace T ′ with Te,(u,v) in N ′(T ).

8 If OEst(Te,(u,v)) > OEst
best

9 update OEst
best ← OEst(Te,(u,v)).

10 Until OEst(Te,(u,v)) > OEst(T ) or the end of L(T ) is reached.

The TBS algorithm is described in Algorithm 2. To initialize it, we determine a minimum cost

spanning tree T where the cost of an edge [u, v] is the value duv of Equation (11) that we have used

to sort the elements of L. We then use Algorithm 1 to generate κ promising neighbors of T that are

put in a set T . We set OLB
best = maxT ′∈T ∪{T} O

LB(T ′) and OEst
best = maxT ′∈T ∪{T} O

Est(T ′). Also, we

set T ∗ equal to a topology T ′ in T ∪ {T} with OLB(T ′) = OLB
best. The set T ∗ that contains the κ best

encountered topologies is initialized with the κ topologies T ′ in T ∪ {T} with largest value OLB(T ′).

To every topology T ′ in T , we associate a Tabu-add list that contains the edge that was removed from

T to obtain T ′, and a Tabu-drop list that contains the edge that was added to obtain T ′.

At every iteration of the TBS algorithm, we generate κ promising neighbors for each T ∈ T .

Among these κ2 generated neighbors, we keep the κ best ones according to function OEst, avoiding

duplicate topologies. They constitute the new set T for the next iteration. When a neighbor T ′ of a

topology T ∈ T is kept for the next iteration, we obtain the tabu lists associated with T ′ from that

of T by forbidding the move that would bring the search back to T . Hence, if T ′ if obtained from T

by dropping edge e and adding edge e′, we add e′ in the Tabu-drop list of T ′ and e in its Tabu-add

list. When the best encountered topology T ∗ is updated with a topology T ′ of value OLB(T ′) >LB
best,

we remove all elements of the tabu lists of T ′ except the edges involved in the move that led from a

topology T to T ′. Hence, if an edge e was replaced by an edge e′, the new Tabu-add list of T ′ is {e}
while its new Tabu-drop list is {e′}.

Once the set T of κmost promising neighbors has been generated, we test if some of these topologies

should become part of the set T ∗ of κ best encountered topologies. To do this, we compute the upper

bound OUB(T ′) for every T ′ in T . We then compute OLB(T ′) only if OUB(T ′) ≥ minT ′′∈T ∗ OLB(T ′′).

Every iRmax iterations, the search restarts with the set T ∗ that contains the κ best topologies

encountered since the beginning of the search. The search also restarts if i∗Rmax iterations have been

performed without improving OLB
best. The algorithm is stopped when a time limit tmax is reached.
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Algorithm 2: Tabu Beam Search

1 Find a minimum cost spanning tree T using duv as cost function, assign two empty tabu lists to T and set the

best estimate OEst
best of the optimal value to OEst(T ).

2 Initialize T with the κ topologies produced by Algorithm 1 when applied to T .

3 For every topology T ′ ∈ T , set its Tabu-add list as {e} and its Tabu-drop list as {e′}, where T ′ is obtained
from T by replacing e with e′.

4 Update OEst
best and set OLB

best ← maxT ′∈T ∪{T} O
LB(T ′).

5 Set T ∗ ← T ′, where T ′ is any topology in T ∪ {T} such that OLB
best = OLB(T ′).

6 Put in T ∗ the κ topologies T ′ in T ∪ {T} with largest value OLB(T ′).

7 Set iR ← 1 and i∗R ← 1.

8 While time t ≤ tmax

9 If iR > iRmax or i∗R > i∗Rmax

10 Empty all tabu lists and set T ← T ∗, iR ← 1 and i∗R ← 1.

11 Generate κ promising neighbors for every topology in T using Algorithm 1.

12 Among these κ2 topologies, determine the κ best ones according to function OEst, avoiding duplicate
topologies, and put them in T , removing the old ones.

13 For each T ′ ∈ T
14 Let T be the topology such that T ′ was obtained from T by dropping an edge e and adding an edge e′.

Associate the tabu lists of T to T ′ and add e in its Tabu-add list and e′ in its Tabu-drop list

15 If OUB(T ′) ≥ minT ′′∈T ∗ OLB(T ′′)

16 If OLB(T ′) ≥ minT ′′∈T ∗ OLB(T ′′)

17 Add T ′ to T ∗ and remove the topology T ′′ with lowest value OLB(T ′′).

18 Restart the counter i∗R ← 0.

19 If OLB(T ′) > OLB
best

20 Set T ∗ ← T ′ and OLB
best ← OLB(T ′).

21 Set the Tabu-add list of T ′ as {e} and its Tabu-drop list as {e′}.

22 Set iR ← iR + 1 and i∗R ← i∗R + 1.

23 Return T ∗.

4 Computational experiments

We evaluate the performance of our algorithm on synthetic instances of 10, 30 and 50 nodes. For each

number of nodes |V |, we generate 3 instances and run the algorithm 5 times on each instance. We

have used relative traffic scenario weights of

ωA =
1

13
, ωB =

4

13
, ωC =

8

13
(|V | − 1),

thus putting more weight on the more challenging objectives.

4.1 Instance generation

Every instance is randomly generated with the same procedure. First, independent coordinates for the

nodes v ∈ V are generated using

(xv, yv) =
(√

U0 cos(2πU1),
√
U2 sin(2πU3)

)
, (12)

where U0, U1, U2, U3 ∼ U(0, 1) and are independent. These coordinates are then scaled to match the

average distance ratio of 10 km. This coordinate generation is repeated until the minimum distance is

above 2 km and the maximum distance is below 150 km.

Finally, for each possible edge [u, v] with u, v ∈ V , a single random uniform variable is sampled for

the path loss and another for the fade margin. These random variables are then used to compute the

path losses and fade margins for [u, v] for the 4 possible frequencies according to empirical cumulative

distribution functions derived from North American datasets.
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4.2 Parameter grid search

We study the influence of two parameters on the performance of our algorithm: the number of parallel

searches κ and the explored neighborhood ratio ρ. We test values of κ ∈ {1, 2, 4, 8} and of ρ ∈
{1, 1/2, 1/4}. We only consider instances of 10 nodes and 30 nodes. We let our algorithm run for 10

minutes for 10 nodes and for 2 hours for 30 nodes.

For every tested instance, let O∗ be the largest lower bound ever reached in all runs and param-

eter configurations and let Oinit = OLB(T0), where T0 is the minimum cost spanning tree. Every

t = tmax/1000 seconds, let Ot be the average value of OLB(T ∗) on the five runs. To evaluate the

performance of our algorithm, we compute the scaled primal gap between the initial objective value

and the maximum ever found per instance with

O∗ −Ot

O∗ −Oinit
,

as well as the scaled primal integral [5]

1

tmax

∫ tmax

0

O∗ −Ot

O∗ −Oinit
dt.

The results are given in Figure 6.

As expected, when the number of parallel searches κ increases, each iteration takes proportionally

longer and the algorithm can do fewer iterations for the same amount of time. When the explored

neighborhood ratio ρ decreases away from 1, each iteration takes proportionally less time and the

algorithm can do more iterations for the same amount of time. Both of these parameters control the

trade-off between exploration and exploitation of the neighborhood structure. By increasing κ, we

allow more local exploration around the current topologies, but we do so at the cost of doing fewer

iterations. By decreasing ρ, we allow more exploration by doing more iterations but each iteration

does not exploit the full local neighborhood as much, which can miss the most promising topologies.

In the small-scale instances with 10 nodes, there are not many possible trees and the algorithm

can quickly find the optimal topology in tens to thousands of iterations depending on the parameters,

as verified by brute force exhaustive search. In the mid-scale instances with 30 nodes, the algorithm

can do less than 100 full iterations (with κ = 1) in 2 hours and it is still only beginning to explore the

intractable size of the space of possible trees.

Looking at the primal integral, we can see that, for both 10 and 30 nodes, the best combina-

tions (κ, ρ) of parameters are (2, 1), (2, 1
4 ) and (1, 1

2 ). The combination (2, 1) seems faster in producing

good topologies and we therefore fix the values of the parameters to this combination for the sequel.

4.3 Additional tests and comparisons

For the next expriment, we run our algorithm on instances of 10, 30 and 50 nodes, 3 instances of each.

For 10 nodes, we let our algorithm run for 10 minutes, for 30 nodes, 10 hours and, for 50 nodes, 2

days. For each instance, we compare the results of our algorithm against the best known value Obest.

We indicate in Table 2 how close to Obest our algorithm reaches in percentage. For 10 nodes, Obest

is the value of an optimal topology obtained by brute force exhaustive search. For 30 and 50 nodes,

we let our algorithm run once for respectively 2 days and 1 week to find suitable approximations. We

evaluate the deviation from Obest both for our minimum cost spanning tree initial topology and for

the final value reached by our TBS algorithm. For perspective, we also evaluate random trees from

the space of possible topologies. For 10 nodes, we can also compare our algorithm with a version of

the algorithm in [2] adapted to our problem [6]. The means and standard deviations of the results are

given in Table 2.
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Figure 6: Parameter grid search

(a) Primal gap, primal integral and number of iterations for 10 nodes

(b) Primal gap, primal integral and number of iterations for 30 nodes

By initializing with a minimum spanning tree instead of a random tree, we start the local search

from an already promising region of the solution space with 40 to 70 % of the best objective value,

when compared to around 2 % for a random tree. This is important since metaheuristic searches like

Tabu search are very dependent on the initial solution. When starting from a random tree, it can

take many iterations for a local search to reach a value comparable to our minimum spanning tree

initialization. Since in our case each iteration is computationally very expensive, this saves a lot of

computing time. For instance, we ran our algorithm from a random seed 5 times for each 30 node

instance and it achieved a final relative performance of 75.6± 16.0% compared to 83.4± 14.1% when

starting from the minimum spanning tree.

Our Tabu Beam Search succeeds in finding much better solutions than the initializations. For 10

nodes, it found the optimal for all instances and in all runs. For 30 and 50 nodes however, we cannot

hope for the algorithm to stumble on the optimal topology in an exponentially large solution space, in

less than 200 iterations. The search still manages to find very good solutions with more than 80 % of

the best known objective value.



Les Cahiers du GERAD G–2023–34 15

Table 2: Deviation from the best known values

Our TBS algorithm

|V | tmax, iterations Initialization Final Algorithm in [6] Random Tree

10 10 m 473±10 71.8 ± 7.7 % 100.0 ±0.0 % 65.9 ±9.6 % 1.9 ±0.8 %
30 10 h 140±63 47.2 ± 4.0 % 83.4 ±14.1 % – 1.7 ± 0.4 %
50 48 h 161±22 51.6 ±4.5 % 82.9 ±11.1 % – 2.9 ±0.8 %

The baseline adapted from [2] cannot deal with more than 10 nodes. Moreover, the values it finds

for 10 nodes are worse than our very simple minimum spanning tree initialization. Our full algorithm

performs even better as it successfully finds the optimal solutions in that case.

5 Conclusions

We fully modeled the problem of designing tactical wireless networks with multi-beam antennas. We

proposed a multi-level algorithm that tackles this complex problem in three nested procedures:

• a Tabu Beam Search for the exploration of the space of valid topologies;

• exhaustive enumerations, meta-heuristics and heuristics for the choice of the master hub, the

partition of its successors, and the channel and frequency assignments;

• a simple heuristic for the antenna configurations.

We performed synthetic experiments to evaluate the performance of our method and found that it is

able to produce very good networks and that it significantly outperforms a previous baseline algorithm.

Our algorithm can be refined in many different ways. Currently the computation of the lower

bound OLB(T ) on OMax(T ) is the part that has the most room to improve. Indeed, the exhaustive

enumeration that takes place for the choice of the master hub, the partition of its successors and the

channel assignment is very time consuming. Perhaps should we make these choices by solving a series

of nested metaheuristic local searches with different neighborhoods defined for master hubs, waveform

assignments, channel assignments and frequency assignments. The master hub neighborhood could

be the adjacent nodes of the current master hub and the other neighborhoods could be defined as

suggested in the conclusion of [1]. Each metaheuristic search could also be wrapped in a GRASP

procedure which initializes the local searches multiple times from greedy randomized solutions.

The Tabu Beam Search can also be accelerated with the use of Machine Learning. In [7], edge

prediction by a GNN is used to predict which neighbor topologies are worth evaluating in every step

of the algorithm. Similarly, GNN node prediction could also be used to predict which master hubs are

worth evaluating.
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