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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: E. M. Er Raqabi, Y. Wu, I. El Hallaoui,
F. Soumis (August 2023). Towards resilience: Primal large-scale re-
optimization, Technical report, Les Cahiers du GERAD G–2023–28,
GERAD, HEC Montréal, Canada.
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3000, chemin de la Côte-Sainte-Catherine
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Canada, H3T 3A7
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Abstract : Perturbations are universal in supply chains, and their appearance is getting more frequent
in the past few years. These perturbations affect industries and could significantly impact production,
quality, cost/profitability, and consumer satisfaction. In large-scale contexts, companies rely on math-
ematical optimization. Still, these companies must remain resilient to perturbations. In such a case,
re-optimization can support companies in achieving resilience by enabling them to adapt to changing
circumstances and challenges in real-time. In this paper, we design a generic and scalable resilience re-
optimization framework. We model perturbations, recovery decisions, and the resulting re-optimization
problem to maximize resilience. We leverage the primal information through fixing, warm-start, valid
inequalities, and machine learning. We conduct extensive computational experiments on a real-world
large-scale problem highlighting that local optimization is enough to recover after perturbations and
demonstrating the power of our proposed framework and solution methodology.

Keywords : Large-scale optimization, re-optimization, resilience, primal information, machine learn-
ing, perturbation
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1 Introduction

Perturbations are universal in supply chains (SCs), and their appearance has been more frequent in the

past few years. These perturbations affect industries and organizations and could significantly impact

production, quality, cost/profitability, and consumer satisfaction. They can be caused by several

factors, including global events, localized incidents with global impact, and shifting environmental

conditions. Global events such as the COVID-19 pandemic (Chakraborty and Maity, 2020; Shen et al.,

2020), the Ukraine war (Mbah and Wasum, 2022), and the food crisis (Gliessman, 2022) have brought

about unprecedented changes, creating uncertainty about what the future will look like. Localized

incidents, such as the blockage of the Suez Canal by Ever Given (Lee and Wong, 2021), can create a

huge challenge to global logistics. Furthermore, environmental conditions are shifting as we become

more aware of issues such as climate change (Winn et al., 2011) and natural disasters (Akkermans

and Van Wassenhove, 2018), which in turn have led to changes in operations and SC management,

consumer behavior, and government policies, etc.

The perturbations highlighted above increase the operations management complexity within and

among corporations. This increased complexity generates large and complex optimization problems.

Given these problems’ size, manual solving is intractable. Thus, companies invest heavily in mathemat-

ical optimization tools. Still, these large-scale optimization problems involve combinatorial mathemat-

ical models with complex multiobjective functions and millions of constraints and variables, making

their solving costly. In some, no feasible solutions can be rapidly identified, even using off-the-shelf

optimizers. In such a case, organizations rely on sophisticated operations research (OR) techniques to

generate (near)-optimal solutions, or even feasible solutions, in an acceptable amount of time, which

may still be relatively long if run repetitively.

While using mathematical optimization for large-scale optimization problems, companies must

remain resilient to perturbations. Among many definitions (Barroso et al., 2015), resilience can be

defined as the ability of a system (e.g., company, organization, SC) to return to its original state

or move to a new, more desirable state after being disturbed (Christopher and Peck, 2004). To do

so, organizations should stay informed and adapt to any changes to sustain their operations and

performance in the market. In several contexts, recovering after being perturbed and adapting to

changes must be quick. Thus, companies cannot afford to optimize after each change using off-the-

shelf optimizers or sophisticated OR techniques because recovery time might be relatively long.

Re-optimization can support companies in achieving resilience by enabling them to adapt to chang-
ing circumstances and challenges in real-time. It is an effective and efficient way to recover the original

state quickly or move to a better one. Compared to optimizing from scratch after each change, re-

optimizing from a previous state leverages the existing primal information, significantly reducing the

recovery time, i.e., solving the updated and refined optimization models that reflect the new data and

changing circumstances. Such gain can allow companies to re-optimize several times, i.e., whenever

a perturbation affects its system. Furthermore, re-optimization also supports companies in identify-

ing and mitigating risks before happening. By continuously analyzing data and considering potential

trends, these companies can proactively identify and address vulnerabilities in their operations, in-

creasing further resilience.

The present article has a fivefold contribution: (1) We design a generic and scalable resilience

re-optimization framework; (2) We identify and model perturbations, identify and model recovery

decisions, and highlight the need for resilience; (3) We model the re-optimization problem to maximize

resilience and solve it using a variant of the large neighborhood search (LNS) metaheuristic; (4) We

leverage the primal information using fixing, warm-start, valid inequalities, and machine learning

(ML) techniques; and (5) We conduct extensive computational experiments on a real-world large-

scale optimization problem, which highlight that local optimization is enough to recover quickly after

perturbations.
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To illustrate our research, we consider a real-world large-scale optimization problem for which

perturbations are related to the maritime distribution side and happen on a port. The goal is to quickly

recover after perturbations and reach an optimal solution while being as satisfactory as possible and

remaining as close as possible to the perturbed solution, which was previously the optimal solution.

We organize the rest of the paper as follows: We first present an overview of the relevant literature

in Section 2. Then, we highlight the generic re-optimization framework in Section 3. Section 4 is

devoted to a detailed description of the considered problem with its formulation. Section 5 presents

the solution methodology. We highlight the experimental design in Section 6, show the computational

results and managerial insights in Section 7, and conclude the paper in Section 8.

2 Literature review

In this section, we present the relevant resilience and re-optimization literature before positioning our

research.

2.1 Resilience

Supply chain resilience (SCR) has been studied from both qualitative and quantitative perspectives.

The former, which dominated in the past (Kamalahmadi and Parast, 2016), consists of approaching

SCR in a rather qualitative manner, providing a set of strategies that can increase SCR without

providing performance metrics to quantify the impact of a particular strategy on SC operations. The

latter, which is more dominant in recent years (Hosseini et al., 2019a), consists of mathematically and

analytically modeling and measuring SCR.

From a qualitative perspective, Yang et al. (2009) study a manufacturer that faces a supplier privi-

leged with private information about supply perturbations. They investigate how the risk-management

strategies of the manufacturer change and examine whether risk-management tools are more or less

valuable in the presence of such asymmetric information. Yang and Fan (2016) compares the disrup-

tion mitigation effects of three information management strategies using control theory modeling and

simulation. They show that SCs with popular information management strategies are not evidently

more stable than traditional ones. Chopra et al. (2021) offer the notion of “commons” at different

levels (company, private across the company, and government-sponsored across-industry sectors) and

discuss how the creation of such commons enabled firms to be both efficient during normal times and

resilient against the disruptions resulting from COVID-19.

From a quantitative perspective, Chen and Miller-Hooks (2012) design an indicator for network

resilience that quantifies the ability of an intermodal freight transport network to recover from disrup-

tions due to natural or human-caused disasters. The indicator considers the network’s inherent ability

to cope with the negative consequences of disruptions as a result of its topological and operational at-

tributes. They propose a stochastic mixed-integer program (SMIP) for quantifying network resilience

and identifying an optimal post-event course of action (i.e., set of activities) to take. They solve it

using a technique that combines concepts from Benders decomposition (BD), column generation (CG),

and Monte Carlo (MC) simulation. An et al. (2015) present a scenario-based stochastic mixed-integer

non-linear program (SMINLP) model that integrates facility disruption risks, en-route traffic conges-

tion, and in-facility queuing delay into an integrated facility location problem. After deriving lower

and upper bounds, they tackle it using Lagrangian relaxation (LR). Khaled et al. (2015) propose a

mixed-integer programming (MIP) model for making up and routing trains in a disruptive situation to

minimize the system-wide total cost, including classification time at yards and travel time along links.

They solve it using an iterative heuristic algorithm. Khalili et al. (2017) present a two-stage scenario-

based mixed stochastic-possibilistic programming (TSMSP) model for the integrated production and

distribution planning problem in a two-echelon supply chain over a midterm horizon under risk. They

solve it via a multi-step approach. Sahebjamnia et al. (2018) propose an integrated business continuity
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and disaster recovery planning (IBCDRP) model to build organizational resilience that can respond

to multiple disruptive incidents, which may occur simultaneously or sequentially. A multi-objective

mixed-integer robust possibilistic programming (MIRPP) model, which accounts for sensitivity and

feasibility robustness, is formulated. They tackle it using a two-phase approach. Hosseini et al. (2019b)

provide a stochastic bi-objective mixed integer programming model to support the decision-making in

how and when to use both proactive and reactive strategies in supplier selection and order allocation.

They solve it using a two-step approach. Elluru et al. (2019) stipulate that the supply chain distribu-

tion network broadly comprises two major decisions: facility location and vehicle routing. Then, they

address these distribution decisions jointly as a location-routing problem and solve it using the solver

LINGO. Sawik (2019) proposes a two-period modeling approach for supply chain disruption mitigation

and recovery and compares it with a multi-period approach. The models are SMIP with no solution

methodology. We summarize the relevant resilience literature in Table 1.

Table 1: Summary of relevant resilience literature

Author (Year) Approach Context Model Algorithm Objective

Yang et al. (2009) Qualitative Manufacturing — — —
Chen and Miller-Hooks (2012) Quantitative Transportation SMIP BD+CG+MC Max Demand
An et al. (2015) Quantitative Location SMINLP LR Min Cost
Khaled et al. (2015) Quantitative Transportation MIP Heuristic Min Cost
Yang and Fan (2016) Qualitative SC — — —
Khalili et al. (2017) Quantitative SC TSMSP Multi-step Min Cost
Sahebjamnia et al. (2018) Quantitative Manufacturing MIRPP Two-phase Min Loss
Elluru et al. (2019) Quantitative SC SMIP LINGO Min Cost
Hosseini et al. (2019b) Quantitative SC SMIP Two-step Max Distance
Sawik (2019) Quantitative SC SMIP — Min Cost
Chopra et al. (2021) Qualitative Industry — — —
This Paper Quantitative SC MILP Heuristic Max Resilience

2.2 Re-optimization

Re-optimization is an efficient way to ensure resilience in large-scale contexts. We distinguish two

types of re-optimizations: major and minor. Major re-optimizations happen after a disruption and

are more strategic/tactical and less frequent (e.g., once, annually). They are often conducted from

scratch and usually require an exact algorithm. On the contrary, minor re-optimizations occur after a

perturbation and are more tactical/operational and frequent (e.g., weekly, daily, real-time). They are
conducted more from a previous solution than from scratch and usually require a heuristic algorithm.

From a major perspective, Bruno et al. (2021) rely on re-optimization to re-engineer a system. The

latter consists of reorganizing the collection system of an Italian postal service provider. They model

the problem as a MIP that identifies the number of postboxes (currently located in an urban area) to

be closed. They solve it using a two-phase methodology based on mathematical programming. Chen

and Miller-Hooks (2012), cited in Section 2.1, also rely on major re-optimization. We recall that they

propose a SMIP for quantifying network resilience and identifying an optimal post-event course of

action (i.e., set of activities).

From a minor perspective, D’Ariano et al. (2010) present a graph formulation for the train running

profile problem. A conflict solution system is developed, that models the train scheduling problem as an

alternative graph. From a network point of view, the optimal solution can be improved by modifying the

speed profiles locally for the individual train routes. A constructive heuristic algorithm for the dynamic

modification of running times during operations is proposed that satisfies the timetable constraints

of train orders and routes and guarantees the feasibility of the running profile while considering the

properties of the signaling and train protection systems in use. Archetti et al. (2013) consider the

re-optimization of the Rural Postman Problem (RPP) given an instance and its optimal solution.

They study the problem of finding a satisfactory feasible solution after a perturbation (new edge
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Table 2: Summary of relevant re-optimization literature

Author (Year) Type Context Model Algorithm Objective

D’Ariano et al. (2010) Minor Transportation Graph Heuristic Max Trajectory
Chen and Miller-Hooks (2012) Major Transportation SMIP Exact Max Demand
Archetti et al. (2013) Minor Transportation — Heuristic Min Cost
Dong et al. (2018) Minor Transportation MIP CPLEX Min Cost
Schieber et al. (2018) Minor CRO MIP Heuristic Min Distance
Doerr et al. (2019) Minor CRO MO Heuristic Min Distance
Hassani et al. (2020) Minor Personnel MIP Heuristic Min Cost
Bruno et al. (2021) Major Location MIP Exact Min Distance
Hasani et al. (2021) Minor Personnel MIP Labeling Min Cost+Distance
This Paper Minor SC MIP Heuristic Max Resilience

added or removed) of the instance has occurred and tackle it heuristically. Schieber et al. (2018)

develop a general framework for combinatorial re-optimization (CRO), encompassing classical objective

functions as well as the goal of minimizing the transition cost from one solution to the other. Using

their model, they derive re-optimization and re-approximation algorithms for several combinatorial

re-optimization problem classes. Dong et al. (2018) study a maritime inventory routing MIP problem

in which shipments between production and consumption nodes are carried out by a fleet of vessels. In

the face of new information and uncertainty, this optimization model has to be resolved as the horizon

is rolled forward. They discuss how to account for different sources of uncertainty and present a rolling-

horizon re-optimization framework that allows studying different policies that impact the quality of the

implemented solution. They use the solver CPLEX for re-optimization. Doerr et al. (2019) show that

evolutionary algorithms can have unexpected difficulties to solve re-optimization problems, which build

on a previously good feasible solution. Then, they propose a simple diversity mechanism that works for

various mathematical optimization (MO) problems, including the LeadingOnes, linear functions with

modified uniform constraints, and the minimum spanning tree problems. Hassani et al. (2020) develop

a fast re-scheduling heuristic that can be used to solve the personnel re-scheduling problem in a context

where the employees can be assigned to a wide variety of shifts such as in the retail industry. Hassani

et al. (2021) propose a fast re-scheduling heuristic that can be used to correct minor disruptions in a

retail industry context where employees can be assigned to a wide variety of shifts, starting and ending

at numerous times. This heuristic can compute a set of approximate Pareto-optimal solutions that

achieve a good compromise between cost and number of shift changes. It can be seen as a labeling

algorithm that partially explores the network defined by the edges of the convex hull of the solutions

of an integer program. We summarize the relevant re-optimization literature in Table 2.

2.3 Our research

In our paper, we seek SCR via re-optimization. As far as we acknowledge, the only close research

paper to ours is the one in the intersection of Sections 2.1 and 2.2, which is the work of Chen and

Miller-Hooks (2012). While this paper and ours are both quantitative, the former belongs to the major

re-optimization (disruption) case, while ours belongs to the minor re-optimization (perturbation) case.

Furthermore, we quickly re-optimize from a previous solution, while Chen and Miller-Hooks (2012)

re-optimize from scratch. All other papers belong to either Section 2.1 or Section 2.2 but not both.

Within the resilience and re-optimization pieces of literature, we distinguish our paper as follows.

First, we propose a generic and scalable resilience/re-optimization framework. Second, using the

distribution side of a global SC (large-scale problem) case to illustrate, we quantify resilience and build

a new MIP model from the model in Er Raqabi et al. (2023b), where some constraints and variables

are kept, and resilience is the objective function. Third, we leverage the primal information using ML,

valid inequalities, warm-starting, and fixing techniques to reach satisfactory solutions quickly to suit

the need for SCR via re-optimization.
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3 Resilience/re-optimization framework

In this section, we introduce the generic and scalable Resilience/Re-Optimization (RRO) framework.

We then offer discussions from a managerial perspective based on the supply chain operations reference

(SCOR) model.

3.1 Framework

Let us consider a large-scale optimization problem (Original Problem) modeling the SC of a company.

Using solvers and OR techniques, the company obtains an optimal solution. Faced with uncertainties

(Perturbation(s)), this solution may no longer be feasible. In such a case, we note that solution q∗.

Thus, the company wants to be resilient and to quickly re-optimize and reach a near-optimal, if not

optimal, solution q∗ as satisfactory as possible as solution q∗.

To remain resilient, the company has to define (Resilience Definition) and model (Resilience Mod-

eling) resilience. The resilience definition must be clear to allow the company model accordingly.

Furthermore, the company has to identify and model perturbation(s). Then, it has to identify and

model the set of actions (Decision(s)) to take. Following these aspects, it can formulate the re-

optimization problem to maximize resilience while taking into consideration the original problem. We

refer to this first stage (red frame) as the problem definition stage.

After formulating the re-optimization problem, the company can design its re-optimization approach

while leveraging the primal information using the solution q∗, the original problem, and the company’s

history (e.g., solutions history, problem knowledge, accumulated expertise). Such information is rel-

evant since we do not want to optimize from scratch. The qualification primal is borrowed from the

optimization lexicon and is used mainly to distinguish between dual and primal methods. The former

does not take into consideration the accumulated information in the optimization process, while the

latter leverages the accumulated information to reach optimality quickly. The re-optimization ap-

proach allows reaching a feasible solution q∗ as close as possible to the no-longer feasible solution q∗

and hence causes the least amount of changes in response to the perturbations. We refer to the second

stage (green frame) as the solution methodology stage. We reflect both stages in the RRO framework

in Figure 1.

Figure 1: RRO framework
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3.2 Managerial discussion

We discuss the RRO framework from a managerial perspective based on the SCOR model in Figure 2.

A company having a set of suppliers and customers faces several perturbations. These perturbations

can happen in any pillar of the SCOR model. Based on the point of emergence in the supply chain,

these perturbations can classify into two types: internal and external. The internal ones are taking

place inside the company. The external ones are either inbound (i.e., from the frontier with the supplier

and above) or outbound (i.e., from the frontier with the customer and below). For instance, on the

make pillar of the company, the company may face a machine breakdown curbing production. On

the deliver pillar of the supplier, the company may receive raw materials later than planned. On the

source pillar of the customer, the customers may cancel orders and or change their requirements.

Figure 2: SCOR model from AIMS

These perturbations also vary in terms of impact magnitude. Based on the impact, we distinguish

minor and major perturbations. For instance, delayed delivery of raw materials is a minor perturbation

when the company has enough safety stock. A machine breakdown curbing the production process

is a major perturbation. It is worth mentioning that we focus on perturbations. The reason is that,

after a perturbation, it is possible to recover quickly. This is not the case for disruptions. For instance,

after a natural disaster (e.g., tsunami, or earthquake), a company may need several weeks to recover

and resume operations.

To deal with these perturbations, the company has to take a set of actions to deal with them.

For instance, on the company’s source pillar, a company may decide to diversify suppliers or increase

the safety stock levels. On the company’s make pillar, the company may opt for a strict preventive

maintenance strategy to diminish the machine breakdown occurrence. On the company’s deliver pillar,

the company may classify customer orders into confirmed and unconfirmed ones. Then, it can focus

on producing and delivering the confirmed ones and postpone unconfirmed ones until confirmation.

The company must also seek resilience to adapt quickly to changes. To do so, it must establish

a clear resilience definition. Then, it can develop an indicator that models resilience. Using these

inputs, the company can design a re-optimization problem that can, when solved quickly based on the

company’s history, support decision-making when faced with perturbations. By bringing resilience and

re-optimization together, the RRO framework ensures the following benefits. First, the re-optimization

from a previous solution q∗ (leveraging primal information) is quicker than re-optimizing from scratch.

This ensures a quick solution, which implies quick adaptation, and thus operations continuity. Second,

the consideration of resilience implies fewer changes. This makes the different involved stakeholders

(e.g., operators, supervisors, and managers) from the company less worried about the changes to be

made. A solution that requires fewer changes is always preferred by operators since they do not have

to shift a lot from the way they used to work and plan.

https://aims.education/study-online/supply-chain-operations-reference-model-scor/
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In what follows, we illustrate the RRO framework considering a global SC. The red-framed part

(Problem Definition) is Section 4 with the dashed red frames being subsections. The green-framed

part (Solution Methodology) is Section 5 with the dashed green frames being subsections.

4 Problem definition

In this section, we present one implementation of the RRO framework for a real-world large-scale

optimization problem. We first present the context (Original Problem, Perturbations, and Decisions).

Then, we discuss resilience (Resilience Definition and Resilience Modeling).

4.1 Context

To present the context, we first describe briefly the original problem. Then, we highlight the per-

turbations and the decisions to tackle them. While the work presented for illustration is inspired by

a large-scale mining company, its findings can be transferred, adapted, and applied to tackle similar

difficult and large-scale problems in other industries.

4.1.1 Original problem

We consider the global SC of OCP Group, one of the largest phosphate companies worldwide, holding

70% of the world’s phosphate rock reserves (Summaries, 2021). It has branches in Morocco, Brazil, In-

dia, and other countries, and specializes in phosphate mining, production, and exportation. Phosphate

products include raw phosphate, phosphoric acid, and phosphate fertilizers.

The company promotes precision farming, i.e., utilizing a unique fertilizer for a specific type of soil

(Auernhammer, 2001). As a result, its number of products has increased from 3 to more than 30 in

recent years. Its global SC, highlighted in Figure 3, is made up of four main components, through which

45 raw, semi-finished, and finished products flow. The phosphate rocks are extracted from the mine;

then, these rocks are transported using trucks to a physical treatment facility where they undergo the

washing and floating processes. The washed rocks are transported by a 187 km slurry pipeline to the

coastal processing plant for chemical treatment. Several derivative products are processed through 32

various chemical processes. The final products are then stored in 29 large tanks before being supplied

through conveyors to quays, where vessels of clients worldwide are loaded. The coastal processing

factory, as well as the loading port, spreads over an area of 5 km2. On average, 37.6 million metric
tons of phosphate rock are processed each year, accounting for 31% of the phosphate world market

share. The supply chain is connected through 102 conveyors and pipelines (OCP Group, 2023).

Figure 3: The phosphate supply chain

The considered large-scale optimization problem involves integrated production scheduling, inven-

tory management, and vessel assignment (PSIMVA), grouping several components of the downstream

supply chain (red-framed part in Figure 3), making it quite complex. More details about the PSIMVA
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can be found in Er Raqabi et al. (2023b). We are particularly dealing with perturbations happening

on the port side, i.e., vessel assignment. In what follows, we assume that the company has already

an optimal solution (schedule) q∗ obtained using, for example, solvers and OR techniques (Er Raqabi

et al., 2023b; Himmich et al., 2023; Er Raqabi et al., 2023a). This problem is interesting because per-

turbations happen often, re-optimization from scratch is costly, and the company has enough historical

data, which allows leveraging the primal information. It makes the problem suitable to illustrate the

RRO framework presented in this paper.

4.1.2 Perturbations

OCP downstream operations are located in a coastal area. On the vessel assignment (VA) part of the

PSIMVA, each customer vessel v ∈ V = {1, ..., V } must be assigned to a quay k ∈ K = {1, ...,K} for

loading within a time interval (a few consecutive periods, with a period equivalent to one day). Let

T = {1, ..., T} be the set of T periods. The loading cannot be partial, i.e., either a vessel is fulfilled or

not fulfilled. To accomplish this, a decision must be made on the assignment of each vessel v ∈ V to

a quay based on a set of possible assignments i ∈ Iv = {1, ..., Iv}. We denote I =
⋃

v∈V Iv and Ivk
the set of possible assignment of vessel v ∈ V restricted to quay k ∈ K. Each i ∈ I is a quadruplet

(t, t, k, v) where i1 = t is the starting period, i2 = t is the ending period, i3 = k is the quay, and i4 = v

is the vessel. Each vessel has then a set of binary variables qi with i ∈ I, from which only one must be

selected. OCP Group faces several perturbations related to the port, i.e., the VA part. We consider

two perturbations defined below.

Definition 1. Weather Perturbation p1 occurs when the weather in the port is bad enough to affect

the normal operations.

Definition 2. Vessel Perturbation p2 occurs when a vessel’s arrival at the port is delayed.

If a perturbation p1 occurs, all the vessels previously scheduled for loading during the perturbation’s

period(s) can no longer be loaded. Also, if a perturbation p2 occurs for a given vessel, this vessel cannot

be loaded as scheduled. Thus, these perturbations make q∗ no longer feasible. Furthermore, while

being both minor, it is worth mentioning that the two perturbations considered are different in terms

of time. In fact, assuming that the weather is accurately predicted a week before, perturbations p1 can

be tackled on a weekly basis, i.e., we eliminate the case where a vessel v ∈ V is in the loading process

when a perturbation p1 happens. Thus, after forecasting a weather perturbation period(s), vessels are

rescheduled for loading with no intersection with the perturbation’s period(s). On the other hand,

perturbations p2 happen in real-time.

From a modeling perspective, both perturbations p1 and p2 imply the removal of vessel assignment

variables from the optimization model. For instance, if the weather is bad during a time interval

[t1, t2], all the assignment variables qi, i ∈ I having a non-empty intersection with this time interval

([i1, i2] ∩ [t1, t2] ̸= ∅) are removed from the optimization model. Similarly, if a vessel v ∈ V is delayed,

all its variables qi, i ∈ Iv before its new arrival period are removed from the optimization model.

4.1.3 Decisions

When perturbations occur, decisions must be taken to recover quickly. Before introducing decisions,

we present the following mild assumptions.

Assumption 1. The company has enough stocking space at the port.

Assumption 1 is realistic in the large-scale context because companies usually manage large product

quantities. Thus, by design, they have quite large stocking spaces and entities.

Assumption 2. Customer vessels may arrive earlier than their schedule and wait close to the port.

Assumption 2 is realistic since in many ports worldwide (e.g., Singapore port in Figure 4), vessels

wait close to the port until authorized to enter for loading.
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Figure 4: Singapore port queue

Assumption 1 allows the company to produce and stock, and load after a delayed vessel arrives.

This is very relevant and practical since it allows the company to maintain the production schedule as

it is. Assumption 2 allows the possibility to advance some vessels (queuing close to the port) ahead of

their schedules if others are delayed. We introduce now the two decisions taken to face perturbations.

Definition 3. A delay (del) decision d1 is taken when the weather at the port is bad or when a vessel

is delayed.

Definition 4. Let us consider two vessels v1 and v2 in V with similar products. If v1 is delayed and v2
is queuing close to the port, an advance (adv) decision d2 occurs to allow loading vessel v2 ahead of

schedule.

It is worth mentioning that if a vessel v ∈ V is not expected to arrive within the planning horizon,

it is simply delayed using decision d1 beyond the planning horizon. Combining decisions d1 and d2,

we make the following observation.

Observation 1. Swapping or permuting two vessels v1, v2 ∈ V with v1 being ahead of v2 is equivalent

to applying decision d1 to vessel v1 and decision d2 to vessel v2.

Furthermore, for decisions d1 and d2, the whole space of feasible solutions is generated as shown in

Proposition 1 below.

Proposition 1. Any feasible schedule q̄ can be reached from the no longer feasible solution q∗ using

decisions d1 and d2.

Proof. Consider a schedule q̄. Delay beyond scheduling horizon using decision d1 all vessels belonging

to schedule q∗ and not to q̄. If vessel v ∈ V is loaded earlier in schedule q∗ than q̄, use decision d1 to

delay it. Similarly, if vessel v ∈ V is loaded later in schedule q∗ compared to schedule q̄, use decision

d2 to advance it.

Proposition 1 is relevant because it ensures that the whole feasible space is explored. Thus, no

feasible solution is discarded, including the new feasible schedule q∗ we are looking for.

When a perturbation happens, we enumerate the set of delayed (resp. advanced) vessels Vdel (resp.

Vadv). From a modeling perspective, decision d1 corresponds to adding new variables qdeli , i ∈ Iv to

any delayed vessel v ∈ Vdel with i1 ≥ loading, loading being the potential (delayed) loading start
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period of vessel v. Decision d2 corresponds to adding new variables qadvi , i ∈ Iv to any advanced vessel

v ∈ Vadv with i1 ≥ loading, loading being the potential (advanced) loading start period of vessel v.

For advanced vessels, we keep also their initial assignment variables. To differentiate, we refer to these

variables as qinii , i ∈ Iv with v ∈ Vadv.

4.2 Resilience

This section defines resilience and models it mathematically for our context.

4.2.1 Resilience definition

Among many definitions (Barroso et al., 2015), resilience can be defined as the ability of a system

(e.g., company, organization, SC) to return to its original state or move to a new, more desirable state

after being disturbed (Christopher and Peck, 2004).

In our context, SCR is the ability to recover or reach a better schedule while remaining as close

as possible to the original schedule. By close, we imply fulfilling as many vessels as the previously

optimal schedule while maintaining the least distance possible to the previously optimal schedule.

4.2.2 Resilience modeling

As per the definition above, we highlight two resilience indicators. The first is maximizing the total

fulfillment (TF) and minimizing the distance between schedules (∆D). The first indicator TF is the

first KPI in Er Raqabi et al. (2023b). Denoting Qp
v as the quantity of product p ∈ P ordered by vessel

v ∈ V, TF can be modeled as follows:

TF (q) = 100×
∑

v∈V,p∈Pv

∑
i∈Iv

Qp
vqi∑

v∈V,p∈Pv
Qp

v

The second indicator ∆D can be modeled as follows:

∆D(q) = −100×
∑

v∈Vdel,p∈Pv

∑
i∈Iv

Qp
vq

del
i +

∑
v∈Vadv,p∈Pv

∑
i∈Iv

Qp
vq

adv
i∑

v∈Vdel
⋃

Vadv,p∈Pv
Qp

v

For a given schedule q, ∆D(q) measures the percentage of vessels delayed and advanced. The

negative sign is added since we want to maximize resilience and minimize the distance.

After modeling these two conflicting indicators, resilience can be modeled as a weighted objective:

R(q) = α1 × TF (q) + α2 ×∆D(q),

where

(α1, α2) ∈ R2 such that α1 + α2 = 1

In the next section, we develop the solution methodology. The objective is to find a feasible schedule

that maximizes resilience under port constraints.

5 Solution methodology

In this section, we formulate the Re-optimization Problem, we highlight different ways to leverage

Primal Information. Then, we provide the Re-optimization Approach.
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5.1 Re-optimization problem

Following the design in Section 4, we have the following re-optimization problem constraints:∑
i∈Iv

qdeli ≤ 1 ∀v ∈ Vdel (1)

∑
i∈Iv

qinii + qadvi ≤ 1 ∀v ∈ Vadv (2)

∑
i∈Iv

qi ≤ 1 ∀v ∈ V \ Vdel ∪ Vadv (3)

∑
v∈Vdel

∑
i∈Ivk

i1≤t≤i2

Lvq
del
i +

∑
v∈Vadv

∑
i∈Ivk

i1≤t≤i2

Lv(q
ini
i + qadvi ) +

∑
v∈V\Vdel ⋃Vadv

∑
i∈Ivk

i1≤t≤i2

Lvqi ≤ Lk ∀k ∈ K, t ∈ T (4)

∑
v∈V,p∈Pv

∑
i∈Ivk

i1≤t′≤i2

t+6∑
t′=t

Qp
vqi ≤ MAX ∀k ∈ K, t ∈ T − (5)

qi ∈ B ∀i ∈ Iv, v ∈ V (6)

Constraints (1) ensure that, at most, a single assignment is selected for each delayed vessel. Con-

straints (2) ensure that, at most, a single assignment is selected for each advanced vessel. Con-

straints (3) ensure that normal vessels must be fulfilled. Constraints (4) (to be discussed further

below) control the respect to quay length restrictions. The length of a quay is noted Lk with k ∈ K
while the length of a vessel is noted Lv with v ∈ V. Constraints (5) are operational rules that

control the maximum quantity (MAX) that can be loaded on a given quay over a week. We note

T − = T \ {T − 5, ..., T }. Constraints (6) ensure the binary restrictions on the q variables.

By defining Ω as the set of constraints, the re-optimization problem is written as:

max R(q)

s.t. q ∈ Ω (Re-Opt)

5.2 Primal information

There are many ways to leverage primal information using the company’s history, the previously

optimal solution q∗, and the original problem formulation.

5.2.1 Fixing

Fixing is the first option to leverage primal information. In fact, for unaffected (by perturbation(s))

vessels v ∈ V \ Vdel ∪ Vadv, it is possible to fix them as per the previously optimal solution q∗. In

such a case, the corresponding term in the objective function becomes constant and we can remove

constraints (3). Constraints (4) and (5) are written as follows:∑
v∈Vdel

∑
i∈Ivk

i1≤t≤i2

Lvq
del
i +

∑
v∈Vadv

∑
i∈Ivk

i1≤t≤i2

Lv(q
ini
i + qadvi ) ≤ Lk −

∑
v∈V\Vdel ⋃Vadv

∑
i∈Ivk

i1≤t≤i2

Lvq
∗
i ∀k ∈ K, t ∈ T (7)

∑
v∈Vdel ⋃Vadv,p∈Pv

∑
i∈Ivk

i1≤t′≤i2

t+6∑
t′=t

Qp
vqi ≤ MAX−

∑
v∈V\Vdel ⋃Vadv,p∈Pv

∑
i∈Ivk

i1≤t′≤i2

t+6∑
t′=t

Qp
vq

∗
i ∀k ∈ K, t ∈ T − (8)

Fixing allows alleviating the model by eliminating a significant portion of binary variables qi as

well as |V \ Vdel ∪ Vadv| constraints.
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5.2.2 Warm-start

Warm-starting is the second option to leverage primal information. For advanced vessels, they can be

warm-started using their optimal assignment in q∗.

Proposition 2. Under the fixing option, q0i =

{
0 i ∈ Iv, v ∈ Vdel

0 or q∗i i ∈ Iv, v ∈ Vadv
is a feasible solution to

Problem Re-Opt.

Proof. The delayed vessels cannot be warm-started because their previous assignments are removed.

Their new assignment qdeli , i ∈ Iv v ∈ Vdel can be initiated with a 0. For the advanced vessels, the

new assignment qadvi , i ∈ Iv v ∈ Vadv can be initiated with a 0. Still, the advanced vessels have their

qinii , i ∈ Iv v ∈ Vadv variables (from the previous schedule) in Re-Opt model. These variables can be

warm-started using their values in q∗.

If fixing is not applied, the unaffected vessels can also be warm-started.

Proposition 3. Without the fixing option, q0i =


0 i ∈ Iv, v ∈ Vdel

0 or q∗i i ∈ Iv, v ∈ Vadv

q∗i i ∈ Iv, v ∈ V \ Vdel ∪ Vadv

is a feasible

solution to Problem Re-Opt.

Proof. Adding to Proposition 2, without fixing, qi, i ∈ Ih v ∈ V \ Vdel ∪ Vadv can be warm-started

using their assignment in q∗.

Warm-starting allows for accelerating the solving process.

5.2.3 Valid inequalities

Valid inequalities are the third option to leverage primal information. They allow the strengthening

of the model and obtaining tighter relaxations. For our Re-Opt model, we add the following valid

inequalities: ∑
i∈Ivk

qdeli ≤ 1 ∀v ∈ Vdel, k ∈ K (9)

∑
i∈Ivk

qinii + qadvi ≤ 1 ∀v ∈ Vadv, k ∈ K (10)

∑
i∈Ivk

qi ≤ 1 ∀v ∈ V \ Vdel ∪ Vadv, k ∈ K (11)

Constraints (9) are a decomposition of Constraints (1) to quays. Constraints (10) are a decompo-

sition of Constraints (2) to quays. Constraints (11)are a decomposition of Constraints (3) to quays.

5.2.4 Machine learning

ML is the fourth option to leverage primal information and has been used intensively recently in OR

(Bengio et al., 2021). It consists of learning from the company’s history (e.g., the pool of optimal

schedules, weather history in the port, and perturbations history). It also supports the capturing of

hidden trends that can help in making the solving approach quicker. In this section, we present the

target, the data, the features, and the network structure qualitatively. All experiments are kept for

Section 6.
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Target. The goal of our ML model can be stated as follows: Given a vessel v ∈ Vdel ∪ Vadv, estimate

the probability yvk that vessel v is assigned to a quay k ∈ K. Given such probabilities, we can select

the top κ-quays for each vessel v ∈ Vdel ∪ Vadv, κ being an integer parameter. The role of the ML

model is alleviating model Re-Opt by selecting only the promising quays for each v ∈ Vdel ∪ Vadv and

thus reducing the number of binary q variables significantly. For a given vessel v ∈ Vdel ∪ Vadv, the

target of our ML model is constructing a vector Yv ∈ R|K| such that Yvk = yvk. Then, ranking the

elements of vector Yv in decreasing order will allow us to extract the top κ-quays for vessel v.

Data & features. Throughout the years, OCP Group has accumulated several schedules (solutions)

where various vessels are assigned to various quays. For many instances, optimal schedules are avail-

able, and for some difficult instances, near-optimal schedules are available. These solutions will be

used to train, validate, and test the ML model.

Each vessel v ∈ Vdel∪Vadv and quay k ∈ K have a feature vector Xvk, which contains the following

features:

1. For each product p ∈ P:

(a) A binary feature indicating whether vessel v contains product p, denoted f
(a)
vp .

(b) A numerical feature indicating the quantity of product p required by vessel v, denoted f
(b)
vp .

2. A numerical feature corresponding to the earliest arrival period of vessel v, denoted f (2).

3. A numerical feature corresponding to the latest arrival period of vessel v, denoted f (3).

4. A numerical feature corresponding to the average loading time of vessel v, denoted f (4).

5. A numerical feature corresponding to the ratio of vessel v length to quay k length, denoted f (5).

6. A categorical feature corresponding to the destination of vessel v, denoted f (6).

These features contain all the information related to a given vessel v ∈ V and quay k ∈ K.

Network structure. Each feature vector (entry) has a relatively large number of features. Furthermore,

we did not find a strong correlation between any single feature and the target, suggesting that achieving

a high prediction accuracy may require an ML model that can combine the features in a non-trivial

way. Neural networks are known to perform well with entries containing many features. A neural

network is composed of several neurons (also called perceptions) arranged in layers (Goodfellow et al.,

2016). The first layer is called the input layer, and each neuron of this layer represents one feature.

The last layer is called the output layer and holds the prediction yvk, k ∈ K for v ∈ V. A neural

network may also contain one or several intermediate layers, called hidden layers, in which case it is

called a deep neural network (DNN). The neurons of one layer are generally connected to neurons of

the next layer. When predicting an entry, the neurons of the input layer are initialized to the value of

the entry’s features. Those values are then propagated throughout the network to the output layer.

Each neuron computes a weighted sum of its inputs and applies to the result an activation function,

which introduces non-linearity in the model. This value is then transmitted to the neurons of the next

layer. The weights and the parameters of the activation functions are adjusted in a training phase to

achieve the best accuracy. We, therefore, train a DNN on the task of predicting the target of a new

entry.

Following the four options which allow leveraging the primal information, we present next the

re-optimization approach.

5.3 Re-optimization approach

By leveraging the primal information to alleviate, strengthen, and warm-start model Re-Opt, the goal

of this section is to find the new optimal schedule(s), i.e.:

q∗new = arg max
q ∈ Ω

R(q)
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Before going to the solution, we introduce some relevant definitions. The first definition (Defi-

nition 5) highlights SCR mathematically. Since the resilience formula is a bi-objective function, the

second definition (Definition 6) highlights the notion of a Pareto-optimal schedule.

Definition 5. Let TF (q∗) be the updated total fulfillment after the removal of all vessels v ∈ V delayed

beyond the scheduling horizon. A supply chain is said resilient if there exists a schedule q̄ such that

TF (q̄) = TF (q∗) and |∆D| is minimal (i.e., if |∆D′| < |∆D| then TF ′(q̄) < TF (q∗)). We refer to

schedule q̄ as a resilient schedule.

Definition 6. If for any positive weights α1 and α2 such that α1 + α2 = 1, there exists a schedule

q̄ ∈ Ω with the property:

R(q) ≤ R(q̄) ∀q ∈ Ω

Then schedule q̄ is a Pareto-optimal solution for model Re-Opt.

Next, we show that any schedule q̄ achieving SCR is Pareto-optimal.

Proposition 4. A resilient schedule q̄ is a Pareto-optimal schedule.

Proof. As per Definition 5, schedule q̄ ensures that ∀q ∈ Ω:

TF (q) ≤ TF (q∗) = TF (q̄) and ∆D(q) ≤ ∆D(q̄)

Given two positive weights α1 and α2 such that α1 + α2 = 1, we have:

R(q) = α1 × TF (q) + α2∆D(q) ≤ α1 × TF (q̄) + α2 ×∆D(q̄) = R(q̄) ∀q ∈ Ω

We refer to this schedule as the resilient schedule. The inverse is not necessarily correct since

the choice of weights may generate non-resilient schedules. For instance, when choosing α1 = 0 and

α2 = 1, the Pareto-optimal schedule will minimize the distance without fulfilling delayed vessels. To

find a resilient schedule q̄, the bi-objective function weights α1 and α2 must be tuned. Since model

Re-Opt is convex (TF , ∆D, and Ω are convex), there exist appropriate positive weights, as suggested

by the following theorem (Wierzbicki, 1986):

Theorem 1. If R(Ω) is convex and q̄ is Pareto-optimal for model Re-Opt, then there exist positive

weights α1 and α2 with the property:

α1 × TF (q) + α2 ×∆D(q) ≤ α1 × TF (q̄) + α2 ×∆D(q̄) ∀q ∈ Ω

After finding appropriate weights and since we seek quick solving, we use the incremental large

neighborhood search (ILNS) metaheuristic of Er Raqabi et al. (2023b). Briefly, ILNS takes

a Re-Opt instance and iterates over four steps: the Vessel Assignment step, the Problem Reduc-

tion step, the Solving step, and the Wrap-up step. In the Vessel Assignment step, after partitioning

the re-optimization time horizon into smaller time intervals (e.g., weeks), we assign each vessel to a

time interval. Using these assignments, we reduce further the pool of binary variables related to vessel

assignment in the Problem Reduction step. Then, we solve the reduced problem in the Solving step.

We keep iterating over the time horizon, using previous solutions as a warm-start until completion.

Before returning a solution, in case there are still unfulfilled vessels, we try to fulfill them in the

Wrap-up step. Compared to the standard LNS, which does not work efficiently for very large-scale

optimization problems, ILNS destroys only the part of the solution that can be improved. This is

because we do not have time for backtracking in such a huge MILP problem. Thus, we break the

problem down, solve it, fix part of the solution, and move forward to improve that solution further.

Further details are available in Er Raqabi et al. (2023b).

We illustrate the usage of ILNS in Figure 5. Starting from a monthly schedule q∗ in green, we call

ILNS on a two-stage approach. The first stage is the re-optimization after a weather perturbation p1
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Figure 5: 2-stage ILNS

(weekly basis). The second stage is the re-optimization after a vessel perturbation p2 (real-time). For

both stages, the schedule before the perturbation is maintained. The re-optimization using the two-

stage ILNS is conducted on the periods that start from the perturbation period and continue until

the end of the scheduling horizon. This is done by calling iteratively and when applicable, the ILNS
just before the week begins for the weather perturbation p1 and then whenever a vessel perturbation

p2 happens during the week. In what follows, we refer to the proposed approach as the 2-stage ILNS.

6 Experimental design

To study whether the proposed approach is computationally efficient, we complement the analysis

presented in previous sections with an extensive computational study. In this section, we describe

the general characteristics of the test instances, the machine learning model (quantitatively), the

computational setting, and the implementation details.

6.1 Instances

We pick six instances from Er Raqabi et al. (2023b). The features of these instances, including the

time horizon (Horizon), the number of vessels (Vessels), the total demand (Demand) in tonne, and

the total fulfillment (TF∗) corresponding to solution q∗ of each instance are presented in Table 3. For

these instances, we know the optimal values as well as the optimal solutions.

Table 3: Instances

Name Horizon Vessels Demand TF∗

I1 32 54 806360 92.52%
I2 32 58 826460 92.65%
I3 32 39 1044550 93.34%
I4 24 40 1043330 95.68%
I5 32 61 1066290 93.10%
I6 31 91 1304370 99.08%

Avg 31 57 1015227 94.40%

These instances will be perturbed according to three scenarios: perturbations p1 alone, perturba-

tions p2 alone, and perturbations p1 and p2. From each instance above, we generate three perturbed

instances. The first one has only p1-type perturbations. The second one has only p2-type perturba-

tions. The third one has both p1-type and p2-type perturbations. The way we generate these instances

is as follows. For p1-type perturbations, we perturb a given % of periods with the scheduling horizon.

For p2-type perturbations, we perturb a given % of the considered vessels. For p1-type and p2-type

perturbations, we perturb both periods and vessels. We refer to the given % as the perturbation

percentage. An example is provided below.
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Example 1. Let us consider an instance of a 2-week time horizon with ten vessels, two quays, and both

p1-type and p2-type perturbations. With a perturbation percentage of 10% for both types, two periods

out of 14 are randomly perturbed. Similarly, on the ten vessels, one vessel is randomly perturbed.

This is visualized in red on the schedule in Figure 6. After perturbing periods 4 and 12, vessels with

non-empty intersections with these two periods (i.e., v2, v4, v6, v8, and v10) must be rescheduled.

Similarly, for p2-type perturbations, delayed vessel v3 must also be rescheduled.

Figure 6: Example of a perturbed schedule

The re-optimizations are conducted in the order of appearance of perturbations following the 2-

stage ILNS in Figure 5. Thus, starting with p1-type perturbation in period 4, we reschedule vessels

v4 and v10. This is the first re-optimization. Then, we re-optimize for a second time to reschedule v3
(after p2-type perturbation). Lastly, we re-optimize for a third time to reschedule vessels v2, v6, and

v8. The schedule obtained after completing all re-optimizations is referred to as the final schedule.

6.2 Machine learning model

As mentioned in the previous section, we use a ML model to construct Yv for each vessel v ∈ V.
Our ML model is a DNN trained in a supervised training framework using data from several optimal

solutions. To avoid confusion, we refer to these solutions as reference solutions. Each reference solution

q̄ from the history assigns several vessels to various quays. Thus, from a solution q̄ with |Vq̄| vessels
assigned, we can extract |Vq̄| pairs (Xvk, yvk) where v ∈ Vq̄ and k ∈ K. Furthermore, we can leverage

the symmetry of the problem and collect all equivalent optimal reference solutions. Thus, we may

have several possible assignments for each vessel v ∈ Vq̄. Each Xvk is given a label yvk. This label

is computed as the frequency at which vessel v ∈ Vq̄ is assigned to quay k ∈ K in all the considered

reference solutions.

We train a DNN on the pool of reference solutions to predict the label of a new vector Xvk. We

note yprdvk the predicted label of entry Xvk. The quay ranking is obtained by ordering the quays in

decreasing order of yprdvk . Then, we can select the top κ-quays. The pairs (Xvk, yvk) are split randomly

into three disjoint subsets: a training set (60% of pairs), a validation set (20% of pairs), and a test set

(20% of pairs).

The neural network is a feedforward fully connected DNN. Conforming with standard practices,

the number of neurons in any hidden layer is less than or equal to that of the previous layer. All

neurons except those of the input and output layers are rectilinear (ReLU) units. The output layer

is composed of a single sigmoid unit so the output is in the interval [0, 1]. The hyperparameters and

their possible values are given in Table 4. We determine the appropriate hyperparameters of the neural

network and the training algorithm by performing a random grid search over the hyperparameter space.

We select the model that achieves the best validation performance based on a performance indicator

presented next.

A good performance indicator of the ML model can be obtained by taking the sum of the true

labels in the top κ-quays in Yv for all vessels. We use variable j ∈ {1, 2, ..., κ} to refer to the ordered
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Table 4: ML model hyperparameters

Name Range Type

Training algorithm {SGD, Adam} Categorical
Number of hidden layers {2, 3, 4} Integer
Neurons per layer {10, 50, 150,..., 500} Integer
Learning Rate {0.0001, 0.001, 0.01, 0.01} Float
Dropout {0.1, 0.2, 0.3, 0.4} Float

probabilities yvkj with yvk1 being the top one and yvkκ the κth one. We measure the performance of

our ML model by computing the label sum ratio in the top κ as follows:

TOPκ =

∑
v∈V

∑κ
j=1yvkj∑

v∈V
∑

k∈Kyvk

Training is performed in a supervised fashion using either the stochastic gradient descent (SGD)

(Bottou, 2010) or the Adam algorithm (Kingma and Ba, 2015). Several strategies are used to prevent

overfitting. The neurons have a dropout probability between 0.1 and 0.4. Also, the validation perfor-

mance (TOPκ) is computed every 10 epochs and the training algorithm is stopped when it degrades

twice in a row, or after a fixed number of epochs.

Training a neural network took less than 2 hours. Note that high training times are not a big

concern for a real-world application because each ML model would be trained once and then used for

several months or years. Finally, retraining a neural network is significantly faster than training one

from scratch (minutes instead of hours) because the neural network is already in a near-optimal state

and only needs to be slightly adjusted. The ML model performance is presented in Table 5. We note

that, in our case, the loading port contains four quays. Thus, κ takes values from 1 to 4.

Table 5: Average TOPκ for the test pairs

κ 1 2 3 4

Average TOPκ 55.28% 95.73% 97.62% 100%

The ML model above will be used to alleviate the Re-Opt model. It is implemented in Python

using the PyTorch library. All experiments were performed on a 40-core machine with 384 GB of

memory.

6.3 Computational setting and implementation details

For the optimization part, the coding language is C++ and tests are conducted using version 12.10.0

of IBM ILOG CPLEX solver. All experiments were carried out on a 3.20GHz Intel(R) Core(TM)

i7-8700 processor, with 64GiB System memory, running on Oracle Linux Server release 7.7. We use

real-time to measure runtime. To make the implementations simple and easily replicable, we do not

use any specialized codes or algorithms. Thus, we solve all MILPs using IBM ILOG CPLEX 12.10.0

run on a single thread.

We compare the following three methods:

• ILNS: Solve the Original Problem in Er Raqabi et al. (2023b) from scratch using the ILNS
metaheuristic as described in Er Raqabi et al. (2023b).

• MILP: Solve directly model Re-Opt with a MIP solver. In our case, we use the default CPLEX.

• 2-stage ILNS: Solve using the proposed approach in Section 5.
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The reason behind this choice of methods is the novelty of the problem, which was not tackled in

the literature before, except in Er Raqabi et al. (2023b). Thus, to measure the solving performance,

we compare our approach with the default CPLEX. Furthermore, given that we also want to compare

the difference between optimizing from scratch (solving Original Problem) and re-optimizing from a

given solution, we compare with the ILNS in Er Raqabi et al. (2023b).

7 computational results

In this section, we first find appropriate weights α1 and α2. Then, we compare the performance of the

2-stage ILNS against ILNS and MILP. After that, we conduct sensitivity analysis. We conclude

with managerial insights.

7.1 Weights tuning

To find appropriate weights α1 and α2, we conduct a sensitivity analysis on instance I1 with 10%

p1-type perturbations and 10% p2-type perturbations. Since α1 + α2 = 1, we consider α1 for the

dichotomic search. Figure 7 shows the results for instance I1, where α1 = 0.73 ensures the highest TF

with the lowest |∆D| possible.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

α1

%

TF

|∆D|

Figure 7: TF and |∆D| evolution based on α1 for instance I1

Given that the instances are representative of the same problem, the suitable weights for I1 are

likely to be suitable for all instances. To confirm, we conducted a sensitivity analysis for other instances

as well. Table 6 shows the results obtained.

As it can be observed, for all instances, the best α1 value lies in the interval [0.7, 0.8]. Within

this interval, all instances reach for the first time their optimal values. In what follows, we consider

α1 = 0.75.

7.2 Performance comparison

We compare ILNS, MILP, and 2-stage ILNS. We report in Table 7 the perturbation percentage for

both types (p1 and p2), the previously optimal TF (TF∗), the optimal TF obtained by each method

(TF∗), the optimal |∆D| obtained by each method (∆D∗), the optimal resilience (R∗), and the average
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Table 6: Weight α1 sensitivity analysis

Inst α1 0.00 0.15 0.25 0.40 0.50 0.60 0.73 0.80 0.90 1.00

I1
TF 0.00% 49.20% 66.15% 82.69% 87.04% 90.67% 92.52% 92.52% 92.52% 92.52%
|∆D| 0.00% 3.04% 4.06% 5.07% 5.58% 6.09% 6.34% 6.79% 7.10% 7.35%

I2
TF 0.00% 49.69% 66.81% 83.52% 87.91% 91.31% 92.03% 92.65% 92.65% 92.65%
|∆D| 0.00% 3.07% 4.10% 5.12% 5.63% 6.15% 6.44% 6.86% 7.17% 7.43%

I3
TF 0.00% 50.18% 67.48% 84.34% 88.78% 92.48% 92.98% 93.34% 93.34% 93.34%
|∆D| 0.00% 3.09% 4.11% 5.14% 5.66% 6.17% 6.51% 6.88% 7.20% 7.46%

I4
TF 0.00% 51.17% 68.80% 86.00% 90.52% 94.30% 95.02% 95.68% 95.68% 95.68%
|∆D| 0.00% 3.32% 4.42% 5.53% 6.08% 6.63% 6.91% 7.40% 7.74% 8.02%

I5
TF 0.00% 50.09% 67.34% 84.18% 88.61% 92.30% 93.10% 93.10% 93.10% 93.10%
|∆D| 0.00% 3.42% 4.56% 5.69% 6.26% 6.83% 6.98% 7.62% 7.97% 8.26%

I6
TF 0.00% 61.50% 79.38% 89.31% 91.39% 92.48% 95.30% 99.08% 99.08% 99.08%
|∆D| 0.00% 3.55% 4.74% 5.92% 6.51% 7.11% 7.15% 7.93% 8.29% 8.59%

time to re-optimize after each perturbation (Time). For perturbations, we consider three scenarios

with 10% as a percentage as explained in Section 6.

As observed in Table 7, the three methods reach the optimal TF value, which is equal to the

previously optimal value, except for instances I2, I3, I4, and I5 for which the optimal TF value decreases

slightly under the scenario (10%,10%), i.e., 10% p1-type perturbation and 10% p2-type perturbation.

Under this scenario, it becomes difficult to fulfill all vessels within the given time horizon and thus

TF decreases. For the Time, the 2-stage ILNS outperforms both ILNS and MILP by factors of

44 and 15 on average, respectively. The Time is affected more by p1-type perturbations than p2-

type perturbations because the former involves more vessels for rescheduling at each re-optimization.

On the resilience aspect, both MILP and 2-stage ILNS (which obtain the same results) outperform

ILNS. The latter re-optimizes the original problem in Er Raqabi et al. (2023b) from scratch without

considering the resilience aspect. Thus, while the same optimal TF value is reached, the number of

changes to the previously optimal schedule is larger. This is due to the changes in the production

schedule, which is impacted by the perturbation. This change impacts significantly the vessels.

To analyze further the performance, we compare the schedules obtained by ILNS and 2-stage

ILNS with the previously optimal schedule q∗. To do so, we consider instance I1 under scenario

(10%,10%) in Table 7. Figure 8 shows the previously optimal schedule with all perturbations in red.

Figure 8: Perturbed instance I1 under scenario (10%,10%)
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Figure 9 shows the final schedule obtained using the ILNS method. All the vessels in green

were rescheduled to take into consideration all perturbations. As can be seen, when re-optimizing

from scratch, several unperturbed vessels are re-scheduled as well. Of all 54 vessels, 22 vessels only

remained as previously planned.

Figure 9: Final schedule obtained by ILNS for perturbed instance I1 under scenario (10%,10%)

Figure 10 shows the final schedule obtained when re-optimizing while considering the resilience

aspect. We observe that the 2-stage ILNS re-schedules only the perturbed vessels. Furthermore, it

keeps several vessels close to their original schedule. For instance, vessel v27 in Quay 4 was moved to

periods 7 and 8 from periods 6 and 7 on the same quay, i.e., the period following the bad weather

period. Out of all 54 vessels, only the 18 vessels perturbed were rescheduled.

Figure 10: Final schedule obtained by 2-stage ILNS for perturbed instance I1 under scenario (10%,10%)

When observing the schedules in Figures 8, 9, and 10, one can infer that, when dealing with

perturbations, optimizing locally can be more relevant than optimizing globally to achieve resilience,

especially when the optimal value can be reached and the global problem is a large-scale optimization

problem. Local optimization explores just the affected part of the mathematical model and tries to

correct it while global optimization might correct the affected part of the mathematical model while

making changes to unaffected parts. In our case, when re-optimizing from scratch, ILNS changes the

production schedule, which in turn affects more vessels beyond the perturbed ones.

Table 8 shows the number of delayed (Del), advanced (Adv), and other (Oth) vessels rescheduled in

the final schedules compared to the initial ones. As it can be observed, the 2-stage ILNS reschedules
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Table 8: Number of delayed, advanced, and other vessels rescheduled in the final schedule

p1 p2
Inst Horizon Vessels ILNS MILP 2-stage ILNS

Del Adv Oth Del Adv Oth Del Adv Oth

10% -

I1 32 54 13 5 9 13 1 11 13 0 0
I2 32 58 14 4 9 14 2 12 14 0 0
I3 32 39 11 3 11 11 0 8 11 0 0
I4 24 40 12 6 12 12 3 8 12 0 0
I5 32 61 15 11 18 15 4 12 15 0 0
I6 31 91 18 15 27 18 5 18 18 0 0

Avg 31 57 14 7 14 14 1 11 14 0 0

- 10%

I1 32 54 5 4 8 5 0 9 5 0 0
I2 32 58 6 3 8 6 0 9 6 0 0
I3 32 39 4 2 10 4 0 6 4 0 0
I4 24 40 4 5 10 4 1 6 4 0 0
I5 32 61 6 9 15 6 2 10 6 0 0
I6 31 91 9 12 22 9 4 15 9 0 0

Avg 31 57 6 6 12 6 1 9 6 0 0

10% 10%

I1 32 54 18 4 10 18 0 14 18 0 0
I2 32 58 22 8 10 22 5 15 22 7 0
I3 32 39 17 0 13 17 3 10 17 0 0
I4 24 40 18 4 13 18 3 10 18 4 0
I5 32 61 23 11 19 23 5 16 23 9 0
I6 31 91 30 15 28 30 7 24 30 14 0

Avg 31 57 21 7 16 21 4 15 21 6 0

mainly the affected vessels. In tight scenarios, it reschedules advanced vessels to free room for delayed

ones. The other vessels are kept as initially scheduled because of the fixing strategy. On the other side,

ILNS reschedules significantly more vessels (Oth) unaffected by perturbations and advanced vessels.

The same observation holds for MILP because there is no fixing.

We show in Figure 11 the average percentage of vessels rescheduled by each of the methods in the

final schedule(s). It includes delayed, advanced, and other vessels. The vessels Maintained are the

ones that were maintained as per the initial schedule(s).

(a) ILNS (b) MILP (c) 2-stage ILNS

Figure 11: Average percentage of vessels delayed, advanced, and others rescheduled in the final schedule(s). Maintained
vessels are vessels kept as per the previously optimal solution(s)

Figure 11 highlights that the percentage of maintained vessels varies significantly among the three

methods. When optimizing globally and considering the original problem, production is rescheduled

leading to the rescheduling of around 60% of the vessels. The MILP reschedules the delayed vessels

and some vessels that can be advanced. Still, it reschedules other vessels, which are not affected
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by perturbations. Compared to ILNS, the MILP keeps 12% more vessels as previously planned.

For the 2-stage ILNS, only the vessels delayed are rescheduled with some advanced vessels (to free

space). This shows, that when optimizing locally with resilience taken into consideration and primal

information leveraged, the obtained schedules are closer to the initially planned ones.

7.3 Sensitivity analysis

We conduct a sensitivity analysis on the perturbation percentage. We consider instance I1 and vary

the perturbation percentage from 5% to 25%. Table 9 shows the obtained results. We observe that the

higher the perturbation percentage, the lower the resilience value. Indeed, with more perturbations,

the TF value is more likely to decrease because there is less room to fulfill all vessels, and the ∆D∗

value increases because there are more movements. In Table 9, the TF ∗ value decreases starting from

a perturbation percentage of 20%.

Table 9: Perturbation percentage impact on instance I1

p1 p2 TF∗ ILNS MILP 2-stage ILNS

TF ∗ ∆D∗ R∗ TF ∗ ∆D∗ R∗ TF ∗ ∆D∗ R∗

5% - 92.52% 92.52% 42.88% 58.67% 92.52% 8.58% 67.25% 92.52% 8.58% 67.25%
- 5% 92.52% 92.52% 25.36% 63.05% 92.52% 5.07% 68.12% 92.52% 5.07% 68.12%

5% 5% 92.52% 92.52% 42.03% 58.88% 92.52% 12.01% 66.39% 92.52% 12.01% 66.39%

10% - 92.52% 92.52% 53.60% 55.99% 92.52% 10.72% 66.71% 92.52% 10.72% 66.71%
- 10% 92.52% 92.52% 31.70% 61.47% 92.52% 6.34% 67.81% 92.52% 6.34% 67.81%

10% 10% 92.52% 92.52% 52.54% 56.26% 92.52% 15.01% 65.64% 92.52% 15.01% 65.64%

15% - 92.52% 92.52% 64.32% 53.31% 92.52% 12.86% 66.17% 92.52% 12.86% 66.17%
- 15% 92.52% 92.52% 38.04% 59.88% 92.52% 7.61% 67.49% 92.52% 7.61% 67.49%

15% 15% 92.52% 92.52% 63.04% 53.63% 92.52% 18.01% 64.89% 92.52% 18.01% 64.89%

20% - 92.52% 89.76% 75.04% 48.56% 89.76% 15.01% 63.57% 89.76% 15.01% 63.57%
- 20% 92.52% 90.67% 44.38% 56.91% 90.67% 8.88% 65.78% 90.67% 8.88% 65.78%

20% 20% 92.52% 88.87% 73.55% 48.26% 88.87% 21.01% 61.40% 88.87% 21.01% 61.40%

25% - 92.52% 87.07% 82.54% 44.67% 87.07% 16.51% 61.18% 87.07% 16.51% 61.18%
- 25% 92.52% 87.95% 48.82% 53.76% 87.95% 9.76% 63.52% 87.95% 9.76% 63.52%

25% 25% 92.52% 86.20% 80.90% 44.42% 86.20% 23.12% 58.87% 86.20% 23.12% 58.87%

We also check the impact of the primal information. To do so, we run additional tests considering

no warm start (NoWS), no fixing (NoFix), no valid inequalities (NoV I), and no machine learning

(NoML). We report the results with all options (All), which are the same as instance I1 results on

Table 7, for comparison purposes.

While warm starting and valid inequalities do not impact the Time a lot, the fixing and machine

learning strategies impact significantly the Time. On average, Time is reduced by a factor of 1.8 and

1.7 per perturbation when using fixing and machine learning options, respectively.

The ML model plays two roles. First, it computes assignment probabilities for each pair vessel and

quay. Second, it identifies less promising quays for each vessel. Then, the corresponding q variables are

removed from the mathematical model. It is worth mentioning that we could reach TF ∗ by selecting

only the top 2-quays for each vessel. This is equivalent to reaching the optimal value when considering

just 50% of the binary assignment variables for each vessel.

7.4 Managerial insights

As shown above, the 2-stage ILNS reinforced with primal information ensures both quick

re-optimization and resilient schedules. The quick re-optimization provides a decision support system

to decision makers (e.g., planners, managers, operators) and allows them to consider various what-if
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Table 10: Primal information impact on T ime for instance I1

p1 p2 Inst TF∗ NoWS NoFix NoV I NoML All

10% -

I1 92.52% 11 17 11 16 10
I2 92.65% 12 19 12 18 11
I3 93.34% 14 23 14 21 13
I4 95.68% 17 27 17 25 15
I5 93.10% 18 29 18 27 16
I6 99.08% 20 33 20 31 19

Avg 94.40% 15 25 15 23 14

- 10%

I1 92.52% 7 12 7 11 7
I2 92.65% 9 14 9 13 8
I3 93.34% 11 18 11 17 10
I4 95.68% 13 21 13 19 11
I5 93.10% 15 24 15 22 13
I6 99.08% 18 29 18 27 16

Avg 94.40% 12 20 12 18 11

10% 10%

I1 92.52% 9 15 9 14 8
I2 92.65% 10 17 10 16 9
I3 93.34% 13 21 13 19 11
I4 95.68% 15 24 15 22 13
I5 93.10% 16 26 16 25 15
I6 99.08% 19 31 19 29 17

Avg 94.40% 14 22 14 21 12

scenarios and cases. The resilient schedules permit to stay as close as possible to the previously planned

schedule, thus involving fewer changes and sustaining operators’ satisfaction.

Another interesting aspect is the advantage of local optimization. Indeed, when the perturbation

is local, optimizing locally is better than optimizing globally, especially when the former reaches the

optimal solution. First, local optimization involves a smaller problem. Second, it changes only the

part of the problem affected by the perturbation. Third, it leverages the available primal information.

We distinguish two types of schedules from which decision-makers can select. The first schedule

delays all the perturbed vessels, as shown in the example in Figure 12b. Operators prefer this schedule

because it involves changes that require less effort. Still, it may imply going beyond the planning

time horizon. In Figure 12b, three periods are added to fulfill vessels v2 and v8. This may decrease

customer satisfaction. The second schedule modifies the perturbed vessels and allows both delay and

advance. This schedule is less preferred by operators compared to the first schedule because it involves

working ahead of schedule as shown in Figure 12c. Still, it maintains customer satisfaction and may

increase it if customers’ vessels are fulfilled earlier than expected (e.g., vessel v2). It also ensures that

the planned vessels are fulfilled within the initial time horizon.

The ML helped us identify some hidden trends. For instance, it shows that some products are

loaded on specific quays while others are loaded on other quays. An operational explanation is that

liquid-type products are loaded on specific quays while solid-type products are loaded on different

quays. The problem can then be decomposed by product type.

8 Conclusion

This research presents a generic and scalable resilience re-optimization framework. We highlight various

ways of leveraging the primal information, including fixing, warm-start, valid inequalities, and machine

learning. Using a real-world large-scale problem for illustration, we discuss uncertainties, confirm their

impact on the model, and model recovery decisions, highlighting the need for resilience. Then, we model

the re-optimization problem to maximize resilience. Finally, we conduct extensive computational
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(a) Perturbed schedule

(b) Preferred schedule by operators

(c) Preferred schedule by customers

Figure 12: Two types of schedules

experiments to demonstrate the power of our proposed framework and solution methodology. The

proposed framework is scalable and generic to any large-scale company facing several perturbations and

seeking quick re-optimization and resilient solutions. Future work includes extending the framework

to tackle disruptions such as earthquakes, tsunamis, and wars, and considering cases where local

optimization is no longer enough (suboptimal solutions, infeasible solutions, etc.). In such cases,

global optimization becomes a must.
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