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HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2023-26) afin de mettre à
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Abstract : In this paper, we study the pickup and delivery problem with time windows and multiple
compartments (PDPTWMC). The PDPTWMC generalizes the pickup and delivery problem with time
windows to vehicles with multiple compartments. In particular, we consider three compartment-related
attributes: 1) compartment capacity flexibility which allows the capacities of the compartments to be
fixed or flexible, 2) item-to-compartment flexibility that specifies which items are compatible with which
compartments, and 3) item-to-item compatibility which considers that incompatible items cannot be
simultaneously in the same compartment. To solve the PDPTWMC, we propose an exact branch-price-
and-cut algorithm in which the pricing problem is solved by means of a unified bidirectional labeling
algorithm. The labeling algorithm can tackle all possible combinations of the studied compartment-
related attributes of the PDPTWMC. Furthermore, we implement several acceleration techniques that
allow, amongst others, to reduce the symmetry in the label extensions with empty compartments,
the symmetry in the dominance between compartments with similar attributes, and the complexity
of the algorithm with fixed compartment capacity. Finally, we introduce benchmark instances for the
PDPTWMC and conduct an extensive computational campaign to test the limits of our algorithm and
to derive relevant managerial insights in order to highlight the applicability of considering the studied
compartment-related attributes.

Keywords : Vehicle routing with pickup and delivery, multiple compartments, flexible capacity, item
incompatibility, column generation, branch-price-and-cut
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1 Introduction
In this paper we introduce, model and solve the pickup and delivery problem with time windows and
multiple compartments (PDPTWMC). The PDPTWMC belongs to the family of pickup and delivery
problems (PDPs). More specifically, it generalizes the well-studied pickup and delivery problem with
time windows (PDPTW) to vehicles with compartmented loading spaces, i.e., separated independent
areas referred to as compartments. For each customer request, an item has to be transported by one
vehicle from a given pickup location to its corresponding delivery location. Each item has known
characteristics (e.g., frozen or ambient good) which can be compatible (or incompatible) with other
items or vehicle compartments. All pickup and delivery locations have a time window during which
the service must start. A set of homogeneous vehicles with a fixed capacity is available to complete the
customer requests, and each vehicle has a maximum number of compartments with given characteristics
(capacity and item-compatibility). We study variants of the PDPTWMC according to three attributes
that arise in the context of multi-compartment routing problems, i.e., compartment capacity flexibility,
item-to-compartment flexibility, and item-to-item compatibility.

Compartment capacity flexibility allows the capacities (i.e., the sizes) of the compartments to be
fixed or flexible. This can arise, for example, in food distribution where vehicles can have a fresh and
a frozen compartment separated by a wall that may be adjustable before starting the route. With
flexible compartment capacity, a minimum and a maximum capacity are defined for each compartment,
and the total assigned capacity over all compartments must never exceed the vehicle’s capacity. The
capacity remains the same throughout the route. Note that the minimum and maximum compartment
capacity can be set to zero and the total vehicle capacity, respectively. This allows to use only a subset
of the compartments. With fixed compartment capacity, each compartment has a given capacity (i.e.,
its minimum and maximum capacities are the same).

Item-to-compartment flexibility implies that each compartment has known characteristics that are
either compatible or incompatible with specific items. This arises for example in waste collection where
vehicles have specific compartments dedicated to general waste, organic waste, and mixed (or non-
mixed) recycling (e.g., glass, paper, plastic). Item-to-compartment flexibility allows for full flexibility,
partial flexibility, and no flexibility. With full flexibility, all compartments have the same characteristics
and each item is compatible with each compartment. With no flexibility, every compartment has
specific characteristics such that each item is compatible with exactly one compartment, e.g., frozen
goods can only be loaded in the frozen compartment and fresh goods can only be loaded in the fresh
compartment. With partial flexibility, compartments have specific characteristics that are compatible
with only some of the items, i.e., a subset of items is compatible with a subset of compartments (e.g.,
ambient goods can be loaded in the fresh or ambient compartment). Note that our definition of partial
flexibility excludes the cases of full flexibility and no flexibility.

For item-to-item compatibility, items can be incompatible with other items, and incompatible items
cannot be simultaneously in the same compartment. This arises, for example, in chemical distribution
where interactions between the products could be harmful. Item-to-item compatibility can be fully
compatible, partially compatible, or fully incompatible. Full compatibility implies that all items are
compatible, partial compatibility implies that there are both compatible and incompatible items, full
incompatibility implies that each item is incompatible with all other items.

Figures 1a–1c illustrate a path, i.e., a partial route, with a feasible vehicle configuration according
to given realizations of the compartment-related attributes. In each figure, all customers have unit
demand, the vehicle has a total capacity of nine and consists of three compartments with a fixed
capacity equal to one third of the vehicle’s total capacity. Each customer i is associated with its
pickup vertex i+ and its delivery vertex i−. In Figure 1a, all items and compartments have the same
characteristics (full item-to-compartment flexibility and full item-to-item compatibility). In the vehicle
configuration, items can be loaded in each compartment as long as the compartment capacity is not
exceeded, i.e., at most three items can be in each compartment simultaneously. In Figure 1b, there are
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Item characteristic – – – – – –

Item incompatibility with – – – – – –

1+ 2+ 3+ 4+ 2− 5+

m1: –

m2: –

m3: –

1 1 2 1 2 3 1 2 3

4

1 3

4

1 3 5

4

(a) PDPTWMC with fixed compartment capacity, full item-to-compartment flexibility, and full item-to-item compatibility

Item characteristic fresh frozen fresh fresh – frozen

Item incompatibility with – – – – – –

1+ 2+ 3+ 4+ 2− 5+

m1: fresh

m2: fresh

m3: frozen

1 1

2

1 3

2

1 3 4

2

1 3 4 1 3 4

5

(b) PDPTWMC with fixed compartment capacity, partial item-to-compartment flexibility, and full item-to-item compati-
bility

Item characteristic fresh frozen fresh fresh – frozen

Item incompatibility with 4 – – 1 – –

1+ 2+ 3+ 4+ 2− 5+

m1: fresh

m2: fresh

m3: frozen

1 1

2

1 3

2

1 3

4

2

1 3

4

1 3

4

5

(c) PDPTWMC with fixed compartment capacity, partial item-to-compartment flexibility, and partial item-to-item com-
patibility

Figure 1: Example of a path with different vehicle configurations according to the PDPTWMC attributes

item-to-compartment flexibility restrictions in addition to the capacity restrictions of the compartment
already present in Figure 1a. Items are either frozen or fresh and compartments m1 and m2 are only
compatible with fresh items, whereas compartment m3 is only compatible with frozen items, implying
a partial item-to-compartment flexibility. There are no incompatibilities between items, i.e., full item-
to-item compatibility. Then, at most three items can be in each compartment simultaneously and
items 1, 3, and 4, can only be loaded in compartments m1 or m2, whereas items 2 and 5 can only
be loaded in compartment m3. In Figure 1c, item-to-item compatibility restrictions are added to the
compartment capacity restrictions and the item-to-compartment flexibility restrictions of the example
in Figure 1b. More precisely, items 1 and 4 are assumed to be incompatible leading to partial item-
to-item compatibility. In this case, at most three items can be in each compartment simultaneously
and items 1, 3, and 4, can only be loaded in compartments m1 or m2, whereas items 2 and 5 can only
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Item characteristic fresh fresh

1+ 2+

m1: fresh

m2: frozen

1 1

2

(a) Fresh compartment requires at least capacity six

Item characteristic frozen frozen

3+ 4+

m1: fresh

m2: frozen
3 3

4

(b) Frozen compartment requires at least capacity six

Figure 2: Example of two paths requiring different capacities for the compartments

be loaded in compartment m3. Moreover, the incompatibility between items 1 and 4 implies that they
cannot be in the same compartment simultaneously so that they need to be loaded in two different
compartments, namely compartments m1 and m2.

The example in Figure 2 highlights the benefits of compartment capacity flexibility. All customers
have a demand of three. The vehicle has a total capacity of nine and it consists of two compartments:
one for fresh items and one for frozen items. There are no item-to-item compatibility restrictions.
Figure 2 shows two different paths, each of which can be feasibly realized by a vehicle with fixed com-
partment capacities, e.g., with capacities of six (fresh compartment) and three (frozen compartment)
for the route in Figure 2a and capacities of three (fresh compartment) and six (frozen compartment)
for the route in Figure 2b. However, there exists no feasible solution including both paths using a single
type of vehicle with fixed compartment capacity. In contrast, with flexible compartment capacity and
minimum and maximum compartment capacities of three and six, respectively, both paths can be part
of a feasible solution.

It is easy to see that the PDPTW is a special case of the PDPTWMC with the following real-
izations of the compartment-related attributes: full item-to-compartment flexibility, full item-to-item
compatibility, at least one compartment with a maximum capacity equal to the vehicle’s capacity, and
a minimum capacity of zero for all other compartments. Then, any feasible solution can be modified a
posteriori to a feasible PDPTW solution, and no modifications are needed for those routes, for which
all items are loaded in the same compartment.

To the best of our knowledge, this is the first time that the PDPTWMC is studied. It is also
the first time that a unified algorithm is proposed to tackle three important compartment-related
attributes. We are not aware of any related work in the literature that studies different variants
of each combination of these attributes. The problem is closely related to vehicle routing problems
with multiple compartments (VRPMC) and to the pickup and delivery problem with multiple stacks
(PDPMS). For VRPMCs, Ostermeier et al. (2021) highlight three compartment-related attributes that
have been considered in the literature: the flexibility of compartment sizes, the assignment of product
type to compartments and the shareability of compartments. It is easy to see that for PDPs the first
two attributes are similar to compartment capacity flexibility and item-to-compartment flexibility. For
the third attribute, item-to-item compatibility seems to be the best generalization of the shareability of
compartments to a PDP setting. In VRPMCs, compartments can either have one item (no shareability)
or more than one item (shareability), but in the PDP setting, compartments can be used to transport
more than one item (i.e., items can be unloaded in the route and other items can be loaded later
in the route). In the PDPMS (see e.g., Cherkesly et al. 2016), stacks are independent and operated
using specific loading rules, such as last-in-first-out loading (LIFO). Stacks can be seen as a variant of
compartments as compartments do not have to be operated using such loading rules which allows for
more flexibility. Additional attributes, like the above-mentioned compartment-related attributes, have
not been considered in the multiple stacks literature.
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Ostermeier et al. (2021) point out that most algorithms that have been developed to solve MCVRPs
are heuristics with a few exact algorithms based on branch-and-cut (e.g., Henke, Speranza, and Wäscher
2019), column generation (e.g., Cornillier et al. 2008), and branch-and-price (B&P, see Section 2).
Column-generation based approaches like B&P constitute the leading exact methodology for many
routing problems (Costa, Contardo, and Desaulniers 2019) including the PDPTW and related variants
(e.g., Baldacci, Bartolini, and Mingozzi 2011, Gschwind et al. 2018, Ropke and Cordeau 2009). In this
paper, we develop a unified exact branch-price-and-cut (BPC) algorithm to solve the PDPTWMC. We
also adapt the bidirectional labeling proposed by Gschwind et al. (2018) which is an important recent
development for B&P algorithms for PDPs.

The contributions of this paper are five-fold. First, we introduce a new family of routing prob-
lems which considers multi-compartment vehicles in a PDP setting. Second, we adapt the three
compartment-related attributes studied in VRPMCs to the PDPTWMC (i.e., compartment capacity
flexibility, item-to-compartment flexibility, and item-to-item compatibility) and study multiple differ-
ent combinations of these attributes. Third, we model the PDPTWMC with a set-partitioning formu-
lation and propose a unified BPC algorithm that can handle all three considered compartment-related
attributes. Fourth, we derive a bidirectional labeling algorithm to solve the pricing problems and
propose ways to reduce the symmetry and the complexity of the algorithm according to the problem’s
characteristics. Finally, we conduct extensive computational experiments to understand the impact of
considering (or not) some compartment-related attributes on the performance of the algorithm and to
derive related managerial insights.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.
Section 3 defines the PDPTWMC by presenting a set-partitioning formulation. The BPC algorithm
including the bidirectional labeling algorithm to solve the pricing problem is detailed in Section 4.
Computational results are presented in Section 5, and final conclusions are drawn in Section 6.

2 Literature review
The PDPTWMC belongs to the family of vehicle routing problems (VRPs, see Mor and Speranza 2020,
for a recent survey). It generalizes one-to-one PDPs (Battarra, Cordeau, and Iori 2014, Berbeglia et al.
2007), and more specifically the PDPTW, to routing problems with multiple compartments (Ostermeier
et al. 2021). In this section, we first review characteristics of compartments that are studied in multi-
compartment vehicle routing problems (MCVRPs). We then focus on B&P algorithms developed for
MCVRPs. Finally, we review two related variants of PDPs, i.e., the pickup and delivery problems with
multiple stacks (PDPTWMS) and the pickup and delivery problem with incompatibilities (PDPTW-
IC), as well as state-of-the-art algorithms developed for these problems.

MCVRPs extend routing problems to consider vehicles with multiple compartments and arise
in many applications, such as, food and fuel distribution, agricultural and maritime transportation,
and waste collection (see Coelho and Laporte 2015, Ostermeier et al. 2021, for reviews). Three
compartment-related attributes (i.e., flexiblity of compartment sizes, assignment of product types
to compartments, and shareability of compartments) and two order fulfillment-related attributes (i.e.,
total number of visits per customer and mode of demand fulfillment) are studied in the literature
(Ostermeier et al. 2021). As pointed out by Ostermeier et al. (2021), most papers study only one or
two compartment-related attributes. Most works consider compartments with a fixed capacity (e.g.,
Coelho and Laporte 2015, Zbib and Laporte 2020), but a few authors consider flexible compartment
capacities (e.g., Henke, Speranza, and Wäscher 2015, Heßler 2021, Hübner and Ostermeier 2019). In
the MCVRP, each customer demands a specified set of items to be delivered (or picked up) and each
item is associated with an item-category (also referred to as product-type or commodity-type). Ac-
cording to the problem characteristics, item categories can have a fixed assignment, i.e., each item
category is compatible only with a subset of compartments (e.g., Martins et al. 2019, Ostermeier et al.
2018) or a flexible assignment, i.e., each item category is compatible with all compartments (e.g.,
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Christiansen et al. 2017, Lahyani et al. 2015). Most MCVRPs considered in the literature assume that
compartments can be shared between customers (e.g., Kiilerich and Wøhlk 2018, Yahyaoui et al. 2020),
but a few papers assume unshared compartments (e.g., Hsu, Walteros, and Batta 2020, Jetlund and
Karimi 2004). In addition, single and multiple customer visits as well as split and unsplit customer
demands are studied for the MCVRP.

We now point out a few exact B&P algorithms for the MCVRP. Avella, Boccia, and Sforza (2004)
solve a MCVRP with fixed compartment capacities, flexible assignment of product types to compart-
ments, and with unshared compartments. They propose a B&P algorithm where the pricing problem
is solved through enumeration given that they consider routes with at most four customers. Their
algorithm solves within a few seconds a real-life instance with 60 customers and vehicles with seven
to nine compartments. Heßler and Irnich (2022) solve a problem with similar compartment-related
characteristics through B&P. Two labeling algorithms are proposed to solve the pricing problem. In
the first one, in each label all customer demands are explicitly assigned to a specific compartment and
a standard one-to-one dominance test to eliminate unpromising labels is employed. In the second one,
labels implicitly represent all feasible customer-to-compartment assignments for the associated path
and a more sophisticated partial dominance rule is implemented. Their algorithm solves benchmark
instances with up to 100 customers and four compartments within one-hour, and their results show
that using partial dominance greatly reduces the total computational time. Mirzaei and Wøhlk (2019)
solve a MCVRP with fixed compartment capacities, fixed assignment of product types to compart-
ments, and shared compartments. They propose a B&P algorithm for two variants: one where a
customer can receive a single visit only and one where a customer can receive different visits for each
item-category. Their pricing problem is solved by a labeling algorithm which keeps track of the avail-
able capacity in the truck for each item-category. Their algorithm is tested on instances with up to
100 customers and four compartments (i.e., commodities). With four compartments, their algorithm
can prove optimality for instances with up to 50 customers. Heßler (2021) solves a MCVRP with
continuously and discretely flexible compartment capacities, where each item is compatible with all
compartments, and different items can be loaded in a compartment only if they are of the same item-
category. Therefore, item-categories are assigned to specific compartments. Three exact algorithms
are proposed including a BPC algorithm in which multiple pricing problems, one for each feasible item-
category-to-compartment assignment, are solved. Instances with up to 50 customers and between two
and nine compartments are solved within two hours.

The PDPTWMS can be seen as a variant of the PDPTWMC where vehicles have a fixed number
of compartments (referred to as stacks) with a fixed capacity, and each item is compatible with each
stack and with all other items. In this problem, the stacks are operated using LIFO loading which
imposes that stacks are rear-loaded and that an item can only be delivered if it is the one closest to the
rear door. This problem is a generalization of the traveling salesman problem with pickup and delivery
and multiple stacks (Côté et al. 2012, Pereira, Mateus, and Urrutia 2022, Pereira and Urrutia 2018) to
multiple vehicles. Cherkesly et al. (2016) introduce the problem and propose a BPC algorithm with
a monodirectional labeling algorithm that breaks symmetry between the stacks. Their algorithm is
tested on 198 benchmark instances and instances with up to 75 requests and three stacks are solved
within two hours. Using a mixed-integer programming formulation with partial route enumeration,
Al-Yasiry (2020) are able to solve larger-sized instances within a few minutes. The recent work of
Cherkesly and Gschwind (2022) considers variants of the PDPTWMS that relax the LIFO policy by
allowing the rehandling of items, i.e., unloading and reloading, at delivery locations. The proposed
BPC approach solves most instances of the benchmark considered in Al-Yasiry (2020) and Cherkesly
et al. (2016).

Another related problem is the PDPTW-IC which is defined as a PDPTW where items can be
(in)compatible, and incompatible items can never be loaded simultaneously in the vehicle. The problem
was introduced by Deng et al. (2022) who consider two categories of items (perishable products with
decaying costs and stable products without decaying costs) and aim to minimize the total costs defined
as the sum of the routing, refrigeration, and decay costs. They propose a B&P algorithm with a
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bidirectional labeling algorithm to solve the PDPTW-IC. Their algorithm solves instances with up to
40 requests within two hours. Huang et al. (2023) study a PDP arising in the steel industry with many
real-life constraints including request incompatibilities. They propose an adaptive large neighborhood
search which provides good results for smaller instances when compared with the optimal solution,
and the algorithm is tested on many instances with up to 450 requests. Factorovich, Méndez-Dı́az,
and Zabala (2020) study the single vehicle PDP with incompatibility constraints. They propose a
branch-and-cut algorithm and solve instances with up to 20 requests within two hours. Ousmane,
Moustapha, and Adama (2021) implement a genetic algorithm for a many-to-many PDPTW with
multiple compartments and incompatible items. Results on four randomly generated instances with
25 to 100 nodes and 3 to 80 compartments are presented.

3 Mathematical formulation
The PDPTWMC is defined on a directed graph G = (N,A), where N = {0, 2n+ 1} ∪P ∪D is the set
of vertices and A is the set of arcs. The origin and destination depot are denoted by 0 and 2n+ 1, the
set of pickup vertices by P = {1, ..., n} and the set of delivery vertices by D = {n + 1, ..., 2n}. Each
request i requires loading an item at a pickup vertex i ∈ P , also denoted by i+, and unloading the item
at its associated delivery vertex n+ i ∈ D, also denoted by i−. For ease of notation, we also use set P
to refer to the sets of items and requests. The meaning should be always clear from the context. For
each vertex i ∈ N , a demand qi is given with q0 = q2n+1 = 0, qi > 0,∀i ∈ P and qi = −qi−n,∀i ∈ D.
Furthermore, with each vertex is assigned a service time si ≥ 0 and a time window [wi, wi] in which
the service has to start. For each pair of items i, j ∈ P, i ̸= j, a binary parameter uij equals to one if
items i and j are compatible, and zero otherwise. With each arc (i, j) ∈ A, a travel cost cij ≥ 0 and a
travel time tij ≥ 0 are associated. As commonly done, we include in the travel time for arc (i, j) ∈ A

the service time si at vertex i. It is assumed that the triangle inequality is satisfied for the travel
times. Each vehicle has an overall capacity Q and mmax compartments. The set of compartments
is denoted M , where |M | = mmax holds. Each compartment m has a minimum and a maximum
capacity, denoted by Qmin

m and Qmax
m , such that 0 ≤ Qmin

m ≤ Qmax
m ≤ Q. Setting Qmin

m = 0 allows
to use only a subset of the compartments. For each pair of item i ∈ P and compartment m ∈ M , a
binary parameter bim equals to one if item i is compatible with compartment m, and zero otherwise.

Let Ω be the set of feasible routes with respect to pairing and precedence, time windows, item-to-
item compatibility, compartment and vehicle capacity, and item-to-compartment compatibility. Each
route is associated with a total cost cr comprising a fixed vehicle cost and the sum of the travel costs
of its associated arcs. For each request i ∈ P , binary parameter air is equal to one if route r completes
request i, and zero otherwise. Binary variables yr equal one if route r is used in the solution, and zero
otherwise. Then, the PDPTWMC can be formulated as

minimize
∑
r∈Ω

cryr (1a)

subject to
∑
r∈Ω

airyr = 1, ∀i ∈ P, (1b)

yr ∈ {0, 1}, ∀r ∈ Ω. (1c)

The Objective (1a) minimizes the total costs. Constraints (1b) ensure that each request is completed
exactly once. The variable domains are defined by Constraints (1c).

4 Branch-price-and-cut algorithm
Formulation (1) usually contains a large number of variables, i.e., feasible routes, which cannot be
enumerated. Therefore, we employ a BPC algorithm for its solution. A BPC algorithm is a branch-and-
bound algorithm that uses column generation to compute the lower bounds and where cuts are added
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to strengthen the linear relaxation of Formulation (1), i.e., the master problem. Column generation
is an iterative algorithm that starts with solving the restricted master problem (RMP), which only
contains a subset of the variables. It then alternates between reoptimizing the RMP and solving the
pricing problem to identify negative reduced cost columns, that will be added to the RMP. When no
negative reduced cost columns exist, an optimal solution to the RMP is found.

In the remainder of this section, we present our BPC algorithm for the PDPTWMC. We first
present the pricing problem and propose a bidirectional labeling algorithm for its solution. We then
describe the valid inequalities and our branching strategy.

4.1 Pricing problem

Let πi, i ∈ P be the dual variables associated with Constraints (1b). The task of the pricing problem
is to identify at least one feasible route r ∈ Ω with negative reduced cost

c̃r = cr −
∑
i∈P

airπi (2)

or guarantee that no such route exists. The pricing problem can be formally stated as minr∈Ω c̃r. It is a
variant of an elementary shortest path problem with resource constraints (ESPPRC) that can be solved
using a labeling algorithm (Irnich and Desaulniers 2005). In a labeling algorithm, labels representing
partial paths are extended along the network arcs and dominance criteria are used to remove non-
promising labels. To speed up the labeling process, bidirectional labeling algorithms (Righini and
Salani 2006) have become a quasi standard for solving the ESPPRC pricing problems of many VRP
variants. In these algorithms, forward labels are extended in forward direction starting at the origin
depot and backward labels are extended in backward direction, i.e., against the orientation of the
network arcs, ending at the destination depot. Both forward and backward labels are extended up to
a so-called half-way point (HWP) and suitable forward and backward labels are then merged to form
complete origin-destination paths. To better balance the effort of the forward and backward labeling,
the HWP can be determined dynamically (Tilk et al. 2017).

For PDPs, bidirectional labeling has not been commonly applied, although its effective implemen-
tation has been recently demonstrated by Gschwind et al. (2018). The main issues are as follows. In
forward labeling, items have to be picked up first and delivered later. Therefore, the algorithm needs
to keep track of onboard items, i.e., items that have been picked up but not yet delivered, and also
incorporate them in the dominance. Stronger dominance criteria can be realized if the reduced costs
satisfy the so-called delivery triangle inequality (DTI, see Section 4.1.1). In backward labeling, on the
other hand, items are delivered first and picked up later. Therefore, the meaning of onboard items is
reversed, i.e., items that have been delivered but not yet picked up, and stronger dominance criteria
rely on the pickup triangle inequality (PTI, see Section 4.1.2) for the reduced costs. While Ropke and
Cordeau (2009) have proposed a procedure to transform an arbitrary reduced cost matrix to one that
satisfies the DTI and this method has been adapted to the PTI by Gschwind et al. (2018), the DTI
and the PTI can generally not be satisfied simultaneously. To enable an effective application of bidi-
rectional labeling, Gschwind et al. (2018) propose to perform the forward and the backward labeling
on two different reduced-cost matrices. This requires additional adjustments in the merge procedure
in order to compute the correct reduced cost of routes.

In the following, we propose a unified bidirectional labeling algorithm for the PDPTWMC which
builds on the work of Gschwind et al. (2018) and that can handle different settings for the three
studied attributes (i.e., compartment capacity flexibility, item-to-compartment flexibility, and item-
to-item compatibility). We start by presenting the unified forward labeling algorithm and adapt the
notation to present the unified backward labeling algorithm. Then, we explain how a forward and a
backward label are merged. Finally, we describe symmetry-reduction strategies and other acceleration
techniques used in our labeling algorithm.
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4.1.1 Forward labeling algorithm

We first define the reduced cost and describe the resources of the forward labels. Then, we propose
resource extension functions (REFs) that consider only extensions that are feasible with respect to the
item-to-compartment flexibility and item-to-item compatibility. Finally, we present a valid dominance
rule.

Forward reduced cost. For each vertex i ∈ N , let π̃f
i := πi if i ∈ P and π̃f

i := 0 otherwise. The
forward reduced cost of an arc (i, j) ∈ A is defined as

c̃f
ij := cij − π̃f

i

2 −
π̃f

j

2 . (3)

If the travel cost cij satisfy the DTI, i.e., cij + cjk ≥ cik for i, k ∈ N, j ∈ D, then the forward reduced
costs as defined in Equation (3) also satisfy the DTI. Otherwise, the c̃f

ij matrix can be modified
following the procedure proposed by Ropke and Cordeau (2009). Using c̃f

ij , the reduced cost of a route
r ∈ Ω can be computed as

c̃r =
∑

(i,j)∈A(r)

c̃f
ij , (4)

where A(r) denotes the sequence of arcs traversed by route r.

Forward label resources. A forward partial path R(F ) = (0, . . . , η(F )) starting at the origin depot 0
and ending at vertex η(F ) is represented by a forward label F = (η(F ), t(F ), c(F ), S(F ), (lm(F ))m,

(Om(F ))m, (ψm(F ))m) that stores the following information:

• η(F ), the last visited vertex of the partial path;
• t(F ), the earliest feasible start of the service time at vertex η(F );
• c(F ), the accumulated reduced cost;
• S(F ), the set of completed requests;
• lm(F ), the load in compartment m ∈ M ;
• Om(F ), the items (open requests) in compartment m ∈ M ;
• ψm(F ), the required capacity of compartment m ∈ M .

The initial label F0 at the origin depot 0 is given by F0 = (0, w0, 0,∅, (0)m, (∅)m, (Qmin
m )m). This

initial setting ensures that the required capacity of each compartment is at least its minimum capacity.

Forward REFs. The extension of a label F along arc (η(F ), j) ∈ A might result in multiple extensions.
Each extension is characterized by the compartment it relates to, i.e., the compartment the corre-
sponding item is loaded on or unloaded from. Let us denote HF (j) as the set of potential extensions
along arc (η(F ), j) which respect pairing and precedence constraints as well as item-to-compartment
flexibility and item-to-item compatibility. It is defined differently depending on whether j is a pickup
vertex, a delivery vertex, or the destination depot. More precisely,

HF (j) =


{
m ∈ M |j /∈ S(F ) ∪

⋃
s∈M Os(F ), bjm = 1, uij = 1 ∀i ∈ Om(F )

}
if j ∈ P,

{m ∈ M |j − n ∈ Om(F )} if j ∈ D,

{m1 ∈ M |Om(F ) = ∅ ∀m ∈ M} if j = 2n+ 1,
(5)

where m1 denotes the first compartment. If j is a pickup vertex whose request is neither onboard
nor has been completed before, item j can be loaded on all compartments that are compatible with
it (item-to-compartment flexibility) and whose corresponding onboard items are also compatible with
item j (item-to-item compatibility). If j is a delivery vertex and its corresponding item j − n is
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onboard, there is exactly one extension to the compartment on which its corresponding item has been
loaded. Finally, if j is the destination depot, there is one extension for the first compartment and the
extension is allowed if all compartments are empty.

For each extension h ∈ HF (j), the REFs creating the new label Fh are as follows:

η(Fh) = j, (6a)
t(Fh) = max{wj , t(F ) + tη(F )j}, (6b)
c(Fh) = c(F ) + c̃f

η(F )j , (6c)

S(Fh) =
{
S(F ) ∪ {j − n} if j ∈ D,

S(F ) otherwise,
(6d)

lm(Fh) =
{
lm(F ) + qj if m = h,

lm(F ) otherwise,
(6e)

Om(Fh) =


Om(F ) ∪ {j} if m = h and j ∈ P,

Om(F ) \ {j − n} if j ∈ D and j − n ∈ Om(F ),
Om(F ) otherwise,

(6f)

ψm(Fh) =
{

max{lm(F ) + qj , ψ
m(F )} if m = h and j ∈ P,

ψm(F ) otherwise.
(6g)

Equations (6a)–(6d) are standard REFs from the PDPTW literature. REFs (6e) and (6f) update the
load and the set of open requests, respectively, of the compartment where item j (j−n) is loaded onto
(unloaded from). Finally, REF (6g) updates the required capacity of a compartment as the maximum
between its load (including the load of item j) and its previous required capacity if j ∈ P .

Label Fh is kept if the time windows and the capacity constraints are respected, that is if

t(Fh) ≤ wj , (7a)
ψm(Fh) ≤ Qmax

m , ∀m ∈ M (7b)∑
m∈M

ψm(Fh) ≤ Q. (7c)

Conditions (7b) ensure that the maximum capacity of each compartment is respected while Condi-
tion (7c) ensures that the total capacity of the vehicle is respected.

Forward label dominance. A label F1 dominates another label F2 if

η(F1) = η(F2), (8a)
t(F1) ≤ t(F2), (8b)
c(F1) ≤ c(F2), (8c)
S(F1) ⊆ S(F2), (8d)

Om(F1) ⊆ Om(F2) ∀m ∈ M, (8e)
ψm(F1) ≤ ψm(F2) ∀m ∈ M. (8f)

Conditions (8) ensure that that for every feasible completion of label F2 to the destination depot, there
also exists a feasible completion of label F1 with equal or smaller reduced cost provided that the arc
reduced costs c̃f

ij respect the DTI. A formal proof of the validity is provided in Appendix A.

4.1.2 Backward labeling algorithm

We now present the main components of our backward labeling algorithm. The differences between
the forward and the backward labeling algorithm are mainly related to the reduced arc cost and the
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notion of the PTI, as well as the definition of the resources for time and open requests. For concision,
we focus the presentation on these parts and refer to Appendix B for additional details including a
proof for the validity of the dominance rule.

Backward reduced cost. For each vertex i ∈ N , let π̃b
i := πi if i ∈ D and π̃b

i := 0 otherwise. The
backward reduced cost of arc (i, j) ∈ A is defined as

c̃b
ij = cij − π̃b

i

2 −
π̃b

j

2 . (9)

The reduced cost of a route r ∈ Ω is then computed as in Equation (4) by replacing c̃f
ij with c̃b

ij . To
ensure that the backward reduced-cost matrix satisfies the PTI, i.e., c̃b

ij + c̃b
jk ≥ c̃b

ik for i, k ∈ N, j ∈ P ,
an analog transformation as for the DTI in the forward case is applied (see Gschwind et al. 2018).

Backward label resources. A partial path R(B) = (η(B), . . . , 2n+1) starting at vertex η(B) and end-
ing at the destination depot is represented by a backward label B = (η(B), t(B), c(B), S(B), (lm(B))m,

(Om(B))m, (ψm(B))m). Resources c(B), S(B), lm(B), Om(B), and ψm(B) have the same meaning as
their forward counterparts. The other resources, while similar to their corresponding forward resource,
are defined slightly different:

• η(B), the first visited vertex of the partial path;
• t(B), the latest feasible start of the service time at vertex η(B).

The backward labeling is initialized with label B2n+1 = (2n+ 1, w2n+1, 0,∅, (0)m, (∅)m, (Qmin
m )m) at

the destination depot 2n+ 1.

Backward REFs. Analog to the forward case, we denote by HB(i) the set of potential extensions of
a label B against the orientation of arc (i, η(B)) ∈ A. Set HB(i) is defined such that pairing and
precedence, item-to-compartment flexibility, and item-to-item compatibility are respected. Formally,

HB(i) =


{m ∈ M |i ∈ Om(B)} if i ∈ P,

{m ∈ M |i− n /∈ S(B) ∪
⋃

s∈M Os(B), bi−n,m = 1, ui−n,j = 1 ∀j ∈ Om(B)} if i ∈ D,

{m1 ∈ M |Om(B) = ∅ ∀m ∈ M} if i = 0.
(10)

Its definition is analog to that of set HF (j) in Equation (5).

For each label B and each extension h ∈ HB(i) a new label Bh is created according to the following
REFs:

η(Bh) = i, (11a)
t(Bh) = min{wi, t(B) − tiη(B)}, (11b)
c(Bh) = c(B) + c̃b

iη(B), (11c)

S(Bh) =
{
S(B) ∪ {i} if i ∈ P,

S(B) otherwise,
(11d)

lm(Bh) =
{
lm(B) − qi if m = h,

lm(B) otherwise,
(11e)

Om(Bh) =


Om(B) \ {i} if i ∈ P and i ∈ Om(B),
Om(B) ∪ {i− n} if m = h and i ∈ D,

Om(B) otherwise,
(11f)

ψm(Bh) =
{

max{lm(B) − qi, ψ
m(B)} if m = h and i ∈ D,

ψm(B) otherwise.
(11g)
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Equations (11) adapt Equations (6) to backward extensions. Label Bh is kept if the time windows and
the capacity constraints are respected, i.e., if it satisfies Conditions (7b) and (7c) where Fh is replaced
by Bh, as well as

t(Bh) ≥ wi. (12)

Backward label dominance. A backward label B1 dominates another backward label B2 if Condi-
tions (8a), (8c)–(8f), replacing F1 and F2 with B1 and B2, respectively, and

t(B1) ≥ t(B2) (13)

are fulfilled.

4.1.3 Bidirectional labeling algorithm

The basic course of our bidirectional labeling algorithm follows the ideas presented in Gschwind et al.
(2018). Forward labeling is performed as described in Section 4.1.1 using reduced costs c̃f

ij , backward
labeling is performed as described in Section 4.1.2 using the different reduced costs c̃b

ij . The merge
procedure takes care that the correct reduced costs of routes are finally determined given the different
cost matrices. Both forward and backward labels are extended only up to the HWP, which we define
on the time resource, i.e., t(F ) in forward labeling and t(B) in backward labeling. Furthermore, we
employ a dynamic determination of the HWP.

In the PDPTWMC, the merge of a forward label F and a backward label B residing at the same
vertex i = η(F ) = η(B) is feasible if

t(F ) ≤ t(B), (14a)
S(F ) ∩ S(B) = ∅, (14b)
Om(F ) = Om(Bp) if i ∈ P

Om(F p) = Om(B) if i ∈ D

Om(F ) = Om(B) otherwise
∀m ∈ M, (14c)

∑
m∈M

max{ψm(F ), ψm(B)} ≤ Q, (14d)

where F p and Bp denote the predecessor labels of F and B, respectively. Condition (14a) ensures
time feasibility while Condition (14b) guarantees elementarity. Conditions (14c) require that all open
requests are completed and that their compartment assignments are consistent. Note that when
merging at a pickup vertex i ∈ P , the information on which compartment item i has been loaded is
no longer available in the backward label B and we need to resort to its predecessor label Bp. The
analog is true for merging at a delivery vertex and the forward label. Condition (14d) guarantees that
the route respects the total capacity.

If the merge of forward label F and backward label B is feasible, the reduced cost of the corre-
sponding route r ∈ Ω can be computed as

c̃r = c(F ) + c(B) +
∑

i∈{O(F )∩O(B)}

πi +
∑

i∈{O(F )∪O(B)}\
{O(F )∩O(B)}

πi

2 , (15)

where O(F ) :=
⋃

m∈M Om(F ) and O(B) :=
⋃

m∈M Om(B).

4.1.4 Acceleration strategies

In this section, we first propose two techniques to reduce the symmetry in the labeling. We then de-
scribe simplifications of the labeling algorithm when considering fixed compartment capacities. Finally,
we mention general acceleration techniques used in our labeling algorithm.
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Symmetry reduction techniques. We propose two types of symmetry-reduction techniques, one for
label extensions and one for the dominance. Both types of symmetry reduction can immediately be
applied in pure monodirectional forward and backward labeling. We limit the following description to
the forward case, the backward case is analog. Furthermore, both techniques can be applied simul-
taneously. When applying bidirectional labeling, however, the merge has to be adapted accordingly.
Details on this adaptation are given after the description of the symmetry-reduction techniques.

For the presentation of the symmetry-reduction techniques, some additional notation is convenient.
Let C denote a partition of the compartments into sets of item-to-compartment comparable (or short
comparable) compartments. More precisely,

⋃
C∈C C = M ,

⋂
C∈C C = ∅, and for two different compart-

ments m1 ̸= m2 with m1 ∈ C1 and m2 ∈ C2 it holds that C1 = C2 if and only if bim1 = bim2 ,∀i ∈ P .
We denote by C(m) := {m′ ∈ M |bim = bim′ ∀i ∈ P} the set of compartments that are comparable
with compartment m ∈ M .

The first symmetry reduction technique considers label extensions to empty compartments. Con-
sider the extension of a label F along arc (η(F ), j) ∈ A to a pickup node j ∈ P . According to
Equation (5), this generally creates multiple extensions, one for each suitable compartment. If sev-
eral compartments are empty in F , some of the resulting new labels may essentially be identical
except for symmetry. More precisely, two extensions m1,m2 ∈ HF (j) with corresponding compart-
ments m1 ∈ C1 and m2 ∈ C2 result in symmetric labels if compartments m1 and m2 are empty,
i.e., Om1(F ) = Om2(F ) = ∅, comparable, i.e., C1 = C2, and have identical required capacity
ψm1(F ) = ψm2(F ). Symmetry can then be reduced by performing only a single extension for each set
of extensions leading to symmetric labels.

The second symmetry reduction technique considers label dominance with comparable labels. With
Conditions (8e) and (8f), the proposed dominance rule of Section 4.1.1 directly compares the status of
each compartment m ∈ M for the two labels F1 and F2. To strengthen the dominance rule, this strict
one-by-one comparison of the compartments can be relaxed by also checking for symmetric assignments
of items to compartments in label F2 that fulfill the dominance criteria. Formally, dominance rule (8)
can be improved as follows.

A forward label F1 dominates another forward label F2 if Conditions (8a)–(8d) hold and there
exists a permutation σ of the compartments such that

Om(F1) ⊆ Oσ(m)(F2) ∀m ∈ M, (16a)
ψm(F1) ≤ ψσ(m)(F2) ∀m ∈ M, (16b)
σ(m) ∈ C(m) ∀m ∈ M. (16c)

This improved dominance criterion is stronger than dominance rule (8) because Conditions (16a)–(16c)
allow any one-to-one pairing of comparable compartments instead of the pure direct comparison of
compartments in Conditions (8e) and (8f).

When using bidirectional labeling and applying any of the two symmetry reduction techniques in
the forward and backward labeling, the merge procedure in (14) does no longer guarantee to provide
at least one route with minimum reduced cost. This is because it relies on a pure direct comparison
of compartments in Conditions (14c) and (14d) which is incompatible with the proposed symmetry
reduction for label extensions and dominance. A merge condition that is valid also in these cases
can be obtained by allowing the one-to-one pairing of comparable compartments with symmetric item
assignments similar to the modified dominance described above. Formally, the merge of a forward
label F and a backward label B residing at the same vertex i is feasible if Conditions (14a) and (14b)
hold and there exists a permutation σ of the compartments such that

Om(F ) = Oσ(m)(Bp) if i ∈ P

Om(F p) = Oσ(m)(B) if i ∈ D

Om(F ) = Oσ(m)(B) otherwise
∀m ∈ M, (17a)
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∑
m∈M

max{ψm(F ), ψσ(m)(B)} ≤ Q, (17b)

σ(m) ∈ C(m) ∀m ∈ M. (17c)

Labeling simplifications for the PDPTWMC with fixed compartment capacities. If the capacities
of the compartments are fixed, i.e., Qmin

m = Qmax
m , ∀m ∈ M , the labeling algorithm can be simplified

by removing the label components ψm(F ) and ψm(B) for all compartments m ∈ M . Accordingly, the
REFs and the conditions for label feasibility, dominance, and merge feasibility related to them are also
removed. More specifically, forward labels F can be extended using REFs (6a)–(6f). A newly created
label Fh is feasible if Conditions (7a) and

lm(Fh) ≤ Qmax
m ∀m ∈ M, (18)

are respected. Finally, a label F1 dominates another label F2 if Conditions (8a)–(8e) are fulfilled.
The adaptations for the backward labeling are analog. Feasibility of the merge requires only Condi-
tions (14a)–(14c) to hold.

Other acceleration techniques. To further speed up the pricing process, we use the following well-
established acceleration techniques. First, we rely on pricing heuristics to generate negative reduced-
cost routes quickly. Following Desaulniers, Lessard, and Hadjar (2008), we price on arc-reduced net-
works with a minimum of k = 2, 5 and 10 arcs entering and exiting each customer vertex. This
approach is further adapted to the PDP case by also balancing the number of incoming (outgoing)
arcs originating from (destinating to) pickup and delivery vertices. Second, in addition to completed
requests, we also include unreachable requests in sets S(F ) and S(B). In forward labeling, a request is
unreachable for a label F if its pickup vertex cannot be reached time-window feasibly. The definition
in the backward case is analog. The inclusion of unreachable requests improves the dominance (Feillet
et al. 2004). Finally, the labeling algorithm is realized using a bucket-based implementation with
one-dimensional buckets on the time resource (Sadykov, Uchoa, and Pessoa 2021).

4.2 Valid inequalities and branching

We use two well-established families of valid inequalities in our BPC algorithm: rounded capacity
inequalities and subset-row inequalities.

Rounded capacity inequalities were first introduced by Laporte and Nobert (1983) for the capaci-
tated VRP. They are robust cuts, because the corresponding duals directly relate to the reduced costs
on arcs and, therefore, do not change the structure of the pricing problem. With these additional
duals, the DTI and PTI of the reduced costs for forward and backward labeling, respectively, need to
be restored using the transformation of Ropke and Cordeau (2009). The necessary adaptations to the
computation of the reduced cost in the merge are described in Gschwind et al. (2018). To separate
violated rounded capacity inequalities, we apply the heuristic of Ropke and Cordeau (2009).

Jepsen et al. (2008) were the first to introduce the subset-row inequalities for the VRP with time
windows. For PDPs, they are defined on subsets of requests, and as in many other papers, we re-
strict ourselves to subsets of cardinality three. The subset-row inequalities are non-robust, i.e., each
inequality requires an additional resource in the pricing problem making it harder to solve. For the
implications of the subset-row inequalities on the bidirectional labeling for PDPs, we refer to Gschwind
et al. (2018) who show how to adapt both the forward and backward labeling and the reduced cost
computation for the merge.

To guarantee integer solutions, we apply the following standard hierarchical branching rule (Ropke
and Cordeau 2009). We first branch on the number of vehicles, if fractional. We then branch on the
outflow of a subset of vertices of size two, where we always select a subset with outflow closest to 1.5.
For both branching rules, an additional constraint is added to the master problem, which results in
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additional dual prices to be included in the reduced costs of the corresponding arcs. This has the
same implications on pricing as the rounded capacity inequalities. The search tree is explored in a
best-bound first fashion.

5 Computational results
In this section, we report extensive computational experiments to assess the performance of our BPC
algorithm and to derive managerial insights on the three studied attributes of the PDPTWMC. For
conciseness reasons, we only report summarized results. Instance-by-instance results are provided
at https://wiwi.rptu.de/fgs/logistik/pdptwmc-detailedresults. Our BPC algorithm was im-
plemented in C++ and compiled into 64-bit singlethread code with MS Visual Studio 2019. CPLEX
20.10 with default parameters was used to reoptimize the RMPs. All tests were conducted on RPTU
Kaiserslautern-Landau’s high performance computing cluster “Elwetritsch” that consists of several In-
tel Xeon Gold 6126 processors running at 2.60 GHz. Notice that the performance of a single thread of
the cluster is comparable to that of a standard desktop processor. A time limit of 3,600 seconds was
considered.

The remainder of this section is organized as follows. Section 5.1 describes the instances used
in the experiments and details the different parameters related to item-to-compartment flexibility,
compartment capacity flexibility, and item-to-item compatibility that we tested. Section 5.2 presents
details on the performance of the proposed algorithm. Section 5.3 shows the effect of the symmetry-
reduction acceleration techniques. Finally, in Section 5.4 we conduct extensive sensitivity analyses and
derive managerial insights related to the three tested attributes.

5.1 Instances and attribute settings

Our instances are created by adapting the C2 instance set proposed by Cherkesly et al. (2016) for the
PDPTWMS to the PDPTWMC. The set consists of 319 instances which are adapted from the TSPLIB
instances. There are 99 instances based on the a280 instance, and 220 instances based on the instances
brd14051, d18512, fnl4461, and nrw1379. The number of requests ranges from 25 to 75. We apply the
same rounding rule that was used in other works for these instances, i.e., travel costs are rounded to
four digits and travel times are rounded up to two digits. As usual for these instances, an artificial cost
of 100,000 is added to each arc (0, i), ∀i ∈ P to ensure that the primary objective is the minimization
of the vehicles. We use the time windows and the demands, which are random between three and eight,
as provided in the instances. Furthermore, we consider vehicles with three compartments with a total
capacity of 24. In addition, we introduce 12 item categories to the instances to define the item-to-item
compatibility and the item-to-compartment flexibility, and each item i ∈ P is randomly assigned to
one of the categories. We denote µi as the category number of item i ∈ P , i.e., µi ∈ {1, ..., 12}.
All instances are available at https://wiwi.rptu.de/fgs/logistik/pdptwmc-instances. In the
following, we describe the different scenarios for the three compartment-related attributes that we
include in our computational analysis. We refer to Table 10 of Appendix C for an overview of the
tested scenarios and for the details on how these are obtained from the instance data.

For the compartment capacity flexibility, flexible and fixed compartment capacities are investigated.
Note that for simplification reasons, we have set the minimum and maximum compartment capacities to
the same values for all three compartments, i.e., Qmin

m = Qmin,∀m ∈ M and Qmax
m = Qmax,∀m ∈ M ,

and refer to the notation Qmin and Qmax in the following. With fixed compartment capacity, denoted
as cap-[33% 33%], three compartments each with a third of the vehicle’s capacity are considered, i.e.,
Qmin = Qmax = ⌊Q/3⌋. With flexible compartment capacity, different combinations ofQmax andQmin

are tested. The combinations considered are Qmax = {⌊50%Q⌋} with Qmin = {0, ⌈10%Q⌉, ⌈25%Q⌉},
and Qmin = {0} with Qmax = {⌊50%Q⌋, ⌊75%Q⌋, ⌊100%Q⌋}. These are referred to as cap-[0% 50%],
cap-[10% 50%], cap-[25% 50%], cap-[0% 75%], and cap-[0% 100%].

https://wiwi.rptu.de/fgs/logistik/pdptwmc-detailedresults
https://wiwi.rptu.de/fgs/logistik/pdptwmc-instances
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We study three different cases for the item-to-compartment flexibility. In the first case, denoted
as 1 i-to-c, each item is compatible with only one compartment. In the second case, denoted as
2 i-to-c, partial item-to-compartment flexibility is considered where each item is compatible with
exactly two compartments. Finally, in the third case, denoted as 3 i-to-c, full item-to-compartment
flexibility is considered, i.e., each item is compatible with all three compartments.

Finally, five different cases for the item-to-item compatibility are considered. For the first case,
denoted as 0% i-to-i, each item is incompatible with all other items. Then, three cases with partial
item-to-item compatibility are considered such that 25%, 50%, and 75% of the item categories are
compatible, also denoted as 25% i-to-i, 50% i-to-i, and 75% i-to-i. Finally, the fifth case consid-
ers full item-to-item compatibility, i.e., each item is compatible with all other items, and is denoted
100% i-to-i.

Overall, for each of the 319 instances, 90 combinations of the compartment capacity flexibility,
item-to-item compatibility, and item-to-compartment flexibility attributes have been generated. Thus,
28,710 instances have been tested in total. For the remainder of this section, we use the notation
provided in Table 10 of Appendix C to refer to a set of instances. For example, by referring to the a280 -
cap-[33% 33%] instances, we refer to all the instances based on instance a280 with different number
of requests, item-to-item compatibility characteristics, item-to-compartment flexibility characteristics,
and compartment capacity of cap-[33% 33%].

5.2 Summary of the computational results

In this section, we provide a discussion on the computational performance of our BPC algorithm. In
general, our results show that our algorithm allows to solve 26,665 out of 28,710 instances to opti-
mality within a reasonable computational time of 3,600 seconds. Tables 1–3 present the summarized
computational results for the different cases of compartment capacity flexibility, item-to-compartment
flexibility, and item-to-item compatibility, respectively. The first column reports the instance group
(Group), e.g., a280 or brd14051. The second column reports the number of instances per group and
studied characteristic (# Inst.), e.g., in Table 1, there are 1,485 instances of group a280 for each
compartment capacity setting. Finally, for each of the studied characteristic settings, we report the
number of instances solved to proven optimality (# Opt.) as well as the average computational time
in seconds (Sec.).

Table 1: Summarized computational results for the PDPTWMC for different cases of compartment capacity flexibility

cap-

[33% 33%] [25% 50%] [10% 50%] [0% 50%] [0% 75%] [0% 100%]

Group # Inst. # Opt. Sec. # Opt. Sec. # Opt. Sec. # Opt. Sec. # Opt. Sec. # Opt. Sec.

a280 1,485 1,387 373.8 1,244 725.2 1,227 780.6 1,219 795.6 1,190 873.1 1,193 878.2
brd14051 825 820 38.0 817 78.4 817 95.7 813 99.1 811 111.4 811 123.0
d18512 825 802 140.6 809 104.0 806 108.6 807 106.9 807 114.9 808 111.4
fnl4461 825 803 193.1 784 299.3 773 356.2 768 383.8 759 439.9 757 440.1
nrw1379 825 809 105.6 808 126.2 809 132.4 807 144.7 800 183.7 800 180.4
Total 4,785 4,621 198.3 4,462 329.9 4,432 361.7 4,414 373.6 4,367 417.5 4,369 419.9

Our results in Table 1 reveal that instances with fixed compartment capacity are considerably easier
to solve than instances with flexible compartment capacity. With fixed compartment capacity, 4,621
instances are solved to optimality with an average time of 198.3 seconds, compared to between 4,367 and
4,462 instances with an average time of more than 329.9 seconds with flexible compartment capacity. In
addition, increasing the minimum compartment capacity allows to solve more instances to optimality
and results in smaller average solution times. Likewise, decreasing the maximum compartment capacity
also seems to yield easier to solve instances.
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Table 2: Summarized computational results for the PDPTWMC for different cases of item-to-compartment flexibility

i-to-c

1 2 3

Group # Inst. # Opt. Sec. # Opt. Sec. # Opt. Sec.

a280 2,970 2,881 149.0 2,266 1,092.1 2,313 972.1
brd14051 1,650 1,643 21.1 1,621 142.3 1,625 109.5
d18512 1,650 1,649 6.0 1,589 188.1 1,601 149.1
fnl4461 1,650 1,636 58.8 1,500 532.0 1,508 465.4
nrw1379 1,650 1,646 17.8 1,586 236.8 1,601 181.9
Total 9,570 9,455 64.1 8,562 528.4 8,648 457.9

Our experiments indicate that increasing the item-to-compartment flexibility does not necessarily
lead to instances that are harder to solve by our algorithm (see Table 2). While in the most restrictive
case, i.e., 1 i-to-c, our algorithm solves the most instances (9,455 out of 9,570) with the least average
solution time (64.1 seconds), the results also show that a few additional instances are solved in less
average solution time with 3 i-to-c compared to 2 i-to-c. These results can be explained by two
factors: 1) the symmetry in the solutions, i.e., in which compartments items can be loaded, and 2) the
symmetry in the labeling algorithm due to the number of extensions. The additional flexibility we get
when going from 1 i-to-c to 2 i-to-c and from 2 i-to-c to 3 i-to-c increases the solution spaces
because more loading possibilities exist for a vehicle route, which decreases the number of instances
solved and increases the average computational time. On the other hand, solving the problem with
3 i-to-c reduces the number of extensions compared to 2 i-to-c because all compartments are
symmetrical and the implemented symmetry-reduction techniques are effective.

Table 3: Summarized computational results for the PDPTWMC for different cases of item-to-item compatibility

i-to-i

0% 25% 50% 75% 100%

Group # Inst. # Opt. Sec. # Opt. Sec. # Opt. Sec. # Opt. Sec. # Opt. Sec.

a280 1,782 1,753 190.3 1,544 640.4 1,483 743.3 1,412 908.3 1,268 1,206.4
brd14051 990 971 104.8 985 34.3 989 43.3 981 108.5 963 163.8
d18512 990 947 191.2 968 117.4 971 87.4 974 85.2 979 90.7
fnl4461 990 983 103.7 946 264.6 950 277.6 912 444.3 853 670.2
nrw1379 990 990 36.6 967 133.9 969 141.4 963 167.7 944 247.8
Total 5,742 5,644 134.3 5,410 293.6 5,362 325.5 5,242 420.8 5,007 576.5

Finally, while allowing more item-to-item compatibility is expected to increase the complexity of
the problem as it produces, amongst others, more label extensions and symmetrical solutions, Table 3
indicates that the general trend seems to depend on the structure of the instances. For example, for
the a280 instances, the number of instances solved to optimality consistently decreases from 1,753
to 1,268 and the average solution time consistently increases from 190.3 seconds to 1,206.4 seconds
when going from least (0% i-to-i) to most (100% i-to-i) flexible. Groups fnl4461 and nrw1379 also
follow this expected trend. For the group brd14051, however, there does not seem to be a clear trend.
Finally, we obtain unexpected results for the group d18512 for which the number of instances solved to
optimality consistently increases from 947 to 979 and the average computational time decreases from
191.2 to 90.7 when considering increasing item-to-item compatibility.

5.3 Analysis of the symmetry reduction techniques

In this section, we analyse the impact of the two symmetry reduction techniques described in Sec-
tion 4.1.4, i.e., label extensions to empty compartments and label dominance of comparable com-
partments. Tables 4–6 present a comparison of the computational results for the PDPTWMC with
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and without the symmetry-reduction techniques. The tables report, for each group of instances and
compartment-related attribute setting: the impact on the number of instances solved to proven op-
timality with and without the two symmetry reduction techniques (∆ Opt.) computed as # Opt. −
# Opt., where # Opt. and # Opt. are the number of instances solved to optimality with and without
the symmetry reduction techniques, respectively; and the average solution time ratio (Sec. / Sec.),
where Sec. and Sec. are the computation time in seconds of the algorithm with and without the sym-
metry reduction techniques, respectively. For the latter, averages are computed as geometric means
over the individual ratios for each instance.
Table 4: Summarized computational results for the PDPTWMC with and without the two symmetry reduction techniques
for different cases of compartment capacity flexibility

cap-

[33% 33%] [25% 50%] [10% 50%] [0% 50%] [0% 75%] [0% 100%]

Group ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec.

a280 47 1.39 54 1.40 82 1.45 86 1.41 89 1.42 93 1.41
brd14051 2 1.12 6 1.25 12 1.26 9 1.37 11 1.41 13 1.41
d18512 3 1.16 8 1.25 7 1.36 8 1.32 11 1.41 11 1.40
fnl4461 12 1.35 27 1.50 35 1.50 40 1.54 43 1.60 43 1.67
nrw1379 6 1.29 9 1.41 18 1.51 22 1.49 25 1.53 27 1.60
Total 70 1.28 104 1.36 154 1.42 165 1.42 179 1.46 187 1.48

With compartment capacity flexibility (see Table 4), reducing the symmetry becomes more impor-
tant when there is an increase in the compartment capacity flexibility. Recall from Table 1 that with
increased compartment capacity flexibility the instances generally become harder to solve. Similar
results are obtained with item-to-item compatibility as summarized in Table 6, where the symmetry-
reduction techniques have a stronger impact when there are more compatible items. These instances
are also generally harder to solve (see Table 3). Therefore, the relative impact of the proposed symme-
try reduction is even higher for the more difficult instances, i.e., larger number of additional instances
solved to optimality (∆ Opt.) paired with a smaller number of optima of the base algorithm (# Opt.).

Table 5: Summarized computational results for the PDPTWMC with and without the two symmetry reduction techniques
for different cases of item-to-compartment flexibility

i-to-c

1 2 3

Group ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec.

a280 –7 0.79 –48 0.70 506 5.08
brd14051 0 0.93 –3 0.81 56 2.92
d18512 0 0.93 –1 0.81 49 2.99
fnl4461 0 0.87 –19 0.79 219 5.18
nrw1379 –1 0.89 –4 0.75 112 4.75
Total –8 0.87 –75 0.76 945 4.18

The most interesting results are obtained with the item-to-compartment flexibility (see Table 5).
Here, the impact of the symmetry-reduction techniques becomes apparent for the case of 3 i-to-c. In
fact, the algorithm with symmetry reduction solves 945 additional instances to proven optimality and is
on average 4.18 times faster. With 1 i-to-c and 2 i-to-c, on the other hand, the symmetry reduction
techniques seem to have a slightly negative effect. Recall that by definition of our instances, there are no
comparable compartments for the cases 1 i-to-c and 2 i-to-c. Therefore, the symmetry-reduction
techniques have no effect for these instances but require additional effort due to the overhead associated
with them. This negative effect, however, seems to be limited.

Overall, the number of instances solved to proven optimality is 26,665 using our BPC algorithm
with the symmetry-reduction techniques, which is an increase of 859 instances compared to the variant
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Table 6: Summarized computational results for the PDPTWMC with and without the two symmetry reduction techniques
for different cases of item-to-item compatibility

i-to-i

0% 25% 50% 75% 100%

Group ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec. ∆ Opt. Sec./Sec.

a280 55 1.44 85 1.36 99 1.45 105 1.42 107 1.41
brd14051 -1 1.16 0 1.23 20 1.34 16 1.40 18 1.37
d18512 3 1.22 5 1.23 1 1.30 17 1.40 22 1.44
fnl4461 11 1.38 28 1.49 46 1.60 60 1.52 55 1.63
nrw1379 10 1.29 16 1.35 13 1.43 26 1.61 42 1.70
Total 78 1.31 134 1.33 179 1.42 224 1.46 244 1.49

without symmetry reduction. While there is a slight decrease in the performance for 1 i-to-c and 2
i-to-c, we decided to keep the symmetry-reduction techniques in our algorithm for all instances for
consistency reasons.

5.4 Analysis of the PDPTWMC attributes

In this section, we analyse the impact of the different attributes on the PDPTWMC. We compare the
results of the different compartment capacity flexibility, item-to-compartment flexibility, and item-to-
item compatibility settings with respect to solution quality, i.e., number of vehicles and travel distance,
and additional solution features (number of compartments used and number of simultaneous items in
the compartments).

For each of the different attributes, we provide figures on the number of vehicles used and travel
distance, see Figures 3–5. In each subfigure, the x-axis reports the tested values of the parameter under
study and the y-axis reports the ratio between the specific parameter setting and a base parameter set-
ting which differs according to each attribute. For the impact of the compartment capacity flexibility,
the base parameter setting corresponds to the fixed compartment capacity cap-[33% 33%]. For the im-
pact of the item-to-compartment flexibility, the base parameter setting corresponds to 1 i-to-c while
for the impact of the item-to-item compatibility, it corresponds to 0% i-to-i. Each of the plots aver-
ages over those instances that are solved for all of the parameter settings of the corresponding attribute.
Note that for the comparison of travel distances, we can only include instances with the same number
of vehicles given that the primary objective consists of minimizing the number of vehicles. In addition,
for conciseness and readability, in each figure we only show the plots of a subset of the solutions: in
Figure 3, we report 0% i-to-i, 50% i-to-i and 100% i-to-i; in Figure 4, we report cap-[33% 33%]
and cap-[0% 50%]; in Figure 5, we report cap-[33% 33%], cap-[0% 50%], and cap-[0% 100%]. How-
ever, the results are representative also for the cases that are not shown in the figures. Detailed tables
are reported at https://wiwi.rptu.de/fgs/logistik/pdptwmc-detailedresults. In addition, for
each attribute under study, we analyze the number of compartments used as well as the average and
the overall maximum number of items per compartment in the solutions (see Tables 7–9).

5.4.1 Impact of compartment capacity flexibility

In this subsection, we compare the results for different cases of compartment capacity flexibility. The
analysis here is restricted to cap-[33% 33%], cap-[0% 50%], cap-[0% 75%], and cap-[0% 100%]. The
findings for cap-[0% 50%], cap-[10% 50%], and cap-[25% 50%], however, are consistent.

Figure 3 illustrates that the number of vehicles and the travel distance decreases when the maximum
compartment capacity increases, i.e., when there is more compartment capacity flexibility. The number
of vehicles used and the distance traveled decreases by up to 18.9% and 4.0%, respectively, when
comparing the different cases of Qmin = 0 with the fixed vehicle capacity. Furthermore, for both
number of vehicles and travel distance, allowing more compartment capacity flexibility has by far

https://wiwi.rptu.de/fgs/logistik/pdptwmc-detailedresults
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1 i-to-c; 0% i-to-i 1 i-to-c; 50% i-to-i 1 i-to-c; 100% i-to-i
2 i-to-c; 0% i-to-i 2 i-to-c; 50% i-to-i 2 i-to-c; 100% i-to-i
3 i-to-c; 0% i-to-i 3 i-to-c; 50% i-to-i 3 i-to-c; 100% i-to-i
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Figure 3: Difference in average number of vehicles and travel distance for different cases of compartment capacity flexibility

the largest impact with 1 i-to-c and 100% i-to-i. This can be explained because with 1 i-to-c
there is no flexibility in the assignment of items to compartments at all and all items are compatible,
hence, items can go simultaneously in the same compartment when the capacity allows for it. For fully
incompatible item-to-item compatibility (0% i-to-i), the compartment capacity flexibility does not
impact the number of vehicles used and the travel distance. This is expected, because no pair of items
can be simultaneously in the same compartment.

Table 7 shows that the average number of compartments used is highest (2.6) with fixed com-
partment capacity, i.e., cap-[33% 33%], and when increasing the maximum compartment capacity
the average number of compartments used decreases. In addition, the maximum number of items per
compartment is lowest (1.67 on average and 2 as a maximum) with fixed compartment capacity, and
when increasing the maximum compartment capacity, there are more items per compartment.

Table 7: Characteristics of the results for the PDPTWMC for different cases of compartment capacity flexibility

cap-

[33% 33%] [0% 50%] [0% 75%] [0% 100%]

Average number of compartments used 2.6 2.5 2.4 2.4
Average maximum number of items per compartment 1.67 1.81 1.98 2.01
Maximum number of items per compartment 2 4 5 5

5.4.2 Impact of item-to-compartment flexibility

In this subsection, we compare the results for different cases of item-to-compartment flexibility.

Figure 4 shows that a large number of vehicles and travel distance can be saved by having par-
tial item-to-compartment flexibility (2 i-to-c) compared to no item-to-compartment flexibility (1
i-to-c). In fact, the number of vehicles and the travel distance decrease by up to 22.0% and 9.2%,
respectively. When going from partial item-to-compartment flexibility (2 i-to-c) to full item-to-
compartment flexibility (3 i-to-c), the additional gain is limited.

Table 8 shows that the average number of compartments used increases when going from 1 i-to-c
to 2 i-to-c but stabilizes when going from 2 i-to-c to 3 i-to-c. Finally, the maximum number of
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Figure 4: Difference in average number of vehicles and travel distance for different cases of item-to-compartment flexibility

items per compartment increases with an increasing item-to-compartment flexibility, when considering
the average over the instances, but remains stable when considering the maximum.

Table 8: Characteristics of the results for the PDPTWMC for different cases of item-to-compartment flexibility

i-to-c

1 2 3

Average number of compartments used 2.4 2.6 2.6
Average maximum number of items per compartment 1.78 1.87 1.88
Maximum number of items per compartment 5 5 5

5.4.3 Impact of item-to-item compatibility

In this subsection, the results for different cases of item-to-item compatibility are compared.

Figure 5 reveals that the average number of vehicles and travel distance decreases when the percent-
age of compatible items increases. The number of vehicles used and the distance traveled is decreased
by up to 25.6% and 7.0%, respectively, when comparing 100% i-to-i to 0% i-to-i. The largest
decrease in vehicles used and distance traveled is found for 1 i-to-c (no item-to-compartment flex-
ibility). Hence, adding more flexibility in item-to-item compatibility has a larger impact when there
is no item-to-compartment flexibility, whereas adding more item-to-item compatibility has a smaller
impact when there is already partial or full item-to-compartment flexibility.

Table 9 shows that when more items are compatible the average number of compartments used
decreases, e.g., 2.6 and 2.4 compartments are used on average with 0% i-to-i and 100% i-to-i, re-
spectively. In addition, the maximum number of items per compartment (both average and maximum
over the instances) increases significantly as the compatibility between items increases. These results
are expected because with increased compatibility between items, more items can be loaded simulta-
neously within a single compartment, thus, decreasing the average number of compartments used and
increasing the number of items per compartment.
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Figure 5: Difference in average number of vehicles and travel distance for different cases of item-to-item compatibility

Table 9: Characteristics of the results for the PDPTWMC for different cases of item-to-item compatibility

i-to-i

0% 25% 50% 75% 100%

Average number of compartments used 2.6 2.6 2.5 2.5 2.4
Average maximum number of items per compartment 1 1.88 1.91 2.11 2.38
Maximum number of items per compartment 1 2 2 4 5

6 Conclusions
This paper introduces a new variant of PDPs coined the PDPTWMC, which generalizes the PDPTW
to vehicles with multiple compartments. We consider three different compartment-related attributes,
namely compartment capacity flexibility, item-to-compartment flexibility and item-to-item compati-
bility. The PDPTW is a special case of the PDPTWMC with fully flexible compartment capacities,
full item-to-compartment flexibility, and full item-to-item compatibility. This paper contributes to the
VRPMC literature by adapting the compartment-related attributes as highlighted by Ostermeier et al.
(2021) to the PDP context and by developing a unified BPC algorithm that can tackle all combinations
of these attributes. The pricing problems of the BPC are solved by means of a bidirectional labeling
algorithm which incorporates two techniques to reduce the symmetry in the label extensions and in
the dominance. Furthermore, we have introduced new benchmark instances for the PDPTWMC by
adapting the C2 instances proposed by Cherkesly et al. (2016) for the PDPTWMS.

Extensive computational results show that our algorithm can solve instances with up to 75 requests
within one hour. In terms of computation time and number of optimal solutions, instances become
easier to solve when the flexibility in the compartment capacity decreases, with the extreme case of
fixed compartment capacity being the easiest. For the item-to-compartment flexibility, our results show
that most instances are solved for the most restrictive case in which items are compatible with a single
compartment only (no flexibility). However, more instances are solved when items are compatible
with three compartments (fully flexible) compared to two compartments. This somewhat counter-
intuitive result can be explained by the symmetry-reduction techniques that, by definition of the
instances, have no effect in the latter case. For the item-to-item compatibility, the results indicate
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that the performance of the algorithm seems to be related to the geography of the instances rather
than the compatibility of the items. Finally, our results show that the symmetry-reduction techniques
accelerate our algorithm especially when there are more comparable compartments and items (more
item-to-compartment flexibility and item-to-item compatibility).

Finally, we have derived extensive managerial insights. In terms of compartment capacity, the
number of vehicles and the travel distance is highest when it is fixed, and solution quality improves
when the flexibility increases. With item-to-compartment flexibility, the number of vehicles and travel
distance can be significantly reduced with 2 i-to-c compared with 1 i-to-c. Going from 2 i-to-c
to 3 i-to-c has only a very small impact. Finally, solution quality improves with additional item-
to-item compatibility. This effect is largest when there is no item-to-compartment flexibility, whereas
the impact is smaller when there is item-to-compartment flexibility.

Appendix A Validity of the forward dominance criteria
Proposition 1. Conditions (8) constitute a valid dominance rule for forward labeling if the arc reduced
cost c̃f

ij satisfy the DTI.

Proof. The proof applies the standard arguments first used by Dumas, Desrosiers, and Soumis (1991)
to show that for each extension E2 of R(F2) to the feasible 0 − (2n + 1)-path R2, there exists an
extension E1 of R(F1) to the feasible 0 − (2n + 1)-path R1 with better or equal reduced cost. More
precisely, let E1 := E2\{i ∈ D|i−n ∈ O(F2)\O(F1)} be the subpath of E2 in which all visits to delivery
nodes whose requests are open for label F2 but not for label F1 are removed. Then, if R2 is feasible,
Condition (8b) ensures time-window feasibility of R1 (recall that travel times satisfy the triangle
inequality), Conditions (8d) and (8e) ensure pairing and precedence of R1, and Conditions (8e) and (8f)
ensure feasibility of R1 with respect to item-to-item compatibility, compartment and vehicle capacity,
and item-to-compartment compatibility. Finally, Condition (8c) together with the DTI guarantee
c̃R1 ≤ c̃R2 for the reduced costs of R1 and R2.

Appendix B Detailed backward labeling algorithm
In this section, we give additional details on the backward labeling algorithm that are not already
included in Section 4.1.2.

Backward label resources. The complete backward label resources and their meaning are:

• η(B), the first visited vertex of the partial path;
• t(B), the latest feasible start of the service time at vertex η(B);
• c(B), the accumulated reduced cost;
• S(B), the set of completed requests;
• lm(B), the load in compartment m ∈ M ;
• Om(B), the items (open requests) in compartment m ∈ M ;
• ψm(B), the required capacity of compartment m ∈ M .

Backward label dominance. A label B1 dominates label B2 if

η(B1) = η(B2), (19a)
t(B1) ≥ t(B2), (19b)
c(B1) ≤ c(B2), (19c)
S(B1) ⊆ S(B2), (19d)
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Om(B1) ⊆ Om(B2), ∀m ∈ M, (19e)
ψm(B1) ≤ ψm(B2), ∀m ∈ M. (19f)

Proposition 2. Conditions (19) constitute a valid dominance rule for backward labeling if the arc
reduced cost c̃b

ij satisfy the PTI.

Proof. The proof is completely analog to the forward case, utilizing the PTI instead of the DTI to
guarantee c̃R1 ≤ c̃R2 .

Appendix C Attribute settings
Table 10 presents an overview of the tested scenarios for the compartment-related attributes and details
their computation from the data specified in the instances.
Table 10: Summary of the tested item-to-item compatibility, compartment capacity flexibility, and item-to-compartment
flexibility cases

Name Description

Item-to-item compatibility

0% i-to-i uij = 0, ∀i, j ∈ P, i ̸= j

25% i-to-i ∀i, j ∈ P, i ̸= j uij =


0 µi, µj ∈ {1, . . . , 6}
0 µi, µj ∈ {7, . . . , 12}
0 µi ∈ {1, 2, 3}, µj ∈ {7, 8, 9}
0 µi ∈ {4, 5, 6}, µj ∈ {10, 11, 12}
1 Otherwise

50% i-to-i ∀i, j ∈ P, i ̸= j uij =

0 µi, µj ∈ {1, . . . , 6}
0 µi, µj ∈ {7, . . . , 12}
1 Otherwise

75% i-to-i ∀i, j ∈ P, i ̸= j uij =


0 µi, µj ∈ {1, 2, 3}
0 µi, µj ∈ {4, 5, 6}
0 µi, µj ∈ {7, 8, 9}
0 µi, µj ∈ {10, 11, 12}
1 Otherwise

100% i-to-i uij = 1, ∀i, j ∈ P, i ̸= j

Compartment capacity flexibility

cap-[33% 33%] Qmin = Qmax = ⌊Q/3⌋
cap-[0% 50%] Qmin = 0, Qmax = ⌊50%Q⌋
cap-[10% 50%] Qmin = ⌈10%Q⌉, Qmax = ⌊50%Q⌋
cap-[25% 50%] Qmin = ⌈25%Q⌉, Qmax = ⌊50%Q⌋
cap-[0% 75%] Qmin = 0, Qmax = ⌊75%Q⌋
cap-[0% 100%] Qmin = 0, Qmax = Q

Item-to-compartment flexibility

1 i-to-c ∀i ∈ P, m ∈ M bim =


1 if µi = {1, 2, 3, 4} and m = 1
1 if µi = {5, 6, 7, 8} and m = 2
1 if µi = {9, 10, 11, 12} and m = 3
0 Otherwise

2 i-to-c ∀i ∈ P, m ∈ M bim =


1 if µi = {1, 2, 3, 4} and m = {1, 2}
1 if µi = {5, 6, 7, 8} and m = {2, 3}
1 if µi = {9, 10, 11, 12} and m = {1, 3}
0 Otherwise

3 i-to-c ∀i ∈ P, m ∈ M bim = 1
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