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Abstract : We present a Julia framework dedicated to partially-separable problems whose element
function are detected automatically. This framework takes advantage of the JuliaSmoothOptimizer
ecosystem for minimizing unconstrained smooth partially-separable problems with several partitioned
quasi-Newton trust-region methods. We provide three new limited-memory partitioned quasi-Newton
operators: PLBFGS, PLSR1 and PLSE. These new limited-memory partitioned quasi-Newton operators
rely on LBFGS and LSR1 operators to approximate element Hessians instead of dense matrices.

Therefore, the memory footprint and the linear application complexity drop from Θ(
∑N

i=1
ni(ni+2)

2 )

to Θ(
∑N

i=1 2mni). Under the assumption that element function gradients are Lipchitz continuous,
we establish a global convergence proof for these new methods. The numerical results compare the
methods presented to the state of the art of limited-memory or partitioned quasi-Newton methods
through performance profiles. To legitimate partitioned limited-memory operators, we study limits of
classic partitioned quasi-Newton methods where large element functions exist.

Keywords : Partially-separable methods, limited-memory quasi-Newton, unconstrained smooth-
optimization

Acknowledgements: This work has been supported by the laboratory G-SCOP/grenoble-inp and the
NSERC Alliance grant 544900–19 in collaboration with Huawei-Canada.
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1 Introduction

We consider the unconstrained problem

min
x∈Rn

f(x), (1)

where f : Rn → R. We assume that f is partially-separable, i.e., has the form

f(x) =

N∑
i=1

f̂i(x̂i), x̂i := Uix, (2)

where each Ui ∈ R
ni×n considers ni < n, and each f̂i : R

ni → R is twice continuously differentiable [22,

23]. In other words, each element function f̂i only depends linearly on a subset of variables, which

is collected by Ui. Partial separability appears in a lot of problems: numerical resolution of partial

derivative equations, finite element modeling, nonlinear sparse least square problems. Such structures

enable parallel computations [29] and explicits how derivatives are computed or approximated:

∇f =

N∑
i=1

U⊤
i ∇f̂i, ∇2f ≈ B =

N∑
i=1

U⊤
i ∇2B̂iUi, B̂i ≈ ∇2f̂i ∈ R

ni×ni . (3)

B structurally keeps the sparsity of ∇2f [22] and possesses a partitioned matrix vector product

Bv =
∑N

i=1 UiB̂iU
⊤
i v, v ∈ Rn. The key to implement an efficiently partitioned linear operator is

to store wisely Ui and aggregate B̂iUiv swiftly. When ni remains small, the memory footprint of a

partitioned linear operator is cheaper than a dense matrix, which induces a faster linear application [7].

After defining the notation in Section 2, Section 3 reviews existing pieces of code dedicated to smooth

partial separability. The Section 4 recalls notions related to partitioned quasi-Newton trust-region
methods and conclude by outlining a quasi-Newton trust-region algorithm. Then, we present in Section 5

how our code integrates into the JuliaSmoothOptimizers (JSO) ecosystem. Divided among several

solvers, it fits the abstract typed interface architecture of JSO, to provide several (limited-memory)

partitioned quasi-Newton solvers exploiting partial separability at all steps of the algorithm. Section 6

presents new limited-memory partitioned quasi-Newton models. Whereas partitioned quasi-Newton

models approximate ∇2f̂i by a dense matrix updated with quasi-Newton formulas [22], which becomes

an issue when elements become large ; the limited-memory variants rely instead on quasi-Newton

linear operators to approximate ∇2f̂i. While the aggregation of dense element approximations has a

memory footprint and linear application in Θ(
∑N

i=1
ni(ni+2)

2 ), the variant using limited-memory Hessian

approximations of memory m get complexities of Θ(
∑N

i=1 2mni), 1 ≤ m ≪ ni. We demonstrate the

global convergence of the resulting limited-memory partitioned quasi-Newton trust-region methods

by bounding the norm of element limited-memory quasi-Newton operators ∥B̂i∥ and the norm of the

aggregated operator ∥B∥ in Section 6.1. Section 7 reports the numerical results about the partitioned

optimization methods supported, with a focus on the limited-memory variant for large element problems.

We present our future works and conclude in Section 8.

2 Notations

Lowercase letters such as s, x and y denote vectors. Uppercase letters such as B and H denote matrices.
Greek letters such as α and λ denote scalars. Throughout, In denotes the identity matrix of size n.

When there is no ambiguity, I denotes the identity matrix of appropriate size. ϵ1 and ϵ2 are numerical

safeguards related to quasi-Newton updates. Usually, they are related to the machine’s ϵ. ωSR1, ωBFGS1

and ωBFGS2
are numerical safeguards introduce in Section 6.1 to bound the limited-memory partitioned

quasi-Newton updates.

Any notation capped as î refers to a structure of size ni related to the i-th element function. For

example, ĝi := ∇f̂i ∈ R
ni represents the gradient of the i-th element function. When the k-th iterate
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must be specified, the subscript k is added as ĝk,i is ĝi. In other cases, it refers to the application of Ui

onto a vector, for example x̂i := Uix ∈ Rni , where x ∈ Rn.

Here is a list of all the other capped notations:

• ŝi := Uis, s ∈ R
n;

• ŷi := ∇f̂i(x̂i + ŝi)−∇f̂i(x̂i) ∈ R
ni ;

• B̂i ≈ ∇2f̂i ∈ R
ni×ni ;

• ẑi := ŷi − B̂iŝi;

The j-th quasi-Newton update retained by a limited quasi-Newton operator Bk is denoted as B
(j)
k

where 1 ≤ j ≤ m. Its initializer is denoted B
(0)
k = λI, where λ may be 1 or y

⊤
k yk

y
⊤
k sk

.

3 Literature review

The first solver implementation optimizing continuous partially-separable problems was the PSPMIN

Fortran routine [25], which implements the partitioned quasi-Newton trust-region method from [22–24]

and is referenced as VE08 in the HSL library [27]. PSPMIN solves (2) subject to bound constraints

using a projected gradient method [2] and a truncated conjugate gradient method [45] to solve the

trust-region sub-problem. It requires subroutines to compute every f̂i and ∇f̂i. If ∇f̂i is not provided,

it relies on finite differences to approximate it. This routine was tested on the first collection of

partially-separable problems [48] and led the way for other partially-separable methods.

There is a variant of VE08 named VE10 [27], dedicated to large-scale least-square problems that are

partially-separable f(x) = 1
2

∑N
i=1 fi(x)

2 = 1
2

∑N
i=1 f̂i(x̂i)

2 [49], considering f̂i : R
ni → R with ni < n.

VE10 maintains simultaneously a Gauss-Newton model and a partitioned quasi-Newton model made of

dense element Hessian approximation B̂i ≈ ∇2f̂i. The choice of which model use is done adaptively to

ensure a better performance of the method.

The fact that providing routines to evaluate f̂i and ∇f̂i is error-prone and poorly extendable

motivated the definition of the Standard Input Format (SIF) to ease large-scale problem definitions.

The SIF is based around the concept of group partial-separability [7]:

f(x) =

M∑
j=1

hj(lj(x) + fj(x)), fj(x) =

Nj∑
i=1

f̂j,i(Uj,ix),

where hj : R → R is the j-th group, lj the linear term of the j-th group and f̂j its partially-

separable function. Group-partial separability extends partial separability, which comes handy to

handle partially-separable constraints c(x) = 0 by minimizing a sequence of augmented Lagrangian

problems Ly,ρ(x) := f(x)− y⊤c(x) + 1
2ρ∥c(x)∥

2. The SIF inherited the column-oriented format of MPS

(Mathematical Programming System) [1], making it quite obscure and difficult to access for a new user.

However, the Constrained and Unconstrained Testing Environnement (CUTE) [4] and its more recent

versions CUTEr [18] and CUTEst [20] provide 1494 SIF problems that can be interfaced to modern

solvers, included: IPOPT [50], KNITRO [5] and SNOPT [17] and modern high-level languages, such as

Python and Julia. The SIF decoder [18] translates a SIF model into a set of Fortran routines evaluating

f̂i,∇f̂i, Ui, U
⊤
i , hj and lj , to feed PSPMIN.

LANCELOT [7], later integrated in the library GALAHAD [19], is the most sophisticated solver

developed around group-partial separability and the SIF format. LANCELOT has several special

features such as:

• support internal element variables, considering Ui as a sparse matrix;

• a dedicated methods to compute partial derivatives of group-partially-separable functions;
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• a procedure merging elements to reduce memory and computations during partitioned the

matrix-vector products [7];

• a multi-frontal direct method dedicated to group-partially-separable problems [11, 12] as an

alternative of the truncated conjugate gradient;

• structured trust-region methods [8], allowing a finer management of the step considering a specified

trust-region radius ∆k,i for each element i taking into account the non-linearity degree of each f̂i.

Gay [16], through the commercial modeling language AMPL [14], is the first to describe how to

detect partial separability from any expression. Partial separability is detected by accumulating linear

sub-expressions in the directed acyclic graph issued from the user model. Then, a dedicated automatic

differentiation for group partially-separable problem is applied to provide any ∇f̂i mandatory to run

LANCELOT later.

4 Optimization background

Trust-region methods

A trust-region method is an iterative method solving at each step an approximate problem restrained

to a neighbourhood. At a typical k-th iteration of a quadratic trust-region method minimizing (1), we

construct a quadratic model

mk(s) := f(xk) +∇f(xk)
⊤s+ 1

2s
⊤Bks, (4)

of f about the current iterate xk, where Bk = B⊤
k is an approximation of the Hessian ∇2f(xk). A step

s is subsequently computed as an approximate solution of the trust-region sub-problem

min
s

mk(s) s.t.∥s∥ ≤ ∆k, (5)

where ∆k > 0 is the current trust-region radius. A step only needs to produce sufficient decrease in the

sense that

mk(0)−mk(s) ≥ τ ∥∇f(xk)∥ min

(
∥∇f(xk)∥
1 + ∥Bk∥

, ∆k

)
, (6)

where 0 < τ < 1 is a constant. The decrease of the model is compared to that of f , to decide whether

the step is accepted or rejected, and to finally update the trust-region radius. The scheme of a typical

trust-region method is summarized in Algorithm 4.1, modelled after [9, Algorithm 6.1.1]. We enforce a

maximal trust-region radius ∆max, which doesn’t have incidence on practical performance, to bound

∥Bk∥ in Section 6.1. If Bk = ∇2f(xk), Algorithm 4.1 becomes a Newton trust-region method.

The performance of a trust-region method falls on the efficiency of the procedure applied to find sk
satisfying (6). We chose the truncated conjugate gradient method [45], an iterative method deriving

from the conjugate gradient [26] adapted to a trust-region sub-problem. It solves a linear system

through successive operator-vector products u = Bkv, v ∈ Rn. In exact arithmetic, the conjugate

gradient performs at most n iterations. Moreover, the solution’s norm increases at each iterate [26].

Thus, once the solution steps out of the trust-region’s boundary, the method stops and finds a solution

on the boundary. In practice, the solution of the linear system is generally not in the trust-region at

every iteration. Thus, it performs frequently fewer iterations than n and doesn’t necessarily solve the

linear system.

Quasi-Newton methods

Quasi-Newton methods seek to approximate Bk ≈ ∇2f(xk). The special case of secant methods update
Bk to satisfy the secant equation

Bks = yk, yk := ∇f(xk+1)−∇f(xk).



Les Cahiers du GERAD G–2023–17 4

Algorithm 4.1 Trust-Region Algorithm

1: Choose x0 ∈ Rn
, ∆max ≥ ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4, and 0 < ω < 1.

2: Choose B0 = B
⊤
0 ≈ ∇2

f(x0). Initial approximation
3: for k = 0, 1, . . . do
4: Compute an approximate solution sk of (5) satisfying (6).
5: Compute the ratio

ρk :=
f(xk)− f(xk + sk)

mk(0)−mk(sk)
.

6: if ρk ≥ η1 then successful step
7: set xk+1 = xk + sk, yk := ∇f(xk+1)−∇f(xk)
8: update Bk given sk and yk
9: else unsuccessful step
10: set xk+1 = xk and Bk+1 = Bk.
11: end if
12: Update the trust-region radius according to

∆k+1 ∈


[γ3∆k, γ4∆k if ρk ≥ η2,

[γ2∆k, ∆k] if η1 ≤ ρk < η2,

[γ1∆k, γ2∆k] if ρk < η1.

(7)

13: end for

Among secant quasi-Newton updates, two dominate. The BFGS (Broyden Fletcher Goldfarb Shanno)

update

BBFGS
k+1 = Bk +

yky
⊤
k

y⊤k sk
− Bksks

⊤
k B

⊤
k

s⊤k Bksk
, (8)

stays positive definite as long as B0 ≻ 0 and the curvature condition y⊤k sk > 0 holds. In practice, we

perform the update only if y⊤k sk > ϵ1 > 0, for numerical stability. If it does not, the positive definiteness

may be preserved either by skipping the update or by using damping [31]. By staying positive definite,

it offers at each iterate a convex quadratic approximation well suited for convex problems.

The symmetric rank one (SR1) [10] update

BSR1
k+1 = Bk +

zkz
⊤
k

s⊤k zk
, zk := yk −Bksk, (9)

does not ensure positive definiteness. To avoid numerical instability, it is customary to only perform

the SR1 update provided that

|s⊤k zk| ≥ ϵ2 ∥sk∥∥zk∥, ϵ2 > 0.

Because both BFGS and SR1 rely on Bk, a dense matrix Θ(n(n+1)
2 ), those methods are not applicable

to intermediate or large problems. A more realistic alternative consists in using a limited-memory

approximation [6, 30, 32], which allows users to set storage requirements ahead of time, and for which
operator-vector products can be computed efficiently without forming Bk explicitly. The limited-memory

variants of BFGS and SR1 will be referred as LBFGS and LSR1. Their memory and linear application

complexities, based the m last pairs sk, yk, are Θ(mn). In the next sections, the j-th quasi-Newton

update retained by a limited quasi-Newton operator Bk is denoted as B
(j)
k where 1 ≤ j ≤ m. Its

initializer is denoted B
(0)
k = λI, where λ may be 1 or y

⊤
k yk

y
⊤
k sk

.

Partitioned quasi-Newton updates

As an accumulation of low rank updates, traditional quasi-Newton methods cannot replicate the sparsity

structure of the Hessian. There have been attempts at sparse quasi-Newton updates, but Shanno [44]

and Toint [47] referred unsatisfying results. Later on, Griewank and Toint [23] showed that any function

having a sparse Hessian is partially-separable and that partitioned quasi-Newton update structurally

keeps the Hessian sparsity.
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Partitioned quasi-Newton updates exploit the partitioned structure of the derivatives of (2):

∇f(x) =

N∑
i=1

U⊤
i ∇f̂i(x̂i) and ∇2f(x) =

N∑
i=1

U⊤
i ∇2f̂i(x̂i)Ui,

to accumulate the contribution of each element derivatives. Hence, it structurally preserves the sparsity

structure of the Hessian, see the example (15). Based on the assumption that each ni ≪ n, partitioned

quasi-Newton methods maintain a quasi-Newton approximation B̂k,i ≈ ∇2f̂i(x̂k,i) for each element and

aggregate them to approximate the Hessian

Bk :=

N∑
i=1

U⊤
i B̂k,iUi. (10)

Each B̂k,i update is based on ŷk,i := ∇f̂i(x̂k+1,i)−∇f̂i(x̂k,i) and ŝi := ŝi instead of y and s. Griewank

and Toint [22, 23, 24] present initially two partitioned methods: one approximating every B̂i by BFGS
(PBFGS) while the second uses SR1 (PSR1). By updating potentially every element at each iterate,

the update’s rank may be proportional to min(N,n). In few iterations, several element function local

curvatures are captured by B̂k,i, making Bk a sharper Hessian approximation than BFGS.

Thanks to (10), the truncated conjugate gradient may compute efficiently Bkv without ever

assembling Bk:

Bkv =

N∑
i=1

U⊤
i (B̂k,iUiv).

Only dot products with each B̂k,i and Uiv are required. Afterward, U⊤
i scatters the results of B̂k,iUiv

into the appropriate components of Bkv.

Although PBFGS and PSR1 satisfy the secant equation as long as every element is updated

Bs =

N∑
i=1

U⊤
i B̂iŝi =

N∑
i=1

U⊤
i ŷi = y,

there is no guarantee that ŷi and ŝi always satisfy the numerical safeguards specific to quasi-Newton
updates, since s is related to minimization of f and not of f̂i.

Griewank and Toint [25] proposes a new partitioned quasi-Newton enhancing the chance of B̂i to be

updated. It updates B̂i with BFGS as long as the element curvature condition holds and switch to SR1

the first time it fails. Toint [49] allows B̂i to be updated with BFGS even after a fail of the element

curvature condition. Thus, at each iterate, the update’s choice between BFGS and SR1 determined

by the satisfaction element curvature condition. Even if the positive definiteness is lost, every B̂k,i

best approximate its local landscape, with the hope of making Bk closer to the current Hessian. The

combination of both quasi-Newton update will make Bk generally best satisfy the secant equation, by

having more elements updated. To summarize, at the k-th iterate, each element update follows:

B̂SE
k+1,i =


B̂BFGS

k+1,i if ŝ⊤i ŷi > ϵ1
B̂SR1

k+1,i if ŝ⊤i ŷi ≤ ϵ1 and |ŝ⊤i (ŷi − B̂kŝi)| ≥ ϵ2∥ŝi∥.∥ŷi − B̂kŝi∥
B̂k,i otherwise

,

where SE stands for secant equation.

Another variant exists, similar to one of the proposition of [25], consisting on apply BFGS updates

onto B̂i if f̂i is convex or SR1 updates otherwise. This variant, named PCS, will be used Section 7 to

compare partitioned quasi-Newton methods, after an automatic detection of the convexity.
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Partitioned quasi-Newton methods store a dense matrix for each element i, making the overall

memory cost of the partitioned matrix:

Θ

(
N∑
i=1

ni(ni+1)
2

)
.

Note that storing a partitioned matrix may require more memory than a sparse matrix, especially

when there are many overlaps between elements. In cases where some ni are large, we fall back

on the dense matrix storage issue similar to BFGS or SR1. Moreover, as each ni becomes larger,

elements are more likely to overlap. Despite the fact that the partitioned matrix-vector product may

be distributed over several processors, each overlap increases the amount of computation required

for Bkv. Conn et al. [7] presents a recursive heuristic merging two elements i, j if their shared

variables, which overlaps on B̂i and B̂j , induce more storage than the gain of sparsity from storing

B̂i and B̂j separately. The two examples below represent the Hessian’s structure related to f (1) =

f̂1(x1, x2, x3, x4) + f̂2(x3, x4, x5, x6) and f (2) = f̂1(x1, x2, x3, x4, x5) + f̂2(x2, x3, x4, x5, x6). f (1) and

f (2) have two element functions overlapping respectively on 2 and 4 variables. In the first example, the

gain from sparsity (in white) overcomes the overlap (in orange), while in the second example the overlap

makes maintaining two dense element Hessian approximations costlier than a matrix of size n = 5.

B
(1)
k =



 , B
(2)
k =



 .

Merging has the advantage of reducing the memory cost of (10) and the amount of computation during

a partitioned matrix-vector product. However, as the number of mergers tends to N , Bk will tend to a

BFGS or SR1 approximation, and accordingly, to an update of smaller rank. Ultimately, it deteriorates

the performances of the algorithm [49].

5 Four Julia modules to detect and exploit partial separability

JuliaSmoothOptimizers (JSO) ecosystem architecture

Our contribution is implemented in Julia [3], a high-level language deigned for scientific computation.

It naturally supports multi-precision and interface-oriented architectures. Contrary to other popular

high-level programming languages (python, matlab...), pure Julia code get performances comparable to

C/C++ [33].

JSO’s ecosystem gathers tools developed conjointly to democratize smooth non-linear optimization

methods. For example, solving:

min
x∈Rn

f(x). (11)

The current section expresses how the knowledge of f being partially-separable integrates JSO’s models

and the multi-precision solvers made of it. Figure 8 in Appendix A.2 summarizes graphically the

dependencies graph of the different modules implemented.

One of the JSO’s pillars is NLPModels.jl [37], an interface for optimization models on which solver

implementations are based. Any model satisfying the NLPModel’s interface implements several methods,

in our context, mainly: the objective function, the gradient, the Hessian-vector product or the linear

application Bk approximating the Hessian. The simplest model has its objective function defined by

pure Julia’s code, while its derivatives are computed by automatic differentiation [21], and will be

referred as pure Julia’s model.
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The interface provided by NLPModels.jl allows the implementation of generic optimization solvers,

gathered in JSOSolvers.jl [38]. Thus, the same code may run any model deriving from NLPModels

while exploiting their distinct features. For this paper, we focus on TRUNK, a trust-region solver

close to Algorithm 4.1, but the tools developed in this section aim to be applied on other solvers. By

default, minimizing a pure Julia’s model with TRUNK will use the exact Hessian and will implement

a Newton trust-region solver. Another option for a pure Julia’s model is to integrate a LBFGS or a

LSR1 operator [36, 39] (see Section 4), which will overwrite Hessian’s operations by using instead the

quasi-Newton operator. As a result, it becomes a limited-memory quasi-Newton model, and TRUNK

becomes a limited-memory quasi-Newton trust-region solver.

Our contribution augments a pure Julia’s model to a partitioned quasi-Newton model by detecting
automatically its partially-separable structure. Instead of providing a limited-memory quasi-Newton

operator, the user may choose between several partitioned quasi-Newton operators: PBFGS, PSR1,

PSE, PCS (see Section 4) or new limited-memory partitioned quasi-Newton operators: PLBFGS,

PLSR1, PLSE (see Section 6). These partitioned models not only overwrite Hessian’s operations,

they also overwrite any method which may benefit partial separability. Another variant uses exact

derivatives Bk =
∑N

i=1 U
⊤
i ∇2f̂i(x̂k,i)Ui, computing only element functions derivatives, to reduce the

computational cost of accessing ∇2f (see Section 4). Thus, TRUNK provides as many partitioned
quasi-Newton solvers as there are partitioned quasi-Newton models.

To define efficient solvers, JSO’s solvers allocate beforehand all data-structures. Thus, it requires

the type of the data-structure deriving from an AbstractVector storing xk, assuming that is the same

as the one required for storing gk, sk and yk as defined in Section 4 or in Algorithm 4.1. While such

an implementation being somehow flexible, it stretches when it comes to consider at the same time:

xk the current point (usually a Vector), gk the partitioned gradient and yk the partitioned gradient

difference, mandatory for partitioned quasi-Newton updates (see Section 4). The same data-structure

deriving from AbstractVector must also behave properly during the truncated conjugate gradient

implementation issued of the module Krylov.jl [34], which has its own solver’s structure. Moreover, to

follow the interface, the linear application of a partitioned quasi-Newton operator Bk is also parametrized

by a PartitionedVector (and not a usual Vector). These constraints pushed us to create the type

PartitionedVector deriving from AbstractVector. It behaves as a Vector for xk and sk and keeps

element contributions for gk and yk. PartitionedVectors must support all the operations required by

TRUNK, the truncated conjugate gradient and must fit the NLPModels’s interface usually based around

Vectors. Concretely, any partially-separable model must build automatically a PartitionedVectors and

a partitioned quasi-Newton operator to run TRUNK and the truncated conjugate gradient based.

The rest of the section presents the details of the technical contribution. PartiallySeparableNLP-

Models.jl [28] defines all partially-separable models, with the participation of three other modules from

JSO:

• ExpressionTreeForge.jl [41], detailed in Section 5.1, defines automatically the partially-separable

structure from a standard NLPModel. It supports pure Julia’s models, JuMP models [13], the

most popular julia’s modeling language, or the native Expr Julia type;

• PartitionedStructures.jl [42], detailed in Section 5.2, allocates the partitioned structures related

to partitioned quasi-Newton approximations or partitioned derivatives;

• PartitionedVectors.jl [43], detailed in Section 5.3, implements PartitionedVector and the related

methods mandatory for TRUNK and the truncated conjugate gradient.

A graph of JSO’s modules connections is defined Appendix A.2 in Figure 8. PartiallySeparableNLP-

Models.jl manages the exploitation of partial separability to specify the computation of derivatives,

and fits the NLPModel’s interface (more details in Section 5.4). As a user, running TRUNK on any

partitioned quasi-Newton model performs a partitioned quasi-Newton trust-region method without any

supplemental needs.
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5.1 ExpressionTreeForge.jl

ExpressionTreeForge.jl is a toolbox about expression trees, representing in our case the objective

function. The module’s design relies on a tree interface, which matches the JuMP interface. For any

expression tree, a leaf is either a variable or a constant node. Intermediate nodes (including the root)

are all operator nodes. ExpressionTreeForge has several features (illustrated Figure 1 and Figure 2):

• automatically detect the partially-separable structure, i.e. retrieve every f̂i and Ui. First, you

walk the tree from the root to recursively remove additive operators. If f is partially-separable,

then it divides the tree in subtrees, each of them being an element function fi : R
n → R. Next, it

retrieves Ui and consequently ni to define f̂i(x̂i) = fi(x). We chose to represent Ui as the subset

of variables appearing in fi. Ui as a linear operator whose rows are vectors from the Euclidean

basis. Thus, Ui is represented by a vector of integers, each of which gives the index of a variable

appearing in fi. Finally, the variable’s indices of the sub-expression tree fi must be changed

according to Ui to form f̂i;

• infer the bounds and the convexity status for f̂i and its intermediate nodes. Leafs are initially

bounded to [−∞,+∞], considering an unconstrained optimization perspective. Then, it propa-

gates bounds to intermediate nodes, up to the root, given the operator each node represents and

its children bounds. Then, from the bounds and the convexity statuses of the leafs, initially set

to linear or constant, a convexity status is propagated to any intermediate nodes by following

the operator based rules defined by Fourer et al. [15]. For example, the exponential function

f(x) = ex is convex increasing, making f ◦ g convex if g is convex [15].

For example, suppose

f(x) =
(x1x3)

4

x2
2 + 1

+
(x3x5)

4

x2
4 + 1

+ exp((x1 + x3 + x5)
2), (12)

then walks of the tree detailed previously for such f give Figure 1 and Figure 2.

The result of the tree walks are:

f̂1(y1, y2, y3) = f̂2(y1, y2, y3) =
(y1y3)

4

y
2
2+1

, f̂3(y1, y2, y3) = exp((y1 + y2 + y3)
2),

U1 =

 e1
e2
e3

 , U2 =

 e3
e4
e5

 , U3 =

 e1
e3
e5

 .
, (13)

It recognizes two identic element function f̂1 and f̂2 differentiated only by respectively U1 and U2.
ExpressionTreeForge provides every f̂i and Ui for the other modules to allocate the suitable partitioned

data structures and then, to define on the partially-separable model.

5.2 PartitionedStructures.jl

PartitionedStructures.jl defines partitioned vectors or partitioned matrices, each of which stores element

vector contributions or element matrix contributions separately. These partitioned structures are

motivated by partially-separable function derivatives:

∇f =

N∑
i=1

U⊤
i ∇f̂i, ∇2f ≈ B =

N∑
i=1

U⊤
i ∇2B̂iUi, (14)

where each element contribution is independent. In particular, any partitioned quasi-Newton method

requires every the N pairs of ŷk,i := ∇f̂i(x̂k+1,i)−∇f̂i(x̂k,i) and ŝ := Ui. Graphically, you can visualize
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]−∞;∞[

]−∞;∞[
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Figure 2: Bounds and convexity status of element functions
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derivatives from (12) as:

∇f(x) =




︸ ︷︷ ︸
U

⊤
1 ∇f̂1

+




︸ ︷︷ ︸
U

⊤
2 ∇f̂2

+




︸ ︷︷ ︸
U

⊤
3 ∇f̂3

=


 ,

∇2
f(x) =




︸ ︷︷ ︸
U

⊤
1 ∇2

f̂1U1

+




︸ ︷︷ ︸
U

⊤
2 ∇2

f̂2U2

+




︸ ︷︷ ︸
U

⊤
3 ∇2

f̂3U3

=


 ,

(15)

where yellow, red and blue represent respectively contributions from f̂1, f̂2 and f̂3. Other colors express

the contribution of several elements for a single partial derivative. Partitioned vectors may also represent

the linear application Uiv for all elements 1 ≤ i ≤ N , or the result of a partitioned matrix-vector

product (more details in Section 5.3). Contrary to the memory footprint of a Vector or a symmetric

Matrix, respectively in Θ(n) and Θ(n(n+1)
2 ), the memory footprint of partitioned structures is not

related to n. Storing a partitioned vector is Θ
(∑N

i=1 ni

)
while storing a symmetric partitioned matrix

is Θ
(∑N

i=1
ni(ni+1)

2

)
. PartitionedStructures.jl implements subroutines to perform: basic operations

for partitioned vectors, partitioned matrix-vector product and partitioned quasi-Newton updates. All

partitioned quasi-Newton updates have a homogeneous interface, relying on a partitioned matrix and a

pair of partitioned vectors representing every ŝi and every ŷi.

A partitioned object is composed of an ordered set of element objects and an index table informing

for any xj , 1 ≤ j ≤ n which element function f̂i impacts xj . Moreover, a partitioned vector possesses a

Vector to build in-place the associated Vector while a partitioned quasi-Newton operators may aggregate

element contributions to form either a SparseMatrix or a Matrix (10), mainly for test purposes. The

main distinction between partitioned objects is the nature of its element objects, either a Vector, a

symmetric Matrix or a quasi-Newton LinearOperator (see Section 6). Any partitioned object keeps the
list of the indices related to itself, equivalent to every Ui (as described in (13)).

Among the several ways to instantiate partitioned structures, the simplest one consists in using a

nested integer Vector, where each component informs the indices of variables used by each element (i.e.

the Ui). The next example refers to the euclidean basis vectors isolated for U1 : R5 → R
3, U2 : R5 → R

3

and U3 : R5 → R
3 from (13):

U = [[1, 2, 3], [3, 4, 5], [1, 3, 5]].

Thus given the results of Section 5.1 and Figure 1, any partitioned object may be created.

5.3 PartitionedVectors.jl

PartitionedVectors.jl implements the partitioned data structure deriving from AbstractVector. It

matches as much as possible the Julia’s AbstractVector interface to satisfy the requirement set by

TRUNK or the truncated conjugate gradient, in particular about in-place broadcasted operations.

However, to implement a partitioned quasi-Newton method, a PartitionedVector must have two distinct

usages:

• usage 1: store the distinct element vector values. By doing so, the associated vector is built from

element vectors aggregation, example: ∇f =
∑N

i=1 U
⊤
i ∇f̂i;

• usage 2: each element vector represents the linear application v̂i := Uiv, v ∈ Rn for all element i. In

practice, it stores simultaneously every x̂i or ŝi. Considering (13) and x = (1, 2,
√
2, π, 5), then you

get the element vectors x̂1 = U1x = (1, 2,
√
2), x̂2 = U2x = (

√
2, π, 5) and x̂3 = U3x = (1,

√
2, 5).
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Contrary to usage 1, the associated vector doesn’t aggregate element contributions. Instead, if

required, it forms v from all v̂i, by getting the value of vj ∈ R from the elements where Uiej ̸= 0.

The first usage is mandatory to perform partitioned quasi-Newton updates, y being computed from

∇f , as well as involved in the partitioned matrix-vector product. The second usage is used to track the

current point x and the step s resulting from the truncated conjugate gradient. For both usages, it

requires in-place broadcasted methods (for TRUNK) and in-place methods related to the conjugate

gradient method, mainly mul!.

For any PartitionedVector pv, we chose that pv[i], 1 ≤ i ≤ N returns the i-th element vector.

Consequently, pv[i] = v will set the i-th element vector to v, v being an element vector or a Vector

of size ni. All basic operations for element vectors are implemented in PartitionedStructures.jl, ex:

pv[1] + pv[1] == 2 ∗ pv[1].

The broadcast mechanism gathers all broadcasted operations of a single line x. = y.+ α. ∗ z into
a single function f(x, y, α, z) representing x = y + αz applied onto each index of the AbstractVector.

Contrary to Vectors which distributes it to every component, PartitionedVectors distribute it in-

place along element vectors. The requirements are that every PartitionedVector must have the

same partitioned structure, e.g. the same Ui, and the same usage. Broadcast may be applied onto

PartitionedVectors with different usages, but the meaning of such an operation remains unclear ;

the result is not of usage 2 anymore, e.g. v̂i would generally not correspond to Uiv, and
∑N

i=1 U
⊤
i v̂i

aggregates element contributions corresponding to nothing. You can also run pv . = 1, it sets every

element vector to (1, 1, ..., 1) ∈ Rni . It makes sense for a PartitionedVector of usage 2, being the result

of Uiv forall i, where v = (1, 1, ..., 1) ∈ Rn. For PartitionedVectors of usage 1, there is no meaning to

. = α or .+ α, α ∈ R∗, except pv. = 0 which may initiate a PartitionedVector after pv = similar().

PartitionedVectors of both usages benefit also of scalar product and norm methods, mandatory for the

trust-region method (see Algorithm 4.1). The scalar product may benefit the partitioned structure to

perform subroutine on elements if both PartitionedVectors have different usages. Suppose w a Vector

represented by a PartitionedVector (storing Uiw, ∀ 1 ≤ i ≤ N) and v =
∑N

i=1 U
⊤
i v̂i:

v⊤w = (

N∑
i=1

U⊤
i v̂i)

⊤w =

N∑
i=1

v̂⊤i Uiw =

N∑
i=1

v̂⊤i ŵi,

which accumulates element scalar products. The norm, on the other hand, may be computed directly

from the Vector representing a PartitionedVector, depending on its usage. If it is of usage 1, then g is

formed by accumulating
∑N

i=1 U
⊤
i ĝi and then ∥g∥2 is computed directly from g. For the second usage,

which represents every Uiv, 1 ≤ i ≤ N , v is retrieved and its norm computed.

The next critical step is how the conjugate gradient method exploits the partitioned matrix-vector

product with PartitionedVectors:

Bv =

N∑
i=1

U⊤
i B̂iUiv. (16)

Computing Bv requires first v̂i = Uiv, which is known if v is a PartitionedVector of usage 2. Then, the

linear application from B̂i is applied from v̂i to get B̂vi = B̂iv̂i. Finally, the results are aggregated

into Bv =
∑N

i=1 U
⊤
i B̂vi, making Bv a partitioned vector of usage 1. However, the solution of the

trust-region sub-problem sk is of usage 2, while being determined by Bv of usage 1. To transfer Bv to

s safely, we overload the axpy! method used in the Krylov.jl, equivalent to y .+ = α. ∗ x, α ∈ R, when
usages are different. It builds the associated Vectors of both Bv and s to then apply axpy! on them and

store the result in s. At the end, every element have performed ŝi.+ = α. ∗ UiBv. Warning, axpy! and

axpby!, y. = x. ∗α.+ y. ∗ β, perform more computations for PartitionedVectors of usage 1 than Vectors.

As n ≤
∑N

i=1 ni, the dispatch of axpy! or axpby! over every element vector is costlier than on a Vector.
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5.4 PartiallySeparableNLPModels.jl

After determining the partially-separable structure with ExpressionTreeForge.jl and defining dedicated

partitioned structures with PartitionedStructures.jl and PartitionedVectors.jl; PartiallySeparableNLP-

Models.jl coordinates everything to build partially-separable optimization models. After retrieving the

element functions f̂i and theirs associated Ui using ExpressionTreeForge (Section 5.1), a number of

adjustments can be made in order to reduce the memory footprint of the structure. For example, large

models may duplicate element functions applied on different variables, e.g. f̂i(x̂i) = f̂j(x̂i) with i ≠ j,

for example f̂1 and f̂2 in (13). By factorizing identical element expression trees, only M ≤ N distinct

element functions remains, as well as a matching between the Ui and these M element functions. Such

identification may be realized after splitting f into f̂i, 1 ≤ i ≤ N . It becomes precious when it comes to

compute the partitioned derivatives (14) with automatic differentiation in reverse mode [21]. Instead of

potentially duplicating N tapes, required for the backward pass, only M(≤ N) tapes are needed to

compute any f̂i(x̂k,i) or ∇
2f̂i(x̂k,i)Uiv. The amount of memory saved depends on the gap between N

and M . The partially-separable structure may also be ignored, if an estimation of the memory required

by the partitioned structure becomes unhealthy for the partitioned method performances. By doing so,

it return to an unstructured problem f̂1 = f where U1 = I ∈ Rn×n.

After all the steps above, the PartitionedVectors and the partitioned quasi-Newton operators, related

to the Ui are allocated independently and PartiallySeparableNLPModes.jl articulates them around

these M distinct element functions. Several models may be defined, each of them having a different

Hessian approximation procedure:

• PBFGSNLPModel, PSR1NLPModel, PCSNLPModel, PSENLPModel using a partitioned quasi-

Newton operator Bk as described in Section 4;

• PLBFGSNLPModel, PLSR1NLPModel, PLSENLPModel using new limited - memory partitioned

quasi-Newton operators, described in Section 6;

• PSNLPModel, using the exact second derivatives exploiting partial - separability Bkv = ∇2f(xk)v.

It computes every element functions Hessian vector products ∇2f̂iUiv using successively a reverse

and forward automatic differentiation passes [21].

When it considers a PBFGSNLPModel, a PSR1NLPModel, a PCSNLPModel or a PSENLPModel,

TRUNK is a partitioned quasi-Newton trust-region, and it becomes its limited-memory variant for

respectively a PLBFGSNLPModel, a PLSR1NLPModel or a PLSENLPModel.

6 Limited-memory partitioned quasi-Newton method

All the partitioned quasi-Newton methods presented in Section 4 rely on dense matrices to store B̂i.

Such partitioned matrices get a memory cost and a partitioned matrix-vector product complexity in

Θ

(
N∑
i=1

ni(ni + 1)

2

)
, (17)

which is much smaller than n(n+1)
2 if ni ≪ n and N remains moderated. However, as the size of the

elements increases, a partitioned matrix suffers from the same issue as unstructured quasi-Newton

methods does. Storing each B̂i becomes expensive, and it may prevent the storage of N of them,

especially if N ≈ n. In such case, partitioned quasi-Newton methods are impracticable.

We propose partitioned quasi-Newton updates viable for large element partially-separable functions.

Each ∇2f̂i is approximated by B̂i, a quasi-Newton linear operators (either LBFGS or LSR1). As a

partitioned quasi-Newton method, it may perform an update of rank min(n,N). Replacing a dense

matrix by a linear operator reduces the quadratic memory costs of each B̂i from Θ(ni(ni+1)
2 ) to a linear

memory costs Θ(mini), considering 1 ≤ mi ≤ 10 the memory of the linear operator B̂i. Aggregated
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together, the memory cost and the partitioned matrix-vector product complexity conditioned by dense

matrices (17) drop to

Θ

(
N∑
i=1

mini

)
.

Three methods derived from this scheme:

• PLBFGS, approximating every B̂i by a LBFGS operator, well suited in case every f̂i is convex;

• PLSR1, approximating every B̂i by a LSR1 operator, which fits cases where some f̂i are non-

convex;

• PLSE, using both LBFGS and LSR1 linear operators to retrieve as much local curvatures as

possible from every element.

Algorithm 6.1 specifies Algorithm 4.1 when Bk is a limited-memory partitioned quasi-Newton

operator: BPLBFGS
k , BPLSE

k or BPLSE
k . The resulting trust-regions only differ at step 8, when every B̂k,i

is updated.

Algorithm 6.1 Limited-memory partitioned quasi-Newton trust-Region algorithm (PLBFGS, PLSR1, PLSE)

1: Choose x0 ∈ Rn
, ∆max ≥ ∆0 > 0, 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 < γ3 < γ4, and 0 < ϵ1, ϵ2.

2: Choose for every element i a linear operator LBFGS or LSR1 B̂0,i = B̂
⊤
0,i ≈ ∇2

f̂i(x0). initial approximation
3: for k = 0, 1, . . . do
4: Compute an approximate solution sk of

min
s

mk(s) s.t.∥s∥ ≤ ∆k, mk(s) := f(xk) +∇f(xk)
⊤
s+ 1

2
s
⊤
(

N∑
i=1

U
⊤
i B̂k,iUi

)
s,

bringing a sufficient decrease (6).
5: Compute the ratio

ρk :=
f(xk)− f(xk + sk)

mk(0)−mk(sk)
.

6: if ρk ≥ η1 then successful step
7: set xk+1 = xk + sk, yk := ∇f(xk+1)−∇f(xk)

8: update every B̂k,i to:

B̂
LBFGS
k+1,i for B

PLBFGS
k , B

PLSE
k if ŝ

⊤
k,iŷk,i ≥ ϵ1,

B̂
LSR1
k+1,i for B

PLSR1
k if |ŝ⊤k,iẑk,i| ≥ ϵ2∥ŝk,i∥∥ẑk,i∥,

B̂
LSR1
k+1,i for B

PLSE
k if |ŝ⊤k,iẑk,i| ≥ ϵ2∥ŝk,i∥∥ẑk,i∥ and ŝ

⊤
k,iŷk,i < ϵ1,

given ŝk,i := ŝk,i, ŷki
:= ∇f̂i(x̂k+1,i)−∇f̂i(x̂k,i) and ẑk,i := ŷk,i − B̂k,iŝk,i.

When the numerical safeguards fail, then B̂k+1,i = B̂k,i for B
PLBFGS
k , B

PLSR1
k or B

PLSE
k .

9: else unsuccessful step
10: set xk+1 = xk and every B̂k+1,i = B̂k,i.
11: end if
12: Update the trust-region radius according to

∆k+1 ∈


[γ3∆k, γ4∆k] if ρk ≥ η2,

[γ2∆k, ∆k] if η1 ≤ ρk < η2,

[γ1∆k, γ2∆k] if ρk < η1.

(18)

13: end for

6.1 Global convergence proof of limited-memory quasi-Newton methods (PLBFGS
and PLSR1)

The present section exposes a convergence to first-order critical points from Algorithm 6.1. It considers
assumptions made Section 1:
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Assumption 1 (Assumptions on the problem). The objective f is bounded below on Rn. f is partially-

separable (2) and each f̂i is twice continuously differentiable on Rni .

Consequently, f is twice continuously differentiable on Rn.

The convergence proof will rely on [9, Theorem 8.4.7]. To do so, we must show [9, assumption

AM.4d]:
∞∑
k=1

1

φk

= +∞, (19)

for any Bk being a limited-memory partitioned quasi-Newton operator: PLBFGS, PLSR1 or PLSE.

When Bk ≈ ∇2f , whose value is the same at any point of the trust-region then

φk := 1 + max
j=1,...,k

∥Bj∥. (20)

Every Bj can be divided in two parts. First, ∥B(0)
j ∥, which aggregates all element initializers

B
(0)
j :=

∑N
i=1 UiB̂

(0)
j,i U

⊤
i . Second, ∥Bj −B

(0)
j ∥ which accumulates the contribution of low rank quasi-

Newton update from every element Bj −B
(0)
j =

∑N
i=1 U

⊤
i

(
B̂

(min(m,j))
j,i − B̂

(0)
j,i

)
Ui. Thus, the left part

of (19) may be bounded as:

∞∑
k=1

1

φk

≥
∞∑
k=1

1

1 + ∥B(0)
j ∥+ ∥Bj −B

(0)
j ∥

. (21)

We will prove that the right’s serie diverges, verifying (19) and AM4.d holds. The proof is divided in

two parts. The first one proves
∞∑
k=1

1

∥B(0)
j ∥

= +∞, (22)

under reasonable assumption, while the second bounds ∥Bk − B
(0)
k ∥ for any k, by adding suitable

numerical safeguards onto the pairs ŝi, ŷi collected by every quasi-Newton operator B̂i. Combining

both parts makes Bk verify (19) directly.

There is several choices to initialize B̂
(0)
k,i at each iterate. Thus, bounding ∥B(0)

k ∥ is not trivial

without further assumptions. To let a degree of freedom on how each B̂
(0)
k,i is chosen, and allow a growth

of ∥B(0)
k ∥, we assume

Assumption 2 (Maximal element initializer serie diverges).

∞∑
k=1

1

maxi=1,...,N ∥B̂(0)
k,i ∥

= +∞. (23)

Lemma 1. If Assumption 2 holds, then

∞∑
k=1

1

∥B(0)
k ∥

= +∞. (24)

Proof. As B
(0)
k =

∑N
i=1 U

⊤
i B̂

(0)
k,iUi, then

B
(0)
k ≤

N∑
i=1

∥Ui∥
2∥B̂(0)

k,i ∥ ≤ N max
i=1,...,N

∥Ui∥
2 max
i=1,...,N

∥B̂(0)
k,i ∥, (25)
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where N maxi=1,...,N ∥Ui∥
2 > 0 is a constant. Therefore,

∞∑
k=1

1

B
(0)
k

≥ 1

N maxi=1,...,N ∥Ui∥
2

∞∑
k=1

1

maxi=1,...,N ∥B̂(0)
k,i ∥

= +∞, (26)

Now that the desired property
∑∞

k=1
1

∥B(0)
k ∥

= +∞ is verified, we focus on bounding ∥Bj −B
(0)
j ∥.

We do so by adding numerical safeguards on the quasi-Newton updates of every B̂k,i.

Lemma 2 (Boundness of an element quasi-Newton update). For any B̂k,i, simulating m quasi-Newton

updates (BFGS or SR1), then

∥B̂(j+1)
k,i − B̂

(j)
k,i∥ ≤ ΩQNU1, (27)

is bounded for any iterate k, any element i and for all 0 ≤ j ≤ m− 1.

Proof. The bounds of the two quasi-Newton updates BFGS and SR1 are distinguished, since they

require different additional numerical safeguards.

Suppose that the j-th quasi-Newton update from B̂
(j)
k,i to B̂

(j+1)
k,i is an SR1 update. We enforce the

usual safeguard |ŝ⊤k,iẑk,i| ≥ ϵ2 ∥ŝk,i∥∥ẑk,i∥ at every iteration k with |ŝ⊤k,i(ŷk,i − B̂k,iŝk,i)| ≥ ωSR1∥ŷk,i −
B̂k,iŝk,i∥

2, where ωSR1 > 0. This way,

∥B̂(j+1)
SR1

k,i − B̂
(j)
k,i∥ ≤

∥ŝk−m+j,i − B̂k−m+j,iŷk−m+j,i∥
2

|ŝ⊤k−m+j,i(ŷk−m+j,i − B̂k−m+j,iŝk−m+j,i)|
≤ ω−1

SR1. (28)

In the case where the j-th quasi-Newton update from B̂
(j)
k,i to B̂

(j+1)
k,i is an BFGS update, ŝ⊤k,iŷk,i ≥ ϵ1

is enforced by two additional safeguards:

|ŷ⊤k,iŝk,i| ≥ ωBFGS1
∥ŷk,i∥

2, and |ŝ⊤k,iB̂k,iŝk,i| ≥ ωBFGS2
∥B̂k,iŝk,i∥

2, (29)

where ωBFGS1
> 0 and ωBFGS2

> 0. These safeguards provide the bound

∥B̂(j+1)
BFGS

k,i − B̂
(j)
k,i∥ ≤

∥B̂k−m+j,iŷk−m+j,i∥
2

|ŝ⊤k−m+j,iB̂k−m+j,iŝk−m+j,i|
+

∥ŷk−m+j,i∥
2

|ŷ⊤k−m+j,iŝk−m+j,i|
≤ ω−1

BFGS1
+ ω−1

BFGS2
.

Therefore, ∥B̂(j+1)
k,i − B̂

(j)
k,i∥ is bounded whether it represents a BFGS update or an SR1 update:

∥B̂(j+1)
k,i − B̂

(j)
k,i∥ ≤ max(ω−1

BFGS1
+ ω−1

BFGS2
, ω−1

SR1) = ΩQNU, (30)

for any iteration k and any element i.

This proof considers that if an element Hessian approximation doesn’t match the numerical conditions

related to its nature, for example satisfying the curvature condition for a LBFGS operator, then the

update is skipped. Another choice might be using a damped ˜̂yk,i satisfying the numerical safeguards.

In both cases, Lemma 2 remains true.

1
QNU stands for quasi-Newton update.
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Lemma 3 (Boundness of an element limited-memory quasi-Newton operator). For any B̂k,i, simulating m

quasi-Newton updates, then

∥B̂(m)
k,i − B̂

(0)
k,i ∥ ≤ ΩLM2, (31)

is bounded for any iterate k, any element i independently of the quasi-Newton updates simulated by

B̂k,i.

Proof. We decompose B̂
(m)
k,i − B̂

(0)
k,i as

B̂
(m)
k,i − B̂

(0)
k,i = B̂

(m)
k,i − B̂

(m−1)
k,i + B̂

(m−1)
k,i − B̂

(m−2)
k,i + · · ·+ B̂

(1)
k,i − B̂

(0)
k,i , (32)

to make appear the content of Lemma 2. Thus, we find an upper-bound of ∥B̂(m)
k,i − B̂

(0)
k,i ∥ by applying

m times the upper-bound from Lemma 2:

∥B̂(m)
k,i − B̂

(0)
k,i ∥ ≤

m∑
j=1

∥B̂(j)
k,i − B̂

(j−1)
k,i ∥ ≤

m∑
j=1

ΩQNU ≤ mΩQNU = ΩLM, (33)

for any iteration k and any element i.

The more interesting feature of Lemma 2 and Lemma 3 is that there is no distinction between

BFGS and SR1 updates. Therefore, those lemmas handle naturally the changes of quasi-Newton

updates which may be performed by a single element Hessian approximation B̂k,i, as B
PLSE
k may do.

Moreover, ΩLM also bound limited-memory quasi-Newton operators B̂k,i which have performed less

than m quasi-Newton updates. This situation occurs for every element for the m− 1 first iterates of an

optimization method.

Lemma 4 (Boundness of limited-memory partitioned quasi-Newton update). For any Bk a limited-memory

partitioned quasi-Newton update as describe in Section 6 and Algorithm 6.1, then

∥Bk −B
(0)
k ∥ ≤ Ω, (34)

for any iteration k.

Proof. By definition,

Bk −B
(0)
k =

N∑
i=1

U⊤
i

(
B̂

(m)
k,i − B̂

(0)
k,i

)
Ui. (35)

Thus, the norm may be bounded as:

∥Bk −B
(0)
k ∥ ≤

N∑
i=1

∥Ui∥
2∥B̂(m)

k,i − B̂
(0)
k,i ∥ ≤ max

i=1,...,N
∥Ui∥

2
N∑
i=1

∥B̂(m)
k,i − B̂

(0)
k,i ∥. (36)

Lemma 3 provides an upper-bound for any ∥B̂(m)
k,i − B̂

(0)
k,i ∥ which translates to (36) as:

∥Bk −B
(0)
k ∥ ≤ max

i=1,...,N
∥Ui∥

2
N∑
i=1

ΩLM ≤ N max
i=1,...,N

∥Ui∥
2ΩLM = Ω, (37)

for any iteration k, since N maxi=1,...,N ∥Ui∥
2 is a constant again.

Theorem 1. If Assumption 2 holds, then any limited-memory partitioned quasi-Newton trust-region

method presented in Algorithm 6.1: PLBFGS, PLSR1 and PLSE verifies:

∞∑
k=1

1

φk

= +∞. (38)

2
LM stands for limited-memory.
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Proof. We know that

∥Bk∥ ≤ ∥Bk −B
(0)
k ∥+ ∥B(0)

k ∥ ≤ Ω+ ∥B(0)
k ∥, (39)

from Lemma 4. Therefore, we get

1

∥Bk∥
≥ 1

Ω + ∥B(0)
k ∥

and

∞∑
k=1

1

∥Bk∥
≥

∞∑
k=1

1

Ω + ∥B(0)
k ∥

. (40)

Assumption 2 being verified, Lemma 1 provides:

∞∑
k=1

1

∥B(0)
k ∥

= +∞, (41)

which gives straightforwardly
∞∑
k=1

1

Ω + ∥B(0)
k ∥

= +∞. (42)

Theorem 1 proves [9, AM4.d] leaving only two assumptions to make before fulfilling the conditions

for [9, Theorems 8.4.7].

Assumption 3. [9, AN.1] There exists a constant κune ≥ 1 such that, for all k,

1

κune

∥x∥p ≤ ∥x∥ ≤ κune∥x∥p,

for all x ∈ Rn.

Assumption 4. [9, AM.4f]

lim
k→∞,k∈S

φk (f(xk)− f(xk+1)) = 0, (43)

where S is the set of successful iterations.

Theorem 2 (Boundness of limited-memory partitioned quasi-Newton opeartors (PLBFGS, PLSR1 and
PLSE)). Suppose that Assumption 1, Assumption 3 and Assumption 4 holds. The sequence of points

xk produces by each of the limited-memory partitioned quasi-Newton trust-region methods: PLBFGS,

PLSR1, PLSE formalized by the Algorithm 6.1 converges.

lim
k→∞

∥∇f(xk)∥ = 0.

Proof. Since Assumption 1 holds and Bk is a partitioned linear operator, then mk is C2 and f(xk) =

mk(0). Thus, [9, AF.1-2, AM.1, AM.2, AM.3] are covered. The choice of the truncated conjugate-

gradient [46] to solve (5) covers [9, AA.1]. γ3 and γ4 fulfill [9, AA.4]. Theorem 1 covers [9, AM.4d]. By

adding Assumption 4, all the conditions mandatory for [9, theorem 8.4.7]: AF.1-3, AM.1, AM.2, AM.3,

AA.1, AA.4, AM.4d are met. Thus, we can state limk→∞ ∥∇f(xk)∥ = 0.

7 Numerical results

The results are split in two parts. The first part compares all the quasi-Newton trust-region methods

presented in this paper on a set of 65 partially-separable problems from Orban et al. [40] whose partial

separability details are informed in Appendix A.1. They are based from Algorithm 4.1 on which a

backtracking line search along sk [9, 10.3.2] is performed when sk is an unsuccessful step. The following

methods are:
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• PS and TRUNK where Bkv = ∇2f(xk)v in the trust-region sub-problem (5). TRUNK computes

∇2f(xk)v using successively a reverse and a forward automatic differentiation on f [21], while

PS aggregates the contribution of every ∇2f̂i(x̂k,i)Uiv, from the same automatic differentiation

procedure applied on f̂i;

• LBFGS TR and LSR1 TR (TR for trust-region), which considers respectively Bk as a LBFGS

operator or a LSR1 operator;

• the partitioned quasi-Newton methods considering Bkv =
∑N

i=1 UiB̂k,iUiv. When every B̂k,i is a

dense matrix, as defined in Section 4, the methods are:

– PBFGS where each B̂k,i is updated with the BFGS formula if ŷ⊤k,iŝk,i > ϵ1 > 0 or skip

otherwise;

– PSR1 where each B̂k,i is updated with SR1 formula if |ŝ⊤k,iẑk,i| ≥ ω ∥ŝk,i∥∥ẑk,i∥, where
ẑi := ŷk,i − B̂k,iŝk,i and ω > 0 or skip otherwise;

– PCS updating the convex elements B̂k,i with BFGS and the non-convex elements with SR1,
according to the same numerical safeguards;

– PSE updating B̂k,i by BFGS if ŷ⊤k,iŝk,i > ϵ1 or else by SR1.

When every B̂k,i is a linear operator, as defined Section 6, the methods are:

– PLBFGS where each B̂k,i is a LBFGS operator, updated only when ŷ⊤k,iŝk,i > ϵ1;

– PLSR1 where each B̂k,i is a LSR1 operator, updated only when |ŝ⊤k,iẑk,i| ≥ ϵ2∥ŝk,i∥∥ẑk,i∥,
|ŝ⊤k,iẑk,i| ≥ ωSR1∥ẑk,i∥, and |ŝ⊤k,iŷk,i| ≥ ϵ1;

– PLSE where some B̂k,i are LBFGS operators and the rest of them are LSR1 operators.

Equally to PSE, if ŷ⊤k,iŝk,i > ϵ1, then the pair ŝk,i, ŷk,i will make B̂k+1,i perform a (L)BFGS

update or else perform a (L)SR1 update, according to the same numerical safeguards .

If an element i can’t satisfy all the numerical safeguards, then B̂k+1,i = B̂k,i.

For a comparative purpose, we add LBFGS, a line search method using a linear operator Hk = B−1
k ,

similar to Liu and Nocedal [30]. The results are summarized as performances profiles [35], from criteria

such as time and the number of iterations before it obtains a first order convergence criteria. The
second part compares partitioned quasi-Newton methods depending on the nature of element Hessian

approximation B̂k,i either a limited-memory operator or a dense matrix. This study details an artificial

partially-separable problem with an element’s size growing as the problem’s size increases, pushing

classical partitioned quasi-Newton methods to their limits.

7.1 Comparing quasi-Newton methods

For the following profiles, the partially-separable problems considered have generally elements of (very)

small size compared to the problem’s size (e.g. ni ≪ n = 5000). More specific information about the

partial separability each problem of the set can be found in Appendix A.1. The profiles consider a

maximal budget of time and iterations. When a solver runs for more than one hour or reach 50 000

evaluation of the objective, it stops. Such executions don’t attain the absolute or the relative first-order

convergence criteria, respectively ∇f(xk) ≤ 10−6 or ∇f(xk) ≤ 10−6∇f(x0), where x0 the initial point.

Figure 3 shows the performance profiles for Newton and quasi-Newton methods. PS utterly

dominates TRUNK in time due to faster evaluations of ∇2f(xk)v, solving the trust-region sub-problem

faster. Among quasi-Newton methods, LBFGS and LBFGS TR display similar performances making

LSR1 TR the poorer method on this set of problems. While for quasi-Newton methods Bk ≈ ∇2f ,

Newton methods perform fewer iterations, as Bk = ∇2f . However, the gap of iterations between Newton

and quasi-Newton is not translated to time consumption. Even if the partial separability is exploited,

making a real difference between PS and TRUNK, the time gap is not closed with quasi-Newton

methods.
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(a) Profile of iterations (b) Profile of time

Figure 3: Iteration and time performance profiles for Newton and quasi-Newton methods

Figure 4 compares PBFGS, PSR1, PCS and PSE. In terms of iteration, PSE and PSR1 come on

top, while PCS follows closely their trajectories and PBFGS makes the most iterations to generally

solve a problem. Figure 4b PSR1 performing better in time than PSE making it the most efficient

partitioned quasi-Newton method.

(a) Profile of iterations (b) Profile of time

Figure 4: Iteration and time performance profiles for partitioned quasi-Newton methods

Figure 5 presents the limited-memory variants of Figure 4. Among PLBFGS, PLSR1 and PLSE,

PLSE solves most problems with fewer iterations and less time than PLBFGS and PLSR1. Strangely,

PLSR1 does not reproduce the performances of PSR1 among the usual partitioned quasi-Newton

methods. However, you can note that the gap in iterations (Figure 5a) is not automatically transferred

to the time (Figure 5b). This is due to the change of the quasi-Newton linear operator between B̂k,i

and B̂k+1,i, which induces allocations and inevitably downgrade the run time efficiency. Moreover,

from Figure 4 and Figure 5, both PBFGS and PLBFGS seem to struggle, since the element functions

from the partially-separable problems are not necessarily convex.

The last profiles, Figure 6 gathered most significant methods from previous profiles to analyze it

together. As expected, the Newton method PS performs less iterates than other methods but takes

a lot more time. The LBFGS line search, as the only method not exploiting the partial separability,
requires more iterations and time but manage to solve overall more problems than partitioned methods.

Among partitioned methods, the amount of iterations required differs slightly but remains clustered.

The visible differences for those methods are more about the time required to solve the problems.

Figure 6b seems to shrink the difference between PSE and PSR1 presented in Figure 4b, showing
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how close those methods are compared to the other methods. Although these problems don’t favour

limited-memory partitioned quasi-Newton methods, PLSE remains pertinent and more performant

than Newton methods or unstructured quasi-Newton method.

(a) Profile of iterations (b) Profile of time

Figure 5: Iteration and time performance profiles for limited-memory partitioned quasi-Newton methods

(a) Profile of iterations (b) Profile of time

Figure 6: Summary of performance profiles for (limited-memory) partitioned quasi-Newton methods

7.2 Experiments about limited-memory partitioned quasi-Newton methods

The following artificial partially-separable function

n√
n
−3∑

j=1

(∑(j+2)
√
n

i=(j−1)
√
n
i ∗ xi

)2
1 + x2

j

+

n√
n
−5∑

j=1

(∑(j+4)
√
n+5

i=(j−1)
√
n+5

i ∗ xi

)2
1 + x2

j

, (44)

is made to push gradually the standard partitioned quasi-Newton methods on their limits as the size

n grows. It has N ≈ 2
√
n − 8 element functions: f̂j =

(∑(j+2)
√

n

i=(j−1)
√

n
i∗xi

)2

1+x
2
j

for 1 ≤ j ≤
√
n − 3 and

f̂j =

(∑(j+4)
√

n+5

i=(j−1)
√

n+5
i∗xi

)2

1+x
2
j

for
√
n− 3 ≤ j ≤ 2

√
n− 8. Therefore, as n increases, the number of element

increases, as well as their sizes. By doing so, it pushes standard partitioned quasi-Newton methods to



Les Cahiers du GERAD G–2023–17 21

store large dense matrices B̂i.

name N min.ED meanED max.ED min.EC meanEC max.EC
limit36 4 18 21.75 31 0 2.41667 4
limit625 42 75 100.238 127 0 6.736 9
limit2500 92 150 200.38 252 0 7.374 9
limit10000 192 300 400.443 502 0 7.6885 9

,

where ED stands for element dimension and EC stands for element contribution, counting how many

elements contribute to a single variable.

The figures in Figure 7 respectively express the iterations, the time and number of product Bkv

required by a LBFGS, a PSR1 or a PLSE trust-region method before it reaches a first-order criteria,

and seeks to show the interest of the PLSE method.

(a) Iterations (b) Time in second

(c) Number of Bkv performed

Figure 7: Trust-region methods applied to solve (44)

Figure 7a shows that partitioned quasi-Newton methods require fewer iterations than LBFGS to

converge, and seems to be independent to n. Both PSR1 and PLSE iterations remain particularly low,

even for large instances. This behavior, inherent to partitioned methods, is explained by a superior

quality of B, which approximates more accurately ∇2f . By not considering the partially-separable

structure of (44), a LBFGS Hessian approximation Bk lacks accuracy compared to partitioned methods.

Figure 7b informs about the time required to converge, and it differs from the iterations. While

the amount of iterations for LBFGS seems to stagnate, the time needed increases as n grows. On the

contrary, PSR1 and PLSE follow the same tendencies as their iteration curves. However, spikes of

iterations in Figure 7a are not always echoed by a spike in Figure 7b. The reason is that one of the
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main cost of our trust-region methods is the truncated conjugate gradient is the product Bkv provided

by Figure 7c. In some cases, it can overshadow the cost related to evaluation of f or ∇f . The amount

of product Bkv performed is not directly related to the number of iterations, see for example the spike

of PSE in Figure 7c round n = 9 200, which does not having a corresponding spike in Figure 7a, but

the spike is echoed in Figure 7b with a time’s spike as well. The limit of these partitioned methods for

such a partially-separable function is the cost of Bk and Bkv. While Figure 7c shows stable number

of Bkv for PSR1, its time increase in Figure 7b. Storing individually B̂k,i as a dense matrix becomes

quadratically heavier as ni grows, making any operation relying on Bk more costly. In this context,

PLSE, by using linear operators (see Section 6) for every B̂k,i, stays applicable. Figure 7b shows

that the growth of the time for PLSE remains moderated compared to PSR1, even if Figure 7c shows
PLSE performing more Bkv product than PSR1. This study proves that limited-memory partitioned

quasi-Newton methods are more suited for large element partially-separable functions, by keeping an

accurate partitioned approximation of the Hessian, a reasonable memory requirement and an efficient

Bkv product.

8 Future works and conclusion

At the moment of the submission, our framework does not support all extensions available in

LANCELOT, mainly:

• internal element variables: Ui rows are linear combination of variables appearing in f̂i [7];

• partitioned trust-region method: each element function f̂i has its own radius ∆k,i [8];

• a sophisticated merging element procedure, to enhance the memory footprint of a partitioned

quasi-Newton operator and the performance of its linear application [7], developed in Section 4.

While being aware of these functionalities, we chose to stick first with our research, about limited-

memory partitioned quasi-Newton operators, and we set cornerstones to add gradually these important

features later.

In the same time, we plan to enhance the variety element Hessian approximations, for example,

supporting diagonal quasi-Newton operators to approximate all 1 sized nonlinear element functions

merged together. In addition, we want to address the drawback of PLSE by introducing new quasi-

Newton linear operators which could capitalize on both LSR1 and LBFGS updates without untimely

allocations. That way, each B̂k,i from PLSE would get more depth, by considering generally more

update from the last iterates. We will also push to define a partitioned quasi-Newton operator that

could aggregate element Hessian contribution of different nature, combining dense element matrices,

element linear operators and element diagonal quasi-Newton linear operators. Such features will broaden

the portfolio of partitioned quasi-Newton operators supported. The last step would be to integrate

partially-separable constraints, to exploit the group partial separability of the resulting augmenting

Lagrangian model.

The extension of the JuliaSmoothOptimizer library presented recognizes and exploits automatically

the partial separability of f , to minimize it through partitioned quasi-Newton methods. We proposed

three new limited-memory partitioned quasi-Newton updates: PLBFGS, PSLR1, PLSE accompany

by their global convergence proofs, to extend the scope of partially-separable problems which could

be practically solved. Integrated in JuliaSmoothOptimizer solvers, the same solver’s code furnish as

many partitioned methods as there are partitioned quasi-Newton operators. The performance profiles

in Section 7.1 justify the interest on partitioned quasi-Newton methods, while Section 7.2 legitimates

their limited memory variants for partially-separable functions having large elements.
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A Appendix

A.1 Partially-separable problem structures

This appendix details in Table 1 the information of the partially-separable problems considered producing
the performance profiles Section 7. In order to restrain column’s heading sizes, consider:

• mid for minimal element dimension;

• med for mean element dimension;

• mad for maximal element dimension;

• mic for minimal elemental contribution (for 1 variables);

• mec for mean elemental contribution (for 1 variables);

• mac for maximal elemental contribution (for 1 variables).

Table 1: Partial separability details of the partially-separable problems set

name n N M constant linear quadratic cubic general convex concave general mid med mad mic mec mac

arwhead5000 5000 9999 3 1 4999 0 0 4999 9999 5000 0 0 1.49985 2 2 2.9994 4999
bdqrtic5000 5000 9992 2 0 0 4996 0 4996 9992 0 0 1 3.0 5 1 5.9952 4996
brybnd5000 5000 5000 7 0 0 0 0 5000 0 0 5000 2 6.9968 7 2 6.9968 7

chnrosnb5000 5000 9998 5000 0 0 4999 0 4999 4999 0 4999 1 1.5 2 1 2.9994 3
clplatea5000 4900 19045 5 0 1 9522 0 9522 19045 1 0 1 1.9927 2 0 7.7451 8
clplateb4900 4900 19114 5 0 70 9522 0 9522 19114 70 0 1 1.98912 2 0 7.75918 8
clplatec4900 4900 19046 7 0 2 9522 0 9522 19046 2 0 1 1.99265 2 0 7.74531 8
cragglvy4900 4900 12245 5 0 0 2449 0 9796 7347 0 4898 1 1.6 2 2 3.99837 4

dixmaane4900 4899 9799 6534 1 0 6532 0 3266 4900 1 4899 0 1.49985 2 3 3.0 3
dixmaanf4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaang4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaanh4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaani4899 4899 9799 6534 1 0 6532 0 3266 4900 1 4899 0 1.49985 2 3 3.0 3
dixmaanj4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaank4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaanl4899 4899 14697 6535 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5

dixmaanm4899 4899 9799 9799 1 0 6532 0 3266 4900 1 4899 0 1.49985 2 3 3.0 3
dixmaann4899 4899 14697 14697 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaano4899 4899 14697 14697 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixmaanp4899 4899 14697 14697 1 0 6532 0 8164 4900 1 9797 0 1.66653 2 4 4.99959 5
dixon3dq4899 4899 4899 2 0 0 4899 0 0 4899 0 0 1 1.99959 2 1 1.99959 2
dqdrtic4899 4899 4899 5 0 0 4899 0 0 4899 0 0 1 1.0 1 1 1.0 1
dqrtic4899 4899 4899 4899 0 0 0 0 4899 4899 0 0 1 1.0 1 1 1.0 1

edensch4899 4899 14695 4 1 0 4898 0 9796 9797 1 4898 0 1.33324 2 2 3.99918 4
engval14899 4899 9797 3 1 4898 0 0 4898 9797 4899 0 0 1.49985 2 1 2.99939 3
errinros4899 4899 9796 4899 0 0 4898 0 4898 4898 0 4898 1 1.5 2 1 2.99939 3
extrosnb4899 4899 4899 2 0 0 1 0 4898 1 0 4898 1 1.9998 2 1 1.9998 2
fletcbv24899 4899 14698 5 0 4899 4900 0 4899 9799 4899 4899 1 1.33324 2 4 4.0 4
fletcbv34899 4899 14698 4 0 0 4900 0 9798 4900 0 9798 1 1.33324 2 4 4.0 4
freuroth4899 4899 9796 4 0 0 0 0 9796 0 0 9796 2 2.0 2 2 3.99918 4

genhumps4899 4899 9797 3 0 0 4899 0 4898 4899 0 4898 1 1.49995 2 2 2.99959 3
genrose4899 4899 9797 3 1 0 4898 0 4898 4899 1 4898 0 1.49985 2 1 2.99939 3

genrose-nash4899 4899 9797 3 1 0 4898 0 4898 4899 1 4898 0 1.49985 2 1 2.99939 3
morebv4899 4899 4899 4899 0 0 0 0 4899 0 0 4899 2 2.99959 3 2 2.99959 3
ncb204899 4899 14667 4893 1 4888 10 10 9758 9788 4889 4879 0 7.30872 20 1 21.8814 23

noncvxu24899 4899 9798 6 0 0 4899 0 4899 4899 0 4899 2 2.99959 3 4 5.99918 10
noncvxun4899 4899 9796 6 0 0 4898 0 4898 4898 0 4898 1 2.99959 3 2 5.99796 10

nondia4899 4899 4899 2 0 0 1 0 4898 1 0 4898 1 1.9998 2 1 1.9998 4899
nondquar4899 4899 4899 2 0 0 2 0 4897 4899 0 0 2 2.99959 3 2 2.99959 4898
penalty34899 4899 2454 6 1 0 2449 0 4 2450 1 4 0 8.98289 4899 3 4.49969 5
powellsg4899 4896 4896 4 0 0 2448 0 2448 4896 0 0 2 2.0 2 2 2.0 2
quartc4896 4896 4896 4896 0 0 0 0 4896 4896 0 0 1 1.0 1 1 1.0 1

sbrybnd4896 4896 4896 4896 0 0 0 0 4896 0 0 4896 2 6.99673 7 2 6.99673 7
schmvett4896 4896 14682 3 0 0 0 0 14682 0 0 14682 2 2.33333 3 2 6.99714 7
sinquad4896 4896 4896 3 0 0 0 0 4896 1 0 4895 1 2.99939 3 1 2.99939 4896
sparsine4896 4896 4896 4896 0 0 0 0 4896 0 0 4896 1 5.99285 6 4 5.99285 9
sparsqur4896 4896 4896 4896 0 0 0 0 4896 4896 0 0 1 5.99285 6 4 5.99285 9
spmsrtls4896 4897 9791 9791 0 0 0 0 9791 0 0 9791 1 2.16658 3 3 4.33184 5
srosenbr4897 4896 4896 2 0 0 2448 0 2448 2448 0 2448 1 1.5 2 1 1.5 2
tointgss4896 4896 4894 2 0 0 0 0 4894 0 0 4894 3 3.0 3 1 2.99877 3
tquartic4896 4896 4895 2 0 0 1 0 4894 1 0 4894 1 1.9998 2 0 1.99939 4895

tridia4896 4896 4896 4896 0 0 4896 0 0 4896 0 0 1 1.9998 2 1 1.9998 2
vardim4896 4896 4898 3 0 0 4897 0 1 4898 0 0 1 2.99878 4896 3 3.0 3
woods4896 4896 7344 5 0 0 4896 0 2448 4896 0 2448 1 1.66667 2 2 2.5 3

A.2 UML of a subpart of the julia smooth optimizers ecosystem
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Figure 8: Abstract type and interface dependencies of JSO related to partial separability
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