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Legal deposit – Bibliothèque et Archives nationales du Québec, 2023
– Library and Archives Canada, 2023

GERAD HEC Montréal
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d Université Grenoble Alpes, CNRS, Grenoble INP,
G-SCOP, 38000 Grenoble, France

e Department of Mechanical Engineering, McGill
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Abstract : This work considers stochastic optimization problems in which the objective function
values can only be computed by a blackbox corrupted by some random noise following an unknown
distribution. The proposed method is based on sequential stochastic optimization (SSO): the original
problem is decomposed into a sequence of subproblems. Each of these subproblems is solved using a
zeroth order version of a sign stochastic gradient descent with momentum algorithm (ZO-Signum) and
with an increasingly fine precision. This decomposition allows a good exploration of the space while
maintaining the efficiency of the algorithm once it gets close to the solution. Under Lipschitz continuity
assumption on the blackbox, a convergence rate in expectation is derived for the ZO-signum algorithm.
Moreover, if the blackbox is smooth and convex or locally convex around its minima, a convergence rate
to an ϵ-optimal point of the problem may be obtained for the SSO algorithm. Numerical experiments
are conducted to compare the SSO algorithm with other state-of-the-art algorithms and to demonstrate
its competitiveness.

Acknowledgements: This work was financed by the IVADO Fundamental Research Projects Grant
PRF–2019–8079623546 and by the NSERC Alliance grant 544900–19 in collaboration with Huawei-
Canada.



Les Cahiers du GERAD G–2023–16 1

1 Introduction

Stochastic blackbox optimization aims at solving the problem

min
x∈Rn

f(x) := Eξ [F (x, ξ)] , (1)

where F : Rn×Ω → R is a blackbox [3] and ξ is an uncertain vector whose the distribution is unknown.

Ω is the sample space of a probability space. This optimization problem finds application mainly in

two different fields. Firstly, in a machine learning framework where the loss function’s gradient is

unavailable or difficult to compute, for instance in optimizing neural network architecture [33], design

of adversarial attacks [13], or game content generation [42]. Secondly, when the function F is evaluated

by means of a computational procedure [24]. In many cases, the function value is noisy as well. This

noise may be due to environmental conditions, costs, or effects of repair actions that are unknown [35].

Another source of uncertainty also appears when the optimization is conducted at the early stages of

the design process, where knowledge, information, and data can be very limited.

1.1 Related work

Stochastic derivative-free optimization has been the subject of research for many years. Traditional

derivative-free methods may be divided into two categories [14]: direct search-based methods and

model-based methods. Algorithms corresponding to both methods have been adapted to noisy ob-

jective functions. Examples of these works may be the stochastic Nelder-Mead algorithm [11] or the

stochastic versions of the MADS algorithm [2, 4] for the direct search methods. For model-based

methods, most work consider extensions of the trust region method [12, 15, 30]. A major shortcoming

of these methods is their difficulty to scale to large problems.

Recently, another class of methods, named zeroth-order (ZO) methods, has been attracting in-

creasing attention. These methods use stochastic gradient estimators, which are based on the seminal

work in [22, 34] and have been extended in [18, 31, 36, 39]. These estimators have the appealing

property of being able to estimate the gradient with only one or two function evaluations regardless of

the problem size. Zeroth-order methods take advantage of this property to extend first-order methods.

For instance, the well known first-order methods Conditional Gradient (CG), Sign Gradient Descent

(SGD) [6] and ADAptive Momentum (ADAM) [23] have been extended to ZSCG [5], ZO-SGD [27]

and ZO-ADAMM [13], respectively. More methods, not only based on first-order algorithms, have

also emerged to solve regularized optimization problem [9] or stochastic composition optimization
problem [19]. For an overview on ZO methods, readers may consult [28].

1.2 Motivation

Formally, stochastic gradient estimators involve a smoothed functional fβ (see Chapter 7.6 in [36])

which is a convolution product between f and a kernel hβ(v)

fβ(x) :=

∫ ∞

−∞
hβ(u)f(x− u)du =

∫ ∞

−∞
hβ(x− u)f(u)du. (2)

In order for the smoothed functional to have interesting properties, the kernel must fulfill a set of

conditions [pp. 263, [36]]:

1. hβ(u) = 1
βnh(

u
β ) is a piecewise differentiable function;

2. limβ→0 h
β(u) = δ(u), where δ(v) is Dirac’s delta function;

3. limβ→0 f
β(x) = f(x), if x is a point of continuity of f ;

4. The kernel hβ(u) is probability density function (p.d.f.), that is fβ(x) = EU∼hβ(u)[f(x−U)] =

EU∼h(u)[f(x− βU)].
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Frequently used kernels include the Gaussian distribution and the uniform distribution on a unit ball.

Three properties about smoothed functional are worth noting. First, the smoothed functional may

be interpreted as a local weighted average of the function values in the neighborhood of x. As the

kernel satisfies Condition 3, it is possible to obtain a minimum arbitrarily close to a local minimum

f∗. Second, the smoothed functional is infinitely differentiable as a consequence of the convolution

product, regardless of the degree of smoothness of f . Moreover, according to the chosen kernel,

stochastic gradient estimators may be calculated. These estimators are unbiased estimators of the

gradient of fβ and may be constructed on the basis of observations of F (x, ξ) alone. Finally, the

smoothed functional allows the convexification of the original function f . Previous studies [37, 40]

show that greater values of β result in better convexification, as illustrated in Figure 1. Additionally,

a larger β leads to greater exploration of the space during the calculation of the gradient estimator.

It has also been demonstrated in [29] that if the smoothing parameter is too small, the difference in

function values is too small to accurately represent the function differential, particularly when the

noise level is significant.

Figure 1: Curves of fβ for u ∼ N (0, 1) and different values of β.

Although the first two properties of the smoothed functional are exploited by ZO methods, the last

property has not been utilized since the work in [40]. This may be because the convexification phe-

nomenon becomes insignificant when dealing with high-dimensional problems1. However, for problems

of relatively small size (n ≃ 10), this property can be useful. In the work in [40], the authors use an

iterative algorithm to minimize the sequence of subproblems

min
x∈Rn

fβi

(x), (3)

where βi belongs to a finite prescaled sequence of scalars. This approach is limited because the sequence

βi does not necessarily converge to 0 and the number of iterations to pass from subproblem i to i+ 1

is arbitrarily fixed and a priori. Furthermore, neither a convergence proof nor a convergence rate

are provided for the algorithm. Finally, although promising, numerical results are only presented for

analytical test problems. These shortcomings motivated the research presented here.

1.3 Contributions

The main contributions of this paper can be summarized as follows.

• A sequential stochastic (SSO) optimization algorithm is developed to solve the sequence of sub-

problems in Equation (3). In the inner loop, a subproblem is solved according to zeroth order

1Note that a blackbox optimization problem with dimensions ranging from 100 to 1000 may be considered large,
while problems with n ≥ 10000 may be considered very large.
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version of the Signum algorithm [6]. The stopping criterion is based on the norm of the mo-

mentum which must be below a certain threshold. In the outer loop, the sequence of βi is

proportional to the threshold needed to consider a subproblem solved and is driven to 0. There-

fore, the smaller the value of βi is (and thus better is the approximation given by fβi

), the larger

the computational budget granted to the resolution of the subproblem.

• A theoretical analysis of this algorithm is conducted. First, the norm of the momemtum is proved

to converge to 0 in expectation, with a convergence rate that depends on the step sizes. Then,

the convergence rate in expectation of the ZO-Signum algorithm to a stationary point of fβ is

derived under Lipschitz continuity of the function F . Finally, if the function F is smooth, and

fβ is convex or become convex around its local minima, a convergence rate to an ϵ-optimal point

is derived for the SSO algorithm.

• Numerical experiments are conducted to evaluate the performance of the proposed algorithm in

two applications. Firstly, a comparison is made with traditional derivative-free algorithms on the

optimization of the storage cost of a solar thermal power plant model, which is a low-dimensional

problem. Secondly, a comparison is made with other ZO algorithms in order to generate blackbox

adversarial attacks, which are large size problems.

The remainder of this paper is organized as follows. In Section 2, the main assumptions and the

Gaussian gradient estimator are described. In Section 3, the sequential optimization algorithm is

presented and its convergence properties are studied in Section 4. Section 5 presents numerical results

and Section 6 draws conclusions and discusses future work.

2 Gaussian Gradient estimator

The assumptions concerning the stochastic blackbox function F are as follows.

Assumption 1. Let (Ω,F ,P) be a probability space.

a. The function satisfies F (·, ξ) ∈ L1(Ω,F ,P) and f(x) := Eξ[F (x, ξ)], for all x ∈ Rn.

b. F (·, ξ) is Lipschitz continuous for any ξ, with constant L0(F ) > 0.

Assumption 1.a implies that the expectation of F (x, ξ) with respect to ξ is well defined on Rn and

that the estimator F (x, ξ) is unbiased. Assumption 1.b is commonly used to ensure convergence and

to bound the variance of the noisy objective function. It is worth noticing that no assumption is made

on the differentiability of the objective function f or of its estimate F with respect to x, contrary to
most work on zeroth order methods.

Under Assumption 1, a smooth approximation of the function f may be constructed by its convo-

lution with a Gaussian random vector. Let u be an n-dimensional standard Gaussian random vector

and β > 0 be the smoothing parameter. Then, a smooth approximation of f is defined as

fβ(x) :=
1

(2π)
n
2

∫
f(x+ βu)e−

||u||2
2 du = Eu[f(x+ βu)]. (4)

This estimator has been studied in the literature (especially in [31]) and benefits of several appealing

properties. The properties used in this work are summarized in the following Lemma.

Lemma 2.1. Under Assumption 1, the following statements hold for any integrable function f : Rn →
R and its approximation fβ parameterized by β > 0.

1. fβ is infinitely differentiable: fβ ∈ C∞.

2. A one-sided unbiased estimator of ∇fβ is

∇̃fβ(x) :=
u(f(x+ βu)− f(x))

β
. (5)
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3. Let β1, β2 ≥ 0, then ∀x ∈ Rn

|fβ1

(x)− fβ2

(x)| ≤ L0(F )|β1 − β2|
√
n.

Moreover, for β > 0, then fβ is L1(f
β)-smooth, i.e, fβ ∈ C1+ with L1(f

β) = 2
√
n

β L0(F ).

4. If f is convex, then fβ is also convex.

Proof.

1. It is a consequence of the convolution product between an integrable function and an infinitely

differentiable kernel.

2. See [31].

3. If u ∼ N (0, I), then

|fβ1

(x)− fβ2

(x)| = |Eu[f(x+ β1u)]− Eu[f(x+ β2u)]|
≤ Eu[|f(x+ β1u)− f(x+ β2u)|]
≤ L0(F )|β1 − β2|Eu[||u||]
≤ L0(F )|β1 − β2|

√
n,

where the first inequality comes from the Jensen’s inequality, the second one comes from the

Lipschitz continuity of f and the last one from [31, Lemma 1]. The second part is obtained from

[31, Lemma 2].

4. See [31].

Lemma 2.1.3 establishes that at the point x, the difference between the values of fβ1

(x) and

fβ2

(x) is a factor of the Lipschitz constant L, the square root of the dimension n and the absolute

difference between β1 and β2. As L and n are constants for a given problem, this difference may be

arbitrarily reduced according to the values of β1 and β2 chosen. A particularly interesting corollary

of Lemma 2.1.3 establishes that the difference between the optimal values of fβ1

and fβ2

may be

bounded in the same way.

Corollary 2.2. Under the assumptions of Lemma 2.1.3

|fβ1

∗ − fβ2

∗ | ≤ L0(F )|β1 − β2|
√
n

where fβ1

∗ and fβ2

∗ denote respectively the minimum of the functions fβ1

and fβ2

.

Proof. Let xβ1

∗ ∈ argmin fβ1

(x) and xβ2

∗ ∈ argmin fβ2

(x), it follows that

fβ1

(xβ1

∗ ) ≤ fβ1

(xβ2

∗ ) ≤ fβ2

(xβ2

∗ ) + L0(F )|β1 − β2|
√
n,

where the first inequality comes from the fact that xβ1

∗ is a minimum of fβ1

and the second one from

Lemma 2.1.4. A similar inequality may be obtained fβ2

for:

fβ2

(xβ2

∗ ) ≤ fβ2

(xβ1

∗ ) ≤ fβ1

(xβ1

∗ ) + L0(F )|β1 − β2|
√
n,

leading to the absolute value in the corollary.

The estimator obtained in Equation (5) may be adapted to the noisy objective function F . For

instance a one-sided (mini-batch) estimator of the noised function F is

∇̃fβ(x, ξ) =
1

q

q∑
j=1

uj(F (x+ βuj , ξj)− F (x, ξj))

β
, (6)
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where (uj)qj=1 and (ξj)qj=1 are q Gaussian random direction vectors and their associated q estimates

values of the function F . This is still an unbiased estimator of ∇fβ because

Eu,ξ[∇̃fβ(x, ξ)] = Eu[Eξ[∇̃fβ(x, ξ)|u]] = ∇fβ(x). (7)

The result of Corollary 2.2 is essential to understand why solving a sequence of optimization

problems defined in Equation (3) may be efficient while it might seem counterproductive at first sight.

Below are examples of the advantages of treating the problem with sequential smoothed function

optimization.

• The subproblems are approximations of the original problem and it is not necessary to solve

them exactly. Thus, an appropriate procedure for solving these problems with increasingly fine

precision can be used. Moreover, as seen in Corollary 2.2, the best value obtained in a subproblem

is close to the one of the following subproblem. The computational effort to find a solution to

the second subproblem from the solution of the first should therefore not be important.

• The information collected during the optimization process of a subproblem may be reused in the

subsequent subproblems since they are similar.

• A specific interest in the case of smoothed functional is the ability of using a larger value of β

during the solving of the first subproblems. It allows for a better exploration of the space and

convexification phenomenon of the function (see Figure 1). Moreover, the new step size may be

used for each subproblem, it allows to increase the step size momentarily, in the hope of having

a greater chance of escaping a local minimum.

3 A Sequential Stochastic Optimization (SSO) algorithm

Section 3.1 presents a zeroth-order version of the Signum algorithm [6] to solve Subproblem (3) for

a given βi and Section 3.2 presents the complete algorithm used to solve the sequential optimization

problem.

3.1 The Zeroth-order Signum algorithm

Algorithm 1 ZO-Signum (ZOS) algorithm to solve subproblem i ∈ N

1: Input: xi,0,mi,0, βi, si,01 , si,02 , L, q, M
2: Set k = 0

3: Define stepsize sequences si,k1 =
s
i,0
1

(k+1)α1 and si,k2 =
s
i,0
2

(k+1)α2

4: while ||mi,k|| > Lβi

4β0 or k ≤M do

5: Draw q samples uk from the Gaussian distribution N (0, I)

6: Calculate the average of the q Gaussian estimate ∇̃fβi
(xi,k, ξi,k) from Equation (6)

7: Update:

mi,k+1 = si,k2 ∇̃f
βi

(xi,k, ξk) + (1− si,k2 )mi,k (8)

xi,k+1
j = xi,k

j − sk1sign(m
i,k+1
j ) ∀j ∈ [1, n] (9)

8: k ← k + 1
9: end while
10: Return mi,k and xi,k

In order to solve a subproblem, a zeroth-order version of the Signum algorithm (Algorithm 2 of [6])

is used. The Signum algorithm is a momentum version of the sign-SGD algorithm. In [27], the authors

extended the original sign-SGD algorithm to a zeroth-order version of this algorithm. However, a

zeroth-order of Signum is not studied in the work of [27]. As the Signum algorithm has been shown to

be competitive with the Adam algorithm [6], a zeroth-order version of this algorithm seems interesting

to consider. There is an important difference between the original Signum algorithm and its zeroth
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order version presented in Algorithm 1. Indeed, while the step size of the momentum 1− si,k2 is kept

constant in the work of [6], it is driven to 1 in our work. This leads to two consequences. First, the

variance is reduced since the gradient is averaged on a longer time horizon, without using mini-batch

sampling. Second, as it has been demonstrated in other stochastic approximation works [7, section

3.3], [38], with carefully chosen step sizes the norm of the momentum goes to 0 with probability one.

In the ZO-Signum algorithm, the norm of the momemtum is thus used as a stopping criterion.

3.2 The SSO algorithm

The optimization of the sequence of subproblems described in Equation (3) is driven by the sequential

stochastic (SSO) algorithm presented in Algorithm 2. The value of β plays a critical role in this

algorithm as it serves as both the smoothing parameter and the stopping criterion for Algorithms 1

and 2. The process of Algorithm 2 is inspired by the MADS algorithm [1]. It is based on two steps:

a search step and a local step. The search step is optional and may consist in any heuristics and is

required only on problem with relatively small dimensions. In Algorithm 2, an example of a search

is given which consists of updating x after M iterations of the ZO-Signum algorithm with the best

known x found so far. The local step is then used: Algorithm 1 is launched on each subproblem i with

specific values of βi and step-size sequences. Once Algorithm 1 meets the stopping criterion (which

depends on the value of βi), the value of βi and the initial step-sizes si,01 and si,02 are reduced, and the

algorithm proceeds to the next subproblem. The convergence is garanteed by the local step since the

search step is run only a finite number of times.

Algorithm 2 Sequential Stochastic Optimization (SSO) algorithm

1: Initialization:
2: Set x0,0 ∈ Rn, β0 > 0 and N the maximum number of function calls for the search step
3: Set q the number of gradient estimates at each iteration of ZO-Signum algorithm
4: Set M the minimum number of iterations made by the ZO-Signum algorithm on a subproblem
5: C the cache containing all the evaluated points

6: Set m0,0 = ∇̃fβ0
(x0,0, ξ0) and L = +∞

7: Set s0,01 > 0 and s0,02 > 0
8: Set i = 0
9: Search step (optional):
10: while M(i+ 1)q ≤ N : do
11: Solve subproblem i with Algorithm 1:

mi+1,0 = ZOS(xi,0,mi,0, βi, si,01 , si,02 , L, q,M)

xi+1,0 ∈ argmin
x∈C

F (x, ξ)

12: Update βi, si,01 and si,02 as in step 18
13: end while
14: L = ||m0,0||
15: Local step:
16: while βi > ϵ do
17: Solve subproblem i with Algorithm 1:

mi+1,0,xi+1,0 = ZOS(xi,0,mi,0, βi, si,01 , si,02 , L, q,M)

18: Update:

βi =
β0

(i+ 1)2
, si,01 =

s0,01

(i+ 1)
3
2

, si,02 =
s0,02

i+ 1

i← i+ 1

19: end while
20: Return xi

It is worth noting that the decrease rate of βi is chosen to be so that the difference between

subproblems i and i + 1 is not significant. Therefore, the information collected in subproblem i,

through the momentum vector m, can be used in subproblem i + 1. Furthermore, the initial step-



Les Cahiers du GERAD G–2023–16 7

sizes si,01 and si,02 decrease with each iteration, allowing us to focus our efforts quickly towards a local

optimum when s0,01 and β0 are chosen to be relatively large.

4 Convergence analysis

The convergence analysis is conducted in two steps : first the convergence in expectation is derived

for Algorithm 1 and then the convergence for Algorithm 2 is derived.

4.1 Convergence of the ZOS algorithm

The analysis of Algorithm 1 follows the general methodology given in Appendix E in [6]. In the

following subsection, the main result in [6] is recalled for completeness. The next subsections are

devoted to bound the variance and bias terms when limk→∞ si,k2 = 0 . Finally, these results are used

to obtain the convergence rate in expectation of Algorithm 1 in the non convex and convex case. The

last subsection is devoted to a theoretical comparison with other ZO methods of the literature. The

subproblem index i is kept constant throughout this section.

4.1.1 Preliminary result [6]

The following proposition uses the Lipschitz continuity of the function fβi

(proved in Lemma 2.1) to

bound the gradient at the kth iteration.

Proposition 4.1 ([6]). For the subproblem i ∈ N, under Assumption 1 and in the setting of Algorithm 1,

we have

si,k1 E[||∇fβi

(xi,k)||1] ≤E[fβi

(xi,k)− fβi

(xi,k+1)] +
nL1(f

βi

)

2
(si,k1 )2

+ 2si,k1 E[||m̄i,k+1 −∇fβi

(xi,k)||1]︸ ︷︷ ︸
bias

+2si,k1
√
n
√
E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

(10)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k2 ∇fβi

(xi,k) + (1− si,k2 )m̄i,k
j .

Proof. See Appendix A.

Now, it remains to bound the three terms on the right side of Inequality (10).

4.1.2 Bound on the variance term

The three following lemmas are consecrated to bound the variance term. Unlike the work reported

in [6], the variance reduction is conducted by driving the step size of the momemtum to 0. It avoids

to sample an increasing number of stochastic gradients at each iteration, which may be problematic

as noted in [27]. To achieve this, the variance term is first decomposed in term of expectation of the

squared norm of the stochastic gradient estimators g̃.

Lemma 4.2. For the subproblem i ∈ N, let k ∈ N and j ∈ [1, n], we have

E[||mi,k+1 − m̄i,k+1||2] ≤(si,k2 )2E[||g̃i,k||2] +
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+

k∏
t=0

(1− si,t2 )2E[||g̃i,0||2],

where g̃i,rj = ∇̃fβi

(xi,r, ξr),∀r ∈ [0, k] is defined in Equation (6) and the norm is || · ||2.
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Proof. Let k ∈ N, by definition of mi,k and m̄i,k, it follows that

||mi,k+1 − m̄i,k+1||2 =(si,k2 )2||g̃i,k −∇fβi

(xi,k)||2 + (1− si,k2 )2||mi,k − m̄i,k||2

+ 2si,k2 (1− si,k2 )(g̃i,k −∇fβi

(xi,k))T (mi,k − m̄i,k).

The expectation of this expression is

E[||mi,k+1 − m̄i,k+1||2] =(si,k2 )2E[||g̃i,k −∇fβi

(xi,k)||2] + (1− si,k2 )2E[||mi,k − m̄i,k||2] (11)

+ 2si,k2 (1− si,k2 )E[(g̃i,k −∇fβi

(xi,k))T (mi,k − m̄i,k)]. (12)

Now, introducing the associated sigma field of the process F i,k = σ(xj,t,mj,t, m̄j,t; j ≤ i, t ≤ k) by

the law of total expectation, it follows that

E[(g̃i,k −∇fβi

(xi,k))T (mi,k − m̄i,k)] = E[E[(g̃i,k −∇fβi

(xi,k))T (mi,k − m̄i,k)|F i,k]

= E[(E[g̃i,k|F i,k]−∇fβi

(xi,k))T (mi,k − m̄i,k)]

= 0,

where the second equality holds because mi,k, m̄i,k and ∇fβi

(xi,k) are fixed conditioned on F ⟩,∥ and

because E[g̃i,k|xi,k] = ∇fβi

(xi,k) as g̃i,k is an unbiased estimator of the gradient by Equation (7). By

substituting this result in (12), it follows that

E[||mi,k+1 − m̄i,k+1||2] = (si,k2 )2E[||g̃i,k −∇fβi

(xi,k)||2] + (1− si,k2 )2E[||mi,k − m̄i,k||2].

By repeating this process iteratively, we obtain

E[||mi,k+1 − m̄i,k+1||2] =(si,k2 )2E[||g̃i,k −∇fβi

(xi,k)||2]

+

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r −∇fβi

(xi,r)||2]

+

k∏
t=0

(1− si,t2 )2E[||g̃i,0 −∇fβi

(xi,0)||2].

(13)

Finally, by observing that ∀r ∈ [0, k],E[g̃i,r|xi,r] = ∇fβi

(xi,r) and by the law of total expectation, we

obtain

E[||g̃i,r −∇fβi

(xi,r)||2] = E[||g̃i,r − E[g̃i,r|xi,r]||2]

= E[||g̃i,r||2]− E[||∇fβi

(xi,r)||2]
≤ E[||g̃i,r||2].

Introducing this inequality in Equation (13) completes the proof.

Second, the expectation of the squared norm of the stochastic gradient estimators are bounded by

a constant depending quadratically of the dimension.

Lemma 4.3. Let i ∈ N, r ∈ [0, k], j ∈ [1, n], then under Assumption 1, we have

E[||g̃i,r||2] ≤ L0(F )2(n+ 4)2

where L0(F ) is the Lipschitz constant of F .

Proof. By Equation (6) with q = 1, it follows that

E[||g̃i,r||2] = E
[
||u||2

(βi)2
(
F (xi,r + βiu, ξ)− F (xi,r, ξ)

)2]
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≤ L0(F )2E[||u||4]
≤ L0(F )2(n+ 4)2

where the first inequality follows from Assumption 1.b and the second by [31, Lemma 1].

Finally, a technical lemma bounds the second term of the decomposition of the Lemma 4.2 by a

decreasing sequence. It allows to obtain the same rate of convergence than in the work in [6] without

sampling any stochastic gradient.

Lemma 4.4. For the subproblem i ∈ N, let si,k2 defined such that si,k2 =
si,02

(k+1)α2
with α2 ∈ (0, 1) and

si,02 ∈ (0, 1), then for k such that

k

(k + 1)α2
≥ ln(si,02 ) + (1 + α2) ln(k)

si,02
(14)

the following inequality holds

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 ≤ 9si,02

kα2
. (15)

Proof. Let k ∈ N; as in [6],the strategy consists of breaking up the sum in order to bound the both

terms separately.

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 =

⌊k/2⌋−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 +

k−1∑
r=⌊k/2⌋

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2

≤ (1− si,k2 )2⌊k/2⌋
⌊k/2⌋−1∑

r=0

(si,r2 )2 + (s
i,⌊k/2⌋−1
2 )2

k−1∑
r=⌊k/2⌋

(1− si,k2 )2(k−r−1)

≤ (si,02 )2⌊k/2⌋(1− si,k2 )2⌊k/2⌋ +
8(si,02 )2

k2α2

⌊k/2⌋∑
r=0

(1− si,k2 )2r

≤ (si,02 )2k(1− si,k2 )2⌊k/2⌋ +
8(si,02 )2

k2α2(1− (1− si,k2 )2)

≤ (si,02 )2k(1− si,k2 )2⌊k/2⌋ +
8si,02

kα2(2− si,k2 )
.

Now, we are looking for k such that

si,02 k(1− si,k2 )2⌊k/2⌋ ≤ 1

kα2
⇔ e2⌊k/2⌋ ln(1−si,k2 ) ≤ 1

(si,02 )k1+α2

.

As, ln(1− x) ≤ −x, it is sufficient to find k such that

e
−si,02

k
(k+1)α2 ≤ 1

(si,02 )k1+α2

⇔ k

(k + 1)α2
≥ ln(si,02 ) + (1 + α2) ln(k)

si,02
.

Taking such a k allows to complete the proof.

Combining the three previous Lemmas allows to bound the variance term in the Proposition 4.1.
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Proposition 4.5. In the setting of Lemmas 4.3 and 4.4 and under assumption 1.b, the variance term

of Proposition 4.1 is bounded by

E[||mi,k+1 − m̄i,k+1||22] ≤
9si,02 L0(F )2(n+ 4)2

kα2
+ o

(
1

kα2

)
.

Proof. By Lemmas 4.2 and 4.3, it follows that

E[||mi,k+1 − m̄i,k+1||2] ≤ (si,k2 )2E[||g̃i,k||2] +
k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2E[||g̃i,r||2]

+

k∏
t=0

(1− si,t2 )2E[||g̃i,0||2]

≤

(
(si,k2 )2 +

k−1∑
r=0

(si,r2 )2
k−1∏
t=r

(1− si,t+1
2 )2 +

k∏
t=0

(1− si,t2 )2

)
L0(F )2(n+ 4)2.

Now as (si,k2 )2 = o
(

1
kα2

)
and

∏k
t=0(1− si,t2 )2 = o

(
1

kα2

)
, the result follows from Lemma 4.4.

4.1.3 Bound on the bias term

First, the biasterm is bounded by a sum depending on sk1 and sk2 .

Lemma 4.6. For the subproblem i ∈ N and at iteration k ∈ N of the algorithm 1, we have

E[||m̄i,k+1 −∇fβi

(xi,k)||1] ≤ 2nL1(f
βi

)

(
k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 )

)
.

Proof. First of all, observe that the quantity

Si,k :=

{
1 if k = 0

si,k2 +
∑k−1

r=0 s
i,r
2

∏k−1
t=r (1− si,r+1

2 ) +
∏k

t=0(1− si,t2 ) otherwise,
(16)

may be written recursively as

Si,k =

{
1 if k = 0

si,k2 + (1− si,k2 )Sk−1 otherwise.

Therefore, Si,k = 1 for all k. By definition of m̄i,k
j , we have

m̄i,k = si,k2 ∇fβi

(xi,k) +

k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 )∇fβi

(xi,r) +

k∏
t=0

(1− si,t2 )∇fβi

(xi,0)

∇fβi

(xi,k) =

(
si,k2 +

k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )

)
∇fβi

(xi,k).

Therefore, it follows that

E[||m̄i,k+1 −∇fβi

(xi,k)||1] ≤
k−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 )E[||∇fβi

(xi,r)−∇fβi

(xi,k)||1]

+

k∏
t=0

(1− si,t2 )E[||∇fβi

(xi,0)−∇fβi

(xi,k)||1].

(17)
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By the smoothness of the function fβi

, Lemma F.3 of [6] ensures that ∀r ∈ [0, k − 1]

||∇fβi

(xi,r)−∇fβi

(xi,k)||1 ≤
k−1∑
l=r

||∇fβi

(xi,l+1)−∇fβi

(xi,l)||1 ≤ 2nL1(f
βi

)

k−1∑
l=r

si,l1 .

Substituting this inequality in Equation (17) gives

E[||m̄i,k+1 −∇fβi

(xi,k)||1] ≤ 2nL1(f
βi

)Si,k
1

(18)

where

Si,k
1 =

k−1∑
r=0

si,r2

k−1∑
l=r

si,l1

k−1∏
t=r

(1− si,t+1
2 ) +

k−1∑
l=0

si,l1

k∏
t=0

(1− si,t2 ).

Reordering the terms in Sk
1 , we obtain

Si,k
1 =

k−1∑
l=0

si,l1

(
l∑

r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )

)

=

k−1∑
l=0

si,l1

(
si,l2

k−1∏
t=l

(1− si,t+1
2 ) +

l−1∑
r=0

si,r2

k−1∏
t=r

(1− si,t+1
2 ) +

k∏
t=0

(1− si,t2 )

)

=

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 )

(
si,l2 +

l−1∑
r=0

si,r2

l−1∏
t=r

(1− si,t+1
2 ) +

l∏
t=0

(1− si,t2 )

)
︸ ︷︷ ︸

Si,l=1

=

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ),

which completes the proof.

Second, the sum may be bounded by a term decreasing with k.

Lemma 4.7. For the subproblem i ∈ N and let si,k2 =
si,02

(k+1)α2
and si,k1 =

si,01

(k+1)α1
with si,01 ∈ (0, 1), si,02 ∈

(0, 1) and 0 < α2 < α1 < 1, then for k such that

k

(k + 1)α2
≥

2
(
ln(si,02 ) + (1 + α1 − α2) ln(k)

)
si,02

(19)

the following inequality holds

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) ≤ 5si,01

si,02 kα1−α2

. (20)

Proof. The proof follows the proof of Lemma 4.4. The sum is partitioned as follows:

k−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) =

⌊k/2⌋−1∑
l=0

si,l1

k−1∏
t=l

(1− si,t+1
2 ) +

k−1∑
l=⌊k/2⌋−1

si,l1

k−1∏
t=l

(1− si,t+1
2 )

≤ (1− si,k2 )⌊k/2⌋
⌊k/2⌋−1∑

l=0

si,l1 + s
i,⌊k/2⌋−1
1

k−1∑
l=⌊k/2⌋−1

(1− si,k2 )k−r−1

≤ si,01 k(1− si,k2 )⌊k/2⌋ +
4si,01

kα1(1− (1− si,k2 ))
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=
si,01 si,02 k(1− si,k2 )⌊k/2⌋

si,02
+

4si,01
si,02 kα1−α2

.

Now, as in Lemma 4.4 taking k such that

k

(k + 1)α2
≥

2
(
ln(si,02 ) + (1 + α1 − α2) ln(k)

)
si,02

ensures that si,02 k(1− si,k2 )⌊k/2⌋ ≤ 1
kα1−α2

, which completes the proof.

Finally, using the two previous Lemmas allows to bound the bias term.

Proposition 4.8. In the setting of Lemma 4.7, the bias term of Proposition 4.1 is bounded by

E[||m̄i,k+1 −∇fβi

(xi,k)||1] ≤ 10nL1(f
βi

)
si,01

si,02 kα1−α2

.

Proof. The proof is a straightforward consequence of Lemmas 4.6 and 4.7.

4.1.4 Convergence in expectation of the ZOS algorithm

As the different terms in the inequality of the Proposition 4.1 have been bounded, the main result of

this section may be derived in the following theorem.

Theorem 4.9. For a subproblem i ∈ N and under Assumption 1, let α1 ∈ (0, 1), α2 ∈ (0, α1),

0 < si,01 , si,02 < 1 and K > C where C ∈ N satisfies Equations (14) and (19), we have

E[||∇fβi

(xi,R)||1] ≤
1

K1−α1 − C
Kα1

(
Di

f

si,01
+

n
√
nL0(F )si,01

βi

K∑
k=C

1

k2α1

+ 6

√
si,02 L0(F )

√
n(n+ 4)

K∑
k=C

1

kα1+
α2
2

+
40L0(F )si,01 n

√
n

si,02 βi

K∑
k=C

1

k2α1−α2

)
,

(21)

where fβi

(xi,C)−minx f
βi

(x) ≤ Di
f , L0(F ) is the Lipschitz constant of F and R is randomly picked

from a uniform distribution in [C,K].

Proof. Let C ∈ N satisfying Equations (14) and (19) and sum over the inequality in Proposition 4.1,

it follows that

K∑
k=C

si,k1 E[||∇fβi

(xi,k)||1] ≤E[fβi

(xi,C)− fβi

(xi,K+1)] +
nL1(f

βi

)

2

K∑
k=C

(si,k1 )2

+ 2
√
n

K∑
k=C

si,k1

√
E[||mi,k+1 − m̄i,k+1||22]

+ 2

K∑
k=C

si,k1 E[||m̄i,k+1 −∇fβi

(xi,k)||1].

By substituting the results of Proposition 4.5 and 4.8 in the previous inequality, we obtain

K∑
k=C

si,k1 E[||∇fβi

(xi,k)||1] ≤E[fβi

(xi,C)− fβi

(xi,K+1)] +
nL1(f

βi

)

2

K∑
k=C

(si,k1 )2

+ 6

√
si,02 L0(F )(n+ 4)

√
n

K∑
k=C

si,01
kα1+

α2
2

+
20L1(f

βi

)si,01 n

si,02

K∑
k=C

si,01
k2α1−α2

.
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Dividing both sides by si,01 K−α1(K − C), picking R randomly uniformly in [C,K] and using the
definition of Di

f given that minx f(x) ≤ f(x) for all x, we get

E[||∇fβi

(xi,R)||1] =
1

K − C

K∑
k=C

E[||∇fβi

(xi,k)||1] ≤
1

K − C

K∑
k=C

Kα1

kα1
E[||∇fβi

(xi,k)||1]

≤ 1

K1−α1 − C
Kα1

(
Di

f

si,01

+
nL1(f

βi

)si,01

2

K∑
k=C

1

k2α1
+ 6

√
si,02 L0(F )(n+ 4)

√
n

K∑
k=C

1

kα1+
α2
2

+
20L1(f

βi

)si,01 n

si,02

K∑
k=C

1

k2α1−α2

)
.

Recalling that L1(f
βi

) = 2
√
nL0(F )
βi completes the proof.

This theorem allows to prove the convergence in expectation of the norm of the gradient when α1

and α2 are chosen adequately. In particular, the following corollary provides the convergence when

α1 = 3
4 and α2 = 1

2 .

Corollary 4.10. Under the same setting of Theorem with βi ≈ 1 α1 = 3
4 , α2 = 1

2 , s
i,0
1 = 1

n
3
4

and

si,02 ≈ 1, we have

E[||∇fβi

(xi,R)||2] = O

(
n

3
2

K1/4
ln(K)

)
. (22)

Proof. The result is a direct consequence of Theorem 4.9 with the specified constant and by noting

that || · ||2 ≤ || · ||1 in Rn.

In [13, 18, 27], the function F is assumed to be smooth with Lipschitz continuous gradient. In the

present work, F is only assumed to be Lipschitz continuous. This has two main consequences on the

result of convergence: the dependence of the dimension on the convergence rate is larger. Furthermore,

while β must be chosen relatively small in the smooth case, it is interesting to note that it does not

have to be this way in the nonsmooth case.

4.1.5 The convex case

The convergence results of the ZOS algorithm has been derived in the non-convex case. In the next
theorem, convergence results are derived when the function fβi

is convex.

Theorem 4.11. Under Assumption 1, suppose moreover that fβi

is convex and there exists ρ such

that ρ = maxk,k′∈N ||xi,k − xi,k′ ||, then by setting

βi ≤ 1
√
nK

1
3

, si,k1 =
2ρ

(k + 1)
, si,k2 =

1

(k + 1)
2
3

and Γk :=

k∏
l=2

(
1− 2

k + 1

)
=

2

k(k + 1)
with Γ1 = 1,

(23)

it follows that

E[fβi

(xi,K)− fβi

(x∗)] ≤ 4ρn
√
nL0(F )

βiK
1
3

. (24)

and

E[||∇fβi

(xi,R)||] ≤ 2L0(F )

K2
+

4n
√
nL0(F )

βiK
1
3

(25)

where R is a random variable in [0,K − 1] whose the probability distribution is given by

P(R = k) =
si,k1 /Γk+1∑K−1

k=0 si,k1 /Γk+1
.
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Proof. Under the assumptions in the statement of the Theorem, it follows by Proposition 4.1 that

E[fβi

(xi,k+1)− fβi

(xi,∗)] ≤E[fβi

(xi,k)− fβi

(xi,∗)]− si,k1 E[||∇fβi

(xi,k)||] + nL1(f
βi

)

2
(si,k1 )2

+ 2si,k1 E[||m̄i,k+1 −∇fβi

(xi,k)||1] + 2si,k1

n∑
j=1

√
E[(mi,k+1

j − m̄i,k+1
j )2]

≤E[fβi

(xi,k)− fβi

(xi,∗)]− sk1E[||∇fβi

(xi,k)||] + 2ρn
√
nL0(F )

βi(k + 1)
4
3

,

(26)

where the last inequality follows thanks to Propositions 4.5, 4.8 with L1(f
βi

) = 2L0(F )
√
n

βi and the

values of si,k1 and si,k2 . Now, by convexity assumption of fβi

and the bound on the maximal distance

between two iterates, the following holds

fβi

(xi,k)− fβi

(xi,∗) ≤ ∇fβi

(xi,k)T (xi,k − xi,∗)

≤ ||∇fβi

(xi,k)|| ||xi,k − xi,∗||

≤ ρ||∇fβi

(xi,k)||.

Thus, by substituting this result into Equation (26), it follows that

E[fβi

(xi,k+1)− fβi

(xi,∗)] ≤
(
1− 2

(k + 1)

)
E[fβi

(xi,k)− fβi

(xi,∗)] +
2ρn

√
nL0(F )

βi(k + 1)
4
3

.

Now by dividing by Γk+1 both sides of the equation and summing up the inequalities, it follows that

E[fβi

(xi,K)− fβi

(xi,∗)]

ΓK
≤ 2ρn

√
nL0(F )

βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

≤ 2ρn
√
nL0(F )

βi

K−1∑
k=0

(k + 1)
2
3 .

Thus

E[fβi

(xi,K)− fβi

(xi,∗)] ≤ 2ρn
√
nL0(F )

βi
ΓK

K−1∑
k=0

(k + 1)
2
3 ≤ 2ρn

√
nL0(F )

βiK
1
3

.

Now, the second part of the proof may be demonstrated. By Equation (26), it follows also that

si,k1 E[||∇fβi

(xi,k)||] ≤ E[fβi

(xi,k)− fβi

(xi,∗)]− E[fβi

(xi,k+1)− fβi

(xi,∗)] +
2ρn

√
nL0(F )

βi(k + 1)
4
3

.

As in the previous part, by dividing both sides by Γk+1, summing up the inequalities and noting

f̄k = E[fβi

(xi,k)− fβi

(xi,∗)], we obtain

K−1∑
k=0

si,k1
Γk+1

E[||∇fβi

(xi,k)||] ≤
K−1∑
k=0

f̄k − ¯fk+1

Γk+1
+

2ρn
√
nL0(F )

βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

.

Then, again by dividing both sides by
∑K−1

k=0
si,k1

Γk+1 it follows that

E[||∇fβi

(xi,R)||] =
∑K−1

k=0
si,k1

Γk+1E[||∇fβi

(xi,k)||]∑K−1
k=0

si,k1

Γk+1

≤ 1∑K−1
k=0

si,k1

Γk+1

(
K−1∑
k=0

E[f̄k − ¯fk+1]

Γk+1
+

2ρn
√
nL0(F )

βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

)
,
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where R is a random variable whose the distribution is given in the statement of the theorem. Now,

as in Equation (2.21) of [5], the following hold

K−1∑
k=0

f̄k − ¯fk+1

Γk+1
≤ f̄0 +

K−1∑
k=1

2

Γk+1(k + 1)
f̄k and

K−1∑
k=0

si,k1
Γk+1

=
ρ

ΓK
.

Thus, by substituting these in the inequality involving the expectation we obtain

E[||∇fβi

(xi,R)||] ≤ ΓK

ρ

(
E[f̄0] +

K−1∑
k=1

2

Γk+1(k + 1)
E[f̄k] +

2ρn
√
nL0(F )

βi

K−1∑
k=0

1

Γk+1(k + 1)
4
3

)

≤ ΓK

ρ

(
E[f̄0] + 4ρn

√
nL

K−1∑
k=0

1

Γk+1(k + 1)
4
3

)

≤ 2L0(F )

K2
+

4n
√
nL0(F )

βiK
1
3

,

where the second inequality follows from Equation (24).

4.1.6 Summary of convergence rates and complexity guarantees

The result obtained in Equation (22) is consistent with the convergence results of other ZO methods.

To gain a better understanding of its performance, this result is compared with those of four other

algorithms from different perspectives: the assumptions, the measure used, the convergence rate, and

the function query complexity. All methods seek a solution to a stochastic optimization problem; the

comparison is presented in Table 1. Since the convergence rate of the ZO-Signum and ZO-signSGD

algorithms is measured using ||∇f(x)||, but ||∇f(x)||2 is used by ZO-adaMM and ZO-SGD, Jensen’s

inequality is used to rewrite convergence rates in term of gradient norm.

• for ZO-SGD [18]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√
O

(
σ
√
n√
K

+
n

K

)
≤ O

(√
σn

1
4

K
1
4

+

√
n√
K

)
,

• for ZO-adaMM [13]

E[||∇f(x)||] ≤
√
E[||∇f(x)||2] ≤

√
O

((
n√
K

+
n2

K

)√
ln(K) + ln(n)

)
≤ O

((√
n

K
1
4

+
n√
K

)
(ln(K) + ln(n))

1
4

)
,

where the third inequalities are due to
√
a2 + b2 ≤ a + b, for a, b ≥ 0. For ZO-signSGD, unless the

value of b depends on K, the algorithm’s convergence is only guaranteed within some ball around the

solution, making it difficult to compare with other methods. Thus in the non convex case, after this

transformation, it becomes apparent that ZO-signum has a convergence rate of O

(
n

3
4√
σ

)
and O(

√
n)

worse than that of ZO-SGD and ZO-adaMM, respectively. This may be attributed to the milder

assumption made on the function F in the present work, which also explains why the convergence is

relative to fβ . In the convex case, ZO-signum has a convergence rate of O

(
nK

1
6

σ

)
worse than ZSCG

and O
(√

nK
1
6

)
worse than ZO-SGD. This may be explained because the sign(·) operator looses the

magnitude information of the gradient when it applied. This problem may be fixed as in [21] but it

outside the scope of this work. Finally, all methods but ZO-signSGD are momentum-based versions of
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the original ZO-SGD method. Although the momemtum-based versions are mostly used in practice, it

is interesting to notice that none of these methods possess a better convergence rate than the original

ZO-SGD method. The next section provides some clues on the interests of the momemtum-based

method.

Table 1: Summary of convergence rate and query complexity of various ZO-algorithms given K iterations.

Method Assumptions Measure Convergence rate Queries

ZO-SGD [18]
F (·, ξ) ∈ C1+ E[||∇f(xR)||2] O

(√
σn

1
4

K
1
4

+
√
n√
K

)
O(K)E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

ZO-signSGD [27]
F (·, ξ) ∈ C0+

E[||∇f(xR)||2] O
( √

n√
K

+
√
n√
b
+ n√

bq

)
O(bqK)F (·, ξ) ∈ C1+

||∇F (x, ξ)||2 ≤ η

ZO-adaMM [13]
F (·, ξ) ∈ C0+

E[||∇f(xR)||2] O

(( √
n

K
1
4

+ n√
K

)
(ln(K) + ln(n))

1
4

)
O(K)F (·, ξ) ∈ C1+

||∇F (x, ξ)||∞ ≤ η

ZO-Signum F (·, ξ) ∈ C0+ E[||∇fβ(xR)||2] O

(
n

K
1
4

ln(K)

)
O(K)

ZO-Signum F (·, ξ) ∈ C0+, f convex E[fβi
(xi,K)− fβi

(xi,∗)] O

(
n
√
n

K
1
3

)
O(K)

ZO-SGD [31] F (·, ξ) ∈ C0+, f convex E[f(xi,K)− f(xi,∗)] O
(

n√
K

)
O(K)

Modified ZSCG [5]
F (·, ξ) ∈ C1+, F convex E[f(xi,K)− f(xi,∗)] O

(
σ
√
n√

K

)
O(K)E[||∇F (x, ξ)−∇f(x)||2] ≤ σ2

4.2 Convergence of the SSO algorithm

The convergence analysis from the previous subsection is in expectation, i.e., it establishes the ex-

pected convergence performance over many executions of the ZO-Signum algorithm. As in [18], we

now focus on the performance of a single run. Unlike [18], our analysis is based on a sequential op-

timization framework rather than a post-optimization process. Our SSO algorithm uses the norm of

the momentum as an indicator of the quality of the current solution. In order to analyze the rate of

convergence of this algorithm, the following additional assumptions are made on the function F . The

first assumption concerns the smoothness of the function F .

Assumption 2. The function F (·, ξ) has L1(F )-Lipschitz continuous gradient.

The second assumption concerns the local convexity of the function fβ .

Assumption 3. Let (xi,0) be a sequence of points produced by Algorithm 2 and xi,∗ a sequence of local

minima of fβi

. We assume that there exists a threshold I ∈ N and a radius ρ > 0 such that ∀i ≥ I:

1. fβi

is convex on the ball Bρ(x
i,∗) := {x ∈ Rn : ||x− xi,∗|| < ρ};

2. xi,0 ∈ Bρ(x
i,∗).

Under these assumptions, we will prove that if the norm of the momentum vector m is below some

threshold, then this threshold can be used to bound the norm of the gradient. Second, an estimate for

the number of iterations required to reduce the norm of m below the threshold is provided. The next

lemma is simply technical and demonstrates the link between m̄ and m.

Lemma 4.12. For any subproblem i ∈ N and iteration k ≥ 1, the following equality holds

E[mi,k|xi,k−1] = E[m̄i,k|xi,k−1],

where m̄i,k is defined recursively in Proposition 4.1.
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Proof. The proof is conducted by induction on k. For k = 1, setting mi,0 = ∇̃fβi

(xi, 0) implies

mi,1 = si,02 ∇̃fβi

(xi,0) + (1− si,02 )mi,0 = ∇̃fβi

(xi,0).

In the same way, m̄i,1 = ∇fβi

(xi,0). Thefore, we have

E[mi,1|xi,0] = E[∇̃fβi

(xi,0)|xi,0] = ∇fβi

(xi,0) = E[∇fβi

(xi,0)|xi,0] = E[m̄i,1|xi,0].

Now, suppose that the induction assumption is true for a given k ∈ N, then

E[mi,k+1|xi,k] = si,k2 ∇fβi

(xi,k) + (1− si,k2 )E[mi,k|xi,k].

Now, by the law of total expectation

E[mi,k|xi,k] = E[E[mi,k|xi,k,xi,k−1]|xi,k]

= E[E[mi,k|xi,k−1]|xi,k]

= E[E[m̄i,k|xi,k−1]|xi,k] (by the induction assumption)

= E[m̄i,k|xi,k].

Thus as E[∇fβi

(xi,k)|xi,k] = ∇fβi

(xi,k), it follows that

E[mi,k+1|xi,k] = si,k2 ∇fβi

(xi,k) + (1− si,k2 )E[mi,k|xi,k]

= si,k2 E[∇fβi

(xi,k)|xi,k] + (1− si,k2 )E[m̄i,k|xi,k]

= E[m̄i,k+1|xi,k],

which completes the proof.

The following lemma shows that if ||m|| is below a certain threshold, then this threshold can be

used to bound the norm of the gradient almost surely.

Lemma 4.13. For a subproblem i ∈ N, let Ki ∈ N denote the first iteration in Algorithm 1 for which

||mi,Ki || ≤ Lβi

4β0 , then, under Assumption 2 the norm of the gradient of the function fβi

at xi,K may

be bounded as follows

||∇fβi

(xi,Ki)|| ≤ Lβi

4β0
+ 10nL1(F )

si,01
si,02 Kα1−α2

i

.

Moreover, if the problem i+1 is considered, the gradient of the function fβi+1

may be bounded at the

point xi,K = xi+1,0 as follows

||∇fβi+1

(xi+1,0)|| ≤ ||∇fβi

(xi,Ki)||+ L0(F )
√
n|βi+1 − βi|.

Proof. Let Ki be taken as in the statement of the proposition. The norm of the gradient may be

bounded as follows

||∇fβi

(xi,Ki)|| ≤ ||E[mi,Ki |xi,Ki ]||+ ||∇fβi

(xi,Ki)− E[mi,Ki |xi,Ki ]||

≤ E[||mi,Ki || |xi,Ki ] + ||∇fβi

(xi,Ki)− E[m̄i,Ki |xi,Ki ]||,

where the second inequality follows from Jensen’s inequality and Lemma 4.12. Now, using ||mi,Ki || ≤
Lβi

4β0 , E[∇fβi

(xi,K)|xi,Ki ] = ∇fβi

(xi,Ki), L1(f
βi

) ≤ L1(F ) and the result of Proposition 4.8 complete

the first part of the proof

||∇fβi

(xi,Ki)|| ≤ Lβi

4β0
+ E[||∇fβi

(xi,Ki)− m̄i,Ki || |xi,Ki ]
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≤ Lβi

4β0
+ 10nL1(F )

si,01
si,02 Kα1−α2

i

.

The second part of the proof follows directly by applying the triangular inequality and the result in

Lemma 2.1.3.

Under Assumption 3, the expected difference between the values of fβi

at xi,0 and its optimal

value is bounded in the next Lemma.

Lemma 4.14. Let I be the threshold from Assumption 3. If i ≥ I, then

E[fβi+1

(xi+1,0)− fβi+1

(xi+1,∗)] ≤ ρ

(
Lβi

4β0
+ 10nL1(F )

si,01
si,02 Kα1−α2

i

+ L0(F )
√
n|βi+1 − βi|

)
. (27)

Proof. Convexity of the function fβi

on the ball Bρ(x
i,∗) implies

E[fβi+1

(xi+1,0)− fβi+1

(xi+1,∗)] ≤ E[⟨∇fβi+1

(xi+1,0),xi+1,0 − xi+1,∗⟩]

≤ E[||∇fβi+1

(xi+1,0)||||xi+1,0 − xi+1,∗||].

The result follows using the Lemmma 4.13 and since xi+1,0 belongs to the ball Bϵ(xi,∗).

Moreover, an estimate on the number of iterations required to reduce the norm of the gradient

below some threshold may be given.

Lemma 4.15. Under Assumptions 1, 2 and 3, for a subproblem i > I and in the setting of Algorithm 2,

let si,02 ∈ R+ be such that k = 1 in Equations (14) and (19), L = max(L0(F ), L1(F )), α1 = 3
4 and

α2 = 1
2 . Then, for a uniformly randomly chosen R ∈ [0,Ki], it follows that

P
(
||∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(Ai +Bi),

where Ai and Bi are defined in Equation (28).

Proof. Markov’s inequality implies that

P
(
||∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||∇fβi

(xi,R)||]
Lβi

.

Now, given the result of Theorem 4.9 with the specified value of α1 and α2 and the fact that

L1(f
βi

) ≤ L1(F ) together with Lemma 4.14, it follows that

4β0E[||∇fβi

(xi,R)||]
Lβi

≤ 4β0

βiK
1
4
i

(Ai +Bi),

where

Ai =
ρ

si,01

βi−1

4β0
+ 10n

si−1,0
1

si−1,0
2 K

1
4
i−1

+
√
n|βi−1 − βi|


Bi =

nsi,01
2

H
(− 3

2 )

k + ln(Ki)

(
6

√
si,02 (n+ 4)

√
n+

20nsi,01
si,02

)
,

(28)

and Ki is the iteration number for subproblem i and H
(− 3

2 )

k is the generalized harmonic number.
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The following Lemma provides an estimate on the number of iterations required to bound the norm

of the difference between m and the gradient below a certain threshold.

Lemma 4.16. For a subproblem i ∈ N and in the setting of Algorithm 2, let si,02 ∈ R+ be such that

k = 1 in Equations (14) and (19), L = max(L0(F ), L1(F )), α1 = 3
4 and α2 = 1

2 . Then, for a uniformly

randomly chosen R ∈ [0,Ki], it follows that

P
(
||mi,R −∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3

√
si,02 (n+ 4)

√
n+

10nsi,01
si,02

)
.

Proof. By Markov’s inequality, it follows that

P
(
||mi,R −∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0E[||mi,R −∇fβi

(xi,R)||]
Lβi

=
4β0

LβiKi

Ki∑
k=0

E[||mi,k −∇fβi

(xi,k)||]

≤ 4β0

βiK
1
4
i

(
3

√
si,02 (n+ 4)

√
n+

10nsi,01
si,02

)
,

where the last inequality holds by Proposition 4.5 and 4.8 with α1 = 3
4 and α2 = 1

2 .

Finally, the main theorem of this section may be stated.

Theorem 4.17. Let Assumptions 1, 2 and 3 hold and let I be the threshold from Assumption 3. For

i ∈ N, set
βi =

1√
n(i+ 1)2

, si,01 =
1

6n(i+ 1)3/2
and si,02 =

s2
(i+ 1)

with s2 so that Equations (14) and (19) are satisfied for k = 1. Moreover, let denote Ki the first

iteration for which ||mi,Ki || ≤ Lβi

4β0 with L = max(L0(F ), L1(F )) and ϵ > 0 be a desired accuracy and

let i∗ ≥
√

L
ϵ ≥ I. If for any i ≥ I,Ki ≥ (i+ 1)6, then after at most

O

(
n6L7/2

ϵ7/2

)
function evaluations, the following inequality holds

||∇fβi∗

(xi∗,0)|| ≤ ϵ. (29)

Furthermore, when for any i ∈ N, fβi

is convex then under the same setting that Theorem 4.11 given

in Equation (23), it follows that after at most

O

(
n

9
2L7/2

ϵ7/2

)
function evaluations, the inequality in Equation (29) holds.

Proof. For a subproblem i ∈ N, a probabilistic upper bound on the iteration Ki ∈ N such that

||mi,Ki || ≤ Lβi

4β0 may be provided. We have

||mi,Ki || = min
k∈[0,Ki]

||mi,k||

≤ ||mi,R||

≤ ||mi,R −∇fβi

(xi,R)||+ ||∇fβi

(xi,R)||,

(30)
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where R ∼ U [0,Ki]. Now, probabilistic upper bounds on the number Ki required to obtain that

both terms in the right-hand side of the previous inequality are below Lβi

4β0 . For the first term of the

right-hand side in Equation (30), using the specified value of si,01 , si,02 and βi, Lemma 4.16 ensures

that

P
(
||mi,R −∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4
i

(
3

√
si,02 (n+ 4)

√
n+

10nsi,01
si,02

)

≤ O

(
n
√
n(i+ 1)

3
2

K
1
4
i

)
.

The second term of the right-hand side in Equation (30) depends on the value of I. For subproblems

i ≤ I, it follows by Markov’s inequality and Theorem 4.9 that

P
(
||∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
E[||∇fβi

(xi,R)||]

≤ 4β0

βi

(
Di

f

si,01
+

nsi,01
2

H
(− 3

2 )

k + ln(Ki)

(
6

√
si,02 (n+ 4)

√
n+

40si,01 n

si,02

))

≤ O

max

(
n(i+1)

7
2

L , n
√
n ln(Ki)(i+ 1)

3
2

)
K

1
4
i

 .

For subproblems i > I, Lemma 4.15 ensures that

P
(
||∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

βiK
1
4

(Ai +Bi),

where Ai and Bi are given in Equation (28). Now, given condition on Ki, it follows that

Ai = ρn(i+ 1)3/2
(

1

i2
+

6

s2i2
+

2

i2(i+ 1)

)
and

Bi =
H

(− 3
2 )

k

2(i+ 1)3/2
+ ln(Ki)

(
6n

√
n+ 3

√
s2√

i+ 1
+

12

s2
√
i+ 1

)
.

Thus, we obtain

P
(
||∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ O

(
n
√
n(i+ 1)

3
2 ln(Ki)

K
1
4
i

)
. (31)

Therefore, to obtain ||mi,Ki || ≤ Lβi

4β0 , it takes at most

Ki =

{
O
(
max

(
n4(i+ 1)14, n6(i+ 1)6

))
if i ≤ I

O
((
n6(i+ 1)6

))
otherwise,

iterations. Thus, by taking i∗ ≥
√

L
ϵ , it follows that the number of iterations needed to reach the

subproblem i∗ is

i∗∑
i=1

Ki =

I∑
i=1

Ki +

i∗∑
i=I+1

Ki

= O
(
max

(
n4(I + 1)15, n6(I + 1)7

))
+O(n6(i∗)7)

= O

(
n6L7/2

ϵ7/2

)
,

(32)
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where I is a constant with respect to ϵ. Once this number of iterations is reached, it follows that

||mi∗,0|| ≤ L
(i∗+1)2 ≤ ϵ and by Lemma 4.13

||∇fβi∗

(xi∗,Ki∗ )|| ≤ L

(i∗ + 1)2
+

L
√
i∗ + 1(i∗)

3
2

≤ 2ϵ.

For the second part of the proof, the bounds on Equation (30) does not depend on the value of I since

fβi

is assumed convex for any i ∈ N. With the setting in Equation (23), it follows that

P(||∇fβi

(xi,R)|| ≥ Lβi

4β0
) ≤ 4β0

βi
E[||∇fβi

(xi,R)||] ≤ 16
n
√
n(i+ 1)2

K
1
3
i

and

P
(
||mi,R −∇fβi

(xi,R)|| ≥ Lβi

4β0

)
≤ 4β0

Lβi
n
√
nL

∑Ki−1
k=0

2ρ

Γk+1(k+1)
4
3∑Ki−1

k=0
2ρ

Γk+1(k+1)

≤ 8
n
√
n(i+ 1)2

K
1
3
i

,

where the first inequality follows by Theorem 4.11 and the second one by the definition of the probabilty

density of R together with Propositions 4.5 and 4.8. Therefore it takes at most Ki = O(n
9
2 (i+1)6) to

obtain ||mi,Ki || ≤ Lβi

4β0 . Thus, by taking i∗ ≥
√

L
ϵ , it follows that the number of iterations neaded to

reach the subproblem i∗ is
i∗∑
i=1

Ki = O(n
9
2 (i∗)7) = O

(
n

9
2L

7
2

ϵ
7
2

)
.

It remains to apply the Lemma 4.13 as previously to complete the proof.

We would like to make few remarks about this theorem. First, in the algorithm, one approach to

satisfy the condition Ki ≥ (i + 1)6 for any i ∈ N is to incorporate it into the stopping criterion of

Algorithm 1. However, due to the limited number of iterations in practice, this condition is typically

replaced by a weaker one,Ki ≥ M , whereM > 0 is a constant. Second, the main result of Theorem 4.13

establishes an ϵ convergence rate for a single run of the SSO algorithm, which is the first of its kind to

the best of our knowledge. This was made possible by decomposing the problem given in Equation (1)

into a sequence of subproblems, each of which is solved using carefully chosen stopping criteria and

step sizes. It is worth noting that, in [18], the (ϵ,Λ)-solution of the norm of the gradient is obtained

after at most O
(

nL2σ2

ϵ4

)
. Although this bound has a weaker dependence on n and L, it is worse in

terms of ϵ. Third, the first term in Equation (32) may be significant even if it is a fixed constant,
particularly if the ball where the function becomes convex is difficult to reach, indeed this constant

disappears when fβi

is convex for any i. Nevertheless, the bounds given are the worst one, they may

be considerably smaller in practice. Moreover, a way to decrease this term is to decrease the power on

i in the denominator of βi, si,01 and si,02 but it decrease the asymptotic rate of convergence. Finally,

the process used in the SSO algorithm may be extended to other momentum-based methods and give

an appealing property for these methods compared to the classical SGD.

5 Numerical experiments

The numerical experiments are conducted for two bounded constrained blackbox optimization prob-

lems. In order to handle the bound constraints x ∈ [ℓ,u] ⊂ Rn, the update in Equation (9) is simply

projected such that x = min(ℓ,max(x,u)).

5.1 Application to a solar thermal powerplant

The first stochastic is SOLAR2 [17], which simulates a thermal solar power plant and contains several

instances allowing to choose the number of variables, the types of constraints and the objective function

2https://github.com/bbopt/solar
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to optimize. All the instances of SOLAR are stochastics have nonconvex constraints and integer

variables. In this work, the algorithms developed does not deal with this type of problem. Therefore

the problem is slightly modified: the integer variables are fixed to their initial value and the problem

aims to obtain a feasible solution by optimizing the remainding variables. Numerical experiments are

conducted for the second instance of the SOLAR framework, which considers 12 variables (2 integers)

and 12 constraints:

min
x∈[0,1]12

E

 m∑
j=1

max(0, cj(x, ξ))
2


where the cj are the original stochastic constraints and the bound constraints have been normalized.

The second instance of SOLAR is computationally expensive; a run may take between several seconds

and several minutes. Therefore, the maximum number of function evaluations is set to 1000. Four

algorithms are used:

• SSO, whose the hyperparameters values are given in Table 4. The search step given in Algorithm 2

is used for this experiment. A truncated version of the Gaussian gradient based estimate is used

for this experiment.

• ZO-AdaMM [13] which is a the zeroth order version of the original Adam algorithm. This

algorithm appears as one of the most effective according to [13, 28] in terms of distortion value,

number of function evaluations and success rate. The default parameters defined experimentally

in [13] are used on this problem except that β = 0.05 and the learning rate is equal to 0.3.

Moreover, the same gradient estimator that ZO-Signum is used to eliminate its impact on the

performance.

• CMA-ES [20] an algorithm based on biological inspired operators. Its name comes from the

adaptation of the covariance matrix of the multivariate normal distribution used during the

mutation. The version of CMA-ES used is the one of the pymoo [8] library with the default

setting.

• The NOMAD software [26], which is based on the Mesh Adaptive Direct Search (MADS) [1]

algorithm, a popular blackbox optimization solver.

The results are presented in Figure 2, which plots the average best result obtained by each algorithm

with five different seeds. In this experiment, SSO obtains similar performance to NOMAD and CMAES

which are state of the art algorithms for this type of problem. ZO-adaMM has difficulty to converge

even though it is a ZO algorithm.

Figure 2: Average of 5 different seed runs for the NOMAD, CMAES, SSO and ZO adaMM algorithms.
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5.2 Application to blackbox adversarial attack

This section demonstrates the competitiveness of the SSO algorithm through experiments involving

the generation of blackbox adversarial examples for Deep Neural Networks (DNNs) [43]. Generating

an adversarial example for a DNN involves adding a well-designed perturbation to the original legal

input to cause the DNN to misclassify it. In this work, the attacker considers the DNN model to

be unknown, hence the term blackbox. Adversarial attacks against DNNs are not just theoretical,

they pose a real safety issue [32]. Having an algorithm that generates effective adversarial examples

enables modification of DNN architecture to enhance its robustness against such attacks. An ideal

adversarial example is one that can mislead a DNN to recognize it as any target image label, while

appearing visually similar to the original input, making the perturbations indiscernible to human

eyes. The similarity between the two inputs is typically measured by an ℓp norm. Mathematically,

a blackbox adversarial attack can be formalized as follows. Let (y, ℓ) denote a legitimate image y

with the true label ℓ ∈ [1,M ], where M is the total number of image classes. Let x denote the

adversarial perturbation; the adversarial example is then given by y′ = y+ x, and the goal is to solve

the problem [13]

min
x

λf(y + x) + ||x||2

subject to (y + x) ∈ [−0.5, 0.5]n,

where λ > 0 is a regularization parameter and f is the blackbox attack loss function. In our experi-

ments, λ = 10 and the loss function is defined for untargeted attack [10], i.e,

f(y′) = max{Z(y′)ℓ −max
j ̸=ℓ

Z(y)j , 0},

where Z(y′)k denotes the prediction score of class k given the input y′. Thus, the minimum value of

0 is reached as the perturbation succeeds to fool the neural network. The experiments of generating

blackbox adversarial examples will be performed firstly on an adapted AlexNet [25] under the dataset

Cifar10 and secondly on InceptionV3 [41] under the dataset ImageNet [16]. Since the NOMAD algo-

rithm is not suitable to the size of this problem, three algorithm are compared : SSO (without search),

ZO-ADAMM and CMA-ES. In the experiments, the hyperparameters of the algorithm ZO-adaMM

are taken as in [13], those of SSO are given in Table 4 and the uniform gradient based estimate is used

for both algorithms. Moreover, for the Cifar10 dataset, different initial learning rates for ZO-adaMM

are used to observe its influence on the success rate. The experiments are conducted for 100 randomly
selected images with a starting point corresponding to a null distortion, the maximum number of func-

tion queries is set to 5000. Thus, as the iteration increases, the attack loss decreases until it converges

to 0 (indicating a successful attack) while the norm of the distortion could increase. In this sense,

the best attack performance should correspond to the best trade-off between a fast convergence to a 0

attack loss in term of function evaluations, a high rate of success, and a low distortion (evaluated by

the ℓ2-norm).

The results for the Cifar10 dataset are given in Table 2. Except for ZO-adaMM with an initial

learning rate equal to 0.01, all the algorithms achieve to have success rate above 95%. Among these

algorithms, ZO-adaMM with a learning rate equal to 0.05, has the best convergence rate in terms of

function evaluations but has the worst value of distortion. On the contrary, CMA-ES obtains the best

value of distortion but has the worst convergence rate. The SSO algorithm obtains balanced results,

and is the only one that reaches full success rate.

For the ImageNet dataset, the results are given in Table 3. Only two algorithms are compared since

the dimension is too large to consider inverting the covariance matrix in CMA-ES. For this dataset,

ZO-adaMM and SSO have the same convergence rate. However, SSO outperforms ZO-adaMM in term

of success rate while having a slightly higher level of distortion.
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Table 2: Results of blackbox adversarial attack for the Cifar10 dataset (n = 3× 32× 32)

Method Attack success rate ||ℓ2|| first success
Average # of function

evaluations

ZO-adaMM lr = 0.01 79 % 0.14 582
ZO-adaMM lr = 0.03 96% 0.97 310
ZO-adaMM lr = 0.05 98% 2.10 215
CMAES σ = 0.005 99% 0.33 862
SSO 100% 0.55 442

Table 3: Results of blackbox adversarial attack for the ImageNet dataset (n = 3× 299× 299)

Method Attack success rate ||ℓ2|| first success
Average # of function

evaluations

ZO-adaMM lr = 0.01 59 % 19 1339
SSO 73 % 33 1335

6 Concluding remarks

This paper presents a method for stochastic blackbox optimization in scenarios where function eval-

uations are computionally expensive. The approach relies on using zeroth-order gradient estimates,

which offer three main advantages. Firstly, they require only a small number of function evaluations

to estimate the gradient, regardless of the problem’s dimension. Secondly, under mild conditions on

the noised objective function, the problem can be formulated as optimizing a smoothed functional.

Thirdly, the smoothed functional, with respect to the value of the smoothing parameter, may appear

to be locally convexified near local minima.

Based on these three features, the SSO algorithm was developed. This algorithm is a sequential

one and comprises two steps. The first is an optional search step that improves the exploration of

the decision variable space and the algorithm’s efficiency. The second is a local search which ensures

the convergence of the algorithm. In this step, the original problem is decomposed into subproblems

solved by a ZO-version of a sign stochastic descent with momentum algorithm. As the momentum is an

exponential moving average of the gradient estimates, it is used to consider a subproblem approximately

solved. More specifically, when the momentum’s norm falls below a certain threshold that depends on

the smoothing parameter, the subproblem is considered solved. The smoothing parameter’s value is

then decreased, and the SSO algorithm moves on to the next subproblem.

A theoretical analysis of the algorithm is conducted. Firstly, under Lipschitz continuity of the noisy

function, a convergence rate in expectation of the ZO-Signum algorithm is derived. Secondly, under

additional assumptions of smoothness and convexity or local convexity of objective function near its

minima, an convergence rate of the SSO algorithm to an ϵ-optimal point of the problem is derived,

which is, to the best of our knowledge, the first of its kind.

Finally, numerical experiments are conducted on a solar power plant simulation and adversarial

blackbox attacks. Both examples are computationally expensive, the former is a lower size problem

(n ≈ 10) and the latter is larger size problem (up to n ≈ 105). The results demonstrate the SSO

algorithm’s competitiveness in both performance and convergence rate compared to state-of-the-art

algorithms. Further work will be devoted to extending this approach to constrained stochastic opti-

mization.
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Appendix A Proof of Proposition 4.1

Proposition A.1 ([6]). For the subproblem i ∈ N, under Assumption 1 and in the setting of Algo-

rithm 1, we have

si,k1 E[||∇fβi

(xi,k)||1] ≤E[fβi

(xi,k)− fβi

(xi,k+1)] +
nL1(f

βi

)

2
(si,k1 )2

+ 2si,k1 E[||m̄i,k+1 −∇fβi

(xi,k)||1]︸ ︷︷ ︸
bias

+2si,k1
√
n
√
E[||mi,k+1 − m̄i,k+1||22]︸ ︷︷ ︸

variance

(33)

where m̄i,k+1
j is defined recursively as m̄i,k+1

j = si,k2 ∇fβi

(xi,k) + (1− si,k2 )m̄i,k
j .

Proof. By L1(f
βi

)-Lipschitz smoothness of fβi

(see Lemma 2.1.3) , it follows that

fβi

(xi,k+1) ≤fβi

(xi,k) + ⟨∇fβi

(xi,k),xi,k+1 − xi,k⟩+ L1(f
βi

)

2
||xi,k+1 − xi,k||22

=fβi

(xi,k)− si,k1 ⟨∇fβi

(xi,k), sign(mi,k)⟩+ L1(f
βi

)(si,k1 )2

2
||sign(mi,k)||22

=fβi

(xi,k)− si,k1 ||∇fβi

(xi,k)||1 +
nL1(f

βi

)

2
(si,k1 )2

+ 2si,k1

n∑
j=1

|∇jf
βi

(xi,k)|1{sign(mi,k+1
j ) ̸= sign(∇jf

βi

(xi,k))},

where 1{·} is the indicator function. Now, as in [6, 27], the expected improvement conditioned on xi,k

is given by

E[fβi

(xi,k+1)− fβi

(xi,k)|xi,k] ≤− si,k1 ||∇fβi

(xi,k)||1 +
nL1(f

βi

)

2
(si,k1 )2 (34)

+ 2si,k1

n∑
j=1

|∇jf
βi

(xi,k)|E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi

(xi,k))}|xi,k]. (35)

Again, as in [6, 27], the expectation that the sign of mi,k+1
j be different of the sign of ∇jf

βi

(xi,k) is

relaxed by considering that the set

{mi,k+1
j : sign(mi,k+1

j ) ̸= sign(∇jf
βi

(xi,k)} ⊂ {mi,k+1
j : |mi,k+1

j −∇jf
βi

(xi,k)| ≥ |∇jf
βi

(xi,k)|}.

Therefore, it follows that

E[1{sign(mi,k+1
j ) ̸= sign(∇jf

βi

(xi,k))}|xi,k] ≤ E[1{|mi,k+1
j −∇jf

βi

(xi,k)| ≥ |∇jf
βi

(xi,k)|}|xi,k] (36)

≤
E[|mi,k+1

j −∇jf
βi

(xi,k)| |xi,k]

|∇jfβi(xi,k)|
, (37)

where the second inequality comes from conditional Markov’s inequality. Substituting Equation (37)

into Equation (35) and taking expectation over all the randomness we obtain

E[fβi

(xi,k+1)− fβi

(xi,k)] ≤− si,k1 E[||∇fβi

(xi,k)||1] +
nL

2
(si,k1 )2

+ 2si,k1

n∑
j=1

E[|mi,k+1
j −∇jf

βi

(xi,k)|].
(38)

Moreover, by adding and subtracting m̄i,k+1 in the terms of the sum of Equation (38),

n∑
j=1

E[|mi,k+1
j −∇jf

βi

(xi,k)|] = E[||mi,k+1 − m̄i,k+1 + m̄i,k+1 −∇fβi

(xi,k)||1]
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≤
√
nE[||mi,k+1 − m̄i,k+1||2] + E[||m̄i,k+1 −∇fβi

(xi,k)||1]

≤
√
n
√
E[||mi,k+1 − m̄i,k+1||22] + E[||m̄i,k+1 −∇fβi

(xi,k)||1],

where the first inequality comes from || · ||1 ≤
√
n|| · ||2 and the second one from Jensen’s inequality.

Finally, incorporating the last inequality in Equation (38) completes the proof.

Appendix B List of hyperparameters for the SSO algorithm

Table 4: List of hyperparameters for the SSO algorithm

Problem βi si,k1 si,k2 M q

Cifar10 0.005
(i+1)2

0.005

(i+1)
3
2
√
k+1

0.9

(i+1)(k+1)
1
4

60 10

ImageNet 0.001
(i+1)2

0.003

(i+1)
3
2
√
k+1

0.7

(i+1)(k+1)
1
4

100 10

Solar 0.3
(i+1)2

0.1

(i+1)
3
2
√
k+1

0.5

(i+1)(k+1)
1
4

5 10
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