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Abstract : Given a ground-set of elements and a family of subsets, the set covering problem consists
in choosing a minimum number of elements such that each subset contains at least one of the chosen
elements. This research focuses on the set covering polytope, which is the convex hull of integer
solutions to the set covering problem. We investigate the connection between the study of the facets of
the set covering polytope and tilting theory. This theory studies how inequalities can be rotated around
their contact points with a polyhedron in order to obtain inequalities inducing higher dimensional faces.
To study this connection, we introduce the concept of tilting vectors which characterize the degrees of
freedom of rotation of an inequality. These vectors characterize facet-defining inequalities and can be
used to tilt inequalities with a similar procedure to the one used for arbitrary polyhedra. Additionally,
we demonstrate that the computational effort needed to tilt an inequality can be reduced when the
inequality has many null coefficients. Finally, we use the tilting vectors to extend several necessary
and/or sufficient conditions for facets of the set covering polytope presented by several previous works
of the literature.

Keywords : Set covering, facets, tilting, valid inequalities
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1 Introduction

Given a ground-set E of elements and a family S of subsets of E , the set covering problem consists in

choosing a minimum number of elements of E such that each subset in S contains at least one of the

chosen elements. A feasible set of chosen elements is referred to as a cover.

To model this problem, one can use a binary matrix B whose columns are indexed by the elements

e P E and rows by the subsets s P S. The coefficient Bse indicates whether the subset s contains the

element e. If xe takes the value 1 when element e is chosen, then the set covering problem can be

modeled using the following mixed integer linear program:

min
x

1x (1a)

subject to Bx ě 1 (1b)

x P t0, 1u|E|. (1c)

The set covering problem arises in many applications in a wide variety of fields such as logistics

management (Mihelic and Robic, 2004; Cacchiani et al., 2014), crew scheduling (Caprara et al., 1999),

manufacturing (Stanfel, 1989), data extraction and manipulation (Day, 1965), and medicine (Reggia

et al., 1983). Thus, understanding the structural properties of this problem and their impact on solution

methods has very broad implications. Mathematically, we study the properties of the associated

set covering polytope QpBq which is the convex hull of the set P “ tx P t0, 1u|E| : Bx ě 1u. A

comprehensive polyhedral description ofQpBq via valid inequalities would allow solving the set covering

problem using classical linear programming tools. However, even a partial description of the polytope

would enable the design of fast and scalable enumeration-based methods.

Numerous families of valid inequalities have already been proposed in the literature (see the thesis

of Borndörfer (1998) for an overview). A central question regarding these valid inequalities is whether

they induce facets of the polytope QpBq, i.e., whether they are necessary to describe the polytope.

There have been studies on proposing valid inequalities along with the conditions under which they

induce facets of the set covering polytope (Cornuéjols and Sassano, 1989; Nobili and Sassano, 1989;

Balas and Ng, 1989).

Other polyhedral studies have approached the question by describing necessary and/or sufficient

conditions for known valid inequalities to induce facets of QpBq. In this line of work, it is worth

mentioning that Balas and Ng (1989) characterized all the facets having coefficients and right-hand

sides in t0, 1, 2u. Similarly, Sánchez-Garćıa et al. (1998) and Saxena (2004) gave necessary and sufficient

conditions for the inequalities with coefficients and right-hand sides in t0, 1, 2, 3u to be facets. Another

class of inequalities for which the characterization of facets has been studied is the rank inequalities,

i.e., inequalities with binary coefficients but with arbitrary right-hand sides. Cornuéjols and Sassano

(1989) proposed a necessary condition for these inequalities to be facets, while Sassano (1989) proposed

a sufficient condition.

Instead of directly proposing facets of QpBq, a complementary approach to finding facets of QpBq is

to use dominance arguments to derive stronger inequalities from inequalities that are not facet defining.

The approach referred to as lifting answers this question by posing the problem of finding the best

set of coefficients for an inequality as a series of mixed-integer optimization problems (Padberg, 1973;

Wolsey, 1976). More recently, Chvátal et al. (2013) introduced a more general approach called tilting.

The authors show that a non-facet defining valid inequality can be rotated around its contact points

with the polyhedron and remain valid. They also describe a procedure to perform the largest such

rotation and show that the resulting inequality induces a face of higher dimension. Thus, by applying

this procedure at most as many times as the dimension of the ambient space, one ends up with a facet-

defining inequality. The number of linearly independent axes on which a rotation can be performed

corresponds to the degrees of freedom associated with the possible rotations.
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In this work, we aim to deepen the understanding of the set covering polytope QpBq for inequalities

with arbitrary coefficients. To that end, we introduce a new mathematical object for the study of the

facets of the set covering polytope: the tilting vectors. The tilting vectors characterize the degrees of

freedom on the possible rotations of a valid inequality. A facet-defining inequality has zero degrees

of freedom. A valid inequality with f ą 0 degrees of freedom is associated with a vector space of

tilting vectors of dimension f . These tilting vectors can be used to generate tighter valid inequalities,

inducing faces of higher dimensions. The main contributions of this paper are:

• We study the properties of tilting vectors and their relationship with facet-defining inequalities

for the set covering polytope. In particular, we study how tilting vectors characterize facets.

• Given a non-facet defining valid inequality πx ě π0 and a tilting vector, we show how to obtain

an inequality µx ě µ0 inducing a face of higher dimension. Moreover, our procedure allows us

to preserve the following separation property: if in addition to pπ, π0q we are also given a point

x˚ such that πx˚ ă π0, then our procedure constructs pµ, µ0q such that µx˚ ă µ0. We establish

a relationship between the proposed procedure and that of Chvátal et al. (2013).

• We highlight that each null coefficient in a valid inequality may be associated to a specific tilting

vector and that all the remaining tilting vectors have their support included in the support of

the inequality. The implications are twofold. First, one can reduce the study of facets from

general inequalities to inequalities without null coefficients. Second, the number of computations

required to tilt a sparse inequality is significantly reduced as compared to the dense case.

• We use the proposed techniques to extend several results from the set covering literature. In par-

ticular, we extend to inequalities with arbitrary coefficients the necessary and sufficient conditions

that Cornuéjols and Sassano (1989) and Sassano (1989) initially stated for rank inequalities. We

also provide an alternative proof for the characterization introduced by Balas and Ng (1989) for

the facet-defining inequalities with coefficients and right-hand side in t0, 1, 2u. Finally, we extend

the results of Balas and Ng (1989) by characterizing the tilting vectors for these inequalities.

The remainder of this article is organized as follows. We begin by introducing notations and basic

results in Section 2. In Section 3, we present the main results of the tilting theory introduced by Chvátal

et al. (2013). Section 4 is dedicated to the introduction of the tilting vectors, their properties, and

their specific use in the context of set covering. We then focus in Section 5 on how to exploit the null

coefficients of set covering inequalities. In Section 6, we extend the necessary and sufficient conditions

of Cornuéjols and Sassano (1989) and Sassano (1989) for rank inequalities to general inequalities.

This last section also contains an extension of the work of Balas and Ng (1989) on inequalities with

coefficients and right-hand sides in t0, 1, 2u. Finally, Section 7 concludes this article.

2 Notations and preliminaries

Following the notations in Sassano (1989); Cornuéjols and Sassano (1989), a set covering instance is

associated with a bipartite graph G “ pE ,S, Aq. The arc set A is composed of the pairs pe, sq P E ˆ S
such that e P s. In this case, a cover is a subset of nodes of E such that all nodes in S is connected to

at least one node in the cover. An illustrative example can be found in Figure 1.

e1e2e3

s1s2s3

Figure 1: The bipartite graph associated to a set covering instance where E “ t1, 2, 3u and S “ tt1, 2u, t1, 3u, t2, 3uu.
An example of cover (circled) is t1, 2u
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For a given subset E Ď E , NpEq “ ts P S|De P E, pe, sq P Au denotes the neighbors of the elements

in E. In this context, a cover can equivalently be defined as a set of nodes in E whose set of neighbors

is S. We will denote QpGq the polytope of a set covering instance associated with a bipartite graph G.

Given a polyhedron Q and a valid inequality αx ě k for this polyhedron, the face associated to this

inequality is F “ tx P Q|αx “ ku. A facet of a polyhedron is a face whose dimension is the dimension

of the polyhedron minus one. To prevent our explanations from becoming too heavy and uneasy to

read, we will not always differentiate the inequalities from the face they induce on the polyhedron

QpGq. For the same reason, we will not always differentiate covers from their incidence vectors. This

allows us, for example, to abuse the vocabulary and say that some covers are affinely independent or

that an inequality is a facet.

For any vector α P R|E| and any sub-family S Ă S, we will denote by γpα, Sq the minimum value

of αx over the binary vectors x P t0, 1u|E| representing a set of elements covering all the subsets in

S. For simplicity, we will use γpαq in place of γpα,Sq. In this work, when considering an inequality

αx ě k, we assume that its right-hand side is minimum, i.e., k “ γpαq “ minxPQpGq αx. To make this

explicit, from now on we will denote αx ě γpαq everywhere. Moreover, for a vector α and an integer

p, we denote Eppαq “ te P E |αe “ pu the set of indices for which α has coefficient p.

A central object to the analysis of the strength of an inequality αx ě γpαq is the set of covers

that satisfy this inequality to equality. This set is denoted C“pαq and contains most of the relevant

information about the inequality. In particular, by definition, the inequality is a facet if and only if

there are |E | affinely independent covers in C“pαq.

We now state a proposition taken from Nobili and Sassano (1989) that highlights some basic

properties of the set covering polytope.

Proposition 1 (Nobili and Sassano (1989)).

1. QpGq is empty if and only if at least one subset in S is empty;

2. QpGq is full-dimensional if and only if no subset in S is a singleton.

If QpGq is full-dimensional then, for each e P E:

1. the inequality xe ě 0 defines a (trivial) facet of QpGq unless for some subset s P S, szteu is a

singleton;

2. the inequality xe ď 1 defines a (trivial) facet of QpGq;

3. every non-trivial facet of QpGq is defined by an inequality of the form αx ě γpαq where α ě 0

and γpαq ą 0;

From now on, we will consider that the set covering polytope QpGq is full-dimensional. This

happens if and only if no subset in S is a singleton and one can reduce any set covering instance to

this case by setting to one the variable corresponding to elements present in singleton. Moreover, we

will assume when considering an inequality αx ě γpαq that α ě 0, γpαq ą 0.

3 Tilting for general polyhedra

In this section, we present the tilting procedure introduced by Chvátal et al. (2013). Let Q Ă Rn

be a polyhedron and let αx ě γpαq be a valid inequality separating a point from Q and inducing a

face F . The main idea of tilting is to rotate the inequality around its contact points Q in order to

create a separating inequality inducing a face of dimension higher than the one of F . This process

can be repeated until a facet is obtained. Let us now formally introduce the concept of rotation of an

inequality around a set of points.

Definition 1. Let πx ě π0 be an inequality satisfied at equality by a set of points X, i.e., X Ď

tx P Rn : πx “ π0u. A rotation of πx ě π0 around X is another inequality µx ě µ0 such that

X Ď tx P Rn : µx “ µ0u.
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Now let QK be the vector space defining the implicit equations of Q, i.e., QK is the set of the

vectors q for which qx is constant over Q. Also assume that we know a set tx1, ..., xIu of affinely

independent vectors of the face F and a set tq1, ..., qKu of linearly independent vectors of QK. They

can both be empty initially and their size is denoted by I and K, respectively. By definition, a facet

of Q is a face of Q that contains dimpQq affinely independent points. Since dimpQq ` dimpQKq “ n,

if we can tilt the inequality αx ě γpαq while extending the sets tx1, ..., xIu and tq1, ..., qKu until their

sizes I and K sum to n, the resulting tilted inequality will be a facet of Q.

Tilting the inequality αx ě γpαq corresponds to rotating it around its contact points with Q.

Instead of considering all the possible degrees of freedom of rotation at once we will consider only one

degree of freedom at a time and characterize it with a tilting direction. Formally, a tilting direction is

a tuple pβ, µq P Rn ˆ R such that

βxi “ µ @i P t1, ..., Iu. (2a)

One can construct rotations of the inequality αx ě γpαq by taking any linear combination of the

inequalities αx ě γpαq and βx ě µ. In particular, for a scalar λ, let us denote Ipλ, α, β, µq the

following rotation:

pλα ` p1 ´ λqβqx ě λγpαq ` p1 ´ λqµ (3)

When no confusion is induced, we will simply use Ipλq instead of Ipλ, α, β, µq. Using the above concepts

and a procedure illustrated in Algorithm 1, one can tilt an inequality until it becomes a facet. In the

remainder of this section, we detail each step of the procedure.

Algorithm 1 Sketch of the tilting procedure

Step 0: Check whether αx ě γpαq is an implicit equation of Q;
while I ` K ă n do Ź I “ |tx1, ..., xIu| and K “ |tq1, ..., qKu

Step 1: Obtain a tilting direction pβ, µq;
Step 2: Compute λ˚ the smallest scalar such that Ipλ˚q is valid for Q.

At the same time a point x˚ P Q affinely independent from
tx1, ..., xIu and satisfying Ipλ˚q to equality will be computed;

if Ipλ˚q is an implicit equation of Q then
Step 3a: add the coefficient vector Ipλ˚q to tq1, ..., qKu;

else Ź Ipλ˚q is a proper face of Q
Step 3b: add x˚ to tx1, ..., xIu and replace the inequality

to be tilted by Ipλ˚q

Step 0. Check whether αx ě γpαq is an implicit equation of Q: this can be done by

maximizing αx over Q. If the optimal value is γpαq, then αx ě γpαq is an implicit equation. Otherwise,

as a by-product, the maximization yields a point sx of Q satisfying αsx ą γpαq. This makes sx affinely

independent from the face F .

Step 1. Obtaining a tilting direction: to that end, let us consider a non-null solution pβ, µq

of the following system:

βqk “ 0 @k P t1, ...,Ku (4a)

βxi “ µ @i P t1, ..., Iu (4b)

βsx “ µ. (4c)

Note that if the system above admits the null vector as a unique solution, then the inequality αx ě γpαq

is already a facet (Chvátal et al., 2013).

Step 2. Tilt the inequality: Upon finding a tilting direction pβ, µq, we find the smallest scalar

λ˚ such that the inequality Ipλ˚q remains a valid inequality for Q. The resulting inequality is called

the tilted inequality. Note that λ˚ must be greater than 0 because for all λ ă 0, Ipλq is not valid for
sx and thus not valid for Q. An illustration of an original inequality, a tilting direction pβ, µq and a

tilted inequality is provided in Figure 2. This tilting step revolve around the following central result

of the tilting routine.
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α

β

λ˚α ` p1 ´ λ˚qβ

sx

x1

x˚

Figure 2: A valid inequality (blue) for a polyhedron with normal vector α, a tilting direction β (green) and the corresponding
tilted inequality (red)

Theorem 1. The tilted inequality Ipλ˚q is satisfied to equality by a point x˚ of Q affinely independent

from tx1, ..., xIu.

Proof. Let us first exclude the case λ˚ “ 0 since in this case we can take x˚ “ sx.

Let pλjqjPN be a sequence converging towards λ˚ with λ˚ ą λj ą 0. By definition of λ˚, for every

term in this sequence, the inequality Ipλjq is not valid for Q. Thus, let us associate each λj with a

point yj of Q not satisfying the inequality Ipλjq. Let us note that since the inequality Ipλjq is not

valid for Q, either a vertex of Q does not satisfy it, in which case, we set yj equal to this vertex; or an

extreme ray of Q exists such that pλjα` p1´ λjqβqr ă 0, in which case, we set yj to be xI ` r (which

does not satisfy Ipλjq since xI satisfies it to equality).

Now, since there is only a finite number of vertices and extreme rays of Q, the sequence pxjqjPN is

a converging sequence over a finite set. Thus, it contains a constant sub-sequence. Let us define the

candidate point x˚ as the unique point in this constant sub-sequence and let us denote pλ1
jqjPN the

associated sub-sequence of λj .

If x˚ could be written as an affine combination of the points in tx1, ..., xIu then it would satisfy to

equality all the inequalities Ipλ1
jq. Since this is not true by construction of the sequence pxjqjPN and

thus by construction of x˚, the point x˚ is affinely independent from tx1, ..., xIu.

Let us now finish the proof by showing that x˚ is satisfying the tilted inequality Ipλ˚q to equality.

To that end let us denote δpλq “ pλα ` p1 ´ λqβqx˚ ´ λγpαq ` p1 ´ λqµ. Since the tilted inequality

Ipλ˚q is valid for Q we have δpλ˚q ě 0. Moreover, since the sequence pλ1
jqjPN converges towards λ˚

and x˚ does not satisfy Ipλ1
jq, the sequence pδpλ1

jqqjPN is a sequence of negative numbers converging

towards δpλ˚q. Thus, δpλ˚q “ 0 which means that the point x˚ satisfies the tilted inequality Ipλ˚q to

equality.

The result of Theorem 1 relies on two properties of the point sx: sx P Q and sx is affinely independent

from tx1, ..., xIu, which is implied by the fact that this point does not satisfy the inequality αx ě γpαq

to equality. To perform the computation of λ˚ one can solve a non-linear program or make a sequence

of calls to an oracle optimizing a linear function over Q. These methods also provide the point x˚ as a

by-product. We refer to the works of Espinoza et al. (2010) and Chvátal et al. (2013) for a presentation

on how to compute λ˚ for general polyhedra. A tailored method for the set covering case is discussed

in Section 4.4.
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Step 3a. Case: Ipλ˚q is an implicit equation of Q: this can be identified by maximizing

pλ˚α ` p1 ´ λ˚qβqx over Q. If the result of this maximization equals λ˚γpαq ` p1 ´ λ˚qµ, then the

tilted inequality is an implicit equation of Q. Otherwise, it induces a proper face. Note that, when

Ipλ˚q is an implicit equation, we have λ˚ “ 0 as otherwise sx can be shown to satisfy αsx “ γpαq (which

is by hypothesis false) using the following identities:

αsx “
λ˚αsx

λ˚

“
pλ˚α ` p1 ´ λ˚qβqsx ´ p1 ´ λ˚qβsx

λ˚

“
λ˚γpαq ` p1 ´ λ˚qµ ´ p1 ´ λ˚qµ

λ˚

“γpαq.

Thus, in this case the tilted inequality Ipλ˚q is in fact βx ě µ. Equations (4a) ensure that β is

linearly independent from the set tq1, ..., qKu. It can thus be added to it as a new independent implicit

equation. The known dimensions of the space of implicit equations has been increased and one can

retry tilting the inequality αx ě γpαq with a new solution of system (4a)–(4c) once it has been updated

with the new implicit equation. The point sx can remain unchanged.

Step 3b. Ipλ˚q is a proper face of Q: Since Ipλ˚q is a rotation of the original inequality,

its induced face contains tx1, ..., xIu. Moreover, Theorem 1 shows it also contains a new independent

point x˚. Thus, the point x˚ can be added to tx1, ..., xIu, effectively increasing the known dimensions

of the induced face. One can continue the tilting procedure by tilting the inequality Ipλ˚q. The only

missing piece to continue the procedure is a point sx to define the system (4a)–(4c). If λ˚ ‰ 0, it can

remain unchanged; otherwise sx can be taken as the maximizer of pλ˚α ` p1 ´ λ˚qβqx over Q which

has already been computed to verify if Ipλ˚q is an implicit equation or a proper face of Q.

4 Tilting for set covering

In this section we start by comparing tilting for set covering to tilting in the general case. Then, we

introduce the main concept of this article, the tilting vectors. After presenting how tilting vectors

characterize the dimension of the face induced by an inequality, we discuss how tilting vectors can

be used to tilt inequalities in the context of set covering. Finally, we discuss some computational

aspects of the tilting procedure and show that, in the case of set covering polytopes, our procedure is

particularly efficient to tilt inequalities αx ě γpαq with α sparse.

4.1 Comparison to the general case and definitions

Compared to tilting for general polyhedra, several simplifications occur in the context of set covering.

First, the set covering polytope is compact and always assumed to be full-dimensional. Thus, it has

neither implicit equations, nor extreme rays. Moreover, we will change the assumptions made on

the point sx used in Equation (4c) to define the tilting direction pβ, µq in the general case. We will

use sx “ 0. Amongst the properties required to prove Theorem 1, the origin still satisfies the very

important condition αsx ‰ γpαq (since γpαq ą 0; see Proposition 1). However, it does not belong to

the set covering polytope. This prevents the use of Theorem 1 in tilting for set covering and we will

rely on similar results presented later in this Section. Using the origin, one can simplify Equation (4c)

to µ “ 0 and the whole system (4a)–(4c) reduces to:

βxi “ 0 @i P t1, ..., Iu. (6)

With µ being null, the tilted inequality will have the same right-hand side as the original one. This

makes sense for set covering since all non-trivial valid inequalities have the form αx ě γpαq with α ě 0
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and γpαq ą 0 (see Proposition 1). Thus, one can switch between any two inequalities by changing

only the variable coefficients since, by re-scaling the inequality, one can ensure that the right-hand side

remains constant.

Because we are not only interested in tilting per se but also in its relationship with the charac-

terization of facets, we will assume that we have complete information about the face induced by the

inequality αx ě γpαq. More precisely, the complete set C“pαq is assumed to be known instead of a

subset of affinely independent vectors tx1, ..., xIu. Thus, the system (6) will contain an equation for

each point in C“pαq. This basically ensures that we have a complete description of the face induced

by the inequality that is being tilted. We make this assumption to simplify the presentation but this

hypothesis can be relaxed for the tilting results.

Let us now introduce the main concept of this article, the tilting vectors.

Definition 2. Let αx ě γpαq be a valid inequality for QpGq and let Mα be the matrix whose rows are

the covers in C“pαq. A tilting vector β is a solution of the system Mαβ “ 0.

In other words, a vector β is a tilting vector of the inequality αx ě γpαq if it is orthogonal to all the

covers in C“pαq. Note that, as the solution of a linear system, the set of tilting vectors of an inequality

is a vector space. Moreover, although we should write “the tilting vectors of inequality αx ě γpαq”,

for the sake of brevity, we will omit the reference to the studied inequality when this creates no

confusion. A more graphical way to define tilting vectors, illustrated in Figure 3, is the following. Let

Hpαq “ pE , C“pαqq be the hypergraph with node set E and with each hyper-edge representing a cover

of C“pαq. A tilting vector is an assignment of weights βe to the nodes of Hpαq such that the sum of

the weights on the nodes of each hyper-edge is zero. An illustration of this graphical definition is given

in Figure 3.

e1

e2

e3

e4

e5

s1

s2

s3

s4

s5

s6

(a) An instance of set covering

´1 ´1 ´1

1 1

e1 e2 e3

e4 e5

(b) The hypergraph Hpαq for the inequality x1 ` x2 ` x3 `

x4 ` x5 ě 2 and the coefficients of a tilting vector

e1 e2 e3

e4 e5

(c) The hypergraph Hpαq for the inequality x1 ` x2 ` x3 `

2x4 ` 2x5 ě 3 for which the only tilting vector is null

Figure 3: A set covering instance: hypergraphs and tilting vectors corresponding to two inequalities

What makes the strength of the tilting vectors is that they can be used as tilting directions to obtain

inequalities inducing higher dimensional faces and they are a useful tool to study and characterize the

facets of the set covering polytope. In Section 4.2, we introduce some of their basic relations to facets

and their role in tilting.
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4.2 Characterizing facets with tilting vectors

In this section, we highlight the relationship between the space of tilting vectors of an inequality and

the dimension of the face it induces. We start with a proposition showing that the existence of tilting

vectors characterize whether an inequality is a facet or not.

Proposition 2. Let αx ě γpαq be a valid inequality for QpGq. It is a facet of QpGq if and only if its

only tilting vector is the null vector.

Proposition 2 is a direct corollary of the following theorem linking the dimension of the space of

tilting vectors and dimension of the face induced by an inequality.

Theorem 2. Let αx ě γpαq be a valid inequality for QpGq, let Dα be the dimension of its induced face

and let Dβ be the dimension of the space of its tilting vectors. Then, Dα ` Dβ “ |E | ´ 1.

Proof. By definition, the dimension of the induced face is N ´ 1 where N is the number of affinely

independent points of QpGq that satisfy αx “ γpαq. Let Mα be the matrix whose rows are the covers

in C“pαq, with ImpMαq being its image, i.e., tx|Dy, x “ Mαyu, and KerpMαq being its kernel, i.e.,

tx|Mαx “ 0u. We will show that N “ dimpImpMαqq and, since by definition the space of tilting

vectors is KerpMαq, we obtain from the rank theorem of matrices that dimpImpMαqq ` Dβ “ |E |,

which implies Dα ` Dβ “ |E | ´ 1.

Thus, let us prove that N “ dimpImpMαqq. First, the number of affinely independent points of

QpGq that satisfy αx “ γpαq is also the number of affinely independent covers in C“pαq. Second,

since the null vector does not satisfy α0 “ γpαq, any affinely independent points of the hyperplane

αx “ γpαq are equivalently linearly independent. Thus, N is the number of linearly independent covers

of C“pαq. This is exactly the dimension of ImpMT
α q which is equal to dimpImpMαqq.

Proposition 2 is similar to Lemma 1 from Chvátal et al. (2013) for general tilting. The generalization

from Proposition 2 to Theorem 2 can also be made for arbitrary polyhedra.

4.3 Tilting inequalities

Proposition 2 and Theorem 2 show that the existence of non-null tilting vectors certifies that the

corresponding inequality is not a facet of QpGq. In such case, it would be helpful to derive a facet

or at least a face of higher dimension. This can be achieved by tilting the inequality as presented in

Algorithm 1, but we present here an adaptation for the set covering case. Let us start by defining the

tilting of an inequality as follows.

Definition 3. A tilting of an inequality αx ě γpαq with a tilting vector β is any valid inequality of the

form pα ` ϵβqx ě γpαq where ϵ is a scalar.

As in the general case, the tilted inequality is a rotation of the original inequality around the set

of contact points C“pαq with the polytope QpGq. This is induced by βxc “ 0 for all c P C“pαq in the

definition of the tilting vector β.

The next proposition shows that facets can be obtained in one tilting operation.

Proposition 3. Let αx ě γpαq be a valid inequality for QpGq. For each non-trivial facet containing

C“pαq, there exists a tilting vector that can be used to tilt the valid inequality into the facet.

Proof. Since we are considering non-trivial facets of the set covering polytope, the facet can be written

α1x ě γpαq through the right scaling. Take ϵ “ 1 and β “ α1 ´α as tilting vector. It is indeed a tilting

vector since for each cover c in C“pαq we have βxC “ pα1 ´ αqxc “ γpαq ´ γpαq “ 0.

Although one can obtain any facet containing C“pαq in one tilting operation, this requires the
knowledge of the corresponding tilting vector which can be as difficult to obtain as the facet. However,
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any tilting vector can be used to obtain a face of higher dimension than the one of the original inequality.

Compared to the general case, tilting using tilting vectors does not change the right-hand side of the

inequality. This prevents the tilting operation from reaching the trivial facets (which do not have a

positive right-hand side). Thus, two special cases are required for the two types of trivial facets (x ě 0

and x ď 1). We first present a theorem showing that tilting with tilting vectors does lead to higher

dimensional faces outside of the two special cases. Those cases are dealt with in the subsequent two

theorems. The fact that the tilted inequalities induce higher dimensional faces is to be related to with

the existence the point x˚ affinely independent from tx1, ..., xIu in Theorem 1.

Theorem 3. Let αx ě γpαq be a valid inequality for QpGq such that, for each element e P E, there is

at least one cover in C“pαq that contains e, and one that does not. Let β be a tilting vector for that

inequality. Then, there exist positive numbers ϵ`, ϵ´ such that the tilted inequalities

pα ` ϵ`βqx ě γpαq (7)

pα ´ ϵ´βqx ě γpαq (8)

are both valid inequalities inducing faces of strictly higher dimension.

Proof. Sketch of the proof: we will show that, for ϵ P rϵmin, ϵmaxs, the inequality pα ` ϵβqx ě γpαq is

valid for QpGq. Then we will show that with ϵ´ “ ´ϵmin and ϵ` “ ϵmax, we obtain faces of higher

dimension.

We will make the proof only for ϵ` as the ϵ´ case is similar.

The inequality pα` ϵ`βqx ě γpαq is invalid for a cover c if and only if βxc ă 0 and ϵ` ą
γpαq´αxc

βxc .

Thus, let us define ϵmax as follows:

ϵmax “ min
xcPQpGq,βxcă0

γpαq ´ αxc

βxc

ϵmax positive: there are finitely many covers and for the covers for which γpαq ´ αxc “ 0 we

also have βxc “ 0. Thus, ϵmax is the minimum over finitely many positive numbers which makes it

positive.

ϵmax finite: we now show that under the assumption that for each element e P E there is a cover

in C“pαq that contains e and one that does not, ϵmax is finite. Since β ‰ 0, it has at least one non-zero

coefficient. The corresponding element is contained in a cover of C“pαq for which βxc “ 0. Thus, β

has at least one other coefficient of the opposite sign and thus has at least one negative coefficient.

Thus, for high enough values of ϵ`, the vector α ` ϵ`β has a negative coefficient for an element e1.

There is at least one cover c in C“pαq not containing e1, thus, c X te1u is a cover satisfying:

pα ` ϵ`βqxcXte1u “pα ` ϵ`βqxc ` pα ` ϵ`βqe1

“γpαq ` ϵ`0 ` pα ` ϵ`βqe1

ăγpαq.

Thus, for values of ϵ` where α ` ϵ`β has a negative coefficient, the tilted inequality (7) is not valid.

Thus, ϵmax is finite as it is upper bounded by the largest value of ϵ such that α ` ϵβ ě 0.

Higher dimension face: let us take ϵ` “ ϵmax and let c˚ be a cover minimizing γpαq´αxc

βxc when

βxc ă 0. We will show that the face of the tilted contains C“pαq Y tc˚u. First, ϵmax is defined so that

every minimizer such as c˚ will satisfy the tilted inequality to equality. On the other hand, the covers

in C“pαq also satisfy the tilted inequality (7) to equality as they are orthogonal to β (remember that

the goal of tilting is to rotate the original inequality around its contact points with QpGq in order to

keep them in the face). Moreover, βxc˚ ‰ 0 thus the cover c˚ is affinely independent of the covers in

C“pαq. Thus, the tilted inequality induces a face of strictly higher dimension.
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Theorem 3 shows that under an unique condition, any non-facet defining inequality with positive

coefficients can be decomposed as the sum of two non-trivial inequalities that induce faces of higher

dimension. When this condition is not satisfied, it can be decomposed as the sum of one of the trivial

facets (xe ě 0 or xe ď 1) and one other non-trivial inequality. These particular cases yield similar

results and are treated in the next two theorems.

Theorem 4. Let αx ě γpαq be a valid inequality and e an element of E. Let η be such that η ` γpαq

is the minimum of αxc over the set of covers c not containing e. The following propositions are

equivalent:

(i) e is contained in all covers in C“pαq;

(ii) α ´ γpαqee is a tilting vector;

(iii) η is positive and αx ě γpαq is the sum of ´ηxe ě ´η and αx ` ηxe ě γpαq ` η with both

inequalities being valid and the last one inducing a face of higher dimension.

Proof. piq ñ piiq If e is contained in all the covers in C“pαq then for each cover in C“pαq, pα ´

γpαqeeqx “ 0. Thus, the vector α ´ γpαqee is a tilting vector.

piq ñ piiiq Suppose that e is contained in all the covers in C“pαq. Then, all the covers c not

containing e must satisfy αxc ą γpαq. Thus, η is positive. Let us now show that the tilted inequality

αx`ηxe ě γpαq`η is valid for QpGq. For all x P QpGq we have αx ě γpαq. Thus, the incidence vector

of each cover containing e satisfies αx ` ηxe ě γpαq ` η. Moreover, by definition of η, the incidence

vector of each cover not containing e satisfies αx ě γpαq ` η and therefore also αx ` ηxe ě γpαq ` η.

Thus, αx`ηxe ě γpαq `η is valid for QpGq. Finally, let c˚ be a cover that minimizes αxc over the set

of covers c not containing e. It must satisfy αx ` ηxe ě γpαq ` η to equality. Note that all the covers

c in C“pαq also satisfy αx ` ηxe ě γpαq ` η to equality as they contain e. Thus, the face associated

with αx ` ηxe ě γpαq ` η contains C“pαq Y tc˚u. Since c˚ contains e while the covers in C“pαq do

not, the cover c˚ is affinely independent of the covers in C“pαq. Thus, the tilted inequality induces a

face of strictly higher dimension.

piiiq ñ piq Suppose that αx ě γpαq is the sum of ´ηxe ě ´η and another valid inequality with

η ą 0. Since both inequalities of the decomposition are valid for QpGq, then the incidence vector of

of QpGq satisfying αx “ γpαq (i.e., corresponding to covers of C“pαq) must satisfy both inequalities

to equality. Thus, we have in particular ´ηxe “ ´η which implies xe “ 1 since η ą 0. Thus, e is

contained in all covers in C“pαq.

piiq ñ piq Suppose that α´γpαqee is a tilting vector. For each cover c in C“pαq, we have αxc “ γpαq

and pα ´ γpαqeeqxc “ 0. Thus, γpαqeex
c “ γpαq which means xc

e “ 1.

Theorem 5. Let αx ě γpαq be a valid inequality and e an element of E. Let η be such that η ` γpαq is

the minimum of αxc over the set of covers c containing e. The following propositions are equivalent:

(i) e is not contained in any cover of C“pαq;

(ii) ee is a tilting vector;

(iii) η is positive and αx ě γpαq is the sum of ηxe ě 0 and αx ´ ηxe ě γpαq, with both inequalities

being valid and the last one inducing a face of higher dimension.

Proof. piq ô piiq e is not contained in any cover of C“pαq if and only if for each cover in C“pαq,

xee “ xe “ 0 which is the definition of ee being a tilting vector.

piq ñ piiiq Suppose that e is not contained in any cover of C“pαq. Then, all the covers c containing e

must satisfy αxc ą γpαq, thus η is positive. Let us now show that the tilted inequality αx´ηxe ě γpαq

is valid for QpGq. For all x P QpGq we have αx ě γpαq. Thus, the incidence vector of each cover not

containing e satisfies αx´ ηxe ě γpαq. Moreover, by definition of η, the incidence vector of each cover

containing e satisfies αx ě γpαq ` η and thus also αx´ ηxe ě γpαq. Thus, αx´ ηxe ě γpαq is valid for
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QpGq. Finally, let c˚ be a cover that minimizes αxc over the set of covers c containing e. It must satisfy

αx´ηxe ě γpαq to equality. Note that all the covers c in C“pαq also satisfy αx´ηxe ě γpαq to equality

as they do not contain e. Thus, the face associated with αx ´ ηxe ě γpαq contains C“pαq Y tc˚u.

Since c˚ does not contain e while the covers in C“pαq do, the cover c˚ is affinely independent of the

covers in C“pαq. Thus, the tilted inequality induces a face of strictly higher dimension.

piiiq ñ piq Suppose that αx ě γpαq is the sum of ηxe ě 0 and another valid inequality with η ą 0.

Since both inequalities of the decomposition are valid for QpGq then the incidence vector of of QpGq

satisfying αx “ γpαq (i.e. corresponding to covers of C“pαq) must satisfy both inequalities to equality.

Thus, we have in particular ηxe “ 0 which implies xe “ 0 since η ą 0. Thus, e is not contained in any

cover of C“pαq.

In the context of the separation of a point from QpGq, it is convenient to be able to decompose a

separating inequality as the sum of two valid inequalities inducing faces of higher dimension. Indeed,

since the inequalities of the decomposition sum to the original inequality, then at least one of them

must also separate the point x̂ from QpGq. Thus, given a separating inequality, tilting guarantees the

generation of another separating inequality of higher dimension. In the case of Theorem 5, only the

non-trivial inequality is guaranteed to be stronger than the original one (in Theorem 4, the trivial

inequality is always a facet). This is, however, not an issue in practice. Indeed, in most cases, when a

point is separated from QpGq, it is the solution of a (linear) relaxation of the set covering model. In

this case, the separated point verifies the trivial inequalities. Thus, the non-trivial inequality of the

decomposition, which is guaranteed to be stronger, must be separating the point from QpGq.

4.4 Computation of the tilted inequalities

Let us now discuss how to compute the optimal tilted inequalities. We start by discussing the two

special cases treated in Theorems 4 and 5, where one of the tilted inequalities is one of the trivial

facets (xe ě 0 or xe ď 1). We then focus on the general case given by Theorem 3.

Special cases of Theorems 4 and 5: in order to be able to apply Theorem 3 and rule out the

cases treated in Theorems 4 and 5, one needs to tilt the original inequality αx ě γpαq so that each

element e P E is contained in a cover of C“pαq and not contained in another cover of C“pαq. Assuming

that at least one cover c in C“pαq is known (it can be obtained by minimizing αx over QpGq), then

for each element e P E , we know that either e P c P C“pαq or e R c P C“pαq. Thus, one needs to check

only one of the two conditions of each element e. This can be done for each element by minimizing

αx over QpGq with the additional constraint xe “ 1 ´ xc
e. Let us call η the minimal value and x˚

the minimizer. If xc
e “ 1, then Theorem 4 tells us to replace the original inequality αx ě γpαq by

αx ` ηxe ě γpαq ` η; otherwise Theorems 4 tells us to replace the original inequality αx ě γpαq by

αx´ ηxe ě γpαq. In both cases, the face induced by the new inequality contains xc and the minimizer

x˚ which correspond to one cover containing e and one cover not containing e. Overall, the special

cases can be treated in one initial call to the set covering oracle plus one call for each element.

General case of Theorem 3: the value of ϵ`, and similarly ϵ´, can be determined with the

following linear program:

max ϵ (9)

subject to pα ` ϵβqxi ě γpαq @xi P QpGq (10)

ϵ P R. (11)

This linear program can be solved with row generation and deciding whether there exists a row cutting

of a value ϵ˚ amounts to minimize pα` ϵ˚βqx over QpGq. This is simply a call to a set covering oracle.

At the end of the row generation, the only active row will correspond to a point that satisfies the tilted

inequality to equality and is not orthogonal to β (otherwise ϵ would disappear from the constraint).

This second fact implies that the point is affinely independent from the points in C“pαq. Note that
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since the above linear program has only one variable, no real linear programming machinery is required

to solve it. Thus, the row generation algorithm can be replaced by a simple algorithm iteratively

calling a set covering oracle. This algorithm generates a sequence of candidates ϵ˚
1 , ϵ

˚
2 , ... together

with a sequence x˚
1 , x

˚
2 , ... where x˚

i minimizes pα ` ϵ˚βqx˚
i over QpGq. This iterative algorithm and

sequences are illustrated in Figure 4.

α ` ϵ˚
1β

x˚
0

α ` ϵ˚
2β

x˚
1

α ` ϵ˚
3β

x˚
2

α

Figure 4: Illustration of the iterative algorithm solving the problem (9)–(11).

Another approach that finds ϵ` in only one call to a Branch & Bound algorithm is the following.

For each point y P QpGq with βy ă 0, one can define ϵy “
γpαq´αy

βy and y then satisfies the inequality

pα ` ϵyβqx ě γpαq to equality. This inequality is either invalid if there is a point of QpGq violating

it, or it is the optimal tilted inequality we are looking for. Thus, the point of QpGq maximizing the

smallest violation of this set of inequalities is on the optimal tilted inequality. Therefore, the following

mixed integer linear program computes the optimal tilted inequality:

max z (12)

subject to

z ď γpαq ´ pα ´ ϵyβqx @y P QpGq|βy ă 0 (13)

x P QpGq (14)

z P R. (15)

This program can be solved with a Branch & Cut algorithm. One can start with only one of the

constraints (13) and every time an integer solution y˚ with positive objective value is found, one can

add to the problem the constraint associated to y˚.

5 Taking advantage of the null coefficients in set covering inequal-
ities

In this section, we show how to take advantage of the null coefficients in an inequality. In particular,

we highlight that each null coefficient in a valid inequality may be associated to a specific tilting vector

and that all the remaining tilting vectors have their support included in the support of the inequality.

The implications are twofold. First, we will show that one can reduce the study of facets from general

inequalities to inequalities without null coefficients. Second, we show that the number of computations

required to tilt a sparse inequality is significantly reduced as compared to the dense case.
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5.1 Tilting vectors associated with null coefficients of α

The next theorem highlights the special place that occupy the null coefficients of an inequality. In

short, for an element e0 P E0pαq, i.e., such that αe0 “ 0, an important information is to know whether

e0 is contained in all the covers of C“pαq. If this is not the case, all tilting vectors have a null coefficient

for e0. Otherwise, pα ´ γpαqee0q is a tilting vector.

Theorem 6. Let αx ě γpαq be a valid inequality for QpGq. Let E˚
0 be the set of elements of E0pαq

contained in all the covers of C“pαq. A basis of the space of tilting vectors is pα ´ γpαqee0qe0PE˚
0

Y

pβ1, ..., βpq, where pβ1, ..., βpq is a basis of the tilting vectors satisfying βe0 “ 0 for each e0 P E0pαq.

Proof. The vectors pα´γpαqee0qe0PE˚
0
are tilting vectors since the elements of E˚

0 are contained in all

the covers of C“pαq.

A vector α´γpαqee0 is linearly independent from the other vector of this form and from pβ1, ..., βpq

since it is the only vector in the basis that has a non-zero coefficient for e0. Moreover, it is assumed

that the vectors pβ1, ..., βpq are independent from each other so that they can be part of a basis. Thus,

we only need to show that all tilting vectors can be generated using the aforementioned vectors.

Let us now consider a tilting vector β. Note that for all e0 in E0pαq Ă E˚
0 , there is a cover c in C“pαq

not containing e0. Also note that cY te0u belongs to C“pαq. Thus, βe0 “ βpxcYte0u ´xcq “ 0´ 0 “ 0.

Let us denote δe0 the vector
βe0

γpαq
pα ´ γpαqee0q. It must be a tilting vector since α ´ γpαqee0 is one.

Note that δe0 has only null coefficients for the elements in E0pαq expect for e0 for which the coefficient

is βe0 . Thus, the vector β ´
ř

e0PE˚
0
δe0 is a tilting vector with null coefficients for all elements in

E0pαq. Thus, it can be decomposed as a linear combination of the pβ1, ..., βpq. Therefore, β can be

decomposed as a linear combination of the pβ1, ..., βpq and the pα ´ γpαqee0qe0PE˚
0
.

The above theorem shows that apart from the vectors pα´ γpαqee0qe0PE˚
0
, the other tilting vectors

have null coefficients for elements for which α does. As it turns out, these remaining tilting vectors

correspond to the tilting vectors of α1x ě γpαq for the polytope QpGzE0pαqq, where α1 is the vector

α without its zero coefficients. Recall that replacing QpGq by QpGzte0uq is the same as enforcing

xe0 “ 1, i.e., enforcing e0 to be in all covers.

Proposition 4. Let αx ě γpαq be a valid inequality for QpGq. The tilting vectors satisfying βe0 “ 0 for

each e0 P E0pαq are exactly the tilting vectors of the inequality α1x ě γpαq for the polytope QpGzE0pαqq

with additional zero coefficients for E0pαq where α1 is the vector α without its zero coefficients.

Proof. The tilting vectors for αx ě γpαq are the vectors that satisfy βxc “ 0 for each cover c of

C“pαq. When additionally, the condition βe0 “ 0 for each e0 P E0pαq is imposed, this is the same as

having βxcĂE0pαq “ 0 for each cover c of C“pαq. The sets pc Ă E0pαqqcPC“pαq are exactly the covers in

C“pα1q for the polytope QpGzE0pαqq. Thus, the two sets of tilting vector mentioned in the theorem

are the solution set of the same system of equations. They are thus equal (up to the additional null

coefficients).

By combining the above two results, we can show that the study of set covering facets can be

reduced from arbitrary inequalities to inequalities without null coefficients. This result is crystallized in

Proposition 5 which contains a necessary and sufficient condition for arbitrary inequalities to be facets.

Although presented in a different manner, this result can be found in (Laurent, 1989; Cornuéjols and

Sassano, 1989) for the special case of rank inequalities. It is also present in all facet characterisations

for special cases we are aware of, such as those for facets with coefficients 0, 1, and 2 by Balas and Ng

(1989) and 0, 1, 2, and 3 by Saxena (2004) and Sánchez-Garćıa et al. (1998).
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Proposition 5. Let αx ě γpαq be a valid inequality for QpGq. It is a facet if and only if :

(i) α1x ě γpα1q is a facet of the polytope QpGzE0pαqq, where α1 is the vector α without its zero

coefficients;

(ii) for all e P E0pαq, there is a cover of C“pαq not containing e.

With the above proposition, one can see that when searching for characterizations of facets, the

study can be restricted to inequalities without null coefficients. Indeed, the conditions required in the

general case will be the ones from the restricted case together with condition ((ii)) of Proposition 5.

5.2 Faster computation of tilting vectors for sparse inequalities

Most of the algorithms presented in Section 4.4 rely on calls to a set covering oracle for QpGq to

compute the tilted inequality (the arguments of this section also work for the algorithm of the last

paragraph of Section 4.4 relying on Branch & Bound). When the oracle is given an objective function

with many null coefficients, one can expect the oracle to run much faster in practice. Indeed, setting

the variables corresponding to these null coefficients to one does not increase the cost of the solution

but covers several of the subsets to be covered. As a consequence, a smaller set covering problem can

be solved without compromising the optimality of the solution. In particular, oracle calls for sparse

objective functions may be much faster than finding a minimum cardinality cover. In the case of tilting,

the objective function given to the oracle is always α ` ϵβ for ϵ P r0, 1s. Thus, if the tilting vector β

has its support (set of non-zero coefficients) included in the one of α, the objective vector is as sparse

as α. Note that in this case the tilted inequality, if non-trivial, will have a support included in the

support of α, allowing one to re-apply tilting to the new equality with the same sparsity properties.

One can accelerate the computation of the tilted inequality when the tilting vector has its support

included in the support of α. However, some tilting vectors have a larger support than α. This is

the case of the tilting vector α ´ γpαqee appearing in Theorem 4 when e is outside of the support

of α. However, one can greatly increase the dimension of original inequality by using only tilting

vectors as sparse as α. In fact, once all sparse tilting vectors have been exploited, there only remains

the aforementioned tilting vectors of Theorem 4. This fact is apparent in the following corollary of

Theorem 6.

Corollary 1. Let αx ě γpαq be a valid inequality for QpGq. Let E˚
0 be the set of elements of E0pαq “ te P

E |αe “ 0u contained in all the covers of C“pαq. Assume that the only tilting vector satisfying βe0 “ 0

for all e0 P E0pαq is β “ 0. Then, a basis of the vector space of tilting vectors is pα ´ γpαqee0qe0PE˚
0
.

Thus, given a sparse initial inequality, one can tilt it into a stronger inequality by using only tilting

vectors whose support is included in the initial inequality. This will require only calls to a set covering

oracle with sparse objective functions which can be much quicker. Afterward, Corollary 1 shows that

it only remains to check that the conditions in Theorem 4 are verified for the elements of E0pαq which

can be done with |E0pαq| calls to the set covering oracle. Unfortunately, at each of these steps, the

support of the inequality may increase its size which may slow down the last oracle calls.

6 Extending necessary and sufficient conditions for facets

In this section, we revisit several conditions from the literature that characterize facets of the set

covering polytope. In particular, we extend the conditions of Cornuéjols and Sassano (1989) and

Sassano (1989) from rank inequalities to arbitrary inequalities. We also give an alternative proof for

the characterization of Balas and Ng (1989) on facets having coefficients and right hand side in t0, 1, 2u.

We finally complement their result by characterizing the tilting vectors for these inequalities.
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6.1 Necessary conditions of Cornuéjols and Sassano (1989)

Let us first restate a theorem from Cornuéjols and Sassano (1989) (Proposition 1) on rank inequalities

(i.e., inequalities having only binary coefficients), giving a condition under which an inequality is not

a facet. We derive a new proof showing that under this condition one can pinpoint a tilting vector.

The proof is not specific to rank inequalities which enables us to generalize their result to arbitrary

inequalities. In this section, we consider inequalities without null coefficients but null coefficients can

be taken into account by using Proposition 5.

To state the theorem, its proof, and the ensuing discussion, let us introduce a few notations and

concepts. For any vector α and set of elements E, we will denote αE the vector whose coefficient

is αe if e belongs to E and zero otherwise. Let us also introduce the concept of cutset as it is done

in Cornuéjols and Sassano (1989). Let E be a set of elements of E and let sE “ EzE. For each

E Ă E , the cutset SE is the set of nodes adjacent to at least one node in E and one node in sE, i.e.

SE “ NpEq X Np sEq. Let us also recall that γpα, Sq denotes the minimum value of αx over the binary

vectors representing a cover of the subsets in S.

Proposition 6 (Cornuéjols and Sassano (1989)). If there is a non-critical cutset, i.e., for some E Ă E,
γp1q “ γp1,SzSEq then the inequality 1x ě γp1q is not a facet.

Proof. We will prove that if a cutset is not critical, one can derive a tilting vector.

Let us assume that for some E Ă E , the cutset SE is not critical, i.e., γp1q “ γp1,SzSEq. Note

that the size of a cover c is also 1xc. We show that in this case, c ÞÑ 1Exc is constant over all covers

c of size γp1q. To that end, let us consider two covers c and c1 of S of size γp1q. Note that both c X E

and c1 X E cover NpEqzNp sEq and also that both c1 X sE and c X sE cover Np sEqzNpEq. Thus, both

pc X Eq Y pc1 X sEq and pc1 X Eq Y pc X sEq cover of SzSE . If one of these two covers of SzSE had a size

strictly higher than γp1q then the other one would have a size strictly lower than γp1q which would

contradict the criticality of SE . Thus, they both have size γp1q. Thus, we have:

1Exc1 ` 1
sExc “γp1q

“1xc

“1Exc ` 1
sExc,

which implies 1Exc1 “ 1Exc. Thus, c ÞÑ 1Exc is constant over all covers c of S of size γp1q which

means that c ÞÑ 1
sExc “ γp1q ´ 1Exc is also constant. Since the covers of size γp1q are exactly the

covers in C“p1q, one can see that the vector p1
sExcq1E´p1Excq1

sE is a tilting vector for 1x ě γp1q.

In the proof above, we have shown that when a cutset SE is not critical, then all minimal covers

have a constant size intersection with E and this enables us to highlight a tilting vector. Moreover,

one can see that the proof remains valid if the vector 1 is replaced by α (except for the size of a cover

c that goes from 1xc to αxc). This observation leads to the following generalization of Proposition 6.

Proposition 7. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If there is a non-critical

cutset (i.e., for some E Ă E, γpαq “ γpα,SzSEq), then the inequality αx ě γpαq is not a facet.

At this point, it is important to note that there are set covering instances where every minimal

cover has a constant size intersection with a set E but where for every E1 Ă E the cutset SE1 is critical.

Example Let us consider a set covering instance with E “ t1, 2, 3, 4, 5, 6u and a set E “ t1, 2, 3u.

The family of subsets S of the set covering instance is S “ ts Ă E ||s| “ 3 and |s X E| ‰ 1u. There

are two types of inclusion-wise minimal covers: the subset of E of size 3 whose intersection with E

has size 1; and the three covers formed of t1, 2, 3, eu for e P t4, 5, 6u. Among these inclusion-wise

minimal covers, only the first type also has minimum size. Thus, all the minimal sized covers have

an intersection with E of size 1. For this set covering instance, every cutset is critical. For instance,

SzSE “ tt1, 2, 3u, t4, 5, 6uu, which can be covered with t1, 4u.



Les Cahiers du GERAD G–2023–10 16

Thus, Proposition 7 can be extended as follows.

Proposition 8. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If there exists a set E Ă E
such that αExc “ αExc1 for all c, c1 P C“pαq then the inequality αx ě γpαq is not a facet.

6.2 Sufficient conditions of Sassano (1989)

We now consider a lemma from Sassano (1989) (Lemma 3.1) which gives a sufficient condition for

the rank inequality 1x ě γp1q to be a facet. We will discuss underlying ideas of this lemma and

generalize it to arbitrary inequalities. To that end, let us denote Npe, e1q “ Npteuq X Npte1uq the

common neighbors to elements e and e1 and let us introduce a critical graph G˚. This critical graph

has E as its set of nodes and contains an edge pe, e1q if and only if the set of common neighbors to e

and e1 is critical: γp1q ą γp1,SzNpe, e1qq. The lemma is then the following:

Lemma 1 (Sassano (1989)). If the critical graph G˚ is connected, then the inequality 1x ě γp1q is a

facet of QpGq.

Proof. Let us consider an edge pe, e1q of the critical graph and let us consider a minimal cover c of

SzNpe, e1q which has a size of γp1,SzNpe, e1qq. Then both cY teu and cY te1u cover S and have a size

equal to γp1,SzNpe, e1qq ` 1. Thus, we have that γp1q ď γp1,SzNpe, e1qq ` 1. Since, by definition of

the critical graph, we know that γp1q ą γp1,SzNpe, e1qq, then we have γp1q “ γp1,SzNpe, e1qq ` 1.

This also means that c Y teu and c Y te1u belong to C“p1q which means that for any tilting vector β,

we have:

βe ´ βe1 “ βxcYteu ´ βxcYte1u

“ 0 ´ 0

“ 0.

Hence, the presence of an edge in the critical graph implies that the two corresponding coefficients of

any tilting vector are equal. From this argument, we can deduce that, if the critical graph is connected,

then all the coefficients in tilting vectors are equal. This also implies that all the coefficients are zero

since they must sum to zero for the covers in C“p1q. In this case, we know by Proposition 2 that the

inequality 1x ě γp1q is a facet.

In the proof of Theorem 1, we showed that the presence of an edge in the critical graph induces

the existence of two covers c Y teu and c Y te1u in C“p1q differing only by one element. The main

argument of the proof is that the existence of these two covers implies that the coefficients βe and βe1

must be equal in any tilting vector β. Unlike the previous lemma, this argument is not restricted to

the rank constraint 1x ě γp1q and is the basis of the generalization to arbitrary inequalities. Let us

introduce an adequate notion of criticality for arbitrary inequalities and show that it is equivalent to

the presence of two covers in C“pαq differing by one element.

For an arbitrary inequality αx ě γpαq, the existence of two covers c Y teu and c Y te1u in C“pαq

implies that

αe ´ αe1 “ αxcYteu ´ αxcYte1u

“ γpαq ´ γpαq

“ 0.

Thus, the notion of criticality is defined only for pairs of elements that share the same coefficients

in the inequality.

Definition 4. Let αx ě γpαq be a valid inequality and e, e1 be such that αe “ αe1 . The common

neighbors to e and e1 are defined as critical when γpαq “ γpα,SzNpe, e1qq ` αe.
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In other words, the common neighbors to e and e1 are critical when their removal induces a decrease

of γpαq equal to αe. This reduction could not be greater. Indeed, one can create a cover of S by adding

e or e1 to a cover of SzNpe, e1q and thus, we always have γpαq ě γpα,SzNpe, e1qq ě γpαq´minpαe, αe1 q.

As before, there is an edge pe, e1q in the critical graph G˚ when the common neighbors to e and e1 are

critical. Let us now show the equivalence between an edge in G˚ and the presence of two covers in

C“pαq differing by one element.

Proposition 9. Let αx ě γpαq be a valid inequality and let two elements e, e1 be such that αe “ αe1 .

The following conditions are equivalent :

(i) there exists two covers c Y teu and c Y te1u in C“pαq;

(ii) the critical graph G˚ contains an edge between e and e1, i.e. γpαq “ γpα,SzNpe, e1qq ` αe.

Proof. (i)ñ(ii) Let c Y teu and c Y te1u be two covers of C“pαq. We know that c covers SzNpteuq

since pcq Y teu is a cover. Similarly, it covers SzNpte1uq. Thus, c covers SzNpe, e1q and its incidence

vector satisfies αxc “ αxcYteu ´ αe “ γpαq ´ αe. Thus, we must have γpα,SzNpe, e1qq ď γpαq ´ αe.

Since we also know that we always have γpα,SzNpe, e1qq ě γpαq ´ αe, we have proved that condition

(ii) is verified.

(ii)ñ(i) Let us call c a cover of SzNpe, e1q that achieves the value γpα,SzNpe, e1qq. Then, c Y teu

and c Y te1u both cover S and satisfy αxcYteu “ αxcYte1u “ γpαq, which shows that condition (i) is

satisfied.

Now, the arguments of the discussion above imply that, for an edge pe, e1q in the critical graph

G˚, there exists two covers c Y teu and c Y te1u in C“pαq. This, in turn, means that the coefficients

corresponding to e and e1 in any tilting vector β are equal since βe´βe1 “ βxcYteu´βxcYte1u “ 0´0 “ 0.

Thus, the nodes in a connected component of the critical graph share the same coefficients in the tilting

vector. If a connected component contains a cover c then the coefficients of the elements in c sum

to zero which means all the coefficients of component are null. Thus, if each connected component

contains a cover then αx ě γpαq induces a facet of QpGq. Thus, we can generalize the lemma from

Sassano (1989) as follows.

Lemma 2. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If each connected component of

its critical graph contains a cover of C“pαq then it is a facet.

Let us recall that edge pe, e1q in the critical graph can exist only when αe “ αe1 . Therefore, the

connected components of the critical graph subdivide the sets of elements with equal coefficients. In

some cases, one may not be able to prove that an inequality is a facet because not all connected

components of the critical graph may contain a cover of C“pαq. However, even if only one component

does, we can show that the coefficients of its elements in all tilting vector are null. As shown in

the following theorem, this has consequences on the facets obtainable from the original inequality

αx ě γpαq. More precisely, the coefficients of the facet will be equal to the ones of α for these

elements.

Theorem 7. Let αx ě γpαq be a valid inequality for QpGq with α ą 0. If, for all tilting vectors β we

have βe “ 0 for some element e P E, then all the non-trivial facets α1x ě γpαq containing the face

associated with αx ě γpαq satisfy α1
e “ αe.

Proof. Since we are considering non-trivial facets of the set covering polytope, the facet can be written

α1x ě γpαq through the right scaling. The vector α1 ´ α is a tilting vector since for each cover c in

C“pαq (which is included in C“pα1q by hypothesis) we have pα1 ´ αqxc “ γpαq ´ γpαq “ 0. Thus, we

have α1
e ´ αe “ pα1 ´ αqe “ 0 which means α1

e “ αe.
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6.3 Inequalities with coefficients and right hand side in {0,1,2}

In their seminal paper, Balas and Ng (1989) studied all the inequalities for the set covering polytope

with coefficients and right hand side in t0, 1, 2u. In particular, they characterized the ones that induce

facets of the set covering polytope. To understand their characterization, recall that Eipαq “ te P

E |αe “ iu and let us introduce the 2-cover graph corresponding to an inequality αx ě 2. Its node set

is E1pαq and it contains an edge between e and e1 when E0pαq Y te, e1u is a cover (and thus belongs to

C“pαq). Theorem 8 below states the characterization of Balas and Ng (1989) in a slightly differently

manner in order to fit the notations of this article. The three conditions are indexed with 0, 1 and 2

because they can be associated to the sets of all the coefficients 0, 1 and 2, respectively.

Theorem 8 (Balas and Ng (1989)). Let αx ě 2 be a valid inequality for QpGq with α P t0, 1, 2ut|E|u. It

is a facet if and only if the following three conditions hold:

0. for each e P E0pαq, there is a cover of C“pαq not containing e;

1. each connected component of the 2-cover graph contains an odd cycle (i.e. is not bipartite);

2. for each e P E2pαq, E0pαq Y teu is a cover.

The above theorem characterizes facets corresponding to αx ě 2 with three conditions. We com-

plement this result by characterizing the tilting vectors of these inequalities. In particular, each of the

three conditions corresponds to a family of tilting vector. In order to understand the tilting vector

characterization, note that a classical result from graph theory is that a graph is bipartite if and only

if it does not contain an odd cycle (see Theorem 1.2 in Bondy and Murty (1976)). Moreover, if a

bipartite graph is connected, then it has a unique bipartition.

Theorem 9. Let αx ě 2 be a valid inequality for QpGq with α P t0, 1, 2ut|E|u. A basis of the space of

its tilting vectors is given by the juxtaposition of the following three families:

0. α ´ 2ee for each e P E0pαq such that all covers of C“pαq contain e;

1. 1U ´1V for each bipartite connected component of the 2-cover graph where U, V is the bipartition

of the connected component;

2. ee for each e P E2pαq such that E0pαq Y teu is a not cover.

We will now prove the characterization of tilting vectors, i.e., Theorem 9 which implies the theorem

of Balas and Ng (1989) through Proposition 2. For this proof, we will use a lemma from graph theory.

In this lemma, we will not always differentiate an edge pu, vq from its incidence vector. This incidence

vector has a null coefficient for each node of the graph except for u and v for which it has coefficient

one.

Lemma 3. Let G “ pU,Eq be a graph. A basis of the vector space induced by the edges of G is

given by the edges of the following subgraph. This subgraph contains a spanning tree of each connected

component of the main graph and for each non-bipartite connected component, it also contains one

additional edge so that the tree and this edge forms a non-bipartite graph (equivalently this edge adds

an odd cycle to the tree).

Note that the additional edge always exists as otherwise the connected component would be bipar-

tite. We call the subgraph of Lemma 3 a basis subgraph.

Proof of Lemma 3. We will separate the proof into two parts. First, we will show linear independence

of the edges of the basis subgraph. Second, we will show that every edge of the main graph can be

written as a linear combination of the edges of the basis subgraph.

First, we have linear independence of the edges of the different connected components as the edges

in these groups have disjoint supports. We will thus analyze them separately. Let us now consider

a bipartite connected component of the main graph. The corresponding component in the subgraph

is a spanning tree. Let us denote e1, . . . , en the edges of this tree, and x1, . . . , xn the corresponding
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incidence vectors. Showing linear independence of the edges/vectors is equivalent to showing that

the only assignment of coefficients λ1, . . . , λn P R for which
ř

i λixi “ 0 is λ1 “ . . . “ λn “ 0.

An equivalent formulation of having a linear combination that sums to the null vector is to assign

coefficients λ1, . . . , λn P R to the edges of the tree and asking, for each node, for the sum of the

coefficients of the outgoing edges to be null. The edges are linearly independent if and only if the only

such affectation is λ1 “ . . . “ λn “ 0. Clearly, the edges connected to the leaves of the tree (nodes

connected to only one edge) must have coefficient zero. Thus, these edges are linearly independent

from the other ones and they can be removed from the tree (or equivalently their incidence vector can

be removed from the linear combination). This removal creates new leaves in the tree which enables

the process to be repeated. Since the component is initially a tree, this process can be repeated

until all edges have been removed thus showing that the edges of the connected component were all

independent from each other. In a similar fashion, for non-bipartite connected components, the edges

of the corresponding component in the basis subgraph can be removed until the component is reduced

to an odd cycle. The edges of an odd cycle are linearly independent.

Second, let us show now that every edge of the 2-cover graph can be written as a linear combination

of the edges of the basis subgraph. First, the edges of the bipartite components are either part of the

corresponding tree in the subgraph or they create a cycle when added to the tree (since the tree is a

spanning tree). The created cycle must have an even number of edges since the considered component

of the main graph is bipartite. Thus, by assigning alternating `1 and ´1 coefficients along the edges

of the cycle, one can show that the edge is linearly dependent of the edges of the tree. Second, for the

non-bipartite connected components, the corresponding component in the basis subgraph has the same

number of nodes and edges. Since the edges connecting the only nodes of this connected component

have non zero coefficients only for these node, the vector space of these edges must have its dimension

equal to the number of nodes in the connected component. Thus the corresponding edges of the basis

subgraph must be a basis of this vector as we showed above they are linearly independent and they

number is the number of node. Thus, they must generate all the edges connecting the only nodes of

this connected component.

We are now in a position to prove Theorem 9.

Proof of Theorem 9. Let us denote Nβ the number of tilting vectors mentioned in the theorem.

We will prove that 1) these vectors are indeed tilting vector of the inequality, 2) they are linearly

independent and 3) they can be used to generate all tilting vectors.

1) If, for some e P E2pαq, E0pαq Y teu is a not cover, then, no cover of C“pαq contains e. Thus,

according to Theorem 5, ee is a tilting vector. Second, the vectors α´2ee are given by the Theorem 4.

Third, note that the covers in C“pαq take only two forms, E0 Y te2u and E0 Y te1, e
1
1u, where E0

is a subset of E0pαq, e2 belongs to E2pαq, and e1, e
1
1 belong to E1pαq. We want to show that for

each of these covers c we have p1U ´ 1V qxc “ 0. It is clear for the first type of covers since the

support of 1U ´1V and xE0Yte2u are disjoint. For the second type, by definition of the 2-cover graph,

pe1, e
1
1q is an edge of the 2-cover graph. If this edge is not contained in the connected component

associated with 1U ´1V then again the support of 1U ´1V and xE0Yte1,e1
1u are disjoint. Finally, if the

edge pe1, e
1
1q is contained in the connected component associated with 1U ´1V —since this connected

component is bipartite— we either have pe1, e
1
1q P U ˆ V or pe1, e

1
1q P V ˆ U . In both cases, we have

p1U ´ 1V qxc “ ´1 ` 1 “ 0. Thus, 1U ´ 1V is orthogonal to all covers of C“pαq which makes it a

tilting vector.

2) The tilting vectors in the second and third families are linearly independent as all their supports

are disjoint. As for the first family of tilting vectors, they are also linearly independent of the others

as each of them correspond to an element of E0pαq for which they are the only one having a non-zero

coefficient.
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3) Let us now derive |E | ´ Nβ linearly independent covers of C“pαq. Thanks to Theorem 2, this

implies that the number of independent tilting vector of αx ě 2 is less than Nβ . This, in turns, means

that the Nβ tilting vectors of the theorem can be used to generate all the tilting vectors since they are

independent. The covers will be separated into three families:

0. c Y pE0pαqze0q for each e P E0pαq for which a cover c not containing e exists;

1. E0pαq Y te1, e
1
1u for each edge pe1, e

1
1q of the basis subgraph of the 2-cover graph;

2. E0pαq Y te2u for each e2 P E2pαq for which E0pαq Y te2u is a cover.

Note that a basis subgraph has a number of edges equal to its number of nodes minus its number of

bipartite connected components. Thus, one can see by pairing the above families of covers and the

families of tilting vectors from the Theorem, that we have characterized |E0pαq|`|E1pαq|`|E2pαq| “ |E |

objects, covers and tilting vectors, in this proof. Hence, there is indeed a total of |E | ´ Nβ covers of

C“pαq in the three previous families.

Let us now discuss the linear independence of the covers in the above three families. To that end,

we will consider their incidence vectors as the columns of a matrix and show that this matrix is full

column rank. If the first columns are the vectors of the family 0, then those of family 1 and then

family 2, the matrix can be written as follows:

¨

˝

1 ´ J0 1 1
Y1 X 0
Y2 0 J2

˛

‚

In the previous matrix, J0 is composed of an identity matrix of size η0 — the size of the family 0 —

on top of |E0pαq| ´ η0 rows of zeros. J2 is composed of an identity matrix of size η2 — the size of

the family 2 — on top of |E2pαq| ´ η2 rows of zeros. Finally, X is the edge-node incidence matrix of

the basis subgraph of the 2-cover graph. For each cover c associated to e0 P E0pαq in family 0, the

cover c Y te0u is either a cover of family 2 or it is equal to E0pαq Y te1, e
1
1u for some edge pe1, e

1
1q of

the 2-cover graph. In this second case, Lemma 3 tells us that the edge pe1, e
1
1q can be written as a

linear combination of the edges in the basis subgraph. Note that the sum of the coefficients in the

combination is 1. Thus, in both cases, the cover cY te0u can be written as an affine combination of the

covers in families 2 and 1. Therefore, by column manipulations, we can replace the previous matrix

by the following matrix that has the same rank:

¨

˝

´J0 1 1
0 X 0
0 0 J2

˛

‚

Since the matrices J0, J2 and X are full column rank, the complete matrix must also be.

7 Concluding remarks

In this work, we introduced a new mathematical object, the tilting vectors, which are derived from

a variation of the tilting concepts introduced by Chvátal et al. (2013). These vectors can be used

to tilt set covering inequalities and provide tools to derive properties and proofs for facets of the

set covering polytope. In particular, thanks to the tilting vectors, we were able to generalize some

facet characterizations from rank inequalities to arbitrary inequalities. We also showed that the null

coefficients in a set covering inequality can be treated separately. Indeed, one can study/tilt a set

covering inequality by first ignoring its null coefficients. Special properties or tilting procedures can

then be used to take them into account.

Although the study of the structure of the set covering problem has not received much recent

attention, we believe that it remains an important topic of research. The set covering problem can be
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used to model any problem whose set of solutions X is monotonic (x P X and x ď y implies y P X).

This includes a wide variety of problems, such as covering problems (such as vertex covering, or feedback

sets, for instance), packing problems (such as set packing, node packing, or independent sets), knapsack

problems (single knapsack, multiple knapsack), and others. Thus, advances in understanding the

structure of the set covering problem can be directly applied to multiple other optimization problems.
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