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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2023
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : Given a set N of size n, a non-negative, integer-valued distance matrix D of dimensions
n × n, an integer p ∈ N and an integer-valued weight vector λ ∈ Zn, the discrete ordered median
problem (DOMP) consists of selecting a subset C of exactly p points from N (also referred to as the
centers) so as to: 1) assign each point in N to its closest center in C; 2) rank the resulting distances
(between every point and its center) from smallest to largest in a sorted vector that we denote d∗;
3) minimize the scalar product ⟨λ, d∗⟩. The DOMP generalizes several classical location problems
such as the p-center, the p-median and the obnoxious median problem. We introduce an exact branch-
and-bound algorithm to solve the DOMP. This branch-and-bound decouples the ranking attribute of
the problem to form a series of simpler subproblems which are solved using innovative binary search
methods. We consider several acceleration techniques such as warm starts, primal heuristics, variable
fixing and symmetry breaking. We perform a thorough computational analysis and show that the
proposed method is competitive against several MIP models from the scientific literature. We also
comment on the limitations of our method and propose avenues of future research.

Keywords : Discrete ordered median problem, ranking decomposition, p-center problem, p-median
problem, branch-and-bound
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1 Introduction

In the discrete ordered median problem (DOMP), we are given a set of nodes N of size n, an integer-

valued, non-negative distance (or dissimilarity) matrix D of dimensions n×n, a natural number p and

a integer-valued vector λ of size n, usually referred to as the weights. The problem consists of selecting

a subset of nodes C ⊂ N , referred to as the set of centers, of size exactly p such that: 1) every node in

N is assigned to its closest center in C; 2) the resulting assignment distances are sorted from smallest

to largest in a vector d∗; 3) and the scalar product ⟨λ, d∗⟩ is minimized.

The DOMP as introduced by Nickel (2001) plays an unifying role in determining models and

algorithms with the potential to tackle multiple classes of problems at once. It is a generalization of

the vertex p-center problem (vPCP) (Kariv and Hakimi, 1979) by using the unitary weight vector

λvPCP = (0, . . . , 0, 1) such that the largest assignment distance is minimized. The p-median problem

(pMP) (Hakimi, 1964, 1965), on the other hand, can be derived from the DOMP by considering a

weight vector λpMP = (1, . . . , 1). The k-centrum problem (kCP) (Slater, 1978) can be modeled using

a weight vector λkCP = (0, . . . , 0, 1, . . . , 1) where the ones appear at the last k positions only such that

the k-largest assignment distances are minimized. The obnoxius p-median problem (OpMP) (Hansen

and Cohon, 1981) seeks to maximize the sum of the distances between every node in N and its closest

center, and resorts to selecting λOpMP = (−1, . . . ,−1).

The DOMP (and in particular the vPCP, the pMP, the kCP and the OpMP) is relevant in

practice as its multiple applications in multiple domains demonstrate. The problem of designing a

network of solid-waste landfills can for instance be modeled as a pMP (Antunes, 1999) and has been

used to support the deployment of such a system in Portugal. The problem of designing a lens to

correct double vision problems with time-of-day considerations can be modeled using location theory,

in particular vPCP or pMP models (Francis, 2009). The problem of placing sensors for the detection

of pollution agents in drinkable water has been modeled as a pMP and used to design a contamination

warning system by the Environmental Protection Agency (EPA) in the United States (Murray et al.,

2009). Romeijn et al. (2006) use a kCP criterion as an approach to determine the dosage in a radiation

treatment for cancer patients as a proxy to produce a treatment plan with low risk. In Cappanera

et al. (2003); Erkut and Neuman (1989) we can find applications of the OpMP to the location of

undesirable facilities such as garbage dumpsters or chemical plants.

A few variants of the DOMP have also been studied in the literature. Puerto and Rodŕıguez-

Ch́ıa (2015) generalized further the DOMP by introducing a modeling framework that encompasses
continuous and discrete variants of these problems, and revisited it later in Puerto and Rodŕıguez-Ch́ıa

(2019). Other variants of the DOMP include the capacitated DOMP (Puerto, 2008; Kalcsics et al.,

2010; Espejo et al., 2021) where each facility has a maximal coverage capacity and the DOMP with

induced orders where two different types of facilities are considered (Domı́nguez and Maŕın, 2020).

Many algorithms have been developed to solve the DOMP. In terms of exact methods, several

mixed-integer programming models —each of which exploiting a specific characteristic of the problem—

have been proposed in the literature. Boland et al. (2006) introduce two mixed-integer linear formu-

lations for the DOMP with a quadratic number of constraints and between a quadratic and cubic

number of variables. In Labbé et al. (2017), the authors introduce two new formulations for the prob-

lem with better numerical properties. In particular, the authors introduce a large model providing

very tight integrality gaps; and another, more compact model, providing reasonable bounds but in

much shorter computing times and less memory consuming. Maŕın et al. (2020) present telescopic

models valid under the assumption that the weight vectors λ are non-decreasing. The proposed mod-

els are very compact and provide tight integrality gaps, allowing for substantial speedups with respect

to previous models. In addition, ad-hoc exact algorithms, such as branch-and-bound (Boland et al.,

2006) and branch-and-price (Deleplanque et al., 2020), have been implemented and used to solve

small-sized and medium-sized problems of the DOMP (less than 50 and 400 nodes, respectively).

To the best of our knowledge, the state-of-the-art method for the exact solution of the DOMP is
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the branch-and-price of Deleplanque et al. (2020), capable of solving instances with up to 50 nodes

within a few hours of computing time. The same authors also show that on larger instances (involving

up to 400 nodes), their branch-and-price method consumes less memory than a traditional branch-

and-cut algorithm derived from the model proposed by Labbé et al. (2017) which is based on weak

order constraints. While the focus of our paper concerns exact methods, several non-exact methods

which rely on approximation algorithms (Byrka et al., 2018; Aouad and Segev, 2019), population-

based algorithms (Domı́nguez-Maŕın et al., 2005; Stanimirović et al., 2007), variable neighborhood

search algorithms (Domı́nguez-Maŕın et al., 2005; Puerto et al., 2014; Olender and Ogryczak, 2019),

and GRASP (Deleplanque et al., 2020) have been developed.

From an algorithmic perspective, the DOMP is not sufficiently well understood. In particular, the

existing literature on theDOMP offers models and algorithms whose performance strongly depends on

the magnitudes of the matrix D or the weight vectors λ Espejo et al. (see e.g., 2021). These models also

suffer severe scalability issues when the magnitudes associated with λ or D are not tightly bounded.

Mitigating this undesirable effect lies at the core of the objectives pursued in this manuscript.

In this article, we introduce the DOMP(k) which consists of selecting p centers from N so as to

minimize λk · d∗k, where d∗k is the k-th shortest distance after assigning every node in N to its closest

center. We propose two binary search methods to solve the problem for the case λk > 0 and for the

case λk < 0. We show that for λk > 0, this problem resorts to solving a series of minimum partial

covering problems, while for λk < 0, the problem resorts to solving a series of maximum partial packing

problems. The minimum partial covering problem aims at covering a minimum number of points, i.e.,

covering points within a radius r of an opened facility, the set of opened facilities being a result of the

optimization problem. The maximal partial packing problem aims at covering a maximum number of

points, i.e., covering points within a radius r of an opened facility, the set of opened facilities being a

result of the optimization problem. In both cases, the problems solved assume a fixed radius r, and

we denote them as MPC(k,r) and MPP(k,r), respectively. Finally, we embed these binary search

methods are embedded into a branch-and-bound algorithm to solve the DOMP which differs from

typical branch-and-bound as it does not solve a linear relaxation at each node of the branching tree.

Our contributions can be summarized as follows:

1. We derive two methods to tackle the DOMP(k), one for the case λk > 0, and another for the

case λk < 0. The algorithms solve a logarithmic number of MPC(k,r) or MPC(k,r) in a binary

search fashion.

2. We derive a valid dual bound for the DOMP from solving a series of problems DOMP(k),

k = 1 . . . n.

3. We embed this dual bounding procedure within a branch-and-bound algorithm, for which we

propose several acceleration techniques such as warm starts, variable fixing, primal heuristics,

and symmetry breaking.

4. We propose new benchmark instances and conduct a thorough computational campaign to assess

the quality of the proposed method.

The remainder of this article is organized as follows. In Section 2, we propose the two binary search

algorithms to solve DOMP(k) for the case λk < 0 and λk > 0. We also describe the MPC(k,r) and

the MPP(k,r) and explain how they are embedded into our binary search algorithms. In Section 3,

we explain our branch-and-bound algorithm. We introduce new benchmark instances and perform

extensive numerical experiments for the DOMP(k) and the DOMP in Section 4. We also discuss

the limits of our branch-and-bound algorithm. Finally, conclusions are drawn in Section 5.

2 Binary search methods for the DOMP(k)

The DOMP(k) consists in solving a DOMP where the weight vector λ is replaced by λkek, where ek
is the vector of size n composed of zeroes in all positions except at position k where it takes the value 1.
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In the following, we propose two binary search methods to solve the DOMP(k). These binary search

methods are not impacted by the positions k for which λk are equal to zero, but are impacted by the

positive or negative value for the non-zero λk. In particular, each binary search is specific either for

the case λk < 0 or for the case λk > 0. The proposed algorithms assume that the matrix D contains

only integer values as specified in Section 1. In the case where the matrix D would not be integral,

the values in the matrix could then be multiplied by a large factor and rounded to the nearest integer.

Our algorithms would then provide an ϵ-optimal solution for a certain ϵ > 0.

2.1 The case λk > 0

In this section, we propose a binary search method to solve the DOMP(k) for the case λk > 0. We

first show that the problem is equivalent to finding the smallest radius r > 0 such that MPC(k,r)

equals TRUE, i.e., admits a feasible solution, and propose a mathematical model to solve theMPC(k,r).

Then, we explain how this mathematical model is inserted into a binary search method to solve the

DOMP(k).

For the case λk > 0, the DOMP(k) consists of determining whether there exists a set of p centers

C ⊂ N such that, upon assigning nodes in N to their closest centers, the k-th smallest distance dk is

minimized. This is equivalent to finding the smallest radius r > 0 such that its corresponding minimum

partial covering problem, i.e., MPC(k,r), equals TRUE. Note that the MPC(k,r) is equivalent to that

of deciding whether it is possible to cover at least k nodes in N using at most p balls of radius r

centered at nodes in N . If such a solution exists, then the problem is feasible and an algorithm used

to solve it would return TRUE. Figure 1 illustrates a feasible solution of the MPC(k,r) for k = 9 and

a certain radius r, on an instance with n = 10 and p = 2. In the figure, the blue, red, and green nodes

represent the centers in C, the non-covered nodes in N , and the covered nodes in N , respectively. The

radius of the black circle around each center represents the radius r. The matrix D is computed using

the Euclidean distances between each pair of nodes.

Figure 1: Feasible solution for MPC(9,r), λk > 0 on an instance with n = 10 and p = 2

To formulate the MPC(k,r), we propose a mixed-integer program using the model introduced in

Cordeau et al. (2019) for the maximum set-covering problem. This model considers a linear number

of variables and constraints. Let Dij be the distance between nodes i and j. For a fixed r ≥ 0, we

define, for every i ∈ N , N(i, r) = {j ∈ N : Dij ≤ r}, which is the set of nodes in N that lie within a

distance of r from i. For every i ∈ N , let xi be a binary variable that takes the value 1 if and only if

a center is located at node i. Also, let yi be a continuous variable taking value between 0 and 1 that

takes the value 1 if node i is covered by a center. Problem MPC(k,r) is equivalent to solving the
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following MIP:

min
∑
i∈N

xi (1)

subject to ∑
i∈N :j∈N(i,r)

xi − yj ≥ 0, j ∈ N , (2)

∑
j∈N

yj ≥ k, (3)

x ∈ {0, 1}n, (4)

y ∈ [0, 1]n. (5)

Proposition 1. Model (1)-(5) admits a feasible solution of value ≤ p if and only if MPC(k,r) equals

TRUE.

Proof. Let (x∗, y∗) be a feasible solution of value q ≤ p obtained when solving model (1)– (5). Con-

straints (3) imply that at least k variables y∗j take the value one. In turn, constraints (2) imply that for

each such j there exists at least one variable x∗
i that takes the value one and covers node j. Therefore,

MPC(k,r) equals TRUE. Now, let us assume the existence of a set C of cardinality q ≤ p that solves

MPC(k,r). It is easy to see that by assigning x∗
i equal to one for these centers and by assigning every

node j ∈ N to its closest center, we will have at least k nodes for which constraint (2) holds.

By embedding model (2)–(5) in a binary search algorithm, we can then solve the DOMP(k). Let

us define rL and rU as a lower and an upper bound on the value of that radius r. Our binary search

algorithm starts by initializing rL = DMIN and rU = DMAX , where DMIN = min{Dij : i, j ∈ N}
and DMAX = max{Dij : i, j ∈ N} are the minimal and maximal values in matrix D. MPC(k,r) is

then solved using r = ⌊(rL + rU )/2⌋. If there is a feasible solution, then this implies that the optimal

solution value of DOMP(k) is at most λkr, and we set rU = r. Otherwise, this implies that the

optimal solution value is more than λkr and we increase the value of rL to the next minimal value in

matrix D. This procedure is repeated until rL = rU , and when this is reached we have an optimal

solution to DOMP(k). Algorithm 1 presents a pseudo-code of our binary search method.

Algorithm 1 Optimal binary search method for DOMP(k), λk > 0

Initialize rL ← DMIN , rU ← DMAX

Initialize x← ∅, y ← ∅
while rL < rU do

Let r ← ⌊(rL + rU )/2⌋
if MPC(k,r) returns a feasible solution (x∗, y∗) then

Let x← x∗, y ← y∗

Let rU ← r
else

Let rL ← min{Dij : i, j ∈ N , Dij ≥ r + 1}
end if

end while
return (x, y) and λkr

U

2.2 The case λk < 0

In this section, we propose a binary search method to solve DOMP(k) for the case λk < 0. We first

show that this problem is equivalent to finding the largest radius r > 0 such that MPP(k − 1,r − 1)

equals TRUE. Then, we propose a mathematical model to solve MPP(k,r) for given values of k = 1 . . . n

and r ≥ 0. Finally, we embed this mathematical model into a binary search method which provides

an optimal solution to DOMP(k).
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For the case λk < 0, the DOMP(k) consists of determining if there exists a subset of at least

p centers C such that upon assigning every node in N to its closest center, the (k − 1)-th smallest

distance dk−1 satisfies dk−1 ≥ r − 1. This is equivalent to finding the largest radius r > 0 such that

its corresponding maximum partial packing problem, i.e., MPP(k − 1,r − 1), equals TRUE. Note that

the MPP(k,r) is equivalent to deciding whether it is possible to cover at most k nodes from N with

balls of radius r centered on at least p centers C. If such a solution exists, then the problem is feasible

and its solution algorithm would return TRUE.

We formulate MPP(k,r) using a similar notation to the one introduced in Section 2.1, but define

the y variables as binary variables which are equal to 1 if node i is covered by a center, and 0 otherwise.

We can then model MPP(k,r) using the following binary program:

max
∑
i∈N

xi (6)

subject to ∑
i∈N :j∈N(i,r)

xi − |N(j, r)|yj ≤ 0, j ∈ N , (7)

∑
j∈N

yj ≤ k, (8)

x ∈ {0, 1}n, (9)

y ∈ {0, 1}n. (10)

Proposition 2. Model (6)–(10) admits a feasible solution of value ≥ p if and only if MPP(k,r) equals

TRUE.

Proof. Let (x∗, y∗) be a feasible solution of value q ≥ p obtained when solving model (6)–(10). Con-

straints (8) imply that at least n − k variables y∗j take the value zero. In turn, constraints (7) imply

that for each node j such that y∗j = 0, there are no selected nodes in N that can cover it. Now, let us

assume the existence of a set C of cardinality q ≥ p that solves MPP(k,r). It is easy to see that by

assigning x∗
i equal to one for these centers and by assigning every node j ∈ N to their closest center,

we will find at most k nodes in N covered.

One can realize that a solution for which q ≥ p centers are located can be reduced to a solution

containing exactly p centers which would remain valid for MPP(k,r) because it would necessarily

cover less nodes in N . Therefore, constraints (7) can be strengthened as follows:∑
i∈N :j∈N(i,r)

xi − n(j, r)yj ≤ 0, j ∈ N , (11)

where n(j, r) = min{p, |N(j, r)|}. In the remainder of this paper, we will use model (6), (8)–(11), to

refer to MPP(k,r).

By embedding model (6), (8)–(11) into a binary search algorithm, we can then solve DOMP(k).

Similarly to Algorithm 1, this algorithm starts by initializing rL = DMIN and rU = DMAX . MPP(k−
1,r − 1) is then solved using r = ⌈(rL + rU )/2⌉. If there is a feasible solution, then this implies that

the optimal solution value of DOMP(k) is at least λkr, and we set rL = r. Otherwise, this implies

that the optimal solution value is less than λkr and we decrease the value of rU to the next maximal

value in matrix D. This procedure is repeated until rL = rU , and when this is reached we have an

optimal solution to DOMP(k). Algorithm 2 presents a pseudo-code of our binary search method.
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Algorithm 2 Optimal binary search method for DOMP(k), λk < 0

Initialize rL ← DMIN , rU ← DMAX

Initialize x← ∅, y ← ∅
while rL < rU do

Let r ← ⌈(rL + rU )/2⌉
if MPP(k − 1,r − 1) returns a feasible solution (x∗, y∗) then

Let x← x∗, y ← y∗

Let rL ← r
else

Let rU ← max{Dij : i, j ∈ N , Dij ≤ r − 1}
end if

end while
return (x, y) and λkr

L

2.3 Sensitivity to the magnitudes of the input parameters

We would like to highlight that the method proposed to solve DOMP(k) is designed to be little

sensitive to the magnitudes of the input parameters D and λ. Indeed, the solution of each problem

DOMP(k) is agnostic to the magnitude of λk, whose value is only used at the end of the corresponding

binary search method to compute and return the optimal value. Moreover, the binary search methods

perform O(log(DMAX)) computations of the problems MPC(k,r) or MPP(k,r) —where DMAX =

max{Duv, u, v = 1 . . . n}—, making the overall algorithm very little sensitive to the value of DMAX as

well.

3 A branch-and-bound method for the DOMP

In this section we present a branch-and-bound algorithm for the DOMP. This branch-and-bound

differs from typical branch-and-bound algorithms where a linear relaxation of the problem is solved

at each node of the tree. To compute the dual bound, we solve a series of DOMP(k), and compute

the dual bound as the sum of the optimal value of each DOMP(k). The primal bound, on the other

hand, is computed by using the solution for DOMP(k) which returns the best objective function value

for DOMP. Because we do not solve a linear relaxation of the problem at each node, the fractional

solution is computed as an average of the x-variables obtained when solving the DOMP(k). If the

resulting solution is not fractional, then we prune the branch. Otherwise, we branch on the x-variables.

In this branch-and-bound, we decouple the decisions of locating the p centers with minimizing the

ranked distances which removes a complexity of the DOMP. In the following, we first define the

dual and primal bounds. Then, we describe our branching mechanism which includes the solution

at a branching node, the branching strategy, and variable fixing. Finally, we propose improvement

strategies to improve the quality of the primal bound and to reduce the computational time required

at each branching node.

3.1 Dual and primal bounds

At each branching node, we solve a series of DOMP(k) for different values of k. For each of these

problems, we keep its optimal solution for the x-variables, i.e., the location of the centers, denoted as

x∗
k as well as the optimal solution value z∗k. Using the obtained optimal solutions as well as the optimal

solution values, we can derive dual and primal bounds. We hereby detail how these are computed.

Dual bound of the DOMP

Let I = {k = 1 . . . n : |λk| > 0} be the set of indices associated to a non-zero weight. Let zk be the

optimal value associated with each DOMP(k), k ∈ I, and let us define

zD =
∑
k∈I

zk. (12)
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Proposition 3. zD as computed using Equation (12) is a valid dual bound for the DOMP.

Proof. Let us consider a subset C∗ of optimal locations for the DOMP, and let d∗1 ≤ · · · ≤ d∗n be the

associated sorted vector of distances of nodes to centers. The optimal value of DOMP is then equal

to z∗ =
∑

{λkd
∗
k : k ∈ I}. Let us consider now DOMP(k) for k ∈ I. The same solution C∗ is also

feasible for this problem, whose value we denote by z∗k. It follows that z∗k ≤ λkd
∗
k for all k ∈ I. This

in turn implies that zD =
∑

{z∗k : k ∈ I} ≤
∑

{λkd
∗
k : k ∈ I} = z∗.

Primal bound of the DOMP

Let us remark that any subset of p centers is feasible for the DOMP. Therefore, solving each

DOMP(k) yields a feasible solution for the DOMP as the obtained solutions are integer. The primal

bound can then be obtained by computing the DOMP-cost associated with each of these solutions

and keeping the best cost for the DOMP as primal bound.

3.2 Branching

Upon computing the different solutions x∗
k for every k ∈ I, we verify if the values of the dual and

primal bounds coincide. If they do, we may prune the current branching node and declare the node

as integral. If they do not, it necessarily means that some of the x∗
k differ, and must proceed to

branch. We do branch on one x-variable, i.e., xj , and create two children associated to the disjunction

[xj ≤ 0], [xj ≥ 1]. Our branching scheme uses reliability branching which mixes strong branching with

pseudo-cost branching (see Achterberg et al., 2005, for the detailed methodology). We also resort to

variable fixing to improve the performance of the branch-and-bound algorithm. The branching tree is

explored in a best-first fashion. In the following, we define how we compute the solution, provide an

overview of our reliability branching, and explain our proposed variable fixing mechanism.

Solution of a branching node

At each branching node, we define x∗ as the solution of the branching node. This solution is computed

as an average of the DOMP(k) solutions, that is,

x∗ =
1

|I|
∑
k∈I

x∗
k. (13)

Reliability branching

Throughout our branching tree, we keep a vector of pseudo-costs (ρLj , ρ
U
j )

n
j=1. The pseudo-costs of

each x-variable are initialized to zero (or equivalently uninitialized). A parameter ∆ > 0 is used to

determine whether pseudo-costs are declared as reliable or not. More specifically, the pseudo-costs for

a variable xj will be declared as being reliable if min{ρLj , ρUj } ≥ ∆. At each branching node associated

with a fractional solution, we select the five x-variables which are the closest to 0.5. When selecting a

fractional value xj as candidate for branching, two situations may occur: 1) all the pseudo-costs are

reliable; or 2) at least one of the pseudo-costs is declared as unreliable and triggers a recomputation.

Let us define zD as the dual bound of a branching node and x̃j as the value of variable xj as computed

with Equation (13) at a given branching node. The branches [xj ≤ 0] and [xj ≥ 1] are created and

solved. For each branch, we obtain a new dual bound, i.e., referred to as z0D and z1D for the branches

[xj ≤ 0] and [xj ≥ 1], respectively. The pseudo-costs are then computed and updated as

ρLj = (z0D − zD)/x̃j [xj ≤ 0] (14)

ρUj = (z1D − zD)/(1− x̃j) [xj ≥ 1]. (15)
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If the pseudo-costs are deemed as reliable, they are not recomputed but instead used as a score system

to select variables in future iterations. Once the pseudo-costs of all the five candidate x-variables

are available (either because they are declared as reliable or recomputed), we then select the variable

to branch on in the following manner. If one of the candidate x-variables allows one to prune one

of the branches (this can only be done when the children nodes are solved entirely), we then select

that variable and prune the offending branch. Otherwise, we branch on the variable xj such that

min{ρLj , ρUj } is the largest. In case of ties, we select the variable xj such that ρLj + ρUj is the largest.

Further ties are broken arbitrarily. Note that every time that we decide to branch on a variable for

which the pseudo-costs were deemed as reliable, the children nodes will have to be solved, and the

resulting values on both branches used to update the pseudo-costs, as an average of the current values

and the ones obtained using Equations (14)–(15).

Variable fixing

When creating the two child nodes, i.e., xj ≤ 0 and xj ≥ 1, we resort to variable fixing in the

corresponding problems MPC(k,r) and MPP(k,r) in order to achieve a faster convergence. Let us

denote L,U the set of low (xj ≤ 0) and up (xj ≥ 1) branching decisions for a given branching node.

Branching constraints of the form xj ≤ 0 are used to omit the associated variables from the problems

MPC(k,r), MPP(k,r). Branching constraints of the form xj ≥ 1 are used to also omit the associated

variables and all the nodes within a radius of r from them, and to replace p by p− |U |. Let κ be the

number of nodes that are covered by the branching decisions fixed to one. The MIPs are then modified

by replacing k by k − κ and can be trivially solved when κ ≥ k or when |U | ≥ p.

For the MPC(k,r) dominance is also used to reduce the number of potential locations. Given

that we want to cover as many nodes as possible with as little locations as possible, one may simply

omit from the optimization model (fix to zero), any center i if there is another center j that covers a

superset of the nodes covered by center i. We refer the reader to Chen and Chen (2009) for similar

ideas applied to the p-center problem.

3.3 Improvement strategies

In the following, we describe three improvement strategies. The first strategy allows to improve the

quality of the primal bound at the root node. The second strategy allows to improve the performance

of the algorithm when computing the solutions at each branching node. The third strategy proposes

a warm-start for each branching node.

An iterated local search routine for the primal bound

At the root node, the primal bound as defined in Section 3.1 is improved with an iterated local search

(ILS) routine. Let us first define the incumbent as the solution with the best cost for DOMP found

during our ILS. Our ILS starts from the solution for DOMP(k) with the best cost for DOMP. We

then perform swap moves by swapping between open and closed locations, and evaluate the cost of the

resulting solution by computing the ranked distances. The incumbent is updated in a first-improvement

fashion, that is, every time an improvement is identified. When no more improvements are identified,

i.e., convergence to a local optimum, one perturbation move is done. That is, the incumbent is

perturbed by performing a random swap move. The process is then repeated (i.e., improving swap and

pertubation moves) and stops as soon as it reaches five perturbations without being able to improve

the incumbent solution. The incumbent solution is then returned and its DOMP-cost is returned as

the improved primal bound.

Ordering to solve the DOMP(k)

When solving the DOMP(k), low indices k (close to one) associated with positive values of λk usually

admit multiple alternate optima, while larger indices (close to n) usually admit less optimal solutions.
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Analogously, large indices k (close to n) are bad in terms of symmetries for negative values of λk while

the opposite occurs for low indices. Therefore, it is important to solve the different DOMP(k) is a

specific scheme in order to improve the quality of our proposed approach. That is, all indices i are

sorted according to a score, si, which is computed as follows:

si =


0 if i ≤ p

i if i > p and λi > 0

n− i if i > p and λi < 0.

(16)

The DOMP(k) are then solved in non-increasing order of score, and the solution vectors are stored

and used to drive the algorithm towards finding solutions that are close to those encountered for the

largest scores. That is, by denoting, K = {k1, . . . , kn} as the ordering according to the scores (larger

scores first), and ξt =
∑

{x∗
kt

: 1 = 1 . . . t−1} as the aggregated sum of the solution vectors constructed

up to iteration t− 1 of this sequence, the solution of the t-th problem DOMP(kt) modifies the MIPs

(either a series of MPC(kt,r) or of MPP(kt,r)) by putting the objective as a constraint

n∑
i=1

xi ≤ p, for the MPC(kt,r) (17)

n∑
i=1

xi ≥ p, for the MPP(kt,r), (18)

and by considering instead the following objective function:

max ⟨ξt, x⟩, (19)

where ξ0 is initialized as (0, . . . , 0).

The rationale behind this mechanism is the following. By solving the problems associated with

higher scores first, if the optimal solutions are not unique, they admit few alternate optima. Problems

that are likely to admit more alternate optima are solved last, in which case the objective (19) will drive

the model toward encountering optimal solutions which will favor the locations with more occurrences

in the previous iterations. This mechanism incentivates the appearance of integer solutions as early as

possible in the tree by realizing that if such a solution exists, then it must be available as an optimal

solution for all values of k, and in particular for those admitting few optima.

Warm-start for the branching nodes

At each branching node, we use a warm-start to reduce the computational time. As explained, when

solving a branching node, we obtain integer solutions for each DOMP(k), i.e., the x-variables either

take values 0 or 1. When creating the two child nodes, i.e., branching on xj ≤ 0 and xj ≥ 1, it is not

necessary to solve all DOMP(k). In particular, for the branch xj ≤ 0, we do not have to solve the

DOMP(k) for which xj = 0 in the parent node. Analogously, for the branch xj ≥ 1, we do not have

to solve the DOMP(k) for which xj = 1 in the parent node.

4 Computational experiments

In this section we conduct extensive computational experiments to analyze the performance of our

method. First, we describe our experimental setting, including the set of instances and a three state-of-

the-art mathematical models that were tested to compare the performance of our proposed algorithms.

Second, we show that using our binary search methods to solve DOMP(k) is faster than existing

algorithms. Third, for the DOMP, we analyze the sensitivity of our branch-and-bound as well as

existing state-of-the-art mathematical models to the size of the problem (associated with the size of

N ), the magnitudes of the input parameters (represented by the values DMAX = max{Dij : 1 ≤
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i < j ≤ n}, λMAX = max{λk : 1 ≤ k ≤ n}), and the topology of the weight vector λ. Fourth, we

compare our branch-and-bound algorithm with the state-of-the-art branch-price-and-cut algorithm of

Deleplanque et al. (2020). Given the large number of tests performed, in the main manuscript we

present aggregate results only.1

4.1 Experimental setting

In order to compare the performance of our proposed algorithms (i.e., the binary search methods

for DOMP(k) and the branch-and-bound for DOMP), we have re-implemented three pure MIP

models from the model. Note that all of our conclusions are consistent with our experiences, but

might not coincide with the conclusions reached by previous authors. On the other hand, our re-

implementation is at least as good as the initial implementation (i.e., often faster). The three models are

the weak-ordering constraints model (WOC) proposed by Labbé et al. (2017), the radius formulation

(DOMPOTr1) proposed by Maŕın et al. (2020), and a three-index model (DOMPOTθ) from the same

article. Based on the results reported in Puerto and Rodŕıguez-Ch́ıa (2019), we did not test other

models that obtained performance similar to DOMPOTr1 and DOMPOTθ. In addition, for some

analysis, we also compare our algorithm with the branch-price-and-cut method of Deleplanque et al.

(2020) denoted by BPAC. Note that this branch-price-and-cut was not re-implemented. Finally, our

binary search methods for the DOMP(k) as well as our branch-and-bound method for the DOMP

are denoted by CCG23.

All models have been used with IBM CPLEX 22.1. WOC, DOMPOTr1, and DOMPOTθ have

been implemented using C++ CPLEX Concert Technology. CCG23 has been implemented in Ju-

lia v1.7 with JuMP v1.5. The three MIP models and our algorithms have been executed on a computer

equipped with an Intel Xeon E5-2637 v2 @3.5GHz processor. Our method is available as a Julia pack-

age in the GitHub repository https://github.com/claud10cv/DiscreteOrderedMedian.jl.git.2

We consider two sets of instances for our tests, one set based on benchmark instances and the second

set was created for this paper to conduct thorough sensitivity analyses for DOMP. The first set of

instances, denoted as D20, has been introduced in Deleplanque et al. (2020) and consists of problems

with n ranging between 20 and 400, with values of p ranging between 1
4n and 1

2n. In these problems,

the weight vectors λ and the distance matrices D are of low magnitudes (in the tens and hundreds,

respectively). The second set of instances, denoted by C23, has been generated for this paper. These

instances have a similar distribution for n and p as the D20 dataset, but the weight vectors and distance

matrices are of larger magnitudes (in the hundreds and hundreds of thousands, respectively). For each

value of n, p and choice of λ (see below), we generate 10 instances. Both datasets can be retrieved

online in the GitHub repository https://github.com/claud10cv/DOMPInstances.

We also consider two families of weight vectors: unit weight vectors consisting of vectors with a

single non-zero entry; and general weight vectors to mimic several classes of classic median-like problems

such as the p-center and the p-median. The unit weight vectors are used to assess the performance of

our proposed binary search methods to solve the DOMP(k), which are also the subproblems of our

branch-and-bound. On the other hand, the general weight vectors are used to assess the performance

of our branch-and-bound method to solve the DOMP. We hereby describe the two families of weight

vectors.

Unit weight vectors We consider eight different types of unit weight vectors. For each value of

k ∈ {p + 1, n
2 , ⌈

3n
4 ⌉, n} and for each value of s = {−1, 1}, we consider λ(k, s) = sek, i.e., the vector

having a coefficient of s at position k.

1Detailed results will be made available as an online supplemental material upon a successful clearance of the review
process.

2The repository is private for now, therefore inaccessible to the public. It will be made public as soon as the article
clears the review process with success.

https://github.com/claud10cv/DiscreteOrderedMedian.jl.git
https://github.com/claud10cv/DOMPInstances
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Figure 2: Profile curves on unit weight vectors

General weight vectors We consider 9 types of general weight vectors with different characteristics

related to the sparsity (low, medium, high) and the contiguity of the non-zeroes (high, low). Table 1

presents an overview of the types of general weight vectors. For each type of weight vector, we present

its notation as it was previously used in the literature, its characteristics (λ) and its name.

Table 1: Characteristics of the tested general weight vectors λ

Notation λ Name

T1 (1, 1, . . . , 1, 1) p-median
T2 (0, 0, . . . , 0, 1) p-center
T3 (0, 0, . . . , 0, 1, 1, . . . , 1) k-centrum, k = n/2
T4 (0, 0, . . . , 0, 1, . . . , 1, 0, 0, . . . , 0) k1-k2 Trimmed mean, k2 − k1 = n/2
T6 (0, 1, 0, 1, . . . ) Alternate 0, 1
T7 λ random Random
T10 (-1, 0, . . . , 0, 1) Range
T12 (-1,. . . , -1) Dispersion
T14 (1, -1, 1, -1,. . . ) Alternate 1, -1

4.2 Performance on unit weight vectors

In this section we assess the performance of our method in solving the DOMP for unit weight vectors,

this is for λs having exactly one single non-zero coefficient. The objective of this experiment is to

justify the choice of the proposed binary search algorithms used to solve the subproblems DOMP(k),

as opposed to using one of the other models considered in our computational study. We restrict our

analysis to instances from the dataset D20 with n = {100, 200}. These instances were selected as the

computing times were not too low, nor too high, thus allowing for a good comparison. In total, the

testbed consists of 480 instances with different values of n, p, k, and s. For this first experiment, our

maximal computational time is set to 30 minutes and our memory limit is set to 5GB of RAM.

Figure 2 reports the profile curves for the different methods in logarithmic scale. The x-axis

indicates the number of instances solved (out of the 480 instances), while the y-axis indicates, for a

given x, the CPU time required to solve x instances to proven optimality. Our binary search methods

outperform all other methods for this family of weight vector. This also justifies using the proposed

binary search methods to solve the associated unit weight subproblems in the proposed branch-and-

bound method for the case of general weight vectors. We can also notice that model DOMPOTr1 is

outperformed by all three other models. In a preliminary analysis we also observed that this behavior

happened with general weight vectors. Therefore, in the remainder of the computational experiments,

we have discarded this model.
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4.3 Performance on general weight vectors

In this section we perform an analysis of the proposed branch-and-bound method by comparing its

performance against that of the other two MIP models, namely WOC and DOMPOTθ. For all these

experiments, the maximal computational time is set to two hours and our memory limit is set to 5GB

of RAM.

We now analyze the overall performance of our method, for all possible values of the different

parameters. That is, for every type of general weight vector λ (as described in Table 1), for every

instance size (ranging between n = 20 and n = 400), and for both sets of instances (D20, CCG23).

Figure 3 reports the profile graphs of the performance of our proposed branch-and-bound CCG23 as

well as the two MIP models (DOMPOTθ, WOC). Our method is competitive when compared with

DOMPOTθ and allows to solve approximately 200 additional instances within the two-hour time limit.

On the other hand, for more difficult instances, i.e., which require more computational time, WOC

provides a substantially better performance.
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Figure 3: Profile curves on general weight vectors

To better assess the strengths and the limitations of our branch-and-bound algorithm, we conduct

sensitivity analyses to grasp the factors influencing the performance of CCG23. In the following, we

perform sensitivity analyses with respect to the parameters’ magnitudes, the problem size n, and the

type of weight vector λ. For each analysis, we present two figures: a first figure with the number of

instances solved to proven optimality within the two-hour computational time, and a second figure

with the average CPU time.

4.3.1 Effect of the parameters’ magnitudes

In this section, we analyze the effect of the magnitudes of the input parameters in the performance of

the different methods by comparing the performance of the different methods with respect to the two

sets of instances (D20 and C23). Figure 4 reports the number of problems solved to proven optimality,

and Figure 5 reports the average CPU time. In terms of number of optimal solutions, WOC offers

the best overall performance, and in particular for instances with parameters of small magnitudes

(i.e, D20). On the other hand, our method offers the most robust performance, without showing a

significant deterioration on the problems with input parameters of larger magnitudes, as opposed to

what we observe for WOC and DOMPOTθ. In terms of CPU time taken, our method is the fastest

for the D20 instances, and the second fastest for the newly generated instances.

4.3.2 Effect of the problem size

In this section, we report for different values of n the number of instances solved to optimality and

the average CPU time taken. These results are reported in Figures 6 and 7, respectively. These
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Figure 4: Number of instances solved for different magnitudes of the input parameters
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Figure 6: Number of instances solved for varying values of n

results highlight that our branch-and-bound is competitive for low values of n (i.e., n ≤ 50), but its

comparative performance decreases for larger values of n. In addition, while the average CPU time

increases as the value of n increases, our method remains the fastest one for most values of n.

4.3.3 Effect of the weight vector λ

We now analyze the performance of each method disaggregated by class of weight vector λ. Figures 8

and 9 report the number of instances solved to proven optimality and the average CPU time disag-

gregated by class of weight vector. Our branch-and-bound algorithm solves more instances with λs

of types T2, T7 and T10, and is second best for λs of types T4, T6 and T12. Also, we notice that
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our method shows a very poor performance for λs of the type T14. Our method is also the fastest

with λs of types T2, T4, T6, T7, and T10, while it is the slowest with types T1, and T3. This can be

explained by looking at the sparsity of the λs. More precisely, our method is designed to exploit the

sparsity of the weight vector λ. Therefore, given that λs of types T2 and T10 are the sparsest (one

and two non-zeroes respectively), this confirms that our branch-and-bound is best with sparse λs.
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Figure 8: Number of instances solved per type of weight vector λ
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Figure 9: Average CPU times per type of weight vector λ
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4.4 Comparison against the branch-price-and-cut method of Deleplanque et al.
(2020)

In this section, we compare our branch-and-bound algorithm with the state-of-the-art branch-price-

and-cut proposed by Deleplanque et al. (2020) which is denoted by BPAC. To compare the two

methods, we have normalized their computing times. The results reported in Deleplanque et al. (2020)

for BPAC are based on runs performed on a machine running an Intel i7 CPU clocked at 2.8 GHz

with 4GB of RAM. According to the renown benchmarking website http://www.passmark.com, their

machine achieves a score of 2,952, while our machine achieves a score of 6,390. Therefore, we compare

their results obtained within a time limit of two hours (7,200 seconds) with our results obtained with

a time limit of 3,326 seconds (7, 200 × 2, 952/6, 390). In addition, we restrict our algorithm to the

dataset D20 with T7, as these are the only solved instances reported in Deleplanque et al. (2020).

Figure 10 reports the number of instances solved by each method within the normalized time limit.

Note that no instances with n ≥ 200 have been solved by both methods and the x-axis is limited to

n = {20, 30, 40, 50, 60, 70, 80, 100}. We can observe that our branch-and-bound algorithm outperforms

the BPAC. One of the most remarkable selling points of BPAC is, as observed by the authors, its

consumption of RAM resources which is substantially lower than for the MIP models. We would like

to highlight that our method possesses the same characteristic as it never required more than 2GB of

RAM for all our computational experiments.
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Figure 10: Comparison against the branch-price-and-cut method of Deleplanque et al. (2020)

5 Conclusions

In this paper we proposed two binary search methods to solve the DOMP(k) as well as a branch-

and-bound algorithm to solve the DOMP which resorts on these binary search methods. The branch-

and-bound algorithm consists of decoupling the ranking attribute of the problem to compute a dual

bound by solving a series of easier problems on unit weight vectors. These problems are solved

by means of tailored binary search methods that work by solving a series of covering or packing

subproblems. Several acceleration techniques to speed-up the solution process have also been proposed

and implemented.

Our computational experiments where tested using a newly generated dataset with input param-

eters of large magnitudes. We have also conducted an extensive computational campaign on different

weight vectors. To the best of our knowledge, this is also the first study to compare different meth-

ods on such a broad variety of instances and λ vectors. Our results show that solving unit weight

vectors with our proposed binary search methods outperforms existing MIP models. Therefore, these

are a good base to solve the subproblems in our branch-and-bound algorithm. For the general weight

vectors, our branch-and-bound algorithm seems robust in terms of number of optimal solutions found

http://www.passmark.com
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and CPU time taken to solve the instances. In general, it is also better than models DOMPOTr1 and

DOMPOTθ from the literature, as well as the branch-and-price algorithm developed by Deleplanque

et al. (2020). Our results indicate that our method performs best on instances with sparse weight

vectors, but less on instances with dense weight vectors. In addition, our method is not sensitive with

respect to the magnitudes of the input parameters, unlike the other MIP models which show a poorer

scalability in this regard. Finally, our proposed method also consumes little memory, although its

scalability seems to be negatively affected by an increase in the number of nodes and in the density of

the weight vector.

We can identify several potential avenues for future research. First, we believe that addressing

the scalability of the algorithm to the size of the problem and to the density of the weight vector is

crucial to make it more robust. Second, while our algorithm is designed for the DOMP, we believe

that the concept of ranking decomposition could be applied to other classes of ordered problems.

In particular, similar ideas could be used to solve the ordered median hub-location problem (Puerto

et al., 2011, 2016), which introduces an ordering criterion to the problem of locating hubs and designing

commodity paths in the hub network.

References
T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33(1):42–54,

2005.

A. P. Antunes. Location analysis helps manage solid waste in central portugal. Interfaces, 29(4):32–43, 1999.
doi: 10.1287/inte.29.4.32. URL https://doi.org/10.1287/inte.29.4.32.

A. Aouad and D. Segev. The ordered k-median problem: surrogate models and approximation algorithms.
Mathematical Programming, 177(1):55–83, 2019.
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ordered median problem. Annals of Operations Research, 136(1):145–173, 2005.

E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European Journal of Operational
Research, 40(3):275–291, 1989.
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