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Montréal, 22–26 août 2022
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Industrial Problem Solving Workshop,
August 22–26, 2022

Odile Marcotte, éditrice
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Préface

Le Douzième atelier de résolution de problèmes industriels de Montréal, qui eut lieu du 22 au 26 août 2022,
fut organisé conjointement par le Centre de recherches mathématiques (CRM) et l’Institut de valorisation des
données (IVADO). La préparation de l’atelier fut marquée par le retour au mode habituel, où les participants
se rencontrent en personne, après deux années d’ateliers virtuels. Plus de 80 personnes s’inscrivirent à l’atelier
et examinèrent huit problèmes, fournis respectivement par Air Canada, la Banque Nationale du Canada,
Beneva, Environnement et Changement climatique Canada, Hydro-Québec, l’IATA, Radio-Canada et Revenu
Québec. Je remercie chaleureusement ces partenaires et les coordonnateurs des équipes (Frédéric Quesnel,
Gilles Caporossi, Juliana Schulz, Julie Carreau, Alexandre Blondin Massé, Mike Lindstrom, Marie-Jean
Meurs et Alain Hertz), ainsi que les conseillers IVADO dont la collaboration fut essentielle à la collecte des
problm̀es. Finalement j’exprime toute ma reconnaissance à Karine Hébert, qui m’a aidée à mettre en forme
ces comptes rendus.

Odile Marcotte
Conseillère spéciale aux partenariats, CRM
Professeure associée, UQAM et membre associé, GERAD
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Foreword

The Twelfth Montreal IPSW took place on August 22-26, 2022, and was jointly organized by the Centre de
recherches mathématiques (CRM) and the Institute for Data Valorization (IVADO). For the first time since
2019, the workshop was held “in person,” after two virtual workshops held in 2020 and 2021, respectively.
More than 80 persons registered for the workshop and studied eight problems, submitted by Air Canada,
the National Bank of Canada, Beneva, Environment and Climate Change Canada, Hydro-Québec, IATA,
Radio-Canada, and Revenu Québec. I am grateful to our industrial partners and the team coordinators
(Frédéric Quesnel, Gilles Caporossi, Juliana Schulz, Julie Carreau, Alexandre Blondin Massé, Mike Lindstrom,
Marie-Jean Meurs, and Alain Hertz), as well as the IVADO advisors who helped us find the problems
submitted to the workshop. I am also very grateful to Karine Hébert, who helped me put these proceedings
together.

Odile Marcotte
Special Advisor, Partnerships, CRM
Adjunct Professor, UQAM and Associate Member, GERAD
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December 2022
Les Cahiers du GERAD
Copyright © 2022 GERAD, Akhavan, Silva, Abdalrhaman, Dugas, Gawas, Leul, Quesnel
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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1.1 Introduction

Air Canada has a large fleet of heterogeneous aircraft and maintenance on those aircraft is a complex
logistical problem. Maintenance has to be carried out during ground time (i.e., time spent on the
ground between flights) and according to the resources available at the location of the aircraft (i.e.,
airport).

At the moment maintenance schedules are prepared manually and collaboratively by around 30
planners. Air Canada wishes to implement an automated system instead. Furthermore the company
wishes to integrate two types of maintenance tasks: scheduled maintenance and defect repairs.

In this project we were asked to design a new way of creating a maintenance schedule for all aircraft
in the Air Canada fleet. The schedule should be feasible for a long-term horizon (2 years) and optimized
in the short term (around 30 days). It should also be possible to create a full schedule relatively quickly
(in minutes). This would allow the company to generate a new schedule once a batch of new information
arrives (e.g., a list of new defects).

For a maintenance task to be carried out on the plane enough manpower must be available. We are
given the daily availability in terms of head counts and we first decide how to allocate the manpower
to shifts for the day over the planning period. This will directly affect when maintenance tasks are
scheduled. The goal is also to optimize indirectly the utilization of manpower. We use a heuristic that
allocates manpower in a proportional fashion according to the percentage of flights arriving during
those shifts. The task assignment heuristic sorts tasks according to a prioritization score that takes
into consideration the number of man hours and the task type, and progressively schedules tasks to the
earliest (resp. farthest) available ground time if it is a defect repair (resp. scheduled maintenance),
which implicitly minimizes (resp. maximizes) yield remaining.

The remainder of this report is structured as follows. In Section 1.2 we describe the maintenance
schedule problem. The available data is presented in Section 1.3. Sections 1.4 and 1.5 present the two
approaches that were considered to solve the maintenance schedule problem. The first one is based
on mathematical programming and the second one is a greedy algorithm. Results obtained with the
greedy approach are presented in Section 1.6 and concluding remarks are found in Section ??.

1.2 Problem description

This section describes the maintenance schedule problem proposed by Air Canada. The goal of this
problem is to create a feasible maintenance schedule while optimizing a multi-objective function. We
first present and motivate this objective function in Section 1.2.1. The requirements for feasible
maintenance schedules are given in 1.2.2. A preliminary step of the maintenance schedule problem is
assigning ground crews to work shifts. Details on this step are presented in Section 1.2.3. Section 1.2.4
includes a discussion on the separability of the scheduling problem by fleet type. Finally Section 1.2.5
includes additional considerations that should be taken into account in a real-life implementation of
our method but were ignored during the workshop because of the limited time available.

1.2.1 Objective

Optimal scheduling decisions depend on whether the maintenance task is a scheduled maintenance task
or a defect repair task. Scheduled maintenance is maintenance that has to be performed at specific
intervals, such as changing tires, oiling the engine, and replacing parts that deteriorate over time. The
intervals at which maintenance tasks have to be performed depend on several factors, such as the
number of flights and the elapsed time, but they can be translated into a due date. It is desirable to
carry out scheduled maintenance as close as possible to the due date in order to utilize airplane parts
as much as possible. This is referred to as minimizing the yield remaining.

Each defect repair task has a priority code indicating its priority level. A good maintenance schedule
will perform those repair tasks first. Defect repair tasks concern fixing non-critical issues in the airplane
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that do not prevent it from operating safely (e.g., entertainment system malfunction, broken seat, etc).
Although defect repair tasks are non-critical, they also have assigned due dates based on company
standards. It is preferable to correct the issue as soon as possible in order to minimize a disruption
leading to a passenger’s discomfort. In other words defect repair tasks should be carried out as far as
possible from the due date. This is referred to as maximizing the yield remaining.

1.2.2 Feasible maintenance schedule

Although the flight schedule is known well in advance, the aircraft routes are typically known only a
few days in advance. This is somewhat problematic because the flight schedule only indicates when
and where aircraft of some fleet type will be available for maintenance, but not which specific aircraft
will be available. To address this issue we assume that we can choose which aircraft of some fleet type
will be available during each ground time for that fleet type. The schedule will be adapted as aircraft
routes become available.

A time interval during which maintenance can be performed is called a ground time. A ground time
is defined by a location, an fleet type, and a time interval.

Furthermore each location has a limited number of ground crews available to perform repairs. Each
crew is qualified to perform maintenance on a specific fleet type. Each crew works on a cycle and a
shift. The cycle determines the work dates and the shift determines the work hours.

To perform a maintenance task on an aircraft in any compatible ground time, the following conditions
have to be satisfied.

• The ground time has to be long enough for the task to be carried out.

• Enough qualified crews must be available to work on the task. The number of crews assigned per
task is variable and the task completion time depends linearly upon that number. For instance a
four-hour task can be completed in two hours by two crews or in one hour by four crews.

It is possible to complete several tasks in any ground time. All tasks carried out in the ground time,
however, must be related to the same aircraft. This is because ground time represents the time when a
specific aircraft is available (even though we don’t know which one).

1.2.3 Assigning crews to shifts

Each crew is associated with a given location, fleet type qualification, cycle, and shift. A crew can only
perform work at their designated location. Similarly a crew can only work on aircrafts corresponding
to their qualification. A cycle defines on which days a crew will work and follows a regular pattern. A
shift corresponds to the working hours of each crew. We assume all crew keep the same cycle and shift
throughout the optimization period. Although the cycle of each crew is considered fixed in the input,
their shifts are not. Judiciously selecting the crew shifts can have a large impact on the quality of the
maintenance schedule, because it determines the workforce available when maintenance is performed
on an aircraft. Ideally more crews would be available in periods where ground times occur.

1.2.4 Separability by fleet type

Even though ground times do not have a preassigned airplane, they require an airplane of some fleet
type. At each location, each shift and cycle has a number of employees able to work on a preassigned
fleet type. Note that there is no resource shared between fleet types, and that each fleet type has its
own subset of tasks to assign to its own subset of ground times. In this sense our scheduling problem
can be separated by fleet types. This means that a schedule built by merging optimal schedules for
their respective flight types is optimal for the overall problem. Our approaches will make use of this
property: they solve smaller problems and merge their optimal solutions in order to obtain a global one.
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1.2.5 Simplifications

Because of the limited duration of the workshop, simplifications had to be made to the “real” maintenance
schedule problem. We list some of them below.

Hangar constraints: While shorter maintenance tasks can be performed on the tarmac, longer
maintenance tasks require bringing the aircraft to a hangar. This substantially complicates the
problem because it requires taking into account the travel time. Furthermore this version of the
problem would no longer be separable by fleet type, as each hangar has a limited capacity.

Maximum/minimum number of crews per task: In real life it is not always possible to add more
crews to perform a task faster. Likewise some tasks require more than one crew to complete
(if the task requires lifting heavy parts, for instance). We ignored those restrictions, however,
because the available data did not specify a maximum or a minimum number of crews per task.

Conflicting tasks: Our model supposes that any two tasks can be performed at the same time. This
is not the case in practice, however, as some tasks are mutually conflicting. We ignored those
restrictions because the data did not specify which tasks are incompatible.

Number of ground crews per fleet type: Ground crews can be retrained to work on a different
fleet type. It would be interesting to do some analysis to determine which fleet types don’t have
a sufficient number of crews.

1.3 Available data

The report is based entirely on data obtained for Air Canada by Optimus|AI in 2022. In this section
we will be looking at the data and the methodology we use to analyze them.

1.3.1 Description of the data

We have seven collections of data: Defects, MPD, Ground Times, Headcount by Cycle, HeadCount,
Shift Start Times, and Schedule Cycles. Here is their description.

Defects: FIN Type, Fleet Type, DEFECT TYPE (L, M, C, E), DEFECT NUMBER, DEFECT ITEM,
PLAN PROJECTED DUE DATE, MAN HOURS VALUE, Due Date, and Due time.

MPD: FIN Number, Fleet Type (F-192, F-231, F-295, F-546, F-630, F-670, F-690, F-855), EO,
TASK CARD, DUE DATE, MAN HOURS VALUE, Due Date, and Due time.

Ground Times: Flight Local Date, Fleet Type, Departing Station, Inbound Arrival Local Time,
Ground Minutes, Arriving Station, Departure Local Time, and Outbound Arrival Local Time.

Headcount by Cycle: Cycle 1 (Location, FLEET), Cycle 2 (Location, FLEET) for each month from
July 2022 to January 2023.

HeadCount: Month, Cycle, Location (YEG, YHZ, YOW, YQB, YUL, YVR, YWG, YYC, YYT,
YYZ), and F670|F192|F546, F295, F690, F855, F630, F231, F286.

Shift Start Times: Four shift starts from (06:30 – 17:40, 11:00 – 22:10, 16:00 – 03:10, 20:00 – 07:25).

Schedule Cycles: Line Maintenance with 1 / 2 Rotation 2022 for each month from July 2022 to
January 2023.

1.4 First approach : Integer programming

This section presents the integer program initially proposed for modelling the problem.

1.4.1 Input information

Given that the scheduling problem is separable by fleet type, we propose a model for a predetermined
fleet type. In what follows G denotes the set of ground times, indexed by g; L the set of locations
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(airports), indexed by ℓ; D the set of defect repairs, indexed by d; M the set of maintenance tasks,
indexed by m; T the set of tasks (T = D ∪M), indexed by t; C the set of cycles (C = {1, 2}), indexed
by c; and S the set of shifts (S = {1, 2, 3, 4}), indexed by s.

For some ground time g, let C(g) be the subset of cycles that overlap with the ground time g (i.e.,
cycles that happen on the same day(s) as the ground time g); S(g) be the subset of shifts that overlap
with the ground time g (i.e., shifts that happen in the same hour(s) as the ground time g); and L(g) be
the subset of locations that overlap with the ground time g (i.e., the locations where the ground time g
happens).

Also let cgt ∈ Z be the penalty from letting task t being performed at ground time g; hg
cs ∈ Z be the

number of workforce hours that ground time g has on shift s and cycle c; bℓ−c be the lower bound on
the number of people that can work on cycle c; and bℓ+c be the upper bound on the number of people
that can work on cycle c.

These model parameters can be easily computed with the available data. More specifically, the
penalty parameters cgt can be computed as the distance in the number of days between the planning
day and the ground time g for defect repair tasks (i.e., larger penalties would mean that defects have
remained unfixed for longer), and the distance in the number of days between the ground time g and the
due time for task t for scheduled maintenance tasks (i.e., larger penalties would mean that maintenance
has been carried out sooner than needed).

1.4.2 Mathematical model

The integer program has the following decision variables. Binary variable xg
t equals 1 if ground time g

is assigned task t, 0 otherwise. Integer variables yℓcs describe the number of people on shift s in cycle c
at location ℓ. Integer variables wg ∈ Z describe the number of people available to work during ground
time g.

Given these decision variables, the integer program can be written as follows.

min
w,x,y

∑
g∈G

∑
t∈T

cgt · x
g
t (1.1)

s.t.:
∑
g∈G

xg
t = 1 ∀t ∈ T (1.2)

∑
t∈T

dt · xg
t ≤ wg ∀g ∈ G (1.3)

wg =
∑

c∈C(g)

∑
s∈S(g)

hg
cs · yL(g)

cs ∀g ∈ G (1.4)

bℓ−c ≤
∑
s∈S

yℓcs ∀c ∈ C,∀ℓ ∈ L (1.5)∑
s∈S

yℓcs ≤ bℓ+c ∀c ∈ C,∀ℓ ∈ L (1.6)

xg
t ∈ {0, 1} ∀g ∈ G,∀t ∈ T (1.7)

yℓcs ∈ Z ∀c ∈ C,∀s ∈ S (1.8)

wg ∈ Z ∀g ∈ G (1.9)

The objective function (1.1) minimizes the penalties from assigning tasks to ground times. Note
that penalties are computed based on the goal of minimizing or maximizing the yield remaining.
Constraints (1.2) guarantee that each task must be assigned to a ground time. Constraints (1.3)
guarantee that the duration of tasks assigned to some ground time respects the workforce available
during that ground time. Constraints (1.4) establish the workforce available at each ground time based
on how shifts and cycles have been set by the respective decision variables. Constraints (1.5) and (1.6)
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guarantee that the number of people assigned to some shift and some cycle respect the lower and upper
bounds established by the company. Constraints (1.7)–(1.9) establish the previously defined domains
of the decision variables.

1.4.3 Challenges and shortcomings

The integer program initially proposed for the problem could not take into consideration two key
characteristics of this problem.

First the integer program assumes that each ground time has a fixed airplane, which is not the
case as mentioned previously. Instead of having a fixed airplane, each ground time has a fixed fleet
type: the scheduling approach should assign an airplane to some ground time on-the-fly. The model
could be adapted as well to assign available airplanes to ground times based on the needed fleet type
by adding an airplane index to the variables xg

t , rewriting the existing constraints appropriately, and
adding constraints enforcing valid assignments. Such an extension, however, would increase the number
of binary variables in the model, especially if there is a large number of airplanes for some fleet type.

Second the integer program does not properly handle cases where the workforce has been split
between two or more ground times. For example, if there were 10 man-hours scheduled during ground
times 1 and 2 overlapping completely (i.e., beginning and ending at the same times), the integer
program would have as a feasible solution assigning up to 10 man-hours to each ground time, thus not
verifying that such a solution would require up to 20 man-hours. This is not a reasonable assumption
in practice, as the available workforce is not able to work on two different planes at the same time and
should be split accordingly. Adding such a constraint to the model would require some discretization of
time, which would not be practical for such a long planning horizon.

One way to overcome this difficulty would be to forbid the workforce to work on two or more ground
times that overlap. Then there would be a constraint for each pair of ground times that overlap with
each other. Another solution would be to have an external loop solving the integer program at each
iteration and adding a constraint blocking infeasible allocations of the workforce once they appear.
In other words the algorithm would progressively block solutions that do not respect the splitting of
the workforce. Unfortunately such an approach would probably take a long time to find an optimal
solution because there seems to be many overlapping pairs of ground times. In the worst-case scenario
there would be an iteration for each overlapping of ground times and the algorithm would have to solve
multiple integer programs.

1.5 Second approach : Greedy heuristics

This section presents the greedy heuristic proposed for the problem.

1.5.1 Structure overview

Given that the scheduling problem is separable by fleet type, in the sequel we consider that the problem
will be solved for a predetermined fleet type. Since solving the problem by mathematical modeling is a
challenge, our team decided to propose a heuristic approach and break the problem into two parts.

The first part, referred to as shift profiles, aims to identify what is the most reasonable way to build
the workforce schedule (i.e., how to assign workers to shifts and cycles). To this end our team proposes
a data-driven approach that assigns more workers to time windows with more ground times.

The second part, referred to as task assignment, aims to identify what is the best assignment of
tasks to ground times. Implicitly, this part also assigns specific airplanes to ground times on-the-fly, as
airplanes routes are not known in advance. To this end, our team proposes a greedy approach that
assigns tasks to ground times based on a prioritization score. Tasks with a higher score are assigned
first and they are to be carried out as early as possible if they are defect repair tasks or as late as
possible if they are maintenance tasks.
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Sections 1.5.2 and 1.5.3 present the first and second parts of our approach, respectively.

1.5.2 Shift profiles

The first part of the solution process is to assign employees to shifts. Any location has a fixed capacity
of contracted employees that work in shifts. The shifts can be classified as follows:

• Morning(1)

• Afternoon(2)

• Evening(3)

• Night(4)

Each shift is approximately 11 hours long. For the sake of simplicity, however, we only consider a
six-hour time window called quarter for each shift. A simple way of distributing the available manpower
would be to distribute it equally among the shifts. This may not be the right thing to do, however,
since the arrival pattern at any given airport may not be uniform. We analyze the arrival patterns for
each airport. In the table, the available manpower at each airport is given. We see most manpower is
distributed at YYZ, YUL, YVR.

N Fleet type YEG YHZ YOW YQB YUL YVR YWG YYC YYT YYZ

F-231 0 0 0 0 10 10 0 3 0 32
F-286 1 1 1 1 16 14 0 3 1 35
F-295 2 1 1 0 19 18 1 2 0 50
F-347 2 2 2 1 40 36 2 6 2 92
F-630 0 0 0 0 22 17 0 4 0 49
F-690 0 0 0 0 4 4 0 0 0 15
F-855 0 0 0 0 14 11 0 2 0 36

Given below is a plot of arrivals distribution for each fleet during each quarter.

Figure 1.1: Percent of arrivals for a given quarter and fleet type at Toronto.

From Figure 1.1 it is clear that the arrivals are unbalanced during the day. Quarter 4 sees the least
arrivals overall in fleets. Quarter 1 has fewer arrivals for certain fleets also. Hence one idea would be
to distribute the available manpower according to arrival percentages at each location for each fleet.
Suppose X is the total available fleet at a location for a given day. Also let pflq be the percent of fleet f
arriving during quarter q at location l. Then the number of employees assigned at location l for fleet f
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and quarter q would be equal to nfl
q = X ∗ pflq . In the implementation, we artificially set pflq to zero if

it is less than 10% percent of the total arrivals at the location and normalize again. The table below
gives the distribution of arrivals at the three main airports. The final manpower distribution is given in
Figure 1.2.

N Fleet Type Quarter YUL YVR YYZ

F-231 N(1) 0 0.8 0.11
F-231 N(2) 0.81 0 0.62
F-231 N(3) 0.19 0.2 0.27
F-231 N(4) 0 0 0
F-286 N(1) 0.26 0.41 0.35
F-286 N(2) 0.5 0.18 0.43
F-286 N(3) 0.24 0.41 0.22
F-286 N(4) 0 0 0
F-295 N(1) 0.29 0.41 0.32
F-295 N(2) 0.33 0.29 0.36
F-295 N(3) 0.27 0.3 0.32
F-295 N(4) 0.12 0 0
F-347 N(1) 0.36 0.32 0.26
F-347 N(2) 0.3 0.48 0.41
F-347 N(3) 0.34 0.19 0.33
F-347 N(4) 0 0 0
F-630 N(1) 0.46 0.65 0
F-630 N(2) 0.39 0.18 0.67
F-630 N(3) 0.14 0.17 0.21
F-630 N(4) 0 0 0.12
F-855 N(1) 0.18 0.8 0
F-855 N(2) 0.82 0 0.67
F-855 N(3) 0 0.2 0.33
F-855 N(4) 0 0 0

Figure 1.2: Number of employees for each shift and fleet type by location.

1.5.3 Task assignment

The second part of the solution process is to assign tasks to ground times given a shift profile. The
greedy algorithm starts by ranking (a) tasks according to a prioritization score in decreasing order (i.e.,
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tasks with a higher score come first) and (b) ground times according to the due dates in increasing
order (i.e., ground times closer to the planning day come first). Here is the proposed greedy algorithm.

Step 1: Rank tasks in decreasing order of prioritization score. Go to step 2.

Step 2: Rank ground times from the earliest date to the latest date. Go to step 3.

Step 3: Create empty schedule of tasks for ground times. Go to step 4.

Step 4: Create empty assignment of airplanes to ground times. Go to step 5.

Step 5: Create empty list to store nonassignable tasks. Go to step 6.

Step 6: If there remains a task that has not been analyzed, go to step 7. Otherwise, go to step 12.

Step 7: Choose the task t with the highest prioritization score. Go to step 8.

Step 8: Choose the closest (resp. farthest) ground time g without an assigned airplane or with the
same airplane as task t if task t is a defect repair (resp. scheduled maintenance) task. Go to
step 9.

Step 9: If there is no ground time g able to host task t, add task t to the list of unassigned tasks and
go to step 6. Otherwise, go to step 10.

Step 10: Compute the maximum number of workers w available to work on task t during ground
time g based on previous assignments. Go to step 11.

Step 11: Schedule task t to ground time g with w workers. If ground time g has no assigned airplane,
assign it to the airplane of task t. Go to step 6.

Step 12: Export the list of unassigned tasks and the schedule to files and stop.

The greedy algorithm stops once all tasks have been analyzed and either scheduled for some ground
time with a number of workers or deemed nonassignable due to previous assignments and properties of
tasks. Some steps of the greedy algorithm are straightforward (e.g., ranking ground times from the
earliest date to the latest date) but others require a careful definition. In particular there are two
challenges in the implementation of the greedy approach. The first challenge arises in Step 1: how does
one compute the prioritization score of some task t? The second challenge arises in Step 10: how many
employees are available during some time period given previously scheduled tasks? We discuss these
challenges in detail below.

Prioritization score

The prioritization score takes into consideration two attributes of the task. The first attribute is the
task priority. There are four priorities for defect repair tasks: L, M, C, and E. By assigning the letter S
for scheduled maintenance tasks, we have five task priorities altogether. In practice the priorities follow
these rules: L ≻ S ≻ M, C ≻ E (i.e., L has the highest priority, followed by S; M and C have the same
priority; and E has the lowest priority). The second attribute is the number of man-hours required to
complete the task. In practice tasks with a large number of man-hours are scheduled first because they
require long ground times and a larger number of employees. The prioritization score of a task t can be
computed as

score(t) = manhours(t) + priority(t),

where manhours(t) returns the number of man-hours required for that task and priority(t) returns a
number corresponding to the task priority (one of the five types described above). Function priority(t)
has been set to 10 for task type L, 8 for task type S, 6 for task types M and C, and 4 for task type E.
Intuitively tasks with a large number of man-hours will always have higher prioritization scores, whereas
tasks with a lower number of man-hours will be prioritized based on a trade-off between man-hours
and task priority. Note that the definition of the function priority(t) could be improved based on a
further analysis of the algorithm.

Availability profile

In order to assess whether a given task can be carried out within a given ground time, it is necessary to
know whether enough crews are available during that time. This is somewhat challenging because the
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number of available crews changes over time as work shifts begin and end. Furthermore our greedy
algorithm must take into account the tasks already assigned, which lowers the number of crews for
some time intervals.

We keep track of the ground crews availability using a crew availability profile, which can be
visualized as a plot of availability as a function of time. Such a graph is displayed in Figure 1.3.

Since the workforce is split by fleet type and location, we create one crew availability profile for
each combination of fleet type and location. Each time a task is assigned to some ground time, the
appropriate availability profile is updated to reflect the reduced availability during that time.

To store a shifting profile it is only necessary to keep a list of events where the availability changes,
as well as the new availability after those events. The red points in Figure 1.3 represent the data points
that must be stored.

Figure 1.3: Example of shift profile.

1.5.4 Discussion of the greedy algorithm

The greedy algorithm could be improved in several ways. First note that the prioritization score of
each task remains constant throughout the algorithm. In practice it could be beneficial to update the
prioritization score (and the corresponding ordering of the tasks) as the greedy algorithm progresses.
For instance, once a task for airplane a has been assigned to ground time g, it may be helpful to
consider in priority the other tasks for a (to see if they fit in ground time g). Similarly one could
compute a prioritization score for each task/ground pair. We experimented with such approaches, but
they proved too computationally demanding. We believe a better implementation of the algorithm
would be significantly faster and would allow for more sophisticated prioritization methods.

Another limitation of our approach is that selecting shift profiles and performing task assignment
are done sequentially. A better approach would be to integrate the two steps. We propose two ways to
do this. First shift profiles could be determined inside the greedy algorithm. This approach may not be
the best because each shift profile decision has a long-term impact that the greedy algorithm may not
be able to take fully into account. The second possibility is to iterate between the shift profile step and
the task assignment step. Once task assignment is performed, more information is available to create
better shift profiles, which will lead to better task assignments. Implementing this approach would
require formulating the shift profile step as an optimization problem, which should be relatively easy
to do.
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1.6 Results

To quantify the quality of our solution we came up with two main metrics. The first is the yield time
remaining (YTR), which is the difference in time units between the day the task was carried out and
the due date. Note that for a maintenance task the preferred start date is a date that is as late as
possible and for a repair task the date needs to be as early as possible. The second metric measures
the utilization of the available resources at each airport. In Figure 1.4 we have the distribution of
YTR for the maintenance tasks. More than 90% of the tasks are scheduled within 5 days of their due
date. There are still some outliers, however, that we need to schedule much earlier than the due date.
This may be due to longer task times and the lack of availability of ground time for these tasks. In
Figure 1.5 we display the distribution of YTR for the repair tasks. We manage to schedule more than
95% of the tasks within 5 days of their due date.

Figure 1.4: Yield remaining for maintenance tasks.

Figure 1.5: Yield remaining for repair tasks.

Figures 1.6 and 1.7 give the fleet-wise break-up of means and 90th quantile of the YTR for repair
and maintenance tasks, respectively. We can see that certain fleets have a larger YTR than others. It
may be that these fleets have a low availability of ground time.

Figure 1.8 gives the resource utilization for Toronto airport for fleet F-286. We compiled such curves
for the main airports, but here we present only one such curve for illustration. As can be seen a lot of
manpower seems idle; and as most tasks have the same due date they are bunched together. Based
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Figure 1.6: Yield remaining for repair tasks fleet-wise.

Figure 1.7: Yield remaining for maintenance tasks fleet-wise.

on these observations the company can conduct further research and come up with better workforce
policies over the planning period.

Finally the table below gives the runtime consumed by the algorithm for finding the greedy solution.

Fleet type Runtime (minutes)

F-231 11.2
F-286 15.1
F-295 17.7
F-630 25.4
F-855 8.1
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Figure 1.8: Resource utilization for Toronto for fleet F-286.
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2.1 Introduction

Beneva was created through the merger of La Capitale and SSQ Insurance, building on 75 years of

experience. Beneva offers a range of insurance products, including auto, home, life, and commercial

insurances, in addition to savings and investment products. Beneva has over $26.8 billion in assets, 3.5

million clients and members, and over 5000 employees nationwide.

A fundamental task, which is a key element in several other analyses, is the modelling of customer

lifetimes. This allows the company to develop an understanding of their clientele and acknowledge

customer loyalty. In particular the lifetime of a customer is an important input in calculating a

customer’s lifetime value (CLV). The latter is determined according to the following equation:

CLV =

T∑
t=0

(Rt − Ct)St

(1 + i)t
−AC, (2.1)

where Rt − Ct is the customer profitability at time t, St is the probability of customer retention at

time t (i.e,. the survival probability at time t), (1 + i)t is the discount rate, and AC is the customer

acquisition cost.

The focus of this research work is to develop statistical techniques for modelling customer lifetimes,

specifically, estimating the survival function S(t). While there exists an extensive literature in the field

of survival analysis, the peculiar features of the actual data and the business setting are such that

traditional methods are not entirely adequate. Before exploring the statistical methods in detail, we

will give a detailed description of the data and business constraints in Section 2. Section 3 will discuss

some approaches considered, including parametric, non-parametric, and semi-parametric modelling,
survival trees and forests, and a Bayesian approach. Concluding remarks are given in Section 4.

2.2 Data

A customer’s lifetime is defined as the time spent as an active customer with the company. To determine

the lifetime of a client, the starting event date is defined as the time at which the client purchases

a policy with Beneva, and the failure event date is the time at which the client cancels his or her
insurance policy. The lifetime of a client is defined as the difference between these two dates. Note that

a customer who leaves and later returns to the company is treated as two separate (and independent)

customers.

The data considered for the analysis consists of active and new customers between the years 2010

and 2021. More specifically the data includes all customers who had an active policy in 2010, as well as

all new clients who purchased a policy between 2010 and 2021. This particular sampling procedure led

to certain challenges that needed to be properly addressed in order to carry out a valid analysis. In

particular the sample consists of two distinct “cohorts” of clients: one from the cross-section of clients

who were active in 2010 and the other resulting from clients entering between 2010 and 2021.

Customers coming from the cross-section in 2010 were only partially observed: their starting time

was accurately recorded, but only covariate information as of 2010 was available. Further note that

because these individuals were cross-sectioned in 2010, the lifetimes of observed customers are not fully

representative of the true lifetime distribution. This is due to the fact that individuals who purchased

insurance policies prior to 2010 and then left prior to 2010 are not captured in the data at all. As

a result, the lifetimes for the cross-sectioned customers are in fact left-truncated. In addition to the

presence of left-truncation, we note that the failure events may not be fully observed for all individuals,

as a particular failure event may occur past the 2021 cutoff. As such a portion of the lifetime data are

also right-censored.
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In order to model customer lifetimes adequately based on this data, we must account for the above

issues in our statistical analyses. As such we defined the problem in terms of two distinct cohorts: a

prevalent cohort and an incident cohort, which will now be described in more detail.

2.2.1 Insurance data in context of survival analysis

Define the set of individuals who purchased policies after 2010 and before 2021 as the incident cohort.

For each individual, we observe not only their full covariate information (at baseline), but we observe

their purchase date and their lifetime with the company up to 2021. The lifetimes of these individuals

are commonly referred to as right-censored failure time data. We present a representation of these data

in Figure 2.1.

Figure 2.1: A graphical representation of the Beneva client lifetimes in the incident cohort. The solid circles represent the
policy purchase events, the crosses represent the failure events and the open circles represent the right-censoring event

We refer to individuals who were cross-sectioned in 2010 as the prevalent cohort. For each individual

that was sampled by the cross-section, we observe their policy purchasing date and their failure/censoring

event dates. Covariate information is also observed for the prevalent cohort customers, however, these

are measured at 2010 rather than at the policy purchase date (baseline). As discussed above, the

lifetimes of the observed subjects captured by the cross-section are biased and so they are commonly

referred to as left-truncated right-censored failure times. In Figure 2.2, we provide a representation of

the failure/censoring times captured by the cross-section in 2010.

Figure 2.2: A graphical representation of the Beneva client lifetimes in the prevalent cohort. The solid circles represent the
policy purchase events, the crosses represent the failure events and the open circles represent the right-censoring events.
The subject with the red failure time would be unobserved as their purchase date occurred prior to 2010 and they left the
company before 2010.

Each set of incident and prevalent cohort data has its own advantages and disadvantages with

respect to the other. The incident cohort failure/censoring time data is sampled directly from the

population under study and so no specialized techniques are required to adjust for bias, as with the
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data collected from the prevalent cohort. Conversely, since the incident failure/censoring times have

their purchasing dates occurring between 2010 and 2021, the longest observed failure/censoring time

in the cohort is bounded from above by 11. If the follow-up period were even shorter, the incident

cohort data would provide little information on customers who stay with the company for long periods

of time. The prevalent cohort failure/censoring times, however, are not restricted in length by the

follow-up period since the purchase dates can occur arbitrarily far before 2010. Conversely, the observed

failure/censoring times of the prevalent cohort will tend to be longer and so may not accurately model

the survival function for customers who only stay with the company for a short period of time.

2.2.2 Missing values and time-varying covariates

In the data provided by Beneva, there are various forms of missing data. Firstly, and as most commonly

encountered in practice, there are missing values that occur sporadically. In some instances the

occurrence of missing values is in fact meaningful: in these cases an informed imputation was used (e.g.,

an “NA” in fact meaning 0). In the other cases standard imputation methods were used, assuming the

values were missing at random.

An important limitation of the data available is that the covariate information is incomplete. In
the data available for the workshop, covariate information is given at only one point in time for all

individuals. For subjects in the incident cohort, covariates are those measured at the time of policy

purchase (i.e., baseline). For the prevalent cohort, covariates are only available at the cross-sectioned

time, i.e. 2010. In this sense the covariate information represents baseline information for the incident

group, and rather lagged covariates for the prevalent cohort. Note that in reality, the majority of

covariates used in actuarial models (including customer lifetime models) are in fact time-varying. This

means that a trajectory of covariates would technically be available internally at Beneva for all clients

in the incident cohort. For the prevalent cohort, however, limited data is available: while the origin

date is known, covariate information prior to 2010 is unavailable. Thus the trajectories of longitudinal

covariates are only partially observed (from 2010 onward) for the prevalent cohort. Certainly, a more

realistic treatment of missing values would need to reflect the time-varying nature of the covariates. Due

to the limitations imposed by the available data, we were unable to address this problem. Moreover,

because longitudinal covariate trajectories are not available for any clients, a proper handling of the

lagged covariates for the prevalent group was not feasible in the context of this workshop.

2.3 Approaches

There are a variety of different survival analysis approaches that can be used for modelling customer

lifetimes within the context presented by Beneva. Note that the incident and prevalent cohort data

sets could be modelled separately or combined. We chose the latter approach as it includes all available

data in our analysis and the advantages of a specific cohort data set can make up for the weaknesses of

the other cohort.

2.3.1 Statistical cohort approaches

To formalize the discussions above regarding incident cohort and prevalent cohort data sets, we introduce

some mathematical notation. Let Ti, for i = 1, 2, ..., ninc, denote the periods of time from purchasing

the policy to leaving the company (i.e., the failure times). Some individuals may still have an active

policy as of 2022, meaning their policy time Ti is right-censored. Let Ci = 2022−Oi for i = 1, 2, ..., ninc

denote the right-censoring times for each of the ninc subjects. When the policy purchase dates Oi are

assumed to be independent of the holding times (i.e., the failure times), Ti, we may re-center all the

holding/censoring times back to a common origin without affecting our inference. Thus, the observed

incident cohort data set consists of the pairs

Oinc = {(Xi, δi) = (min(Ti, Ci), 1{Ti < Ci}) : i = 1, 2, ..., ninc}.
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Using the same notation as for the incident cohort, let Oi < 2010 for i = 1, 2, ..., k denote the

purchasing date of the insurance policy for each subject occurring prior to 2010 and associate with each

purchase date a holding time Ti for i = 1, 2, ..., k. If a cross-section of active policies is taken in the year

2010, the data will consist of a series of purchase dates Oj and holding times Tj for j = 1, 2, ..., nprev,

with Oj + Tj > 2010. Note that nprev <= k holds (i.e., the number of policy holders captured by the

cross-section in 2010 is possibly less than the number of policy holders with policy purchase dates

occurring before 2010) and that each individual j that was sampled has a policy holding time that is

“long-enough” to be captured by the cross-section. As in the incident cohort setting, the holding times

are right-censored at the end point of 2022. We typically refer to the periods of time Aj = 2010−Oj for

j = 1, 2, ..., nprev as the left-truncation times. We note that each individual has their own left-truncation
time as their policy purchase date is in fact random. As such our analyses must account for the

distribution of the random truncation time Aj for the prevalent cohort. Thus the observed prevalent

cohort data set consists of the triples

Oprev = {(Aj , Xj , δj) = (Aj ,min(Tj , Cj), 1{Tj < Cj}) : Tj > Aj , j = 1, 2, ..., nprev}.

Throughout our analyses, we make the following assumptions regarding the incident and prevalent

cohort data sets.

Incident Cohort Data Assumptions

1. The failure times T1, ..., Tninc are identically distributed according to some distribution function F .

2. The censoring times C1, ..., Cninc are identically distributed according to some distribution

function H. No information regarding F may be gained from H (i.e. the non-informative

censoring property) and each of the Ti and Ci are independent (i.e., the random censoring

assumption).

3. The purchase times O1, ..., Oninc are independent of the failure times (i.e., the no cohort effect

assumption).

Prevalent Cohort Data Assumptions

1. The underlying failure times T1, ..., Tnprev
are identically distributed according to some distribution

function F .

2. The censoring times C1, ..., Cnprev
are identically distributed according to some distribution

function H. No information regarding F may be gained from H.

3. The underlying left-truncation times A1, ..., Aninc are independent and identically distributed

according to some distribution function G. No information regarding F may be gained from G.

Parametric marginal modelling

One approach to modelling the distribution for the policy holder duration period is to assume the

failure time distribution is defined up to some unknown set of parameters and then estimate these

parameters through a technique such as maximum likelihood estimation. We investigate this approach

below and examine the estimates when applied to the Beneva dataset.

Suppose the underlying failure times of both the incident and prevalent cohort data sets have

continuous distribution function F (·;θ) = 1− S(·;θ) and density function f(·;θ), where θ is some set

of unknown parameters. The likelihood function for the incident cohort data set is given by:

Linc(θ) ∝
ninc∏
i=1

f(xi;θ)
δiS(xi;θ)

1−δi (2.2)

where the proportionality statement has removed the terms involving H that do not contain any

information on θ [5]. The corresponding incident cohort maximum likelihood estimator is given by θ̂
inc

,

which maximizes the likelihood in Equation (2.2).
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For a prevalent cohort data set, we must account for the feature that the observed failure/censoring

times are sampled with a bias from the cohort under study. To account for this we include the term

P(T > A;θ) in the denominator of the likelihood function. Thus the likelihood function for the prevalent

cohort data set is given by

Lprev(θ) ∝
nprev∏
j=1

f(xi;θ)
δjS(xj ;θ)

1−δj

P(T > A;θ)
(2.3)

where the corresponding parametric maximum likelihood estimator is given by θ̂
prev

. We note that

since policy holders may start their policies at any random time, the denominator of Equation (2.3) is

not expressed as S(a;θ) for some fixed constant a. Given the inclusion of this complicated expression,

we propose below a simplification based on the observed policy start dates from the incident cohort

data.

Assuming the observed purchasing dates in the incident cohort have the same distribution as the

purchasing dates occurring before 2010, we can use the information from the incident cohort purchase

dates to infer the distribution of A. Observing the histogram of the purchasing dates in the incident

cohort in Figure 2.3, we find that the distribution is approximately a discrete Uniform distribution.

Thus we assume the policy purchase dates follow a discrete Uniform occurring as early as 1960. Using

this approximation, we can simplify the denominator of likelihood (2.3) to:

P(T > A;θ) =

50∑
i=1

P(T > A;θ|A = i)P(A = i) =

1

50

50∑
i=1

P(T > i;θ|A = i) =
1

50

50∑
i=1

P(T > i;θ) =
1

50

50∑
i=1

S(i;θ).

When the incident and prevalent cohort data sets are assumed to be independent of each other,

we can combine the data to find the combined cohort parametric maximum likelihood estimator. The

combined cohort likelihood function is given by:

Lcomb(θ) = Linc(θ)× Lprev(θ) (2.4)

with corresponding parametric maximum likelihood estimator given by θ̂
comb

[10].

Figure 2.3: A histogram of the observed policy start dates measured from 2010 for the Beneva incident cohort.

Using the approaches discussed above, we fit multiple parametric models: Exponential, Weibull,

and Gamma to the incident, prevalent, and combined cohort data sets. For brevity, we only present

the survival function estimates for the Exponential model below in Figure 2.4.

From the fitted survival curve estimates, we found that the median policy holding time was

approximately 7 years whereas the probability of having a policy of at least 5 years (resp. 10 years)

was approximately 0.6 (resp. 0.35).
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(a) (b) (c)

Figure 2.4: Exponential survival function estimates using the policy holding times for the incident (a), prevalent (b), and
combined cohort (c) subjects.

Nonparametric estimation

One difficulty with using parametric models is that the model may be misspecified by the user yielding

possibly flawed inferences regarding the underlying population. An alternative technique is to estimate

the survival function non-parametrically through estimators that do not depend on the underlying

failure time distribution.

Given a set of right-censored failure time data, the non-parametric maximum likelihood estimator

of the survival function S = 1− F is given by the Kaplan-Meier estimator:

Ŝ(t) =
∏

i:ti≤t

(
1− di

mi

)
(2.5)

where ti is an observed failure time, di is the number of failures that occurred at time ti, and mi is the

number of individuals who have not yet failed or been censored up to time ti. It can be shown that the

estimator Ŝ is uniformly consistent and weakly convergent to a tight Gaussian process [1].

Given a set of left-truncated right-censored failure time data, the non-parametric estimator of S

has a form similar to that of the Kaplan-Meier estimator. The non-parametric maximum likelihood

estimator is given by:

Ŝ(t) =
∏

i:ti≤t

(
1− di

mi

)
(2.6)

where ti is an observed failure time, di is the number of failures that occurred at time ti, and mi is

the number of individuals who are at risk at time ti. That is, mi includes all those subjects with

failure/censoring times, xj , that are larger than or equal to the failure time ti with truncation times aj
that are less than or equal to the failure time ti (i.e., mi =

∑
j 1(aj ≤ ti ≤ xj)) [11].

When incident and prevalent cohort data are combined, the product-limit estimator of S can be

easily obtained. By viewing the incident cohort data as prevalent cohort data with left-truncation

times equal to 0, they may be automatically incorporated into the estimator given in (2.6) [8, 12]. The

corresponding combined cohort product-limit estimator can also be shown to be uniformly consistent

and weakly convergent to a tight Gaussian process.

The estimator in (2.6) was also fit to the Beneva data and the results are shown in Figure 2.5. For

the incident, prevalent, and combined cohort survival curve estimates, we found the median policy

holding times to be approximately six years, seven years, and six years, respectively.

There are both advantages and disadvantages to these non-parametric estimators. First, the survival

function estimator for the incident cohort data set is restricted by the right-end point (2021) of the

data collection window, meaning that the largest observed failure/censoring time is at most 11 years

even though the survival function may be defined with non-zero probability past the period of 11 years.

This restriction is not present in the prevalent cohort data as the policy purchase dates may occur at
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(a) (b) (c)

Figure 2.5: Kaplan-Meier survival function estimates (solid lines) and corresponding 95% confidence intervals (dashed
lines) using the policy holding times for the incident (a), prevalent (b), and combined cohort (c) subjects.

any time prior to 2010, implying that the tail of the survival function is well estimated. When the data

are combined, the survival function estimator incorporates both the short policy holding times from

the incident cohort subset as well as the longer policy holding times from the prevalent cohort subset.

We also note that since the nonparametric maximum likelihood estimators are based directly on

the observed data, the corresponding estimates have visible drops occurring every calendar year. We

attribute these drops to the fact that the majority of customers will cancel upon renewal of their

insurance policies at the end of their policy term. Generally speaking, the survival curves appear

to suggest that policy holders are not likely to break and prorate their policy packages while their

policies are still active and are more likely to wait until the policy term expires before leaving Beneva

or purchasing a new policy.

Semi-parametric modelling

A quantity of interest for insurance providers is the risk that an individual will end their insurance

policy with the company. The hazard function is the instantaneous rate of change in the conditional

probability of failure at time t, as given by the formula below:

λ(t) = lim
dt→0

P(T ∈ [t, t+ dt)|T > t)

dt
. (2.7)

A modelling approach discussed by Cox relates the conditional hazard function (conditional on a

set of covariates) to the product of a baseline hazard function (free of covariates) and an exponential

risk function [2]. We define the hazard function of the Cox proportional hazards model below:

λ(t|Z) = λ0(t) exp(Zβ). (2.8)

For right-censored failure time data, the standard approach for estimating the β parameters is to

maximize the partial likelihood function [1] given below:

Linc(β) =

ninc∏
i=1

(
eZiβ∑

j:Xi≤Xj
eZjβ

)δi

. (2.9)

Similarly, for a set of left-truncated right-censored failure time data, the risk function β parameters can

be estimated through a partial likelihood function accounting for the presence of left-truncation:

Lprev(β) =

nprev∏
i=1

(
eZiβ∑

j:Aj≤Xi≤Xj
eZjβ

)δi

. (2.10)

Interestingly, there are some cases when there are ties in the observed failure/censoring times that

the product of the partial likelihoods Linc(β)Lprev(β) is not fully efficient [9]. To counteract this
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possibility, we follow the same approach as in the nonparametric estimation setting by regarding the

incident cohort data as prevalent cohort data with truncation times equal to 0. We can then incorporate

all the incident cases into a single partial likelihood function with the prevalent cohort cases.

Due to the data privacy restrictions of Beneva, the covariates that were provided in the observed

data set were not labelled. As a result of the anonymity of the covariates, parameter interpretations

were not possible. Nonetheless we applied the proportional hazards model incorporating the available

covariates. We also considered treating the observed truncation time as an additional covariate in

the model. Specifically, using the proportional hazards model, we explored how the survival curve

estimates depend on whether or not the observed truncation time is included as a covariate in the

risk function. In Figure 2.6, we plot the estimated baseline survival functions when the covariate of

the left-truncation time is included (or not included) as a potential covariate. From the preliminary

plot, we find that the inclusion of truncation as a covariate shortens the estimated holding time of

individuals who purchased insurance policies. Using the techniques described above, Beneva can apply

our methodologies to incorporate their specific covariates into the model in a more appropriate manner.

This would allow a better understanding of the covariate effects on insurance policy holding times, and

how these covariates affect the risk that an individual may cancel his or her policy.

Figure 2.6: Survival curve estimates under the Proportional Hazards Model when the truncation time is/is not included as
a covariate in the risk function.

2.3.2 Survival trees/forests

Ignoring the issue of incomplete time-varying covariate information, there are two particularities of the

data that need special handling: first, the observed customer lifetimes are left-truncated right-censored,

as previously described; secondly, there are sporadically missing covariate values, which we assume are

missing at random. We will now explore the use of random trees and forests for modelling the customer

lifetimes.

Random trees are a sub-category of binary trees where data are split into leaves according to a

defined criterion. The process is repeated successively on every leaf until a stopping criterion is verified,

such as a minimum number of data points in the leaf or when the splitting does not improve prediction.

Growing a random forest consists of growing several random trees. Each one is trained on a random

subset of the training data and the associated features. A cumulative hazard function can then be

estimated on each tree. By averaging them, we obtain the ensemble cumulative hazard function [4].

The key to growing a random tree is the choice of splitting rule. In a more standard context

without the presence of censoring or truncation, the Gini criterion and the entropy criterion are widely

used. To account for right censoring, the logrank criterion [4] or a Poisson regression based on the

log-likelihood [7] can be considered. The logrank criterion and the log-likelihood can be adjusted to

account for left truncation. For more details about the latter, see Section 2 in [3].
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In this application three approaches were considered using random survival trees and forests.

1. Construct a random survival forest that can handle left-truncated right-censored data and missing

data simultaneously.

2. Create a new covariate accounting for left truncation. Then construct a random survival forest

for right-censored data and missing data simultaneously, treating the left truncation as a feature.

3. Impute the missing data, and then fit the model to the completed data by growing a random

survival forest for left-truncated right-censored data.

Method 1

There exists a random survival forests algorithm for right-censored data, which is capable of imputing

missing data as the trees are grown [4]. This method, however, is not designed to take left truncation

into account. An alternative approach for building random survival forests given in [13] can handle

both left truncation and right censoring, but it does not impute missing values. It seems that there is

not yet a readily available implementation combining both algorithms. Note that it may be feasible to
incorporate the splitting rule from the latter algorithm into the former approach, although this requires

further investigation.

Method 2

Another approach is to construct a new covariate accounting for left truncation. This covariate is

set equal to the lifetime of the customer at the 2010 cross-section. More specifically, the truncation

covariate is [2010−Oj ]+, i.e., it is equal to 0 for clients who arrived after 2010 and 2010−Oj otherwise.

We can then grow a random survival forest for right-censored data that can also handle missing data.

This induces a bias, however, as it does not properly capture clients who purchased insurance policies

and left prior to 2010. Moreover the running time of the algorithm is quite large, especially with the

amount of data considered.

Method 3

As an alternative approach, we considered imputing the missing data in an initial step and then using

the completed data to fit the random survival forest for left-truncated right-censored data as given

in [13]. While the algorithm of [13] is available in an R package, we ran into some implementation

difficulties. To simplify, we considered an alternative package which consists of an extension of the
CART algorithm adapted to left-truncated right-censored data [3], that is, a single tree is grown instead

of a forest. The results of this algorithm can be a Kaplan-Meier curve for each terminal node as

illustrated in Figure 2.7. The predicted survival curve of a new client is then given by the estimated

Kaplan-Meier curve at the terminal node corresponding to their set of covariates.

2.3.3 Bayesian approach

As a final method, a Bayesian approach was explored. Following the work of [6], we focused on estimating

the survival function assuming a Weibull distribution wherein the underlying likelihood function was

appropriately adapted for left-truncated right-censored observations. Due to time constraints, a very

preliminary analysis was carried out wherein the shape parameter was assumed known (held fixed at

the maximum likelihood estimate obtained from a parametric approach). In this setting, the scale

parameter has a conjugate gamma prior, thus leading to a simple closed-form expression for the Bayes

estimator. Due to the time constraints of the workshop, our analysis ended here.

A more thorough investigation of Bayesian inference for modelling customer lifetimes is necessary.

First one could consider distributions other than the Weibull model. In the case of the Weibull

distribution (and other distributions as well), a more realistic analysis would consider estimating all
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Figure 2.7: A random survival tree grown using the extension of the CART algorithm to left-truncated right-censored data.
Missing data were imputed to yield completed data, which were then input into the algorithm. Each terminal node results
in a Kaplan-Meier curve fit to data within the node.

model parameters, rather than assuming that some are fixed. In the context of customer lifetimes,

the models should incorporate covariate information. As a first step, baseline (fixed) covariates could

be considered while further explorations could consider including time-varying covariates. Finally, as

detailed in Section 2.3.1 (see parametric marginal modelling), the underlying likelihood should be

adapted to reflect the random truncation times for customers from the prevalent cohort.

2.4 Discussion

The approaches discussed in this report provide some preliminary analyses towards modelling left-

truncated right-censored customer lifetimes arising from incident and prevalent cohorts. As demonstrated

in the report, a proper handling of observations stemming from the two distinct cohorts allows for a

combined analysis using all policies simultaneously. An overview of various estimation methods has

been discussed, notably parametric, non-parametric and semi-parametric models, survival trees, and

Bayesian inference. Of course all of the approaches considered in this report can be further explored

with added layers of complexity: notably, a thorough investigation of the implementation of survival

forests, alternative imputation methods for handling missing data, and a more rigorous Bayesian

analysis.

It is important to note that while we have explored methods that appropriately handle the incident

and prevalent cohorts, with left-truncated right-censored customer lifetimes, we were unable to address

the issue of incomplete time-varying covariate information. Recall that in reality almost all covariates

are indeed time-varying: in the observed data, however, covariates were only measured at one point in

time. While baseline covariates are available at the time of policy inception for the incident cohort, only

lagged covariate measurements are available for the prevalent cohort at the 2010 cross-section. Due to

the constraints of the available data, we were simply unable to address this issue adequately. In a more

detailed dataset, including time-varying covariates, imputation methods could be explored allowing
one to impute missing covariate trajectories for subjects in the prevalent cohort; more sophisticated

methods could also be used for imputing covariate values missing at random.
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3.1 Context and motivation

Environment and Climate Change Canada (ECCC) is developing operational environmental forecasting

tools to characterize and monitor the evolution of different components of the Earth System, 24 hours a

day, 7 days a week. These forecasting systems typically include a cascade of coupled models representing

atmospheric, oceanic, ice, hydrological, hydrodynamic, and ecosystem conditions, from the global

scale to the regional or even local scale. In lakes and rivers these systems are used as integrated

tools for decision-making and water management, as aids to navigation, or in support of search and

rescue operations and environmental emergencies. As such, research and development focuses on

improving ECCC’s prediction capabilities and capacity to deliver and sustain environmental prediction

products and services to Canadians, researchers, industry, and government. Several applications require

high-resolution (spatial and temporal) modelling of critical variables such as water depth or current

velocity, particularly in coastal regions or near infrastructures.

Despite the availability of high-resolution data sets and high-performance computers, high-resolution

simulations remain very expensive and the resulting computation times are sometimes inadequate for

the application considered. Thus lower-cost solutions are generally computed by decreasing spatial and

temporal resolutions, or reducing the forecast horizon, or simplifying the physical problem. A hybrid

statistical-dynamical solution is sought in order to broaden the model applicability by improving the

physical fidelity and increasing, at reduced cost, the computational speed and spatiotemporal resolution

of the simulated hydrodynamic variables. Such a solution would also allow issuing longer-term forecasts

(deterministic and ensemble-based) or climate projections. To accomplish this task, several emulators,

or surrogate models, can be set up, using approaches borrowed from artificial intelligence and statistical

or numerical methods aimed at reducing the dimensionality of the simulated problem. These techniques

could, for example, allow us to generate high-resolution fields from low-resolution simulations, or to
approximate fine-scale spatiotemporal variability using pre-simulated (simplified or dimension-reduced)

solutions.

3.2 Problem description

As part of the Great Lakes Protection Initiative (GLPI), ECCC was given the task to model current
and future water level fluctuations in the Great Lakes subject to various atmospheric, hydrological, and

climatic conditions, with the aim of producing impact analyses of water level fluctuations (e.g. frequency

and duration of flood cycles) on the distribution and evolution of coastal wetlands, including climate

projections for a large number of future climate scenarios. This type of application requires a large

number of simulations at a high spatial resolution, particularly near the coast, at a sufficiently small time

step (sub-hourly), in order to capture high-frequency variations, and over long periods (30+ years). In

order to reduce computational costs and the number of simulations to produce, various simplifications

have been made. In particular two-dimensional (2D) simulations were performed, neglecting lake

stratification and mixing; steady-state (time-invariant) simulations were conducted, using uniform and

static scenarios to reconstruct temporal variability, neglecting high-frequency phenomena such as seiche

oscillations; some variables were neglected, namely astronomical tides, atmospheric pressure, and ice,

which are not modelled but identified as potentially having an impact on water level variations.

As part of the 12th Montreal Industrial Problem Solving Workshop (held in August 2022), the

current work had the objectives of identifying existing approaches and exploring various strategies to

improve the physical fidelity of the solutions, from forcing conditions to modelled water levels, and

reducing the cost of long-term hydrodynamic simulations in the Great Lakes.
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3.3 Case study: Lake Erie

Lake Erie is the shallowest of the Great Lakes with an average depth of 19 m (Figure 3.1). Because the

influence of a strong, shallow stratification in Lake Erie remains limited, this lake can be approximated

by a one-layer (2D) model. Although this assumption may be violated under certain circumstances,

particularly in the deep eastern basin, wind-induced surface motions modelled at the basin scale remain

mostly unaffected. Hydrodynamic simulations were therefore performed under time-varying conditions

to account for the transient nature of this system. These real-time solutions thus offer a complete and

realistic description of the wind-induced physical processes, i.e., wind set-ups and surface seiches. This

method, however, is by far the most demanding in terms of computational and storage resources; for a
one-year simulation, over 5000 lake-level maps of Lake Erie are produced and stored.

Figure 3.1: The mesh (top) and the bathymetry (bottom) of the Lake Erie hydrodynamic model. Insets show details of the
lake’s inlet (Detroit River) and outlet (Niagara River).

In contrast, for the other, much deeper, Great Lakes, a second modelling approach was developed,

seeking to reproduce the physics of free-surface motions as observed in the mixed (upper) layer only. As

the motion initiated by the atmospheric forcing is restricted to the surface Ekman layer whose depth

varies with the wind intensity, the adopted strategy was to simulate only the surface layer dynamics by

artificially modulating the lake bathymetry. In these cases the water column depth is used to estimate

the wind effect within a 2D parametrization. As such, a calibration of the “effective” depth under

different wind conditions was performed, considering both direction and speed. In this approach only

static (i.e., steady-state) solutions can be obtained to avoid a violation of conservation of mass. In order

to reproduce the transient water level fluctuations, the time series are reconstructed from pre-computed

solutions rather than simulated continuously (i.e., using a time-stepping approach). Since it is not
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realistic to model all possible forcing combinations, a solution space was developed and used to estimate

the state of the system, i.e., the tilt of the lake surface once in equilibrium with the wind. In this

representation, only the initial deflection of the lake surface is modelled: the surface seiches initiated by

the relaxation of the lake surface are not parametrized since a seiche is an oscillatory process resulting

from an instability. Part of the energy will therefore be missing from the final time series reconstructed

with the steady-state solutions.

During the temporal reconstruction, further simplifications are made on the gridded wind fields

in order to match them with the modelled set of wind scenarios. In the scenario-based approach, the

wind used to trigger a basin-scale motion is first obtained by low-pass filtering (with a 2-day cut-off

period) the zonal, u, and meridional, v, wind components. Second, a time series was created from
the gridded wind data sets by reducing the spatial distribution to a regional description of the wind,

assumed to be representative of the predominant wind condition experienced (on average) by the basin.

To do so a Gaussian Mixture Model was applied, using a fixed number of three clusters to describe

lake-wide spatial variations. In Lake Erie, the availability of both a continuous (transient) solution and

a scenario-based reconstruction allows the investigation of the impact of this simplification, given that

only the static solutions are available in the other Great Lakes.

3.3.1 Proposed solutions

In the following sections, the three solutions proposed during the workshop will be presented. These

solutions are to be seen as preliminary steps towards a global solution. Each solution addresses a

distinct aspect of the problem, namely:

1. Seeking an analog method for the wind regionalization using Principal Component Analysis

(PCA) projections instead of a single lake average, from which new static scenarios could be

defined using information on wind patterns [Section 3.4];

2. Extracting modes of variability in water-level time series using Variational Mode Decomposition

(VMD) and building a statistical model to predict high-frequency lake oscillations (e.g. seiches)

from low-frequency events (e.g. wind setups) [Section 3.5];

3. Scaling and simplifying the hydrodynamic model (shallow-water) equations in order to obtain a

low-cost model to be used for continuous, long-term simulations [Section 3.6].

3.3.2 Data

The following three data sets were available for preliminary tests during the workshop [github.com]:

• Hourly water level series from NOAA (Water Levels: Great Lakes Environmental Research

Laboratory) and ECCC stations on Lake Erie:

– series at six Canadian Hydrographic Service stations (Fisheries and Oceans Canada) and

nine NOAA stations (NOS Center for Operational Oceanographic Products and Services);

– mean lake level series estimated as the seasonally-adjusted average of the hourly water level

series recorded at five stations [Port Stanley and Port Colborne, ON, Canada; and Toledo,

Cleveland, and Fairport, OH, USA] following the standard NOAA methodology;

• Hourly wind series from the Climate Forecast System Reanalysis (CFSR): u et v [ms−1] components

of the wind at 10 m over a grid with 0.312◦ spatial resolution (approx. 38 km);

• Water levels simulated by the H2D2 hydrodynamic model [4, 5] and re-gridded to a 500m-resolution

spatial grid with a temporal resolution of 24 min.

Two periods of two months were used for calibration: 15/3/1991–15/5/1991 and 15/3/1992–15/5/1992

were the validation periods.

https://github.com/SlvInn/problem_solving_workshop_2022/
https://www.glerl.noaa.gov/data/wlevels/#monitoringNetwork/
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://www.gre-ehn.ete.inrs.ca/H2D2/
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3.4 Improvement of Scenarios: Principal Component Analysis (PCA)
of winds

For this solution, the aim was to summarize wind fields by performing a projection onto a lower

dimensional space. The wind fields are thus summarized as features consisting in their coordinates in

that lower dimensional space. The low dimensional features should be related to the spatial patterns of

the water level. Indeed the goal is to reconstruct the water level field based on the observed features of

the wind fields. The reconstruction technique considered here is a simple analog method that boils

down to seeking in the historical data time steps that are similar in terms of wind field features.

To perform the dimensionality reduction, we used Principal Component Analysis (PCA), a

widespread statistical method that projects high dimensional data onto a lower dimensional hyperplane.

Let (ut,vt) ∈ RD ×RD be the zonal and meridional wind components for a given hour t. PCA

is applied separately on each wind component since the wind components are uncorrelated and their

distribution is approximately Gaussian. Let d ≤ D be the dimension of the PCA hyperplane. Then

PCA computes the following projections to obtain the features ϕt and ψt in R
d:

ϕt = Aut, (3.1)

ψt = Bvt, (3.2)

where A and B are d×D matrices whose rows are eigenvectors sorted in order of decreasing eigenvalue,
resulting from the eigenvalue decomposition of the empirical covariance matrices of each wind component.

To examine the interpretability of the PCA projections, we define a training set consisting of the

hourly wind components over Lake Erie at approximately 0.33◦ spatial resolution over the period

01/03/1991–30/04/1991. PCA is applied, as explained above, by computing the eigenvalue decom-

position of the covariance matrices over the training set. The principal eigenvectors represent the

main spatial patterns present in the training set and carry the spatial information. The eigenvectors

associated with the two highest eigenvalues are presented in Figure 3.2, where the zonal and meridional

components are combined to yield wind direction (indicated by arrows) and magnitude (indicated by

the color scale). The first eigenvector (left panel of Figure 3.2) represents the spatial pattern that

explains the largest fraction of variability in the data (about 90%). As the direction is constant and

the wind magnitude varies only mildly, this spatial pattern is consistent with the original approach

employed at ECCC in which wind fields are summarized with a single average value. The second

eigenvector (right panel of Figure 3.2) represents a much more contrasted spatial pattern explaining

the second largest fraction of variability in the data (about 5%). The temporal variability is contained
in the feature vectors ϕt and ψt (see (3.1)–(3.2)), as illustrated in Figure 3.3.

To evaluate the relevance of the features obtained by PCA for summarizing the wind fields, we

designed the following procedure. The dimension of the PCA subspace is set to d = 2 for each wind

component and the features of the zonal and meridional components are concatenated into a single

feature vector zt = (ϕt,ψt) ∈ R4. A test set is defined similarly as the training set but over the period

15/03/1992 - 30/04/1992 (i.e., a year later). The wind fields of the test set are projected onto the

hyperplane of dimension two defined by the PCA eigenvectors computed over the training set. For

each time step t′ of the test set, let zt′ ∈ R4 be the associated feature vector. To reconstruct the water

level field, we look into the training set for the nearest neighbour in terms of feature vector. Namely let

t∗, a time step in the training period, be chosen so that the following equation holds.

t∗ = argmin
t

||zzzt − zzzt′ ||2 (3.3)

Then the water level field hhht′ at time step t′ is estimated by the water level field of its nearest neighbour

as defined in the equation above from the training set.

ĥhht′ = hhht∗ (3.4)
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Figure 3.2: Wind direction (arrows) and magnitude (color scale) of the two principal eigenvectors (from left to right) of
the zonal and meridional components obtained from PCA applied on the hourly wind fields over the period 01/03/1991–
30/04/1991.

Figure 3.3: Temporal evolution of the first element of each feature vector, ϕt (in black) and ψt (in red), over the first five
days of the training set (01/03/1991–30/04/1991).

The performance of the nearest neighbour reconstruction is measured by the Root-Mean-Square Error

(RMSE), defined as √√√√ 1

T ′

T ′∑
t′=1

(
hhht′ − ĥhht′

)2
(3.5)

where T ′ denotes the number of time steps in the test set.

The RMSE yielded by the approach based on the first two features of PCA applied to each wind

component over the test set is compared to the RMSE yielded by the original ECCC approach in

Figure 3.4. As can be seen from the RMSE, the PCA approach provides a performance similar to

that of the original ECCC approach. There are likely at least two reasons to explain this result: (1)

the reconstruction approach is not the one employed by ECCC (we could not use it as it involved

running the hydro-dynamical model) and (2) PCA features could be improved by resorting to nonlinear

dimensionality reduction techniques and/or to techniques accounting for extreme events.
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Figure 3.4: RMSE over the test set for the original ECCC approach (left panel) and for the d = 2 PCA features (right
panel).

3.5 Seiche scenario construction: Variational Mode Decomposition
(VMD) of the water levels

Lake water levels respond to a series of atmospheric and hydrological influences such as wind and river

flow. The objective of this section is to analyze observed water levels at contrasting gauges around Lake

Erie in order to understand their different modes of variability and to identify potential relationships

between the low-frequency modes (e.g. associated with wind setup) and the high-frequency modes (e.g.

associated with seiches). If such a relationship exists, the idea would be to build a predictive model

capable of reconstructing the seiche signals in a synthesized way (e.g. amplitudes, phases) from identified

predictors such as setup or wind. These predictors could come directly from the low-frequency modes

of observed or simulated water levels or, alternatively, from wind fields or their principal components

obtained by PCA.

Variational Mode Decomposition (VMD) [1] was applied to separate the water level signals into

different modes of variability. Two contrasting stations in Lake Erie were chosen, namely Toledo (Ohio,

USA) and Port Stanley (Ontario, Canada) (Figure 3.5). Water levels at Toledo, located at the western

end of Lake Erie, are the most impacted by wind setup/set-down events, as illustrated in Figure 3.5.

While the water level anomaly reached up to 1.5 m in 1991 at Toledo, it only reached 0.4 m at Port

Stanley, located on the North Shore midway from the eastern and western ends of the lake. This reveals

how wind events predominantly oriented along the lake principal axis create a slanted lake surface

affecting local water levels, most importantly at the lake extremities. These effects are even more

pronounced in the western portion of the lake due to shallower bathymetry [3]. For the remaining of

this section, results will be presented only for the Toledo station, which presents the largest variability

in water levels.

A total number of 26 modes were extracted using VMD, allowing for a separation of the water

level signals into the dominant modes (or frequencies). A sample (the first 16 modes) is provided in

Figure 3.6 for the Toledo station. In a similar fashion the corresponding amplitude spectrum obtained

from the Fast Fourier Transform (FFT) is presented in Figure 3.7. It can be seen that the VMD

method effectively extracts and decomposes the signal variability into distinct modes with minimal

overlap between neighbouring frequency bands. In addition, the method completely avoids mode

mixing, meaning that the energy contained in each mode is limited to a narrow band. This represents

an advantage over other techniques, such as empirical mode decomposition, and is a required feature if

a predictive model is to be developed.
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Figure 3.5: (left) Bathymetry of Lake Erie; (right) observed water level time series in Lake Erie at Toledo (Ohio) and Port
Stanley (Ontario).

Figure 3.6: The first 16 decomposed modes from VMD at the station of Toledo (Ohio) in Lake Erie.

The FFT amplitudes for each mode are compared with the original spectrum at Toledo in Figure 3.8.

Tides and expected seiche frequencies [7] are also identified. Relevant low and higher frequencies are

well separated by VMD and can be represented by one or a few modes. As such, Figure 3.9 presents

time series reconstructions for selected groups of frequencies, from the low-frequency band associated

with wind setup events to the diurnal and higher frequency bands associated with a mix of tidal

influence and seiche oscillations. By visual inspection of Figure 3.9, it can be seen that setup events

are correlated to some degree with higher frequency oscillations. An attempt has thus been made to
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Figure 3.7: Amplitude spectrum of the first 16 VMD modes at the station of Toledo (Ohio) in Lake Erie.

construct a simple regression model to predict high-frequency oscillations (hHF ) from the low-frequency

signal (hLF ). The model can be expressed as follows:

hHF (t) = β0 +

Nmodes∑
j=1

(β1,j(t) cosωj(t) + β2,j(t) sinωj(t)) + ϵ, (3.6)

where βi,j(t) = a0,i,j + a1,i,j × hLF (t),

and t denotes the time, an,i,j the model parameters, ωj the mode centre frequencies, and ϵ the error

term. For each mode the signal amplitude and phase can be computed as follows.

Aj(t) =
√
(β2

1,j + β2
2,j) and ϕj(t) = tan−1(β2,j/β1,j) (3.7)

This model was applied using a low-frequency signal, hLF , defined as a 48-h moving standard

deviation of the 2-day setup signal (mode 2). Water level predictions for the diurnal mode and 14-h

seiche mode are shown in Figure 3.10. Predictions are better at the diurnal frequencies than at higher

frequencies. It is not sufficient, however, to use a representation of the setup signal as the sole predictor

of the higher frequencies. Adding predictors such as winds or their principal components derived from

PCA could improve the results. Also the model in Equation (3.6) does not allow for phase or frequency

modulation, which seems to be one limiting factor in the predictability of the signal. Nonetheless

this preliminary step shows that it could be possible to predict seiche signals using simple physical

predictors, but that the relationship between these predictors and the predicted quantity is probably

nonlinear. More complex models could be tested, including machine learning techniques. Once the

demonstration of a skillful model is made, such an approach can be extended in 2D using simulated

(i.e., gridded) fields. In particular extensions of the VMD method exist for multivariate time series,

e.g., Dynamic Mode Decomposition (DMD) [8].
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Figure 3.8: FFT amplitude spectrum for each VMD mode (colours) compared to the original spectrum (black) at Toledo
(Ohio) in Lake Erie. Vertical lines denote major diurnal and semi-diurnal tidal frequencies (dotted) and documented seiche
frequencies (dashed).

Figure 3.9: Reconstructed time series for selected groups of modes corresponding to relevant tidal and/or seiche periods.
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Figure 3.10: Water level predictions for the diurnal mode and 14-h seiche mode using the setup signal as the sole predictor.

3.6 A reduced model approach

In this section we focus on understanding only the seiche dynamics in Lake Erie, by excluding the

physical phenomena that do not have much effect on them and thus obtaining a simpler system that

can be solved without large computational resources.

The computational approach proposed in [5] uses the following model for the shallow water waves:

∂h′

∂t′
+∇′ · q′ = 0, (3.8a)

∂q′

∂t′
+∇′ ·

(
q′q′T

H ′

)
+ c′2∇′h′ − 1

ρ′
∇′ · (H ′τ ′) +

τ ′
b

ρ′
− f ′

c (q
′ × ez) =

τ ′
s

ρ′
, (3.8b)

where the dimensional unknowns q′ and h′ are the specific discharge and water level perturbation,

H ′ = h′ − z′ is the water level with (known) lake depth z′, c′2 = gH ′ is the celerity of waves, τ ′

is the Reynolds stress, and τ ′
s,b are the surface and bottom frictions respectively. Various terms in

Equation (3.8b) correspond to different physical laws present in the model, namely advection, gravity,

turbulent viscosity, bottom friction, Coriolis force, and surface friction. As seiches are a fairly simple

type of water level dynamics, we expect to be able to describe them with a simpler equation than the

system Equation (3.8) above. In other words, we expect some of the terms in Equation (3.8b) to be

small in the seiche regime, so we should be able to drop them without losing much of the model accuracy.

To understand which terms are small, we will nondimensionalize the system: both the dependent and

independent variables will be scaled, which will allows us to “factor out” the typical size of each term

and compare the terms with one another.

3.6.1 Nondimensionalization

To nondimensionalize system (3.8) we will write each dimensional variable as a

dimensional variable’ = typical size∗

(known)

× dimensionless variable
O(1)

,
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which will allows us to see the relative sizes of different terms. Specifically, we will use the following

reference quantities.

• L∗ = 389 km: maximum length of lake Erie; set x′ = L∗x and y′ = L∗y.

• z∗ = 19 m: average depth of lake Erie; set z′ = z∗z and H ′ = z∗H.

• u∗ = 1 m/s: typical water velocity; set q′ = u∗z∗q.

• h∗ = 1 m: typical water level perturbation; set h′ = h∗h.

• t∗ = L∗

u∗ s: time scale (chosen for consistency).

For clarity we will first nondimensionalize the stress terms, beginning with the Reynolds stress:

τ ′ = ρwater

(
ν′l + ν′t

) 2
∂u′

x

∂x′
∂u′

x

∂y′ +
∂u′

y

∂x′

∂u′
x

∂y′ +
∂u′

y

∂x′ 2
∂u′

y

∂y′


where laminar viscosity ν′l equals 10

−3 m2/s and turbulent viscosity is given by the following equation.

ν′t = H ′2

√
2

(
∂u′

x

∂x′

)2

+ 2

(
∂u′

y

∂y′

)2

+

(
∂u′

x

∂y′
+

∂u′
y

∂x′

)2

(3.9)

=
z∗2u∗

L∗︸ ︷︷ ︸
=:ν∗

H2

√
2

(
∂ux

∂x′

)2

+ 2

(
∂uy

∂y′

)2

+

(
∂ux

∂y′
+

∂uy

∂x′

)2

︸ ︷︷ ︸
=:νt

(3.10)

Nondimensionalizing the Reynolds stress can be carried out as follows.

τ ′ = ρw
(
ν′
l + ν′

t

) 2
∂u′

x
∂x′

∂u′
x

∂y′ +
∂u′

y

∂x′

∂u′
x

∂y′ +
∂u′

y

∂x′ 2
∂u′

y

∂y′

 =
ρwν

∗u∗

L∗︸ ︷︷ ︸
=:τ∗

(
ν′
l

ν∗ + νt

)
︸ ︷︷ ︸

≈1

 2 ∂ux
∂x

∂ux
∂y

+
∂uy

∂x

∂ux
∂y

+
∂uy

∂x
2
∂uy

∂y


︸ ︷︷ ︸

=:τ

, τ∗ = ρw

(
z∗u∗

L∗

)2

We also factor out the scaling factors from bottom and surface frictions.

τ ′
b =

(
ρwgn

′2|q′|
H ′7/3

)
q′ =

ρwgn
′2u∗2

z∗1/3︸ ︷︷ ︸
=:τ∗

b

(
|q|

H7/3

)
q︸ ︷︷ ︸

=:τ b

τ ′
s = ρaC

′
w|w′|w′ = ρaC

′
ww

∗2︸ ︷︷ ︸
=:τ∗

s

|w|w︸ ︷︷ ︸
=:τs

Note that n′ is the Manning coefficient and Cw is the wind drag coefficient.

We are now ready to nondimensionalize the original system (3.8).

∂h

∂t
+

z∗

h∗∇ · q = 0,

∂q

∂t
+∇ ·

(
qqT

H

)
+

gh∗

u∗2 H∇h− t∗z∗2u∗

L∗3 ∇ · (Hτ) +
t∗g′n′2u∗

z∗4/3
τ b − t∗f ′

c (q × ez) =
ρaCww

∗t∗

ρwu∗z∗
τ s

Substituting typical parameter values into the above system yields the following.

∂h

∂t
+

{
10

}
∇ · q = 0,

∂q

∂t
+

{
1
}
∇ ·

(
qqT

H

)
+

{
10

}
H∇h−

{
10−8}∇ · (Hτ) +

{
74

}
τ b −

{
6.35

}
(q × ez) =

{
1.2× 10−2w∗}τ s

Clearly the Reynolds stress term can be dropped, which already simplifies the system noticeably.

It is still nonlinear, however, and therefore difficult to work with. To continue our analysis we will

concentrate on a particular scenario.
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3.6.2 Linearization of the seiche scenario

To study the seiche oscillation scenario we assume that a unidirectional wind has created a setup of the

form

h′(x′, y′) ≈ 2h∗
(

x′

L∗ − 1

2

)
, h∗ ≪ z∗

and then stopped. Then after dropping the Reynolds stress term we are left with

∂h

∂t
+

1

ϵ
∇ · q = 0, (3.11a)

∂q

∂t
+∇ ·

(
qqT

H

)
+ αϵH∇h+

t∗gn′2u∗

z∗4/3
τ b − t∗f ′

c (q × ez) = 0 (3.11b)

where ϵ = h∗

z∗ is assumed to be small and α equals gz∗

u∗2 . Suppose h has a regular expansion in powers

of ϵ:

h = h0 + ϵh1 +O(ϵ2). (3.12)

Then to balance the two terms in Equation (3.11a) the expansion for q must start at first order:

q = ϵq1 +O(ϵ2). (3.13)

We can now linearize system (3.11) by plugging in representations (3.12) and (3.13), and only keeping

leading-order terms in each equation. The advection and bottom stress terms are both quadratic in q,

so they do not appear in the leading order system. Moreover we have

H∇h = (ϵh− z)∇h = −z∇h+O(ϵ),

which will linearize the gravity term. The linearized system is

∂h0

∂t
+∇ · q1 = 0, (3.14a)

∂q1
∂t

− αz∇h0 − t∗f ′
c (q1 × ez) = 0. (3.14b)

We now observe that α ≈ 200 ≫ t∗f ′
c ≈ 6.3, so the Coriolis term can be dropped too. Next we take the

time derivative of (3.14a) and divergence of (3.14b) and combine the results into a Helmholtz equation

for h0:
∂2h0

∂t2
+ α∇ ·

(
z∇h0

)
= 0.

To find oscillatory solutions we consider the time-harmonic Ansatz for h, i.e. we write h(x, y, t) =

eiωth(x, y). This converts the wave equation above into an eigenvalue problem for h(x, y) with λ = ω2/α:

∇ ·
(
z∇h0

)
= λh,

∂h

∂n̂

∣∣∣
∂Ω

= 0. (3.15)

which can be readily solved using a Finite Element Method. We also observe that the dimensional

period of an oscillation is recovered by

T ′ =
2π

ω′ =
2πt∗

ω
=

{
2L∗
√
gz

}√
π2

λ
, (3.16)

where {· · · } is the Merian’s formula for the longest natural period, while
√
π2/λ is indeed expected to

be very close to unity for the dominant mode on a long lake.
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3.6.3 Computational results

As a final step we used the MFEM package [6] to discretize and solve the eigenvalue problem (3.15).

As the real lake is a non-convex domain with a rather rough boundary, we solve the PDE on an

approximate domain: the protruding dry land containing the Long Point National Wildlife Area is

ignored, and the domain itself is smoothed with a short-time heat flow to regularize the boundary

somewhat. Moreover we only deal with the case of constant depth z′ ≡ 19m. The computational results

we obtained are presented in Table 3.1 and in Figure 3.11 below. The most important result is the

dominant mode: even with all the approximations made during our analysis, we still get a very good

agreement between the computed and observed periods. The corresponding eigenstate gives the shape

of the water level perturbation that would oscillate in time after the initial setup is complete and the

wind ceases.

Table 3.1: Seiche periods, in hours.

Mode Observed Reduced Model Relative Error

1 14.38 13.68 4.9%
2 9.14 7.67 16%
3 5.93 5.1 14%
4 4.15 4.07 1.9%

(a) FEM mesh; 1723 unknowns. (b) Mode 1; T1 = 13.68h.

(c) Mode 2; T2 = 7.67h. (d) Mode 3; T3 = 5.1h.

(e) Mode 4; T4 = 4.07h. (f) Mode 5; T5 = 3.29h.

Figure 3.11: Eigenmodes of Lake Erie.
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The analysis presented in this section is only a crude, leading-order approximation of the seiche

dynamics. The computational approximations mentioned in the previous paragraph were made largely

because of time constraints and can be removed with a more careful mesh construction. The asymptotic

approximations made in the previous subsection can be used to derive further corrections to both the

period and the eigenstate, notably by reintroducing dissipation into the problem and estimating the

number of oscillations any given state can undergo before decaying to zero. Finally further application

of spectral methods [2] can be used to understand better the effect of a continuing wind.
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Abstract: Forecasting short-term electricity demand is a key activity for Hydro-Québec (HQ). It is necessary to

support objectives as varied as the management of production or the management and maintenance of the electrical

network. To properly balance supply and demand, HQ has developed expertise and internal tools to estimate the electrical

load on the Québec network. An analysis of the performance of the parametric model used by HQ between 1989 and 2017,

however, showed an average increase in model error since 2010. To address the problem, the “Prévision et contrôle du

réseau” (PCR) department of HQ, in collaboration with the Institut de recherche d’Hydro-Québec (IREQ), has built a

proof of concept showing that methods based on deep neural networks are very promising for improving significantly the

accuracy of the forecast models. The goal of this workshop report is to extend those ideas to the electrical substation level.

4.1 Introduction

At Hydro-Québec TransÉnergie et Équipement (HQTÉ), the load forecast (or “MW forecast”) in

operations currently relies on parametric models consisting of nonlinear modelling functions [5]. These

models are fed by weather observations and forecasts, the latter of which can be corrected in a semi-

automated way according to the trend observed in the last hours. Although these parametric models

have been found useful and remain accurate most of the time, a slow degradation of their ability to

anticipate Québec’s needs has been observed. In parallel the need for precision has increased steadily

because of the exportation of electricity to the United States. This degradation seems to be linked to

several phenomena, each of which may have its own time scale: changes in social behaviour, in the

geographical distribution of the population, in home automation equipment, and in the comfiguration

of electro-intensive industry. Climate change also plays a role, in particular because of the increased

needs in air conditioning during the summer.

This degradation — especially noticeable during certain periods, particularly winter — results in

cumulative losses amounting to several million dollars, induced either by short-term purchases of energy

on the outside networks, by the loss of sales on these same networks, or by the adoption of costly

management means to make the Québec network more reliable — such as the use of gas turbines. Some

means have an environmental impact because these management methods are non-renewable and emit

greenhouse gases. More recently, proofs of concept developed and operationalized by the Institut de

recherche d’Hydro-Québec (IREQ) and the HQTÉ “Prévision et contrôle du réseau” (PCR) unit have

shown that the use of neural networks allows one to build new forecasting models that can adapt quickly

to network behaviour while maintaining the provision of excellent quality forecasts. Nonetheless neural

models, like parametric models, are dependent on the quality of inputs, meteorological observations, and

forecasts. Also, in the case of neural models, the “physical” interpretation of the impact of each input

variable on the Québec consumption is lost, because of the black-box nature of the neural approach.

The short-term load forecast problem has been extensively studied in the literature. A meta-analysis

of 240 papers published between 2000 and 2019 on forecasting short-term electricity consumption [6]

indicates that by far the most popular class of methods is the use of artificial neural networks, with 21 %

of the proposed models making exclusive use of them, a proportion that rises to 45 % when we also count

the hybrid models that include neural networks. The following models were also proposed: classical

time series models, including autoregressive moving average (ARMA) models (10 % of the proposed

models), regression models (9 %), and fuzzy logic and support vector regression (SVR) models (each

representing around 4 %). Other approaches are based on particle swarm optimization (PSO), Bayesian

vector autoregression (BVAR), decomposition models, Kalman filters, self-adaptive maps or Kohonen

maps (also called self-organizing maps or SOM), Grey Prediction, ant colony algorithms (ACO), and

genetic algorithms (GA). Overall machine learning techniques were used in about 43 % of the articles,

hybrid techniques employing multiple models in 44 %, and statistical methods in about 13 %.
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Within the family of ARMA models, a specific approach called multiple equation time series has

shown promising results. In such models each period or time step of the day is treated as a separate

forecasting problem, with its own equation [6]. This approach has the potential of achieving very

competitive prediction accuracy [4, 8]. Initiated by Ramanathan et al. in 1997 [7], the approach has

been significantly improved since then. For instance, in 2003, Cottet and Smith proposed an hybrid

model based on a multiple equation time series together with a Bayesian approach in a case study of

the regional market of New South Wales [3]. In a similar fashion, Cancelo, Espasa, and Grafe exploited

the dynamism of the doubly seasonal ARIMA models for the Spanish electricity market [1]. More

recently, Clements, Hurn, and Li improved the way to model the interaction between weekly and annual

seasonality patterns by recognizing the importance of intraday correlation in forecasting Australian
consumption [2]. The advantages of the multi-equation approach are that the explanatory factors

that determine forecast performance are visible, testable, and interpretable and that the specification

of model parameters is linear, which means that the ordinary least squares method can be used to

estimate the parameters, rather than a numerical optimization algorithm [2].

4.2 Problem description

Building upon the classical and more recently developed models, HQ would like to transfer the forecasting

process to a more granular scale with respect to the spatial dimension. Many scales can be considered:

the whole province scale (currently), the regional or zonal scale, the electrical substation scale, or even

the source, using data collected from smart meters. Because of several functional constraints, the
electrical substation level seems to be a good starting point. Figure 4.1 illustrates the components and

the layout of a generic electrical substation. In particular substations bridging the transport and the

distribution layers, called “satellite substations,” are interesting candidates. HQ operates around 300

such satellite substations.

Figure 4.1: A single line diagram (SLD) of a 33kV electrical substation (source: WatElectrical.com).

In addition to forecasting the MW at the electrical substation, HQ would like to adapt the models

so that they can estimate other physical quantities going through different components.

https://www.watelectrical.com/electrical-substation-definition-layout-uses-of-substations/
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1. Transformers. The active power (in MW) and the reactive power (in MVar) for each transformer.

2. Bars. The current (in A) for each bar.

3. Lines. The current (in A) for each of the 3 phases.

There are several difficulties to be addressed. Clearly there are strong dependencies between the

different physical quantities mentioned above, but these dependencies are hard to characterize formally,

since they depend on the layout (or topology) of the substation, which varies significantly between

substations. There are also multiple possible substation configurations or states.

In order to study the problem, a dataset was assembled by HQ as follows.

1. The dataset consists of 3 electrical substations.

2. All given time series span the period between January 1st, 2019 and August 3rd, 2022, at an

hourly time step.

3. The load consumption for the whole Québec province, called “besoin québécois”, for each time

step, is also provided.

4. For each transformer of each substation, the dataset includes the active and reactive powers

(respectively in MW and in MVar) passing through the transformer at each time step.

5. For each bar of each substation, the dataset includes the current (in A) going through it at each

time step.

6. For each line of each substation, the dataset includes the current (in A) going through it at each

time step and for each of three phases.

7. The dataset includes the configuration setting of each substation, i.e., the state of each breaker

(open or closed) at each time step.

8. The dataset includes the weather conditions (temperature, wind speed, cloud coverage, and

precipitation type) measured in Montréal at each time step.

A screenshot of one table is depicted in Figure 4.2.

4.3 Adopted methodology

The team assembled to tackle this problem consisted of the following persons.

• Alain Marcotte and Olivier Milon, both working in the “Prévision et contrôle du réseau”

(PCR) team at Hydro-Québec.

• Charlie Hébert-Pinard (Université du Québec à Montréal), Maksym Shpakovych (Université

de Limoges), and Zuming Sun (University of Calgary) are Master’s and Ph.D. candidates

interested in working on the problem submitted by HQ.

• Alexandre Blondin Massé (Institut de recherche d’Hydro-Québec and Université du Québec à

Montréal) was in charge of coordinating the activities of the group.

The activities were scheduled as follows during the week:

Monday: Presentation of the problem, gathering of the team in the designated room, questions and

answers about the domain with the HQ representatives, retrieval of the dataset;

Tuesday: Exploration of the dataset, preparation and cleaning of the dataset, description of some

models used currently at Hydro-Québec;

Wednesday: Implementation of various models (based on statistical and machine-learning methods),

reports on preliminary results;

Thursday: Improvement of the models, additional reports, preparation of the final presentation.
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Figure 4.2: Screenshot of one table belonging to the sample dataset.

The sample data presented some anomalies that had to be fixed: the measurements of some physical
quantities expressed in MW and in A were a little below 0, which does not make sense for the current

problem, so they were clamped to 0.

Given a vector of n observed values Y and a vector of n forecasted values Ŷ for Y , recall that the

mean squared error (MSE) of the forecast is given by

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
, (4.1)

while the mean absolute percentage error (MAPE) is given by

MSE =
100%

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ . (4.2)

Since the MAPE computation can be problematic around zero or small positive values, we decided to

use the MSE as a reference metric when evaluating the performance of the forecasting models.

We now focus on two models that were explored in more detail during the workshop.

4.4 Evaluated models

Since the HTQÉ parametric model is not easily accessible, we used as a base reference a multiple

equation model developed by IREQ, whose performance is more or less comparable.
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Let t be the number of time steps per day (t = 24 for the sample provided). Also, for any time

step t of day d, let

• Ld,t be the logarithm of the load (in MW) at time step t of day d;

• Td,t be the temperature (in Celsius) at time step t of day d;

• Wd,p be a binary variable indicating whether d is the p-th day of the week;

• Sd,k be a binary variable indicating whether d is a special day of kind k ∈ {1, 2, . . . , k′}, where k′

is the number of special day types.

Moreover, for any day d and time step t of the day, let

Yd,t,q = 2qπ(dt+ t)/(365.2425t),

Hd,t,1 = ClRamp−−23,13(Td,t),

Hd,t,2 = ClRamp−−23,1(Td,t),

Cd,t,1 = ClRamp+21,33(Td,t),

Cd,t,2 = ClRamp+28,33(Td,t),

where

ClRamp−x0,x1
(x) =

 x1 − x0 if x ≤ x0;
x1 − x if x0 < x ≤ x1;
0 if x1 < x;

ClRamp+x0,x1
(x) =

 0 if x ≤ x0;
x− x0 if x0 < x ≤ x1;
x1 − x0 if x1 < x.

Finally, for any real numbers α, β and any random variable X, let

SC(α, β,X) = α sinX + β cosX

and let O = {0,−1, . . . } be the set of days offsets when considering temperature and special days (0 is

for the current day, −1 for the previous day, −7 would be for the previous week).

Then the equations defining the model are given by

Ld,t = λt,0 +

(
7∑

p=1

ωt,pWp

)
Ld−1,t +

[
λt,1 +

4∑
q=1

SC(γt,q,1, γt,q,2, Yd,t,q)

]
Ld−7,t

+ λt,2Ld−1,t−1 + λt,3Ld,t−1

+ ϕt,1εd−1,t + ϕt,2εd−7,t + εd,t

+
∑
o∈O

∑
ℓ∈L

2∑
k=1

τ ℓt,o,k,1H
ℓ
d+o,t,k +

∑
o∈O

∑
ℓ∈L

2∑
k=1

τ ℓt,o,k,2C
ℓ
d+o,t,k

+
∑
o∈O

∑
ℓ∈L

3∑
k=1

νℓt,o,kN
ℓ

d+o,t,k

+
∑
o∈O

∑
ℓ∈L

ωℓ
t,oW

ℓ

d+o,t

+
∑
o∈O

k′∑
k=1

σt,o,kSd+o,k +
∑
o∈O

δoDSTd+o,

(4.3)

where, for each t = 1, 2, . . . , t and each o ∈ O, λt,i (for i = 0, 1, 2, 3), ϕt,i (for i = 1, 2,), ωt,p (for

p = 1, 2, . . . , 7), γt,q,i (for q = 1, 2, 3, 4 and i = 1, 2), τt,o,k,i (for k = 1, 2 and i = 1, 2, 3, 4) and σt,o,k,i
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(for k = 1, 2, . . . , k′ and i = 1, 2), for t = 1, 2, . . . , t, o ∈ O and ℓ ∈ L, τ ℓt,o,k,i (for k = 1, 2 and i = 1, 2),

νℓt,o,k (for k = 1, 2) and ωℓ
t,o are the parameters to learn and εd,t and εd−1,t are the unexpected changes

in load on the previous day and week, and εd,t is the expected error of the forecast model.

The goal of this model is to predict Ld,t using Td̂,t̂, Wd̂,p̂, Sd̂,k for d̂ ∈ D, t̂ ∈ T , and d̂ ∈ P where

1. D is the set of days used for the prediction for the selected day d ∈ N;
2. T is the set of hours used for the prediction for the selected hour t ∈ {1, . . . , 24};
3. P is the set of days of week used for the prediction for the selected day of week p ∈ {1, . . . , 7}.

D, T and P are the historical datasets that contain the number of days, hours, weeks of the day that

we use to predict the value of Ld,t. For example, we have found that information from the previous

8 hours, the previous day, and the same day of the week of the previous week is informative for the

prediction.

The model described above being linear by definition, one might wonder whether a nonlinear model

can capture more relations between the variables. Therefore we considered a nonlinear prediction model

of the form

NN(x) = w⊤
2 g(W1x+ b1, θ) + b2, (4.4)

where W1 ∈ Rm×n, w2 ∈ Rm, b1 ∈ Rm, b2 ∈ R, θ ∈ Rm are trainable parameters and g(x, θ) is an

m-dimensional parametric ReLU function. Then to evaluate model prediction for the selected day d

and hour t the input vector x is defined as

x =
(
{Ld̂,t̂}d̂∈D,t̂∈T , {Td̂,t̂}d̂∈D,t̂∈T , {Wd̂,p̂}d̂∈D,p̂∈P , {Sd̂,k}d̂∈D

)
∈ Rn. (4.5)

Actually, in the course of the workshop, we used more information than shown above to construct

x (cloudiness, precipitation, wind speed, ...). This information can be found in Figure 4.2. We also

tried to predict the exact value of the load (i.e. exp(Ld,t)) instead of its logarithm and the historical

data sets D, T and P were chosen empirically. Also the hidden layer size m was set to 64 and the

parameters W1,2, b1,2, θ were found after training the model (4.4) on the provided dataset.

Note that we also conducted experiments with a third model, i.e., a modification of the nonlinear

one, which we will not describe here (see next section).

4.5 Experiments

Using the sample provided, experiments were conducted to compare the performance of the different

models under consideration. Because of time constraints we focused only on one transformer of one

specific substation.

The reference multiple-equation model had to be adapted to take into account the nature of the

data, in particular the fact that the load could be zero in some cases. The resulting evaluation is

summarized in Figure 4.3. As is often the case in load forecasting, the forecasts are quite good during

the first and last hours of the night, since the load is more stable during these periods. The forecasts

are less accurate during the day, especially in the afternoon (around 3PM). For a better understanding

of the results, the forecasts were also compared with the observed values with respect to the week day

(Figure 4.4(a)) and the month (Figure 4.4(b)). The Mondays, Saturdays, and Sundays are typically

harder to forecast, because of the effect of the special days and week-end human behavior, which

exhibits more variation. As expected the error is greater during winter months, especially December

and January.

The neural network approach yielded slightly better results, as depicted in Figure 4.5. Two variants

were explored: one chaining the models with a simple linear regression (the blue curve in Figure 4.5(a))

and the other with the nonlinear variant (the orange curve in Figure 4.5(a)). As a bonus a weighted
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version is also provided, exploiting the best of the two variants (the green curve in Figure 4.5(a)).

Figure 4.6 compares the real observed values with the forecasts on an arbitrary day.

Figure 4.3: Mean squared error (MSE) averaged for each time step.

Figure 4.4: Mean squared error (MSE) averaged for each time step and (a) each week day (b) each month.
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(a) (b)

Figure 4.5: Forecast quality comparison. (a) Comparison of the average forecast error between the linear and the nonlinear
variants of the neural network model, and a weighted combination of them, for each of the 24 time steps of the day. (b)
Comparison of the overall average forecast error of each of the three models.

Figure 4.6: Comparison between the real power load and the load forecasted by each of the three models for an arbitrary
day.

4.6 Concluding remarks

Although we did not have time to explore the submitted problem in detail, we were satisfied with

the preliminary results obtained. The workshop also allowed us to identify further the difficulties of

adapting the MW forecasting methods at the electrical substation level.

In the future we intend to build a global model for all elements of the system (transformers, bars,

breakers), in particular using the information on the breakers’ state. We also identified some strategies

to improve the training, especially the introduction of parallelization. Further improvement might be

obtained by using a faster optimization algorithm instead of the default stochastic gradient descent.
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The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and
the users must commit themselves to recognize and abide the legal
requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



58 G–2022–63 Les Cahiers du GERAD

5.1 Introduction

Air transportation is an essential part of modern living with many thousands of flights taking place

every day. With such popularity it is of the utmost importance to minimize risks when in flight. Despite

the ubiquitous messages to “fasten your seatbelt,” however, an average of 58 people in the United States

are injured through turbulence events annually from failing to adhere to this messaging [1]. Airlines

make use of forecasts to predict patches of turbulence. Currently these forecasts are not reliable and

no remote technique can predict the intensity of turbulence. In clear air, where particulate matter is

very small,1 it is effectively invisible to weather radar. Even if turbulence were carrying particles of

a sufficiently large size, radar cannot detect winds that are moving in a direction orthogonal to the

direction of the radar beam. These difficulties in detecting turbulence are made more urgent by an

expected increase in the global average of clear air turbulence (CAT) events.

In addition to forecasting, airlines make use of current reports from pilots when regions of turbulence

are detected. These regions are identified as possibly turbulent for subsequent flights. These reports are

not reliable, however, as they tend to be subjective and based on the personal experience of the pilot,

which depends partly upon the aircraft mass. The International Air Transport Association (IATA) has

developed a system that characterizes turbulence in real time by using the current flight data.

5.1.1 Current state

At the present time IATA is able to track the eddy dissipation rate (EDR) along the flight path by

computing a real time spectral analysis of the wind velocity. This EDR measurement is correlated with

the degree of turbulence experienced by an aircraft, independently of its mass, which is not the case for

the subjective measurement of the rapid random acceleration of the aircraft, which depends on airplane

inertia. With this technique, the wind measurement itself characterizes the intensity of the turbulence.

With a platform that can sample the EDR continuously, this data can be viewed by the pilot with the

help of the data visualization software. As of this writing, airlines can display EDR data over the most

recent four-hour window.

In its current state, each sample of EDR is displayed as a coloured dot at its geographic location.

The colour of the dot corresponds to the EDR, which is related to the intensity of the turbulence.

Figure 5.1 shows a typical example of an IATA turbulence visualization dashboard. The information

needed by pilots is hidden within the dots. To access it, a dot is selected and the data is displayed.
This system does not allow for rapid decisions. Also the weather forecast may not be of any help, as

CAT is undetectable by radar. Indeed, if pilots use only the weather forecast, they may be directed

into a high CAT region.

The task proposed by IATA was to develop a new way to visualize the EDR samples in a format

reminiscent of a storm tracker. Confined to the neighbourhood of the various flight paths over a

four-hour window, new EDR events would be added to the map as they are acquired. After four

hours, when they are considered stale, they would be removed from the map. It was thought that

by animating this behaviour over longer periods of time, the underlying structure and motion of the

turbulence could be tracked and predicted. More extensive models could be focused on the predicted

propagation and evolution of the turbulent field, but these aspects were set aside in the present work.

We focus on an attempt to characterize the properties of the observed EDR events as recorded in the

IATA database and producing a sequence of images that are collected into an animation. It is expected

that the animation will reveal evolving hidden turbulent structures.

1Particles of matter with diameters less than 10 µm are too small to be detected by radar systems with wavelengths
on the order of centimetres.
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Figure 5.1: Example of the current IATA turbulence visualization.

5.2 Characterizing Turbulence

The turbulence kinetic energy (per unit mass of air) is connected to the variations in wind velocity
away from its average value. In this sense the wind velocity is given by u(t) = ū(t) + u′(t), with

ū(t) = (ū1(t), ū2(t), ū3(t)) denotes a running average behaviour and u′ = (u1(t), u2(t), u3(t)) denotes

the deviations. The energy is given by

ET =
1

2
|u′|2 =

1

2

(
u2
1 + u2

2 + u2
3

)
. (5.1)

Although random in nature, this energy has a particular structure. It is distributed throughout a

variety of length scales that are characterized by the eddies of motion that build up the turbulent flow.

For an eddy of characteristic size l with corresponding wavenumber k = 2π/l, the energy spectrum,

E(k) dk, denotes the energy contained in eddies with wavenumber k to k + dk. With respect to this

description, we have

ET =

∫ ∞

0

E(k) dk. (5.2)

The typical wavenumber dependence for this turbulent energy is shown in Figure 5.2.

When in equilibrium, the energy produced at large spatial scales is transferred to successively

smaller scales, through an inertial subrange, to a dissipation range governed by the dynamic viscosity2 ν.

Within the inertial subrange of the spectrum, the eddy dissipation rate (EDR), ϵ, is the rate at which

turbulent kinetic energy (density) is transmitted into heat. It is expressed in units of [ϵ] = [ET ]/[time] =

(m s−1)2 s−1 = m2 s−3. To extract the behaviour of the energy in this region we attempt to find a

quantity depending only on the EDR and the wavenumber, D = ϵakb, so that D has the same units

2ν = µ/ρ where µ is the kinematic viscosity.
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as E(k). Since [E(k)] = [ET ]/[k] = m3 s−2, [k] = m−1, and [ϵ] = m2 s−3, we have D = ϵ2/3k−5/3.

The conclusion is that if a turbulent structure is within the inertial subrange, then there is a scalar

constant3 C such that

E(k) = Cϵ2/3k−5/3. (5.3)

Expression (5.3) is used by the NCAR In Situ Turbulence Detection Algorithm (TDR) to characterize

the level of turbulence during a flight [2]. The energy spectrum with respect to wavenumber within the

inertial subrange of the observed wind speed in flight is proportional to energy dissipation rate raised

to a power.

log k

logE(k)
Energy
containing
range

Inertia subrange

Dissipation
range

E(k) = Cϵ2/3k−5/3

Figure 5.2: A schematic of the turbulent energy spectrum E(k).

Other characteristic scales can be extracted in this region with a characteristic length, L, satisfying
k ∼ L−1, a characteristic time, T, with E ∼ L3T−2, and associated speed U ∼ LT−1, and Reynolds

number Re ∼ ULν−1. This results in

L ∼ k−1, T ∼ ϵ−1/3k−2/3, U ∼ ϵ1/3k−1/3, Re = ϵ1/3ν−1k−4/3. (5.4)

5.2.1 Real-time estimation of the EDR

For data acquisition, the acronym EDR does not refer to ϵ, but rather to ϵ1/3 ([EDR] = m2/3 s−1).

The quantity ϵ1/3 is reported rather than ϵ, as ϵ1/3 can be considered as an effective standard deviation

of the wind speed [3]. This measurement of the EDR is independent of the eddy size used for its

3The dimensionless constant C ∼ 1.5 can be determined experimentally.
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calculation, provided that both large and small eddies are avoided. To estimate the EDR (ϵ1/3) in this

inertial region, there are four basic steps, listed below.

1. Ensure the flight is within nominal characteristics.

2. Sample the wind speed and compute the energy spectrum.

3. Compare E(k, ϵ) = Cϵ2/3k−5/3 to a standard model, E0(k; 1), with ϵ = 1.

4. Report EDR = ϵ1/3.

It is the sampling rate of the EDR that prevents the inclusion of structures that are either too large

or too small. For the large scale, one assumes that the energy spectrum is a function of ϵ and ET

(rather than ϵ and k) and the balance of these processes implies characteristic scales of

L∞ ∼ ϵ−1E
3/2
T , T∞ ∼ ϵ−1ET , U∞ ∼ E

1/2
T , Re∞ = ϵ−1ν−1E2

T . (5.5)

As energy moves through the spectrum from large to small scales, it is eventually dissipated into heat

through the viscosity. The size of the smallest eddies can be estimated by assuming that this is only

determined by the dynamic viscosity ([ν] = m2 s−1) and ϵ. Accordingly, we have

L0 ∼ ϵ−1/4ν3/4, T0 ∼ ϵ−1/2ν1/2, U0 ∼ ϵ1/4ν1/4, Re0 = 1. (5.6)

As an example, consider ϵ ∼ 0.2 m2 s−3 with ν = 1.48× 10−5 m2 s−1 and ET = 20 m2 s−2. For these

nominal values, the large scale is characterized by

L∞ ∼ 500 m, T∞ = 100 s, U∞ = 4.5 m s−1, Re∞ ∼ 108, (5.7)

while the small scale is characterized by

L0 = 3.5× 10−4 m, T0 = 8.6× 10−3 s, U0 = 4.2× 10−2 m s−1. (5.8)

The viscosity decreases with temperature, thus making all these scales smaller at higher altitudes.

In the current version of the NCAR system, a sampling frequency of f = 8 Hz is used. For a

heavy aircraft flying at 250 m s−1 (Mach 0.73), the length scale per sample is 250/(8/2) = 62.5 m,

whereas for a light aircraft flying at 75 m s−1 (270 km hr−1), this drops to 18.75 m. The key point

is that every possible aircraft speed corresponds to a distance travelled per sample, L, that satisfies
10−3 m < L < 500 m.

5.3 Research threads

In this section we detail all of the methods used during the workshop.

Statistical Model: The statistical properties of the EDR values stored in the IATA database were

summarized. A seasonal pattern was detected using a linear GAM model.

Voronoi: To partition the domain into regions associated with each of the sampled EDR values, a

Voronoi diagram was constructed. This does not seem to be viable because of the dense clustering

near the airline hubs.

KDE Heat Map: Rather than partitioning the domain, another method is to diffuse effectively each

EDR datapoint into its surrounding locality. The resulting extrapolated EDR field, obtained by

employing a kernel density estimation, achieved better results than the Voronoi partition. The

drawback was that regions where EDR datapoints overlapped still caused apparent overestimation

of the EDR when considering large spatial scales.

Clustering: To remedy the issue of overlapping regions, we clustered points that are spatially close

and temporally close. Using the cluster statistics together with the original points shows some

promise of producing a useful forecast of EDR.
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Spatio-temporal Weighting: We estimated EDR using the intuition that clustered points should

be more heavily weighted than isolated points. This is a specific case of the clustering concept.

By computing an overall background, which depends on the size of the domain, the overlapping

problem with the kernel estimation was avoided. Setting a background cutoff level naturally

excludes datapoints that are either old (denoted as stale) or regions that are too far away from

any EDR datapoint. An animation of this implementation has been provided.

5.3.1 Summary statistics

The data used in this study was obtained from IATA and consists of 16, 000, 000 observations over

a time period from September 2020 to August 2022. Each year there are anywhere from 500, 000 to

800, 000 flights contained in the database.

To obtain a seasonal heat map, the {EDRi}Ni=1 values are extracted with three associated predictor

variables {(x1,i, x2,i, ti, ai)}Ni=1, where x1, x2 correspond to the longitude and latitude of a geographic

point, t denotes the time, and a denotes the altitude. A temperature sample was also available but was

omitted because of the strong linear correlation between temperature and altitude. It was found that
the response variable (EDR) was both zero-inflated and heavily skewed. All these data characteristics

are shown in Figure 5.3.

Figure 5.3: Overall statistical structure of the EDR samples in the IATA database.

5.3.2 Seasonal variation model

To explore the monthly effect on EDR, we used a generalized additive model (GAM), in which the

response variable (EDR) depends linearly on unknown smooth functions of the positional variables. In

particular, for each sample (x1,i, x2,i, ti, ai), we have

log(µi + 1) = β0 + β1ti + β2ai + s(x1,i, x2,i), yi ∼ N (µi + 1, σ2), (5.9)

where {βj}2j=0 are fixed coefficients, s(x, y) is a smooth function of the position (x, y), and µi is the

expected EDR and yi = EDRi + 1. A log-link function of the EDR is used, amounting to a power

relationship. Figure 5.4 shows the seasonal variation of the EDR events over a single year.
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Figure 5.4: The seasonal heat maps for the EDR samples in the IATA database.

5.3.3 Seasonal variation results

Two main trends were detected within the seasonal data. (i) Altitude has a negative effect on EDR

across all the months, i.e., increasing the altitude decreases the EDR. (ii) The data is more complex with

EDR decreasing over the months May–September and November and increasing over December–April

and October.

A 5-fold cross-validation was used for model comparison and to detect any over-fitting. This effect

is likely to occur in models with complex structures. Our observations are that the average residual

in each month is around 0.086. The error rate is close to 10%, which is relatively large. A possible

reason for this is that the proposed distribution is incorrect. One should try to use other distributions

for the response variable, such as the distributions in quasi-families. Another possible source of this

discrepancy is the violation of the assumption of independent and identically distributed (iid) residuals.

The spatial and temporal correlations between the residuals point to that explanation. The binning

of the data into monthly blocks (referred to as faceted) can also cause discrepancies. For example, in

March, we can see adjacent dates have similar residual distributions: in some areas there are always

positive residuals and in other areas only negative residuals are observed. To get around this difficulty

we can use a more sophisticated spatio-temporal model that will introduce prescribed correlations in
space and time.

5.3.4 Voronoi diagram

To begin a Voronoi mapping was constructed utilizing EDR incidents in order to visualize turbulence

across a region or “cell” based on Voronoi theory. The results of a simple Voronoi plot overlaid onto a

world map with points can be seen in Figure 5.5.

Since reports of EDR measurements can be quite densely packed due to reporting standards (i.e.,

increased reporting frequency for higher EDR rates), the diagram did not end up helping to visualize

the data. Furthermore the sizes of the Voronoi cells are based on the distances between EDR incidences

and do not capture the real dynamics/patterns of turbulence. Though a heatmap could be overlaid,

this would not help alleviate the core issues with Voronoi mapping.
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Figure 5.5: An example Voronoi diagram for a sample of EDR data.

5.3.5 Kernel Density Heat Map

Each of the EDR data points specify the turbulence at a specific point along the flight path. One of the

fundamental problems is to infer the values of EDR in a neighbourhood of this position. A systematic

way to accomplish this is to start with the cumulative distribution of the indicator function

FX(x) = E
(
1{X≤x}

)
, 1{X≤x} =

{
1, X ≤ x,

0, otherwise,
(5.10)

which is naturally related to a histogram of the associated probability density function of the random

variable X. The function FX(x) contains all of the information about X but it is not unique. An

alternative way to describe X is through the characteristic function φX : R → C defined as

φX(t) = E
(
eitX

)
=

∫
R
eitx dFX(x), (5.11)

showing the connection between φX and FX .

Consider a collection of N points {x1, x2, . . . , xN} taken from X that are all equally likely with a

probability of 1/N . In this case an estimate for the characteristic function is φ̃(t) = (1/N)
∑N

j=1 e
itxj .

To obtain the probability density of fX(x) dx = dFX(x) we can compute the Fourier transform of

φX(t) but with a nonnegative bandwidth limiting function λh(t) = λ(ht). The role of λ(t) is spread

over the domain of each sample point. Associated with this are the conditions λ(0) = 1 and λ(t) → 0

as |t| → ∞. An estimate for fX(x) is then given by

f̃X(x) =
1

2π

∫
R
e−itxφ̃(t)λh(t) dt =

1

N

N∑
j=1

1

2π

∫
R
eit(xj−x)λ(ht) dt =

1

N

N∑
j=1

1

h
K

(
xj − x

h

)
, (5.12)

where K(x) is the Fourier transform of λ(t). Popular choices for λ(t) are

λ1(t) =

{
1, |t| ≤ 1,

0, otherwise,
K1(x) =

sinx

πx
, λ2(t) = e−αt2 , K2(x) =

1

2π

(π
α

)1/2
e−x2/4α. (5.13)
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The Kernel Density Heat Map generalizes this process to the two-dimensional spatial coordinates

with a covariance matrix C playing the role of h, so that

f̃X(x) =
1

N

N∑
j=1

|C|−1/2K
(
|C|−1/2(xj − x)

)
. (5.14)

In Figure 5.6 this is implemented in R using R-Shiny and the smoothing function is a Gaussian in each

coordinate.

Figure 5.6: A simple heat map implementation for the EDR based on location and using a Gaussian smoothing function in
each coordinate.

5.3.6 Heat map clustering

In Figure 5.7 we illustrate a simple clustering approach. EDR points are separated into “zones” based

on altitude strips of 4,000 ft and a time frame of four hours, shifting throughout the range for each of

these variables. After separating the data into these different zones, clusters were created based on
the distance between EDR points. Those that were within one degree of longitude and latitude were

included into the respective clusters. After partitioning all points within a zone into clusters, the cluster

statistics were recorded for use in conjunction with the original points. For Figure 5.7 the statistic that

was kept was simply the centre location of all the points in a given cluster, with a circle radius based

on EDR intensity. This figure illustrates a concept since any parameter configuration based on cluster

statistics could be used, taking into account a variety of aspects such as positioning, shape, or size.

Figure 5.7: Results of the clustering of coordinates using a circle radius which is a function of the EDR.

5.3.7 Spatio-temporal weighting

In this section we consider an approach that will interpolate a set of datapoints with the additional

aspect of only including data that was sampled within a particular time interval. Consider a dataset

D = {(x̄i, t̄i, ϵi)}ri=1 of position-time-EDR measurements over a time interval [0, T ]. For each datapoint
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assign the weighting function

wi(x, t) = e−∥x−x̄i∥/ξe−(t−t̄i)/τ1{t̄i≤t}(t), i = 1, 2, . . . , r, (5.15)

where τ and ξ are characteristic time and length scales, respectively. The indicator function 1{t̄i≤t}(t)

naturally excludes any data subsequent to time t, while the value of ξ (resp. τ) defines a displacement

(resp. interval) where the weight drops by a factor of e−1. With this weighting function the EDR field

is defined only at those points (x, t) where the total weight exceeds some critical value w∗. This means

that the EDR field is defined as ϵ̃ : Ω → R+ with

ϵ̃(x, t) =

r∑
i=1

wi(x, t)ϵi

r∑
i=1

wi(x, t)

, Ω =

{
(x, t) |

r∑
i=1

wi(x, t) > rw∗

}
. (5.16)

The parameter τ together with w∗ dictates a time interval beyond which the datapoints are considered
stale and eliminated from the EDR field. In a similar way, ξ and w∗ dictate the maximum allowable

spatial distance from any given datapoint.

Computational implementation

The weighted EDR ϵ̃ is now a continuous scalar field defined over a subset of the geographical region

[latmin, latmax]× [longmin, longmax] and a time interval [0, T ]. Therefore a two-dimensional heat map

can be constructed by plotting a large amount of level sets.

Consider a two-dimensional grid of Ω made of N -by-M cells (spatial mesh). The mesh, therefore,

contains (N + 1)(M + 1) points, which can be arranged in a vector x = {xj}(N+1)(M+1)−1
j=0 . In addition

we consider discrete time steps {tn}Ln=0, where t0 = 0, tL = T , and in general tn = n∆t. The time

resolution is therefore ∆t = T/L. First we compute the sum in the denominator of (5.16), where for

each (xj , tn) we have

s(xj , tn) =

r∑
i=1

e−(tn−t̄i)/τ1{t̄i≤tn}(tn)e
−∥xj−x̄i∥/ξ, (5.17)

or in matrix form with [S]jn = s(xj , tn), A ∈ R(L+1)×r, B ∈ Rr×(N+1)(M+1),

S = AB, [A]ni = e−(tn−t̄i)/τ1{t̄i≤tn}(tn), [B]ij = e−∥xj−x̄i∥/ξ. (5.18)

For the numerator of (5.16) we have

sϵ(xj , tn) =

r∑
i=1

e−(tn−t̄i)/τ1{t̄i≤tn}(tn)ϵie
−∥xj−x̄i∥/ξ, (5.19)

or if computed as the product of three matrices,

Sϵ = AEB, E = diag(ϵ1, ϵ2, . . . , ϵr) ∈ Rr×r. (5.20)

Therefore each entry of the discrete version of the weighted EDR function ϵ̃ can be computed as the

quotient of the corresponding entries of Sϵ and S whenever Sjn > rw∗.

Testing

To test this approach with different sets of data, we consider a 48-hour interval of datapoints (a typical

dataset would only contain 4 hours). The parameters used to compute the EDR field are given in the

table. The results corresponding to these parameters are available in an .mp4 file that accompanies

this report. Some snapshots are shown in Figure 5.8.
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Figure 5.8: Snapshots of the weighted EDR at different times showing the ability to predict high EDR values in regions
with high EDR measurements (top), the ability of not predicting EDR values where there are no datapoints (middle), and
a typical situation where there is a mix of low and medium intensity EDR values (bottom).
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Data parameters

Start time May 16, 2022, 07:42:40 (UTC -05)
End time May 18, 2022, 07:42:40 (UTC -05)
Range of latitudes min : 24.0179◦, max : 43.0◦

Range of longitudes min : −87.993◦, max : −70.05◦

Altitude 35,000 ft ± 2,000 ft

Model parameters

Characteristic length ξ = 0.065◦

Characteristic time τ = 10 minutes
Threshold w∗ = 10−12

Spatial resolution N = 18,M = 20
Time resolution ∆t = 15 minutes
End time T = 48 hours

5.4 Conclusions and future work

A multi-pronged approach to the building of a forecasting map of turbulence yielded a number of

conclusions. These are itemized below for the various sections of the report.

Statistical Approach

– Statistics are based on 16 million observations over a two-year period.

– A strong correlation between altitude and temperature validates the data.

– The probability distribution of EDR values is strongly skewed.

– Seasonal variations were detected both in EDR intensity and where large intensities are

more likely.

Voronoi Partitions

– The Voronoi method of partitioning the domain suffers from the dense clustering of the

points.

– Datapoints along a specific trajectory naturally lend themselves to bandwidth limited

methods, rather than domain decomposition.

Interactive KDE Heat Map

– allows dynamic changes of the altitude slice and the time interval

– provides a systematic way to choose kernels for both the spatial and temporal locations

Spatio-temporal Weighted Heat Map

– The method lends itself to a rapid solution through matrix multiplication.

– Regions of low confidence are efficiently excluded with a cutoff condition.

– In the implementation the spatial and temporal weights are exponential decays but can be

easily changed.

After spending a week examining the IATA database and its collection of EDR observations, a

number of issues remain outstanding and should be addressed. With such a large database of instances

the statistical analysis can rely on the dataset itself, rather than using the assumption of normality. It

is expected that this will enhance the ability to observe the seasonal variations. The seasonal variations

will not be a significant effect for any given flight. Currently the distances are assumed to be uniform in
latitude and longitude. In reality, for a fixed longitude θ = θ0, the differential length along the longitude

is ∆slong = R∆ϕ, where ∆ϕ is a change in latitude. For a fixed latitude ϕ = ϕ0, the differential

length along the latitude is ∆slat = R cosϕ0∆θ, where ∆θ is a change in longitude. Note that we



have ∆slat = ∆slong cosϕ0 and only along the equator where ϕ0 = 0 are these two distances equal.4

These considerations will not affect the algorithms used to generate an EDR map but will distort any

two-dimensional projection.

The chosen implementation of a spatio-temporal model to calculate the EDR map uses ad hoc

exponential weighting functions. These should be chosen in a way that is consistent with the required

band limiting. The band limiting heuristic should also be determined by the local region by performing

an initial clustering based on a variety of characteristics. For example, EDR level, cluster radius, and

geographic position could be used. Indeed the reported EDR = ϵ1/3 is proportional to the standard

deviation of the eddy size in any particular turbulent field. With this initial clustering pass, the

parameters ξ, τ , and w∗, could be tuned dynamically with the arriving data. One thing that was not

considered was the evolution of the EDR field between individual samples. While this is an important

aspect, an accurate solution of a turbulence model (for example k-ϵ) for the air flow requires an

assumption on the initial state of the EDR field. This is what we attempting to model, however, and

the fact that we were looking at four-hour intervals more or less guarantees that the unknown field will

not appreciably change over an interval.

Executive summary

The 12th Montreal Industrial Problem Solving Workshop held at the Université de Montréal, on August

22–26, 2022, concerned itself (among other problems) with the IATA question of the possibility of

“Creating a Heat Map and Building a Seasonal Diagram.” We feel that, based on the observations

and analysis of this report, the EDR data has high value and within them is the potential to create a

sophisticated forecast of clear air turbulence.

For the data that was supplied, a seasonal variation in the intensity of the eddy dissipation rate

(EDR) was detected. With this variation, there is also a predictable geographic variation of the pattern.

This second observation is more subtle and it is expected that it could be modelled if the statistics

defined by the observations were used instead of assuming normality. Another feature of the current

statistical model is that EDR values are not uniformly sampled. Regions of large EDR are avoided

when detected and this will implicitly bias the database.

In parallel with the statistical aspects, a majority of the effort was concerned with the viability

of producing a map of the turbulence. The current in-situ method estimates the EDR by sampling

the wind velocity and computing a spectrum of the energy. The sampling frequency is chosen so that

both heavy and light aircraft are guaranteed to be sampling the spectrum from within the inertial

subrange. In addition, to minimize the cost of transferring the data to the ground, EDR values are not

reported unless they exceed a certain threshold for a particular duration. Bounds on the unreported

EDR values can be derived but this is nontrivial given that the current error suppression algorithm is

nonlinear. More time would be required to do this: perhaps also required are updates of the current

error encoding algorithm to simplify inversion.

One of the fundamental issues with the datapoints is that they are located along the flight path

rather than being distributed randomly throughout the domain. One way to determine an EDR map

would be to partition the domain into those regions nearest to the given datapoints. This is not viable

with the EDR samples, specifically with the dense clusters of points near the airline hubs, and another

method was required. An alternative to partitioning the domain is to diffuse the datapoints into the

neighbouring locations. This is done by using an appropriate kernel that spreads the data. A few

examples have been given but there is a lot of flexibility with this choice. A naive choice of a Gaussian
kernel in space has the artifact that when large domains are chosen, as when the map is zoomed out,

the average EDR seems to increase. It does this because the average EDR value is assumed to be

spread over the whole domain as it enlarges.

4One degree of latitude equals π
180

R and thus approximately 364,000 feet (69 miles). One degree of longitude equals
π

180
R cosϕ and thus depends on the latitude, ϕ, and the radius of the earth, R.
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The issue with overlapping regions can be corrected if the sample is normalized. Such an imple-

mentation is given in the animation attached to the current report. In this case the datapoints are

assumed to decay exponentially in space and time. This last effect is necessary to simulate a systematic

lack of confidence in datapoints as they age. The provided algorithm can be easily implemented on a

rudimentary system as only matrix multiplication and lookup tables are required to compute the map.

More sophisticated models are possible with an initial clustering of the data with respect to a

variety of features. Carrying this out as a preprocessing step would create various “zones” for a map.

Currently a zone is a region around each datapoint, independent of any other features. Within each

zone, a map could be computed based on the local features: the “zone maps” could then be patched

together to build a final map.
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6.1 Introduction

This report summarizes the work carried out by the authors during the Twelfth Montreal Industrial

Problem Solving Workshop, held at the Université de Montréal in August 2022. The team tackled a

problem submitted by CBC/Radio-Canada on the theme of Automatic Text Simplification (ATS). In

order to make its written content more widely accessible and to support its second-language teaching

activities, CBC/RC has recently been exploring the potential of automatic methods to simplify texts.

They have developed a modular lexical simplification system (LSS), which identifies complex words in

French and English texts and replaces them with simpler, more common equivalents. Recently, however,

the ATS research community has proposed a number of approaches that rely on deep learning methods

to perform more elaborate transformations, not limited to lexical substitutions, but including syntactic

restructuring and conceptual simplifications as well. The main goal of CBC/RC’s participation in the

workshop was to examine these new methods and to compare their performance with that of their own

LSS.

This report is structured as follows. In Section 6.2, we detail the context of the proposed problem

and the requirements of the sponsor. We then give an overview of current ATS methods in Section 6.3.

Section 6.4 provides information about the relevant datasets available, both for training and testing

ATS methods. As is often the case in natural language processing applications, there is much less

data available to support ATS in French than in English; therefore we also discuss in that section the

possibility of automatically translating English resources into French, as a means of supplementing

the French data. The outcome of text simplification, whether automatic or not, is notoriously difficult

to evaluate objectively; in Section 6.5, we discuss the various evaluation methods we have considered,

both manual and automatic. Finally we present the ATS methods we have tested and the outcome of

their evaluation in Section 6.6. Section 6.7 concludes this report and presents research directions.

6.2 Problem description

6.2.1 Context

The mandate of CBC/Radio-Canada is to inform, enlighten, and entertain all Canadians. When

presenting its plan on equity, diversity, and inclusion for 2022-2025, CBC/Radio-Canada committed

itself to doing the utmost so that all persons living in Canada feel valued, recognized, and heard by their

public broadcaster from sea to sea. On its website (radio-canada.ca), Radio-Canada publishes between

450 and 600 articles each day. These articles deal with complex topics (health crisis, climate crisis, the

economy, the polarization of society, international conflicts, etc.). Since a good understanding of current

issues is necessary to take part in the democratic debate, Radio-Canada thinks that the use of ATS

could help a greater number of citizens take part in this debate. Simplifying or summarizing some of its

written contents (in an automatic fashion) could enhance the understanding of the articles and make

them more attractive for people struggling with literacy, neurodiverse people, and new immigrants (for

instance).

In April 2021 CBC/Radio-Canada launched Mauril1, a digital platform for learning French and

English through audio-visual information produced by the public broadcaster. The development team

is currently trying to broaden the supply of written content through a new reading comprehension task.

To this end Radio-Canada will need ATS to produce simpler versions of original articles, in order to
take the level of beginners (learning French or English) into account.

1https://mauril.ca/fr/

https://mauril.ca/fr/
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6.2.2 The problem

ATS consists in decreasing the complexity of a text, from the lexical and syntactic points of view, while

retaining its meaning and grammaticality. This has been shown to improve the readability and ease

of understanding of the text. Methods for simplifying text fall into two categories: modular systems

(which carry out lexical or syntactic simplifying operations iteratively or recursively), and end-to-end

systems, which learn to carry out several modifications at the same time through labeled data. In

modular systems the transformations are in most cases applied sentence-wise.

6.2.3 Desired solution

We wish to compare the performance of our modular lexical simplification systems with that of an

end-to-end system that operates at the sentence level, without being limited to lexical simplifications.

The supervised end-to-end approaches that we have identified make it possible to perform several types

of transformations (both syntactic and lexical) but require a large number of examples. On the other

hand at least two unsupervised approaches [13, 25] make it possible to learn how to simplify from

free text, without depending on aligned corpora. We also need to identify the appropriate evaluation

metrics and evaluation corpora in both French and English.

6.3 Related work

Automatic textual simplification consists in reducing the complexity of a text (in terms of lexicon and

syntax) while retaining its original meaning, in order to improve its readability and understanding.

In reality, textual simplification is most often achieved by transformations performed at the sentence

level. These are rewriting transformations such as replacement (lexical simplification), reorganization
(syntactic simplification), and splitting. In accordance with the literature, our investigation was centered

around sentence-level simplification.

Broadly construed, ATS systems will seek to parse an input sentence and produce an output sentence

presumed to be equivalent to it but linguistically simpler. As previously mentioned, the inner workings

of these systems place them into one of two broad categories: modular and end-to-end systems. Modular

systems will apply a set of definite, linguistically informed transformations. These transformations

may pertain to different aspects of language and simplification. For example one transformation may

seek to replace words deemed complex with simpler ones, while others will operate on the syntactic

structure of sentences. Assuming the independence of these aspects as they pertain to simplicity, these

transformations will be applied independently by such systems.

In contrast end-to-end systems will seek to apply such transformations jointly. Importantly, said

transformations are not necessarily explicitly parameterized by these approaches. Instead, end-to-end

models will transform the input sentence into a dense vector representation from which the output

sentence will be produced, and are thus similar to encoder-decoder models. These neural network

models will be trained to match the expected output; the simplifying transformations are expected to

be learned and effected implicitly through the inner representations of the network.

Thus end-to-end approaches will usually require training on parallel corpora, i.e., datasets matching

complex sentences with their simplified versions. While it is conceivable to train simple so-called

sequence-to-sequence models on this task, their high capacity makes them prone to overfitting on the

smaller datasets habitually available in ATS. As such, end-to-end approaches based on inference from

parallel corpora will attempt to embed structural constraints in the encoding-decoding process in order

to rein in model capacity. For example, the sentence simplification task can be reframed by having

the model issue edit operations to be applied on the input sequence rather than produce the output

sequence outright. These operations, once interpreted and realized, would result in the simplified

sentence. For example, the model might be tasked with issuing deletion and preservation operations
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for each token in the input sentence. Carrying out these instructions on every token would result in a

simplified sentence. The true edit operations constituting the expected output of the model can be

produced automatically from the aligned sentence pairs. The output space of this modified framework

is greatly reduced in dimension, thereby simplifying the task. This approach has been carried out in

the literature, achieving competitive results [8, 15].

Rather than mitigating the impact of limited training examples by reframing the model task, one

can train encoder-decoder models directly to produce simplified text on non-parallel corpora. These

corpora comprise sets of sentences of each complexity level that are not individually paired. Thus large

amounts of data are more easily gathered. Nonetheless such data do not give a mapping from a complex

to a simplified sentence and the model cannot be trained in a supervised manner. Surya et al. [25]

proposed to circumvent this issue by deploying an encoder-decoder model with two decoders, one for

each of two complexity levels. These decoders are subject to separate training criteria. In particular
the decoder producing simple outputs must process both complex sentences and simple sentences in

similar manners while doing so differently from the complex decoder. Together the encoder and the

simple decoder constitute a simplification model. With this approach one obtains competitive results on

standard datasets. The authors, however, note that performance can be further improved by additional

training on parallel data.

Another approach to addressing limited data is to pose text simplification as a particular case of

paraphrasing [13]. Paired paraphrase examples can be extracted automatically in larger numbers as

there is no need for any assessment of their difference in terms of complexity. Of course, in order to use

this model for simplification, one must be able to tilt the paraphrasing model towards the production

of a simpler paraphrase. To this end, the paraphrase model is trained with auxiliary control inputs

parameterizing the difference between the input and output sentence with regard to selected aspects [12],

e.g., change in total length, change in dependency-tree depth. Once the model is deemed proficient
at paraphrasing, simplifying values of these control inputs are determined empirically from parallel

simplification corpora. This approach achieves a state-of-the-art performance on several datasets as

well as good human ratings in English, French, and Spanish.

6.4 Datasets

ATS corpora vary in several respects, as each attempts to address specific preoccupations of ATS

research. The modular lexical simplification system developed in this work relies on lexical resources

exclusively for evaluation. In contrast the end-to-end sentence simplification approaches studied make

use of sentence-level corpora both for training and for evaluation. Most resources available of either

type are for English; very few resources exist for French.

6.4.1 Lexical simplification

A multilingual lexical simplification dataset was produced for the TSAR-2022 Shared Task in English,

Spanish, and Portuguese [22]. The gold test set in English contains 373 sentences with an identified

complex word and multiple simplification suggestions provided by annotators (25 or 26 in some cases).

To our knowledge the only evaluation dataset for lexical simplification in French is presented in [9].

6.4.2 Sentence simplification

The resources of greatest interest in the development of sentence-level, end-to-end systems are parallel

corpora. Broadly speaking, these datasets match equivalent text fragments of different levels of

complexity. Nonetheless they may still vary in several respects. A primary distinction is their

granularity, for example, whether they focus on sentence-level or larger-level simplification. Also

datasets may differ in their characterization of the (relative) complexity of the units (e.g., sentences,

paragraphs) within each pair thereof. For example, in some datasets, observations might consist of
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two sentences, one deemed complex and the other simple. Alternatively, they may belong to precisely

defined categories, borrowed, for example, from Second-Language Acquisition standards. This is of

particular interest in developing simplification systems capable of producing tailored simplifications.

Additionally corpora may have several references per example per target level, offering different,

presumably equivalent simplifications of one single sentence. This is particularly important in the

evaluation of systems, casting a wider net over possible system outputs. Finally some corpora will

characterize the differences between units in an observation with respect to several aspects, such as

how well the (semantic) meaning is preserved throughout or whether units are grammatically sound.

6.4.3 Training data

As mentioned, very few resources exist for text simplification in French. The only available resources

were therefore reserved for evaluation. End-to-end approaches relying on parallel corpora were trained on

a machine-translated version of the WikiLarge corpus [29]. This dataset is built from sentences extracted

from the open collaboration online encyclopedia, Wikipedia, which has both English2 and simplified

English3 (termed Simple English) versions. Sentences were extracted and aligned automatically from

articles existing in both versions, for a total of 296k pairs. WikiLarge is the largest parallel ATS corpus,

to our knowledge. Its translation was carried out using the Helsinki machine translation model [16].

More details about this process and its considerations are presented in Section 6.4.5.

In contrast the UNTS approach [25] does not require a parallel corpus. Rather sentences are taken

from two separate sets of sentences of the desired levels of complexity, easing the requirements of data

collection. Two sets of data were collected from different sources for the present work. Both are news
sources, in order to mitigate the impact of domain shift from one set to another. Complex sentences

were taken from the French-language portion of the MLSUM corpus [20], a multilingual dataset for

automatic summarization. Simple sentences were collected from the simplified version of the Radio

France Internationale (RFI) website4 We term this collection RFI.

The datasets are listed in Table 6.1.

Table 6.1: Sentence-level resources used in training. WikiLarge was automatically translated into French.

Dataset Language Size Description

WikiLarge English 296K Automatic alignment of English Wikipedia and Simple English Wikipedia
MLSUM French 425K Multilingual summaries of news
RFI French 105K Transcripts of a news feed in simple French

6.4.4 Evaluation data

Four datasets were considered for the evaluation of end-to-end sentence simplification systems: ALEC-

TOR [10], OneStopEnglish [26], TurkCorpus [27], and ASSET [1]. The simplifications of all datasets

are manual. Both ALECTOR and OneStopEnglish comprise document-level simplifications by ex-

perts, while TurkCorpus and ASSET comprise sentence-level simplifications by crowdsourced workers.

The only French-language dataset among those selected is ALECTOR: the other datasets contain

English-language text only. Our preliminary results concern only the ALECTOR corpus.

The ALECTOR corpus [10] comprises 79 excerpts aimed at children between the ages of 7 and 9,

drawn from fiction and scientific texts common to the French curriculum. Each excerpt has one

associated simplified version aimed at children with dyslexia or poor reading ability. Simplifying

transformations, carried out by experts, included lexical simplification, deletion, and sentence splitting

and merging. For our purposes, the dataset was adapted by manually aligning sentences. Complex

2https://en.wikipedia.org/
3https://simple.wikipedia.org/
4https://francaisfacile.rfi.fr/

https://en.wikipedia.org/
https://simple.wikipedia.org/
https://francaisfacile.rfi.fr/
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excerpts in the original dataset were split at periods and colons, then manually aligned with their

simplified counterparts, yielding 1165 pairs. Because the original simplification was carried out at the

excerpt level, however, 23% of those pairs have no simplification.

The OneStopEnglish corpus [26] contains 2166 groups of sentences taken from OneStopEnglish

lessons for English second-language learners. The sentences were originally sourced from news articles

from The Guardian5. These articles were adapted for three different reading levels. From this text-

aligned version sentence pairs were extracted from each level pair by automatically aligning sentences

one-to-one. Pairs of sentences deemed too similar or dissimilar were discarded, resulting in different

pair counts for each pair of levels.

The TurkCorpus [27] comprises 2359 English sentences from Wikipedia for which 8 independent

simplifications were produced by different crowdsourced annotators. These annotators were instructed

to rewrite sentences by substituting challenging words or idioms but without any content deletion or

rearrangement, thus limiting the array of simplifying transformations present in the corpus.

To address these limitations, the ASSET corpus [1] provides 10 simplifications of the same source

sentences as the TurkCorpus with a richer set of simplifying transformations: paraphrasing, lexical
simplification, deletion, and sentence splitting and reordering.

6.4.5 Dataset translation

Due to the limited availability of French-language corpora, several datasets were automatically translated

from English into French both for training and evaluation purposes. This was carried out using the

Helsinki machine translation model [16]. Although the quality of machine translation has drastically

improved over recent years, it is still important to survey the quality of the translation carried out on

the corpora used. In particular it is important to study whether complexity was preserved through

translation or, more precisely, whether the discrepancies in complexity within aligned pairs were

preserved. Given that measuring linguistic complexity is a difficult problem in itself, however, certifying

this preservation is difficult. Little work on these considerations can be found in the literature: namely

Rauf et al. [19] sought to analyze the effects of translation upon the values of surface metrics at different

complexity levels. Following this idea we measured changes within sentence pairs of the Wikilarge

dataset using different metrics. As a measure of semantic proximity, we computed the cosine similarity

between the LASER embeddings [5] of simple and complex sentences. Then the cosine similarity of each

original pair was subtracted from that of the translated pair. The histograms are shown in Figure 6.1.

Although most translated pairs have higher similarity than their original counterparts (56%), the

difference in those cases appears to be small (median=0.012). The syntactic similarity, however, as
approximated by the character-level edit distance, appears to diminish with translation: the median

difference among translated pairs that are closer than the original (20%) is −4.

6.5 Evaluation

This section describes the evaluation methods used in the literature for the tasks of lexical and sentence

simplification. The main components of text simplification are meaning preservation, grammaticality,

and simplicity. Usually human evaluation explicitly uses these components while automatic metrics6

can cover multiple aspects.

6.5.1 Human evaluation

Because it is difficult to model text simplification with mathematical quantities, human evaluation

remains the gold standard. This is carried out along the aforementioned features with Likert scales.

5https://www.theguardian.com/
6In this report, the term “metric” is used in a broader sense than its mathematical definition. Thus evaluation scores

that do not verify the triangular inequality are still referred to as metrics.

https://www.theguardian.com/
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Figure 6.1: Left: Distribution of difference in cosine similarity between machine-translated (French) and original pairs in
the Wikilarge dataset. Right: Distribution of difference in edit distances.

While the evaluation of grammaticality and meaning preservation is fairly straightforward, there are

multiple approaches to the manual evaluation of simplicity: namely the simplicity of system outputs

can be evaluated by themselves [23] or by comparing them with the input [11, 24, 27].

6.5.2 Automatic evaluation

Lexical simplification

The following evaluation metrics are used in the TSAR-2022 Shared Task for lexical simplification

(assuming a correctly identified complex word is provided):

• Accuracy@1: the percentage of instances for which the best ranked substitution generated by the

system is the same as the most frequently suggested simpler synonym in the gold data;

• Mean Average Precision@K: K∈ {1, 3, 5, 10}. MAP@K evaluates the relevance of the predicted

substitutes and the position of the relevant candidates compared with the gold annotations;

• Potential@K: K∈ {1, 3, 5, 10}. Potential@K evaluates the percentage of instances for which at

least one of the substitutions predicted is present in the set of gold annotations;

• Accuracy@K@top1: K∈ {1, 2, 3}. ACC@K@top1 evaluates the ratio of instances where at least

one of the K top predicted candidates matches the most frequently suggested substitute in the

gold list of annotated candidates.

Sentence simplification

ATS has been frequently approached as a monolingual translation task [8, 29]: that is, the complex

text is said to be translated into a simpler text within the same language. This formulation is manifest

not only because of the parallels between approaches but also because work in the evaluation of ATS

systems has been borrowing from the Machine Translation (MT) literature. Some metrics are borrowed

without alteration, while other (ATS-specific) metrics draw a looser inspiration from MT metrics.

Throughout the three key dimensions that these metrics seek to capture are:
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• grammaticality: whether the output produced by some system is grammatically sound;

• meaning preservation: whether this output preserves the (semantic) meaning of the input; and

• simplicity: whether the output is indeed simple or simpler than the input.

Five metrics were selected for evaluation in the present work.

The BLEU metric [17], ubiquitous in MT, is equally common in ATS. It has notable weaknesses

in this setting, such as its tendency to punish sentence splitting. It has, however, the advantage of

also being usable in a reference-less setting by comparing to the input. Naturally this will reward

less intervention. In this work, however, BLEU was used only to match against the expected output.

Another MT metric, BERTScore [28], relies on pairwise similarities between the token representations

of the system output and the references. These representations are computed from the BERT language

model [7]. Basing the comparisons on a large language model rather than symbolic representations
allows the metric to account for polysemy and makes it robust to paraphrasing. It has shown good

correlation with human judgment in ATS tasks [21].

SARI [27], a metric specific to ATS, compares the output to both the reference and the input, in a
manner similar to BLEU. Although very common in the ATS literature, it is difficult to interpret, and

its grasp on grammaticality and meaning preservation remains unclear [21]. SAMSA [24], another

ATS metric, seeks to measure the simplicity of outputs without the use of references by parsing for the

semantic events described therein. It thus favours splitting sentences as well as reordering sentences

into the dominant sentence structure for the language (Subject-Verb-Object for English). Lastly, the

ISiM metric [14], also reference-less, computes the simplicity of a sentence by relying on the large-scale

frequency of words as a proxy for their simplicity, i.e., texts with common words will be deemed simpler

regardless of their meaning or lack thereof.

Except for ISiM, all metrics are supported by the EASSE package7 [2], which was selected for use in

this work. In future work, we may consider using a measure of similarity (e.g., cosine) between sentence

embeddings to capture meaning preservation. Furthermore, statistics on the shape of the syntax tree

of the systems outputs (e.g., depth, breadth) could give some insight into the syntactic simplicity of

outputs. This would improve the above evaluation protocol as its measure of simplicity is quite limited:

ISiM, the main metric for this dimension, is oblivious to the adequacy of the simplification and its

grammaticality.

It should be noted that automatic evaluation of ATS systems remains an open question [3, 1].

Most metrics fail to address some aspect of simplification altogether and may exhibit pitfalls in their

evaluation of the aspects they do address. In particular high scores of the above metrics do not imply

good simplification quality [3]. Furthermore, posing simplicity as solely a textual property without

accounting for the competence of the intended audience is an inherently incomplete view of the problem.

6.6 ATS methods and results

6.6.1 Lexical simplification

Our modular system for lexical simplification (for English) requires no training data and allows us to

fine-tune each module separately in order to improve the result. It consists of three modules operating

consecutively: complex word identification (CWI), candidate generation, and candidate ranking.

Complex Word Identification. To identify the candidate for simplification, we first segment the input

sentence into words before passing them through a vocabulary classifier (detailed in the paragraph

about Candidate Ranking), along with the whole sentence as contextual information. The word with

the highest complexity score becomes the candidate for simplification. In case of a tie, we prioritize

7https://github.com/feralvam/easse
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verbs and select the word with the highest frequency in order to exclude inappropriate candidates for

lexical simplification such as terminology.

Candidate Generation. To generate substitution candidates, we used the lexical substitution framework

LexSubGen [4] and its best performing estimator XLNet+emb to generate 20 suggestions given a

target complex word. We modified the post-processing of the original system to exclude the candidate

lemmatization and get inflected suggestions, rather than lemmas. We kept the lowercase post-processor

followed by target exclusion that uses lemmatization to detect and exclude all forms of the target word.

Candidate Ranking. We selected and ranked candidates based on a combination of their grammaticality,

meaning preservation, and simplicity scores, through a simple heuristic giving twice as much weight to

the simplicity score. The rank of each substitution wn of the N = 20 generated candidates is determined

as a function of its grammaticality G ∈ {0, 1}, simplicity S ∈ [1, 6], and meaning preservation M ∈ [1, N ]
scores, as presented in the following equation.

rank wn≤N = Gwn
× (Swn

× 2 +Mwn
)

The top 10 candidates (or fewer) are those included in the submission.

To evaluate the grammaticality of a sentence given a substitute candidate, we compare the

coarse-grained part-of-speech (POS) and morphological features of both complex word and candidate

in context. We use spaCy8 to tokenize and parse the sentence, making sure not to split hyphenated

complex words, since LexSubGen does not support multi-word expressions. We assign a score of 1 to

any candidate whose features (person, number, mood, tense, etc.) correspond to those of the target

word and 0 otherwise.

To evaluate the effect of a substitution candidate on the meaning of the original sentence we

compute the similarity of the two sentences as a sum of the cosine similarities between their token

embeddings using BERTScore [28]. The higher the similarity between source and target sentences, the

higher the chances that the substitution candidate meaning is close to the one of the complex word.

Candidates are ranked by decreasing F1 score with the best candidate receiving a score of 1 and the

last one a score equal to N.

We measure the lexical complexity of each candidate with a CEFR9 vocabulary classifier trained

on data from the English Vocabulary Profile10 (EVP) [6]. EVP is a rich resource in British and American

English that associates single words, phrasal verbs, phrases, and idioms not only with a CEFR level

but with part of speech tags, definitions, dictionary examples, and examples from learner essays. The

corpus also contains distinct entries for distinct meanings of polysemous words, each associated with

its own difficulty level. For each substitution candidate we extract a semantic, contextual, dense

vector representation from a pre-trained masked language model11 [7] by first encoding the target word

or multi-word expression (MWE) in context (using the dictionary and learner examples) and then

aggregating all 12 hidden layers for all WordPieces. This representation of the dataset is then used to

train a support vector classifier [18]. The resulting model is able to assign a difficulty level between

1 (A1) and 6 (C2) to the meaning of any word or MWE as determined by its context.

Results and discussion. We evaluated (partially)12 our lexical simplification system (in English) on

the TSAR-2022 dataset. The main results are reported in Table 6.2. The system outperforms the

state-of-the-art LSBert baseline on 27 out of the total 51 metrics (including Precision and Recall).

8https://spacy.io/ — v. 3.1.3 — en-core-web-lg
9The Common European Framework of Reference for Languages (CEFR) organizes language proficiency in six levels,

A1 to C2.
10https://www.englishprofile.org/american-english
11https://huggingface.co/bert-base-uncased
12We did not evaluate the CWI part of the system and leveraged the fact that the TSAR-2022 dataset identifies complex

words. The results thus presume a perfect complex word identification prior to candidate generation and ranking.

https://spacy.io/
https://www.englishprofile.org/american-english
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Table 6.2: Results of SOTA and our systems on selected metrics.

ACC@1@top1 ACC@1 MAP@3 Potential@3 Precision@4 Recall@4

LSBert-baseline 0.303 0.597 0.407 0.823 0.412 0.193
Our system 0.236 0.544 0.382 0.831 0.418 0.196

The high Potential@3 suggests that the system would be useful to human editors whenever suggesting

3 (or more) candidates to choose from. The Accuracy@K@top1 of the system doubles when K = 3 as

compared with K=1, which means that, 46% of the time, the most commonly suggested substitute is

among our top 3 predictions. Table 6.3 contains a number of example simplifications for sentences from

the TSAR-2022 corpus.

Table 6.3: Selected sentences with complex word (in bold) and the top candidate produced by our system.

Sentence with complex word Top substitute

It decomposes to arsenic trioxide, elemental arsenic and iodine when heated in air at 200◦C. changes
Lebanon is sharply split along sectarian lines, with 18 religious sects. religious
The stretch of DNA transcribed into an RNA molecule is called a transcription unit and
encodes at least one gene.

codes

Obama earlier dropped from night skies into Kabul [...], cementing 10 years of U.S. aid for
Afghanistan after NATO combat troops leave in 2014.

securing

6.6.2 Sentence simplification

Given the particulars of the problem and the needs of CBC/Radio-Canada, namely the lack of French-
language resources, several approaches from the literature were considered. The selected approaches

were UNTS [25], ACCESS [12], and MUSS [13]. Our preliminary results concern only the ALECTOR

corpus and the BLEU and SARI metrics. UNTS was trained on the MLSUM and RFI datasets;

ACCESS was trained on the translated Wikilarge corpus. MUSS was used as trained by its original

authors [13]. The results are presented in Table 6.4.

Table 6.4: Results of selected models on the sentence-aligned French-language ALECTOR corpus.

Model BLEU SARI

UNTS 37.6 35.5
ACCESS 46.7 34.9
MUSS 38.9 38.1

The paraphrase-based approach, MUSS, achieves the highest SARI score, while ACCESS achieves

the highest BLEU score but at the cost of a lower SARI. This is consistent with the reported state-of-

the-art performance of MUSS on other datasets [13]. It should be noted, however, that these results

are fragile in that ALECTOR only has a single reference output whereas both metrics are more reliable

with several reference outputs [3, 27].

6.7 Conclusion

Evaluation for ATS tasks is not standard and the current metrics have known limitations [3]. In this

work, a protocol to evaluate our ATS systems was identified. It comprises multiple metrics to capture

the three dimensions of text simplification: grammaticality, meaning preservation, and simplicity. While

imperfect, this metric ensemble allows for deeper analyses of our systems.

This work explored two avenues for text simplification: lexical simplification and end-to-end systems

for sentence simplification. Our lexical simplification solution obtained performances similar to those of
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the shared task baseline [23] and showed promising results when considering the top 3 to 4 words. This

suggests that it could be a good system to support expert annotators. This report also presents partial

results for the ALECTOR dataset [10] with several end-to-end systems. While fragile due to the lack

of multiple references, results of ACCESS [12] and MUSS [13], an ACCESS-based approach, suggest

that further adjustments of this controllable model could further improve simplification quality.

To complete this work, a deeper evaluation of the presented approaches along the three ATS

dimensions (meaning preservation, grammaticality, and simplicity) is needed to assess the quality of

the discussed systems in an appropriate manner. Moreover this evaluation could be complemented by

the use of translated multiple-reference corpora such as ASSET [1].
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(RÉCITAL, 22e édition). Volume 2: Traitement Automatique des Langues Naturelles, pages 332–341.
aclanthology.org, 2020.

[20] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo Staiano. MLSUM:
The multilingual summarization corpus. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8051–8067. aclanthology.org, 2020.

[21] Thomas Scialom, Louis Martin, Jacopo Staiano, Éric Villemonte de la Clergerie, and Benôıt Sagot.
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Abstract: Revenu Québec is implementing an algorithmic framework for detecting companies at risk of not complying

with their fiscal duties. This framework requires (a) creating a bipartite graph in which the nodes are companies and

resources and (b) computing all the maximal bicliques containing a given company, for each company in that graph. We

present an algorithm for computing all the maximal bicliques in such a bipartite graph and discuss the results obtained

by applying it to the graph supplied by Revenu Québec.

7.1 Background

An important issue for governments across the world is the recovery of taxes owed by companies.

Detecting companies at risk of fraud has until recently been a time-consuming process carried out by

field auditors. Fraud detection algorithmic frameworks have been proposed to facilitate the work of

these auditors and researchers at Revenu Québec have begun implementing such a framework, presented

in articles by Van Vlasselaer et al. [1] and [2]. (Note that each article includes many references to

articles on fraud detection, especially detection relying on the relationships between companies.) In

what follows the phrase “at-risk company” means a “company at risk of fraud” (in the case of Belgium)
or “at risk of tax non-compliance” (in the case of Revenu Québec).

To determine whether a company is at risk or not one can look at its intrinsic features or its network-

based features. For instance, among the intrinsic features, an obvious one is the past involvement of a

company in fraudulent activities. Network-based features are more subtle and involve the consideration

of resources shared by two or more companies. For example, if two companies C and D have a common

address (resp. supplier, employee, piece of equipment, etc.), this might point to a close link between

these companies and therefore a high probability that C is at risk if D is (or vice versa). Of course

more than two companies may share the same resource.

To formalize the concept of network-based feature we introduce the bipartite graph G = (VC , VR, E):

VC is the set of companies, VR the set of resources, and E the set of couples (x, y) where x is a company

using resource y. In general a network-based feature will be computed using information extracted

from the graph G, e.g., a parameter of G. In this article we focus on network-based features related to

bicliques in G, where a biclique is defined as a complete bipartite subgraph of G induced by a set of

nodes containing at least two companies and two resources. A maximal biclique is a biclique that is

not contained in another biclique. Given a company x we can associate to x the number of maximal

bicliques in G that contain x: this number is an example of network-based feature.

The researchers at Revenu Québec wish to compute the set of all maximal bicliques within a

reasonable amount of time, which does not seem to be possible when one attempts to use the method

outlined in Van Vlassselaer et al. [2]. Lu et al. [3] have proposed an algorithm for enumerating maximal

bicliques in bipartite graphs and they cite several articles with applications of this problem to varied

questions arising in the biological sciences. There are several definitions of the maximum biclique

problem, of varied complexities (see for instance Peeters [4]), but the enumeration of all maximal

bicliques is clearly a difficult problem (see Yang et al. [5]).

In the rest of this article we present the anonymized data set provided by Revenu Québec and
the method used to solve the problem for this data set. We conclude by outlining avenues for future

research.

7.2 The data set and our method

The data set provided by Revenu Québec included approximately 500,000 companies and 3.3 million

resources, which it is not surprising since Québec has more than 8 million inhabitants. Enumerating all
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the maximal bicliques appears to be a daunting task but a quick look at the data set reveals that it

contains a large number of nodes of degree 1, and more generally a large number of nodes of small

degree. This observation led us to design an algorithm that looks at the nodes of the bipartite graph in

increasing order of degrees.

First we note that a node of degree 1 cannot belong to a biclique, since we have assumed that a

biclique contains at least two companies and two resources. Hence we can remove all nodes of degree 1

from the graph in an iterative manner, since the degrees of some nodes will decrease after the removal

of the nodes of degree 1. When the graph G no longer contains any node of degree 1, we consider nodes

of degree 2. If x has the two neighbors y and z, there is a maximal biclique containing x if and only if

there is at least one node w ̸= x that is adjacent to y and z. If that condition is met, there is only one
maximal biclique containing x, the one whose node set is {y, z} ∪ {w|w is adjacent to y and z}. After
considering node x we can remove it from G, whether it is contained in a maximal biclique or not. The

removal of nodes of degree 2 may again “create” new nodes of degree 1 or 2 and these can be removed

from G in a similar fashion.

We now turn to nodes of degree 3. If the three neighbours of x are denoted y, z, and w, there

are four possibilities for a maximal biclique U containing x: (a) y, z, w ∈ U , (b) y, z ∈ U,w /∈ U , (c)

y, w ∈ U, z /∈ U , and (d) z, w ∈ U, y /∈ U . To each of these possibilities corresponds a potential maximal

biclique: B1 = {y, z, w}∪{u|uy, uz, uw ∈ E}, B2 = {y, z}∪{u|uy, uz ∈ E}, B3 = {y, w}∪{u|uy, uw ∈
E}, and B4 = {z, w} ∪ {u|uz, uw ∈ E}. Note that we wrote “potential maximal biclique” because we
have to make sure that Bi includes at least two companies and two resources and Bi is not included in

another Bj for some j. We add all maximal bicliques found in this way to the list of maximal bicliques

and remove x from G. In general, if Nx is the set of neighbours of x, where |Nx| is at least 3, we need

to consider all subsets of Nx of cardinality at least 2 and verify that the corresponding bicliques are

indeed maximal.

We illustrate this process on the graph 7.1. First nodes 1 and 6 are removed from the graph; node

a being then of degree 1, it is also removed from the graph and the new graph is depicted in Figure 7.2.

Node f is considered next since it has degree 2: the only clique containing f is {d, e, f, 4, 5} and node

f is removed from the graph (yielding the graph 7.3). (We should also consider node 2 but will skip

that step for the sake of illustrating the process on nodes of degree 3.) In Figure 7.3 we observe that

node b is of degree 3 and we have to consider all subsets of {2, 3, 4} with at least two nodes. The

subset {2, 3, 4} yields the maximal biclique {b, c, 2, 3, 4}, the subsets {2, 3} and {2, 4} yield respectively

{b, c, 2, 3} and {b, c, 2, 4} (neither of which is maximal), and the subset {3, 4} yields another maximal

biclique, {b, c, d, e, 3, 4}.

a

1 2

b

3 4

c d

5

e f

6

Figure 7.1: Initial graph.

As the degree increases this process consumes a lot of time: for instance, if u is a node of degree

4 (resp. 5) and N(u) denotes the set of neighbours of u, there are 11 (resp. 26) subsets of N(U) to

consider. In the case of the anonymized data set provided by Revenu Québec, we remove iteratively

all the nodes of degree at most 6, i.e., once a node (say, u) had been removed, we remove from the
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Figure 7.2: Graph after the removal of nodes of degree 1.
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Figure 7.3: Graph after the removal of nodes of degre 1 and node f .

graph other nodes (for instance neighbours of u) whose current degree is at most 6. This yields a graph

whose characteristics remind one of a small-world network (see Watts [6]): it has 10, 075 nodes and

consists of one huge connected component (with 9922 nodes) and nine very small ones (all in the upper

right-hand corner of Figure 7.4).

Figure 7.4: Graph of Revenu Québec after the removal of all nodes of degree 6 or less.
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Table 7.1: Number of nodes as a function of the maximal degree of removed nodes.

Max degree Nodes Max degree Nodes Max degree Nodes Max degree Nodes

1 1308308 8 4431 15 1125 46 926
2 614789 9 3028 16 1051 108 925
3 218306 10 2265 17 1000 125 924
4 64319 11 1984 18 973 132 403
5 21757 12 1685 19 929 136 366
6 10075 13 1580 20 928 138 0
7 6403 14 1408 21 927

Maximal bicliques are computed throughout the scanning of nodes of degree at most 6, which

consumes around 10 minutes of computer time. One can then apply the algorithm of Lu et al. [3] to

the resulting graph of 10, 075 nodes and obtain (in around one minute and a half) a list of all candidate
maximal bicliques in this graph. We use the phrase “candidate maximal bicliques” because a biclique

B returned by the algorithm of Lu et al. may be contained in a biclique found while scanning the

nodes of degree at most 6. To check that B is indeed maximal we consider every neighbour v of a node
in B that was removed when scanning nodes of degree at most 6: if v is adjacent to every node in one

of the parts of B, then B is not maximal. If no such v is found then B is maximal. We expect the

checking to consume little time but did not have time to verify this during the workshop.

We also considered a “more agressive approach” in the first part of our method, i.e., we scanned

iteratively all the nodes of degree at most 21. In that case the application of the algorithm of Lu et al.

took only 9 milliseconds. Altogether reading the data, creating the graph in the software, scanning the

nodes, and checking that the bicliques are indeed maximal took between 30 and 40 minutes. Therefore

the scanning of nodes of degree at most 6 might be more efficient, provided the checking of the bicliques

produced the algorithm of Lu et al. does not take too much time.

To conclude this section we present Table 7.1, describing the number of nodes as a function of the

maximum degree of removed nodes. For instance, after removing iteratively all nodes of degree 1 from

the original graph, the resulting graph has 1, 308, 308 nodes. When the maximum degree of a removed

node is 6 (resp. 21), the number of remaining nodes is 10, 075 (resp. 927). The last two columns

records the data for degrees where a change occurs: for instance there is no change in the number of

nodes between degree 21 and degree 45, while the number of nodes for degrees 136 and 137 is 366.

7.3 Future research

Finding maximal bicliques in bipartite graphs has many applications, in particular to problems arising

in biology (see the list of references in the article by Lu et al., which includes a reference to a library of

graphs). During the workshop our investigations have shown that graph sparsity is very helpful for

enumerating maximal bicliques, as indeed for solving many graph optimization problems. We intend to

pursue this research avenue by examining several graph classes and proposing algorithms for them.
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