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recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2022
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Abstract : This research focuses on the bid optimization problem in the real-time bidding setting
for online display advertisements, where an advertiser, or the advertiser’s agent, has access to the
features of the website visitor and the type of ad slots, to decide the optimal bid prices given a pre-
determined total advertisement budget. We propose a risk-aware data-driven bid optimization model
that maximizes the expected profit for the advertiser by exploiting historical data to design upfront a
bidding policy, mapping the type of advertisement opportunity to a bid price, and accounting for the
risk of violating the budget constraint during a given period of time. After employing a Lagrangian
relaxation, we derive a parametrized closed-form expression for the optimal bidding strategy. Using
a real-world dataset, we demonstrate that our risk-averse method can effectively control the risk of
overspending the budget while achieving a competitive level of profit compared with the risk-neutral
model and a state-of-the-art data-driven risk-aware bidding approach.

Keywords : Risk-aware bidding policy, risk aversion, display advertising, machine learning, entropic
risk measure, Lagrangian relaxation, real-time bidding
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1 Introduction

In a real-time-bidding (RTB) online display advertisement setting, the advertiser is given the website

traffic of clients and ad slots with many different features, including logs, regions, ad slots format,

etc., in order to decide a bidding policy for ads potentially displayed to a wide range of future users.

The bidding process in digital advertising Ostrovsky et al. (2007) is based on the second-price auction

Vickrey (1961) model, where advertisers or their agents win the auction of a given opportunity if they

offer the highest bid price among the competitors and pays the second highest bidder’s bid price. The

bidders in the auction can be the advertiser themselves or their agents, which we will refer to as the

decision makers for the bidding policy.

These bidding policies typically need to be made with incomplete information about the potential

click-through rate (CTR),1 winning prices,2 the net value of each customer to the company, etc.

Instead, they rely on historical data that could be shared by the advertisement platform or accumulated

internally by advertisers themselves. The decision makers in this problem need to use this historical

data to estimate these critical values and develop the optimal bidding policy for the forthcoming

bidding opportunities.

Many companies around the world exploit online marketing, and in 2020, the total spending on

digital ads worldwide reached 378.16 billion US$ Statista (2022). Yet, effective use of online marketing

budgets requires robust statistical methods that can identify key interactions among a possibly bi-

ased historical dataset and algorithms that efficiently converge to optimal risk-aware bidding policies.

Moreover, the currently available methods seldom consider the risk in the bidding activity and, to the

best of our knowledge, have not explicitly addressed the risk of incurring excessive expenses.

In reality, the marketing budget is determined ahead and depends on a certain period of time. The

budget is given at the beginning of the period when the decision makers have no knowledge about what

opportunities will precisely realize. If they do not account for the risk of going over budget, valuable

opportunities that appear at a later time will likely be missed. Therefore, being able to identify bidding

policies that control the risk of excessive expense during a given period of time is of practical concern.

This paper considers an advertiser who needs to design a bidding policy, mapping the type of

advertisement opportunity to a bid price, that will be deployed over a period of time while effectively

controlling the risk of violating a specified budget constraint. For this purpose, we propose a static risk-

aware bid optimization model that can exploit historical data to prescribe an optimal bidding policy.

The approach is hybrid in how it considers a stochastic model that mixes both an empirical distribution
to model the type of opportunities, and a parametric distribution to model the winning price and click

potential when formulating the problem. This allows us to derive novel closed-form expressions for

the optimal risk-neutral and risk-averse bidding policies. The optimal bidding policies are easy to

implement and interpret given that they involve simple functions of the estimated conditional CTR

and conditional mean and variance of the anticipated winning price. To control the risk of running

out of budget, we employ an expected utility model that can account for the advertiser’s risk aversion.

Finally, the proposed bidding strategies are implemented and evaluated on a real-world dataset. These

experiments3 show that our bidding policy effectively controls the risk of expense going beyond the

budget while outperforming state-of-the-art risk-aware bidding strategies in terms of the average profit

that is achieved.

The rest of the paper is divided as follows. Section 2 presents our review of the literature. Section 3

proposes a stochastic model for describing a random bid opportunity offered to an advertiser. Sections 4

and 5 respectively present our so-called risk-neutral and risk-averse bid optimization problems. Finally,

sections 6 and 7 respectively describe our experiment design and numerical results, while Section 8

concludes.

1The click-through rate of an advertisement is the number of times a click is made on the advertisement, divided by
the number of times the ad is shown, which is also called the number of impressions Wikipedia (2022).

2The winning price (market price) is the price that is paid for the ad spot.
3The code of experiments is available at https://github.com/ReneeRuiFAN/risk-aware_bid_optimization

https://github.com/ReneeRuiFAN/risk-aware_bid_optimization
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2 Literature review

Our literature review covers the three main topics of this paper.

2.1 CTR and winning price prediction

The CTR prediction is a binary classification problem, commonly used estimators in computational

advertising are linear-based Richardson et al. (2007), tree-based Friedman (2002), and many models

have been developed based on the Factorization Machines (FM) Rendle (2010); Ta (2015); Pan et al.

(2016); Juan et al. (2017); Pan et al. (2018) which can better fit the feature combination and sparse

data often found in the display advertising datasets. In recent years, with the development of Deep

Learning (DL) research and recommendation systems, many researchers have applied Deep Neural

Network (DNN) based models Liu et al. (2015); Qu et al. (2018); Cheng et al. (2016). The idea of

combining the DNN and FM is widely accepted in the research and represents the leading performance

in real-world usage Guo et al. (2017); Huang et al. (2019); Pande (2021).

The winning price prediction is also called the bid landscape problem. Cui et al. (2011) uses the

gradient boosting decision trees to model the winning price. Wu et al. (2015) proposed the censored

regression model to deal with the problem when some historical winning prices are unknown to the

advertiser. The recent DL advancement also applies to the bid landscape problem. Wu et al. (2018b)

proposed the Deep Censored Learning model that uses a DL model for CTR prediction to boost the

prediction quality on the winning price and considers its distribution into the learning. Deep Landscape

Forecasting (DLF) model Kan et al. (2019) combines DL for probability distribution forecasting and

survival analysis for censorship handling based on a recurrent neural network (RNN) to model the

conditional winning probability with respect to each bid price.

2.2 Real-time bidding strategies

Linear-based strategies are commonly used in developing bidding strategies. Ostrovsky et al. (2007);

Chen et al. (2011) proposed bidding policies linearly-related with the estimation of the value of click,

so-called truthful bidding, while Perlich et al. (2012) constructed bid prices that depend on the pre-

dicted CTR. Besides the profit maximization objective, a dual-based bidding framework Liu et al.

(2017) derived from a strict second-price auction assumption is generally applicable to the multiple

ads scenario with various objectives and constraints. Yang et al. (2019) studied the common case where

advertisers aim to maximize the number of conversions, and set cost-per-click (CPC) as a constraint.

In Zhang et al. (2014), the authors introduced a non-linear bidding strategy model (called ORTB)

with the estimated CTR as the input of the bidding function that tries to bid on more impressions

rather than focus on a small set of high-value impressions. The paper Fernandez-Tapia et al. (2016)

solves the bid problem in cases where impressions are generated by homogeneous Poisson processes

and winning prices are independent and identically distributed (i.i.d). Ren et al. (2018) model CTR

learning and winning price estimation as part of bid optimization for campaign profit maximization

as a whole and perform a joint optimization.

Researchers also consider bid optimization in a multi-stage setting as a sequential decision process,

where Reinforcement Learning (RL) can play an important role. Indeed, the bid optimization problem

can be formulated by Markov Decision Process (MDP), where the bid prices are the actions and the

realized clicks provide rewards to the RL agent. In this RL model, the leftover budget can be integrated

into the state space, such as in Du et al. (2017); Cai et al. (2017), or used to influence the reward in

Wu et al. (2018a).Researchers have also formulated the problem using a multi-agent RL framework Jin

et al. (2018); Zhao et al. (2018). However, all these RL approaches are generally more computationally

expensive to solve compared with static models. Moreover, their solutions usually lack interpretability.
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2.3 Risk-aware bidding strategies

Based on a multi-stage problem setting, many researchers looked into the feedback control problem

during the bidding process Karlsson (2020), which controls the risk of unstable performance and keeps

the optimization process along the stages using a dynamic system. Grislain et al. (2019) add a penalty

to the cost, if the bidding policy falls short of its key performance indicators to improve the robustness

of performance under uncertainty. Karlsson (2016) introduced a bid randomization mechanism to help

exploration in a partially observed market and control the uncertainty in the auction-based bidding

process.

Most closely related to our work, Haifeng et al. (2017) proposed the risk management on profit

(RMP) model that also models the bidding process as a static problem. The model focuses on control-

ling the risk of the generated profit, while, in sharp contrast with our model, it does not address the

risk of expense going over the budget. The authors also assume that profit risk is solely caused by CTR

estimation error, which they model using Bayesian logistic regression, and end up over-simplifying the

problem by assuming that the winning price is independent of the type of advertisement opportunity.

In the display advertisement field, the utility of bidding is often defined as the profit of clicks. The

papers Chapelle (2015); Vasile et al. (2017); Haifeng et al. (2017) define the value of click v as the

value of the sum of winning prices divided by total clicks and measure utility as the profit of bidding

which is the difference between the total value of clicks and the expense paid. In these papers, the

authors use expected utility theory Bernoulli (1954); John von Neumann (1944). The exponential

utility function, which accounts for a constant absolute risk aversion, is probably the most commonly

used utility function. It can also be interpreted as employing an entropic risk measure Rudloff and

Wunderlich (2008), which satisfies the axioms of convex risk measures Foellmer and Schied (2010).

3 Stochastic model and training

For each bidding opportunity with an observable feature vector X that represents both user and ad

information, the bidding optimization problem will account for three dependent random variables: the

realized click C represents if the fact is that the ad gets clicked, the winning price W , and the net

value of the customer to the company V . Also, we make the following assumption to facilitate the

modeling of C,W, V given X. These dependency assumptions are commonly used in other literature

Zhang et al. (2014); Haifeng et al. (2017); Cui et al. (2011); Ren et al. (2018).

Assumption 1. The winning price W , realized C, and the net value of the customer V are mutually

independent given X.

Additionally, our approach will optimize a bidding policy over a batch of M opportunities, which

are assumed i.i.d. This will simulate a one-shot decision situation where a bidding policy needs to

be defined in order to run for a given period of time under a fixed budget. Table 1 summarizes the

definitions of the variables used in our formulation, which are discussed next.

Remark 1. The idea of considering a batch of M opportunities is a distinctive feature of our decision

models. Previous static approaches (see Haifeng et al. (2017); Zhang et al. (2014)) usually assume

that M is large enough for the law of large numbers to apply and impose that the expected expense

be smaller than the average budget. In Haifeng et al. (2017), for example, the proposed bidding policy

is simply scaled to the same extent that gives the maximum overall profit under the predetermined

budget during the hyperparameters tuning. Our models instead account for the fact that M can in

practice be too small for the average expense to have converged to its expected value. We will however

exploit a property of the entropic risk measure that enables us to reduce a batch problem of size M > 1

to an equivalent instantaneous M = 1 problem, which greatly simplifies the analysis.

In the rest of this section, we propose conditional models for CTR, winning price, winning proba-

bility, and value of the customer.
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3.1 Modeling conditional CTR

We assume that the CTR depends on the opportunity’s features X, and formally denote: θ(X) :=

P(C|X). In the context of this work, we will employ a DeepFM model Guo et al. (2017) to estimate

θ(X). We note that this choice is not limiting and that other CTR prediction models could also be

employed if one can improve the accuracy.

3.2 Modeling conditional winning price distribution

We assume that conditional on observing X, the winning price W follows the normal distribution

W ∼ N(ŵ(X), σ(X)), where the conditional standard deviation σ(X) also depends on the given

opportunity’s features X, so that we have the parametrized probability distribution function of the

winning price W modeled as follows:

fW |X(w) =
1

σ(X)
√
2π

e−
1
2 (

w−ŵ(X)
σ(X) )

2

.

Therefore, to model the distribution of the winning price, we need estimators for the conditional

mean ŵ(X) and the conditional standard deviation σ(X).

Given a dataset containing observed (X,W ) pairs, we can obtain an estimator of the expected

winning price, conditioned on X, by running the regression model:

ŵ(X) := arg min
w∈W

E[(W − w(X))2] ,

where W is the set of estimation functions modeled by a certain DNN architecture, and where E refers

to the expected value under the empirical distribution observed in the dataset.

The same dataset can also be used to train an estimator of σ(X) following a method introduced in

Fan and Yao (1998). Conceptually, we consider the residual Z defined as: Z := (W − ŵ(X))2, which

depends on the estimator ŵ(X), as well as the observed W . We can approximate the conditional

variance of the winning price σ2(X) as the expected value of the residual Z.

ẑ(X) := argmin
z∈Z

E[(Z − z(X))2],

where again Z is the set of estimation functions modeled by a certain DNN architecture. Finally, an

estimator of the conditional standard deviation of winning price σ(X) can be obtained by: σ(X) :=√
max(ẑ(X), ϵ), for some small ϵ > 0, which ensures that the variance estimate is always positive.

In our experiments, similarly to the CTR estimator θ(X), the estimators of mean of winning price

ŵ(X) and standard deviation of winning price σ(X) are DeepFM models.

3.3 Modeling conditional winning probability

Following the second price auction Ostrovsky et al. (2007) process, we assume that the advertisers or

their agents can win the bid if they offer a bid price that is larger than the winning price. Since the

expense only happens when the advertiser wins the bid, to model uncertainty about the expense, we

need to model the probability of winning the bid which depends on the bid price and the winning

price. For this purpose, we define a function that indicates whether the bid price wins the auction:

s(b,W ) := 1{b ≥ W} =

{
1 b ≥ W

0 otherwise

where b is the bid price and W is the winning price. Hence the conditional winning probability given

X can be obtained from E[s(b,W )|X], which depends on both the bid price b and the conditional

winning price distribution given X.
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Remark 2. It is important to note that both the ORTB approach Zhang et al. (2014) and the RMP

approach Haifeng et al. (2017) assume that the winning price is independent of the opportunity’s fea-

tures X. The ORTB approach obtains the winning probability using a certain parametrized reciprocal

function and tunes its parameter to best fit the winning probability curve as a function of the bid price.

In the case of the RMP approach, the winning probability is simplistically estimated by assuming that

the winning price is independent and using its empirical distribution. In contrast, we assume that the

winning price’s distribution depends on the given opportunity X, which is a more natural and logical

assumption as advertisers are willing to bid more for the more valuable opportunities.

3.4 Modeling conditional value of customer

Ideally, if the decision maker identifies a customer who could bring a higher value to the company

from the observable features vector X, they will be willing to bid at a higher price to improve the

probability of winning the auction. Therefore, we model the value of a customer V conditionally on

the type of opportunity X: V̂ (X) := E[V |X]. However, we note that, in our experiments, V̂ (X) is

considered as a known constant (the same value from Haifeng et al. (2017); Zhang et al. (2014)) for

simplicity.

Table 1: Variable definitions

Variables Description

V net value of customer for opportunity

V̂ (X) conditional net value of customer estimator given X
X observed features of opportunity
C indicates of click for opportunity

θ(X) conditional CTR estimator given X
b(X) bid price for opportunity given X
W winning price for opportunity

ŵ(X) conditional expected winning price for
opportunity given X

s(b,W ) indicates of winning the auction given b and W
σ(X) conditional standard deviation of winning

price for opportunity given X
M number of opportunities in a batch

4 Risk-neutral problem

In this section, we first introduce a static bid optimization model that captures a risk-neutral attitude

regarding the possibility of exceeding the predefined budget. While our original model considers the

performance of the bidding policy over a batch, we show how this problem can be equivalently reduced

to its “instantaneous” version (i.e. M = 1). We then establish that by employing a classical Lagrangian

relaxation, our optimal bidding policy has a closed-form expression involving the conditional statistics

of CTR, winning price, and customer value.

4.1 Risk-neutral problem formulation

Considering a random batch of M i.i.d. opportunities denoted by {(Xi,Wi, Ci, Vi)}Mi=1, with each Vi,

Ci, and Wi mutually independent given Xi (as per Assumption 1), the Risk-neutral Problem (RNP)

seeks a bidding policy that maximizes the expected profit generated over this batch while ensuring

that the total budget will be satisfied in expectation. This problem takes the following form:

brnp(·) := argmax
b:X→ℜ+

E[Batch profit]

subject to E[Batch expense] ≤ BM,
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where b(·) is a bid price policy that will be employed over a batch of M , while B captures the average

budget per opportunity. Furthermore, we have that:

Batch profit =

M∑
i=1

ViCis(b(Xi),Wi)−
M∑
i=1

Wis(b(Xi),Wi),

Batch expense =

M∑
i=1

Wis(b(Xi),Wi).

Based on the linearity of expectation, batch expressions can be simplified. For example, we can

simplify the batch profit to expected instantaneous profit per opportunity format by:

E

[
M∑
i=1

ViCis(b(Xi),Wi)

]
− E

[
M∑
i=1

Wis(b(Xi),Wi)

]
= M (E[V Cs(b(X),W )]− E[Ws(b(X),W )]) ,

and similarly for the batch expense formula.

In the rest of this subsection, we exploit Assumption 1 and the normality assumption for W to

obtain closed-form expressions for both the objective and constraint.

4.1.1 Reducing expected instantaneous revenue expression

We start by rewriting the expected instantaneous revenue expression as:

E[V Cs(b(X),W )] = E[V̂ (X)θ(X)E[s(b(X),W )|X]],

where we exploited (see Assumption 1) the fact that V , C, and W are mutually independent of each

other given X.

The conditional winning probability can be further reduced since we assume W is normally dis-

tributed conditionally on X:

E[s(b,W )|X] =

∫
W≤b

fW |X(W )dW = Φ

(
b− ŵ(X)

σ(X)

)
,

where fW |X(w) is the probability density function of the winning price W given X, and Φ(·) is the

cumulative distribution function of a standard normal distribution.

Therefore, we can calculate the expected revenue given X using:

E[V Cs(b(X),W )|X] = V̂ (X)θ(X)Φ

(
b− ŵ(X)

σ(X)

)
. (1)

4.1.2 Reducing expected instantaneous expense expression

In the case of the budget constraint, we have that:

E[Ws(b,W )|X] =

∫
W≤b

WfW |X(W )dW

=

∫
ws≤ b−ŵ

σ(X)

(σ(X)ws + ŵ(X))ϕ(ws)dws

= σ(X)

∫
ws≤ b−ŵ(X)

σ(X)

wsϕ(ws)dws + ŵ(X)

∫
ws≤ b−ŵ

σ(X)

ϕ(ws)dws

= g(b,X) := ŵ(X)Φ

(
b− ŵ(X)

σ(X)

)
− σ(X)ϕ

(
b− ŵ(X)

σ(X)

)
, (2)

where ws follows the standard normal distribution, and ϕ(·), Φ(·) are respectively the density function

and cumulative distribution function of a standard normal distribution.
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4.2 Optimal solution for RNP model

After we derive the reduced revenue (1) and expense (2) expressions, we can reformulate the model

for brnp using the reduced forms:

brnp(·) := argmax
b:X→ℜ+

E
[
V̂ (X)θ(X)Φ

(
b(X)− ŵ(X)

σ(X)

)
− g(b(X), X)

]
subject to E[g(b(X), X)] ≤ B.

In an attempt to solve this problem, one can introduce the Lagrangian coefficient λ ≥ 0 to obtain

a relaxation of this risk-neutral profit maximizing problem:

b̃
rnp
λ (·) := argmax

b:X→ℜ+

E
[
V̂ (X)θ(X)Φ

(
b(X)− ŵ(X)

σ(X)

)
− g(b(X), X)

]
− λE[g(b(X), X)−B]

= argmax
b:X→ℜ+

E[Gλ(b(X), X)],

where

Gλ(b,X) := V̂ (X)θ(X)Φ

(
b− ŵ(X)

σ(X)

)
− g(b,X)− λ(g(b,X)−B).

The optimal bid price brnp can be approximated using b̃
rnp
λ∗ with λ∗ as the smallest value of λ ≥ 0

such that E[g(b̃rnpλ∗ (X), X)] ≤ B. Furthermore, λ∗ can be found using the bisection method.

We next provide a closed-form solution for b̃
rnp
λ in the form of Lemma 1 (see complete proof in

Appendix A.1).

Theorem 1. For any λ ≥ 0, a maximizer of the Lagrangian relaxation takes the form:

b̃
rnp
λ (X) := arg max

b∈
{
0,

V̂ (X)θ(X)
λ+1 , ∞

}Gλ(b,X), ∀X ∈ X .

Therefore, we can that the optimal bid price b̃
rnp
λ∗ is proportional to the estimated value of the

customer and CTR given λ∗.

5 Risk-averse problem

The distinguishing point of the Risk-averse Problem (RAP) is that we take the risk of going over budget

into consideration. We develop the risk-averse bid optimization model brap, which maximizes the

return of bidding while controlling the risk of violating the total budget for the batch of opportunities.

5.1 The risk-averse budget constraint

We introduce the exponential utility function to model risk aversion in the budget constraint. Namely,

we replace the expected expense constraint with:

E[uα((1/M)Batch expense)] ≥ uα(B),

where uα(y) := − exp(αy) is a concave utility function that allows the decision maker to control risk

exposure using the parameter α. Based on Rudloff and Wunderlich (2008), this risk-averse budget

constraint can be interpreted as imposing an upper bound of B on the entropic risk of the average

expense in the batch:

ρ((1/M)Batch expense) ≤ B , (3)
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where the entropic risk measure ρ is a well-known convex risk measure. Furthermore, this risk-averse

constraint is known to reduce to the risk-neutral one when α → 0 and for a batch of M opportunities,

the constraint takes the form:

E

[
uα

(
1

M

M∑
i=1

Wis(b(Xi),Wi)

)]
≥ uα(B). (4)

One can simplify this constraint based on the fact that the winning price Wi and features Xi are

i.i.d. variables, and that W is normally distributed given X. We refer the reader to Appendix A.2 for

detailed proof of the following lemma.

Theorem 2. Constraint (4) is equivalent to E[h(b(X), X)] ≥ −1, where

h(b,X) :=− eγ1(X)Φ

(
b− ŵ(X)− α′σ(X)2

σ(X)

)
− eγ2 + eγ2Φ

(
b− ŵ(X)

σ(X)

)
(5)

with α′ := α/M , γ1(X) := (1/2)(α′)2σ(X)2 + α′ŵ(X)− α′B, and γ2 := −α′B.

Remark 3. While the RMP approach Haifeng et al. (2017) controls the risk of low profit by trading off

between the mean and standard deviation of profit, which randomness is caused by CTR uncertainty,

our method controls the risk of going over budget by measuring the expected utility of expenses, which

randomness is caused by both the uncertainty of winning price distribution and the probability of

winning the auction.

5.2 Optimal solution for RAP model

Following the reductions presented in Sections 5.1, we can reduce the problem to the following risk-

averse expected instantaneous profit maximization problem:

brap(·) := argmax
b:X→ℜ+

E[V Cs(b(X),W )]− E[Ws(b(X),W )]

subject to E[h(b(X), X)] ≥ −1. (6)

In an attempt to solve this problem, one can again introduce the Lagrangian coefficient λ ≥ 0 to

obtain a relaxation of this risk-averse profit maximizing problem:

b̃
rap
λ (·) := argmax

b:X→ℜ+

E[V Cs(b(X),W )]− E[Ws(b(X),W )]

− λ(−1− E[h(b(X), X)])

= argmax
b:X→ℜ+

E[Gλ(b(X), X)],

where

Gλ(b,X) := V̂ (X)θ(X)Φ

(
b− ŵ(X)

σ(X)

)
− g(b,X) + λ(1− h(b,X)), (7)

following our definitions of g(b,X) and h(b,X) in (2) and (5) respectively.

The optimal bid price brap can be approximated using b̃
rap
λ∗ with λ∗ as the smallest value of λ ≥ 0

such that E[h(b̃rapλ∗ (X), X)] ≥ −1, where λ∗ can again be found using the bisection method.

We next provide a closed-form solution for b̃
rap
λ in the form of Lemma 3 (see complete proof in

Appendix A.3).

Theorem 3. For any λ ≥ 0, a maximizer of the Lagrangian relaxation takes the form:

∀X ∈ X , b̃
rap
λ (X) :=

arg max
b∈

{
0, −W(λα′e(V̂ (X)θ(X)+λeγ2−B)α′

)

α′ +V̂ (X)θ(X)+λeγ2 , ∞
}Gλ(b,X),

where W is the Lambert W-function Corless et al. (1996), i.e. the inverse of f(x) := xex.
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We note that given its analytical form, Lemma 3 explicitly characterizes the influence of the cus-

tomer value, budget, estimated CTR, and risk aversion level on the bid price, thus making the pre-

scribed bid price highly interpretable.

6 Experimental set-up

To test the effectiveness of our bidding policies, we design our experiments using the real-life iPinyou

dataset.4 This dataset includes logs of ad biddings, impressions, clicks, and final conversions, while

data are collected from different industries. Researchers in Zhang et al. (2015) have analyzed the

distributions of data from different industries in this dataset and observed high variations between

industries compared to within the same industry. Since the bidding models that we designed are based

on the assumptions that each opportunity is i.i.d., we focus on one industry data: the Chinese vertical

e-commerce industry collected from Advertiser ID 1458.

The estimators θ(X), ŵ(X), σ(X) are trained and Lagrangian parameter λ optimized using the

Training set (3,083,056 observations), while other hyperparameters are tuned using the Validation

set (307,319 observations). The Test set (307,319 observations) is used for out-of-sample (OOS)

performance evaluation. During validation and test, the simulated batches (M = 10, 000 opportunities)

are interrupted whenever the budget is fully utilized to mimic realistic practices. For OOS experiments,

the risk aversion parameter α was fixed to the value that achieved, during validation, the highest Sharpe

ratio of batch profit, i.e.

Sharpe ratio of profit =
E[Batch profit]

σ(Batch profit)

while preserving the “early stop frequency” lower than 5%:

Early stop frequency = P
(
Batch expense

M
≥ B

)
.

Finally, we investigate the role of the budget parameter B on performance by considering B ∈
{B̄, B̄/2, B̄/4, B̄/8, B̄/16, B̄/32, B̄/64} with B̄ as the historical average winning price in the dataset.

This is in line with the ranges investigated in Zhang et al. (2014); Haifeng et al. (2017).

7 Numerical results

In this section, we present our numerical results. We first investigate the effect of the risk aversion

parameter on the capacity of the bidding policy to stay within budget. We then more formally compare

the OOS performance of our proposed models to the model proposed in Haifeng et al. (2017).

7.1 RAP’s control of budget risk

First, we investigated RAP’s ability to control the budget risk in the validation set, through manip-

ulation of the risk aversion parameter α, and compared the performance to RNP. Figure 1 presents

the empirical cumulative distribution functions (CDF) of the batch expense obtained, for the different

problem formulations when B = B̄/2. Compared with the RNP model, the risk-averse approach RAP

demonstrates effective control of budget risk. Indeed, one can remark that all of the RAP models

remain within total budget (black vertical line) for 100% of the runs. This is not the case for RNP,

which exceeds the budget 80% of the time.

4https://contest.ipinyou.com/

https://contest.ipinyou.com/
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Figure 1: Empirical distribution (in validation) of batch expense for RAP, under different risk aversion levels, and RNP
when B=1/2 B̄

When reducing the marginal budget to B = B̄/32, the risk aversion parameter starts playing a

more important role on budget risk. Indeed, Figure 2 presents the empirical early stop frequency as

a function of α, where α needs to be greater than 0.28 for the bidding policy to have the guarantee

to stay within budget. This confirms that RAP successfully handles the budget risk through the

parametrization of α.

Figure 2: Empirical early stop frequency (in validation) under different risk levels for the profit model with B = 1/32B̄

We close this subsection with Table 2, which presents OOS performance metrics, on test data, for

RNP and RAP, with risk aversion level selected based on validation data using Sharpe ratio and early

stop frequency, under different levels of budget.

Based on this table, we first conclude by looking at the early stop frequency that the RAP controls

better the risk of violating the budget constraint, at all budget levels, compared with the risk-neutral

model. When the budget is relatively large, i.e. B ≥ B̄/8, we also observe that the RAP outperforms

the risk-neutral model RNP in Sharpe ratio of profit. When the budget is relatively small B ≤ B̄/16,

the RNP model generally outperforms the RAP models in terms of Sharpe ratio of profit and average

batch clicks, whereas the RAP model has a better batch impression rate. This is because the bid price
tends to be lower (i.e. more conservative) under the RAP. RAP is, therefore, able to invest in more ads
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Table 2: RAP and RNP performance in test set

Metrics
B̄/2 B̄/4 B̄/8 B̄/16 B̄/32 B̄/64

RAP RNP RAP RNP RAP RNP RAP RNP RAP RNP RAP RNP

Avg. batch clicks 5.600 6.367 5.067 3.300 2.633 1.700 0.967 1.433 0.333 1.267 0.333 1.133
Avg. batch profit 192574 169873 260767 95035 156302 51845 49833 76413 20844 85811 22367 86183
Avg. batch expense 292121 381178 177766 190589 71620 95294 33835 47645 8006 23822 6484 11910
Avg. impression rate 64.5% 69.6% 47.1% 34.8% 28.9% 18.4% 19.4% 11.1% 7.7% 6.9% 6.8% 4.4%
Sharpe ratio of profit 1.083 0.847 1.381 0.595 1.077 0.430 0.497 0.702 0.450 0.802 0.480 0.732
Early stop frequency 0% 100% 13.3% 100% 0% 100% 0% 100% 0% 100% 3.3% 100%

thus getting more impressions. On the other hand, it is less competitive for the costly opportunities

that end up generating more profit.

7.2 Comparison to RMP from Haifeng et al. (2017)

We now compare the performance of RAP and RNP on the test set to the risk-neutral (called RMP-

N) and risk-averse (called RMP-A) bidding policy obtained from the RMP proposed in Haifeng et al.

(2017). To offer a fair comparison, we select hyperparameters in RMP using the same procedure as

for RAP. Table 3 presents the different metrics for the OOS performance of the different approaches

under two different levels of budget (i.e. high and low).

Table 3: Performance comparison between our RAP and RNP, and the RMP-N and RMP-A from Haifeng et al. (2017)

Metrics
B̄/2 B̄/32

RAP RNP RMP-A RMP-N RAP RNP RMP-A RMP-N

Avg. batch clicks 5.600 6.367 3.867 3.700 0.333 1.267 0.433 0.500
Avg. batch profit 192574 169873 144471 142193 20844 85811 30136 19454
Avg. batch expense 292121 381178 190200 178052 8006 23822 7370 23822
Avg. impression rate 64.5% 69.6% 41.5% 38.8% 7.7% 6.9% 5.0% 7.3%
Sharpe ratio of profit 1.083 0.847 0.892 0.922 0.450 0.802 0.487 0.363
Early stop frequency 0 100% 0 0 0 100% 0 100%

Regarding the control of budget risk, we can observe, based on a 0% early stop frequencies, that

both the RAP and RMP-A approaches produce bid policies that control well this risk. This is not

the case for RNP and RMP-N, which are by design risk-neutral. In fact, RMP-N appears to be

slightly over-conservative at higher budget levels with an early stop frequency of 0%. It is confirmed

in Figure 4, which presents the CDFs of batch expense, and where RMP-N’s curve lands a significant

margin away from the budget mark for B = B̄/2.

Next, we observe that RNP always outperforms both RMP-A and RMP-N in terms of average

batch profit. This is especially noticeable at the low budget level where the average batch profit is 2.8

times larger than what is achieved by the best competing approach. Figure 3 presents the CDFs of

batch profit. In the case of the high budget (see Figure 3(a)), the CDFs appear to mostly overlap with

a slight trend to the right for both RNP and RAP, which explains the better average performances.

We note that the RNP also appears to have a heavier left tail, which would indicate that it exposes

the decision maker to a slightly larger risk of a net loss. In contrast, RAP appears protected from

these losses and achieves a larger average batch profit than RNP. We explain the better performance

of RAP over RNP here by the fact that when the budget is large, the optimal risk aversion parameter

can be reduced in favor of improved expected profit. Moreover, it appears that a small level of risk

aversion might actually play the role of making the policies performance more robust out-of-sample,

i.e. reducing generalization error. Note that the observations made about average profit can also be

made about the Sharpe ratio, identifying our RAP as a clear winner for a higher budget and our RNP

as a clear winner for a lower budget.
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(a) B = B̄/2 (b) B = B̄/32

Figure 3: Out-of-sample empirical distribution of batch profit under two different budget levels

(a) B = B̄/2 (b) B = B̄/32

Figure 4: Out-of-sample empirical distribution of batch expense under two different budget levels. Note that curves are
not presented when they overlap with the total budget bar

Finally, in terms of impression rates, we observe that while all methods appear to perform similarly

at the low budget level, both RAP and RNP clearly outperform RMP-A/N models at the higher budget

level. We interpret this as evidence that our approach is more successful at predicting the price at which

an opportunity will be won due to our modeling of the conditional influence of X on the distribution

of W .

8 Conclusion

In this paper, we proposed an approach for optimizing bid policies in a context where one wishes

to control the risk of spending more than a given budget in a certain period of time (captured by

a total number of opportunities M). We proposed both a risk-averse and a risk-neutral problem

that let the decision maker control how much protection is needed against overspending. We further

derived closed-form expressions for the optimal bid policies when using a mixed stochastic model, which

employed the dataset’s empirical distribution for the type of opportunities X and trained CTR and

conditional Gaussian distribution models for the clicks and winning prices respectively. The closed-

form expressions benefit from being interpretable and easy to implement in production. Our two

approaches were then compared to analogous risk-neutral and risk-averse bid policies from the RMP

approach in Haifeng et al. (2017) using the iPinyou dataset. The results provide empirical evidence

that RAP and RNP provide significant improvement in generating high profit while controlling the

risk of going over budget.

In terms of future work, one could consider accounting for risk aversion with respect to profit

generation, i.e. E[u(Batch profit)]. Alternatively, one could investigate how the choice of alternate

convex risk measures, such as conditional value-at-risk, might affect the closed-form solutions and
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performance. Finally, many other aspects of bid optimization could be handled using similar risk

measures: e.g. risk of not reaching a batch revenue, impression rate, or total click target. Finally,

one could explore other types of implementations for our bidding policy. A shrinking horizon scheme

could be used where the bidding policy continuously accounts for the budget that is left to invest in

new ads. Alternatively, a policy optimization approach could be used to optimize the parameters of

our policy in an RL environment.

A Proofs

A.1 Proof of Lemma 1

We start by exploiting the interchangeability property of expected value (see Shapiro (2017)), which

implies that the optimal bid price for the Lagrangian relaxation can be obtained as the price, for each

X, that maximizes the Lagrangian relaxation function Gλ(b,X) with

Gλ(b,X)

:= V̂ θΦ

(
b− ŵ

σ

)
− (λ+ 1)

[
ŵΦ

(
b− ŵ

σ

)
− σϕ

(
b− ŵ

σ

)]
+ λB

= −(ŵ + λŵ − V̂ θ)Φ

(
b− ŵ

σ

)
+ (1 + λ)σϕ

(
b− ŵ

σ

)
+ λB ,

where we dropped the relation to X for simplicity of presentation.

Since Gλ(b,X) is twice differentiable with respect to b, the maximizer for b is either 0,∞ or at a

value where the derivative is 0. For the latter case, we get that:

dGλ(b,X)

db
= 0 ⇔

ŵ + λŵ − vθ

σ
ϕ

(
b− ŵ

σ

)
+ (1 + λ)

b− ŵ

σ
ϕ

(
b− ŵ

σ

)
= 0 .

Hence, we can conclude that the value of b where Gλ(b,X) has a derivative of zero is

b = V̂ (X)θ(X)/(λ+ 1).

A.2 Proof of Lemma 2

We can simplify constraint (4) based on the fact that the winning price Wi and features Xi are i.i.d.

variables:

E

[
uα

(
1

M

M∑
i=1

Wis(b(Xi),Wi)

)]
= −E

[
eα(

1
M

∑
Wis(b(Xi),Wi))

]
= −E

[
M∏
i=1

e(α/M)Wis(b(Xi),Wi)

]
= −

M∏
i=1

E
[
e(α/M)Wis(b(Xi),Wi)

]
= −E

[
eα/MWs(b(X),W )

]M
= E

[
uα/M (Ws(b(X),W )

]M
,

where the second equality is derived based on the independence assumption and the common distri-

bution.

It means that constraint (4) can be rewritten as:

E[uα′(Ws(b(X),W ))] ≥ uα′(B), (8)

where α′ := α
M .
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We further simplify the constraint to obtain a closed-form representation. In doing so, we start by

dividing both side of constraint (8) by −uα′(B) > 0 in order to normalize this constraint. Note that

B ≥ 0 implies that −uα′(B) > 0. This leads us to

−E[uα′(Ws(b(X),W ))/uα′(B)] ≥ −1.

We then exploit the Gaussian nature of W when X is known to obtain the following reduction:

− E[uα′(Ws(b(X),W ))/uα′(B)|X]

= −e−α′B

(∫
w≤b(X)

exp(α′w)fW |X(w)dw

+

∫
w>b(X)

exp(α′ · 0)fW |X(w)dw

)

= −e−α′B

(∫
w≤b

1

σ
√
2π

exp

(
− (w − ŵ)2

2σ2
+ α′w

)
dw + 1− Φ

(
b− ŵ

σ

))
= −e−α′B

(∫
w≤b

1

σ
√
2π

exp

(
− (w − (ŵ + α′σ2))2

2σ2

+
(α′)2σ2

2
+ α′ŵ

)
dw + 1− Φ

(
b− ŵ

σ

))
= −eγ1

∫
w≤b

1

σ
√
2π

exp

(
− (w − ŵ − α′σ2)2

2σ2

)
dw − eγ2 + eγ2Φ

(
b− ŵ

σ

)
= −eγ1(X)Φ

(
b(X)− ŵ(X)− α′σ(X)2

σ(X)

)
− eγ2 + eγ2Φ

(
b(X)− ŵ(X)

σ(X)

)
where we temporarily drop the relation to X for simplicity. This completes our proof.

A.3 Proof of Lemma 3

Similar to the risk-neutral models, we also exploit the interchangeability property of expected value,

which implies that the optimal bid price for the Lagrangian relaxation can be obtained as the price,

for each X, that maximizes the Lagrangian relaxation function Gλ(b,X):

Gλ(b,X) := (V̂ θ + λeγ2)Φ

(
b− ŵ

σ

)
− λeγ1Φ

(
b− ŵ − α′σ2

σ

)
+ (1− eγ2)λ−

[
ŵΦ

(
b− ŵ

σ

)
− σϕ

(
b− ŵ

σ

)]
= c1Φ

(
b− ŵ

σ

)
− c2Φ

(
b− c3
σ

)
+ (1− eγ2)λ+ σϕ

(
b− ŵ

σ

)
,

where we again drop the dependence on X for convenience and where we use c1, c2, and c3 to refer to

c1(X) := V̂ (X)θ(X) + λeγ2 − ŵ(X), c2(X) := λeγ1(X), and c3(X) := ŵ(X) + α′σ(X)2.

Since Gλ(b,X) is differentiable with respect to b, the maximizer for b is either 0,∞ or at a value

where the derivative is 0. For the latter case, we get that:

dGλ(b,X)

db
= 0

⇔ −c1
σ
ϕ

(
b− ŵ

σ

)
+

c2
σ
ϕ

(
b− c3
σ

)
+

b− ŵ

σ
ϕ

(
b− ŵ

σ

)
= 0

⇔ (c1 − b+ ŵ)ϕ

(
b− ŵ

σ

)
= c2ϕ

(
b− c3
σ

)
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⇔ ln

(
(V̂ θ + λeγ2 − b)ϕ

(
b− ŵ

σ

))
= ln

(
c2ϕ

(
b− c3
σ

))
⇔ ln

(
V̂ θ + λeγ2 − b√

2π

)
− (b− ŵ)2

2σ2
= ln

(
c2√
2π

)
− (b− c3)

2

2σ2

⇔ 2σ2 ln(V̂ θ + λeγ2 − b)− (b− ŵ)2 =

2σ2(ln(λ) + γ1)− c23 + 2bc3 − b2

⇔ 2σ2 ln(V̂ θ + λeγ2 − b)− (b− ŵ)2 =

2σ2[ln(λ) + γ1]− (ŵ + α′σ2)2 + 2b(ŵ + α′σ)− b2

⇔ 2 ln(V̂ θ + λeγ2 − b) = 2(ln(λ) + 0.5(α′)2σ2 + α′ŵ − α′B)

− (α′)2σ2 − 2wα′ + 2bα′

⇔ ln

(
V̂ θ + λeγ2 − b

λ

)
= α′(b−B)

⇔ ln

(
V̂ θ + λeγ2 − b

λ

)
= (V̂ θ + λeγ2 −B)α′ − (V̂ θ + λeγ2 − b)α′

⇔ V̂ θ + λeγ2 − b

λ
e(V̂ θ+λeγ2−b)α′

= e(V̂ θ+λeγ2−B)α′

⇔ (V̂ θ + λeγ2 − b)e(V̂ θ+λeγ2−b)α′
= λe(V̂ θ+λeγ2−B)α′

⇔ (V̂ θ + λeγ2 − b)α′e(V̂ θ+λeγ2−b)α′
= λα′e(V̂ θ+λeγ2−B)α′

⇔ (V̂ θ + λeγ2 − b)α′ = W
(
λα′e(V̂ θ+λeγ2−B)α′

)
⇔ b = −

W
(
λα′e(V̂ θ+λeγ2−B)α′

)
α′ + V̂ θ + λeγ2 ,

where the W(·) is the Lambert-W function. This completes our proof.
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