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Abstract : Crew pairing problems (CPP) are regularly solved by airlines to produce crew schedules.
The goal of CPPs is to find a set of pairings (sequence of flights and rests forming one or more work-
days) that cover all flights in a given period at a minimum cost. The CPP is a NP-hard combinatorial
problem that is usually solved approximately using a branch-and-price heuristic. A common branch-
ing heuristics selects the closest-to-one pairing variable and fixes it without backtracking, which allows
finding good solutions quickly. By contrast, variable selection strategies based on strong branching
typically produce better solutions but are computationally prohibitive. This paper explores the pos-
sibility of learning efficient branching strategies for diving heuristics from strong branching decisions.
To help the learning process, we propose a new normalisation of the branching scores which is able to
better distinguish the good and bad branching candidates. Our results demonstrate that our learnt
strategies make better branching decisions than the greedy strategy while executing in approximately
the same computational time.

Keywords : Crew pairing problem, heuristics, machine learning, branching strategy
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1 Introduction

Airline crew scheduling is an inherently difficult large-scale combinatorial optimization problem. Air-

lines have to plan ahead for the next month which flights their crew employees have to take, taking into

account geographical and temporal constraints, as well as administrative constraints and crew prefer-

ences. Thus, the Crew Scheduling Problem (CSP) consists of finding a crew schedule that ensures all

flights of a given period (typically a week or a month (Kasirzadeh et al., 2017)) are assigned to one

pilot and copilot. Crew expenses are the second highest fees of an airline company, after fuel (Deveci

and Çetin Demirel, 2018), and therefore, any small improvement can lead to significant savings.

The CSP is typically divided into two sub-problems: the Crew Pairing Problem (CPP) and the

Crew Assignment Problem (CAP). A CPP solution consists of a set of anonymous pairings that cover

all flights over a time period at minimal cost. A pairing is a feasible sequence of flights separated by

connections, deadheads and rest periods. For a pairing to be feasible, it needs to start and finish at the

same crew base, meet the temporal and spatial constraints of the flights, and comply with collective

agreements and airline regulations. Given a set of pairings, the CAP assigns them to all crew members,

thus yielding a valid crew schedule. The objective of the CAP is to maximize crew satisfaction while

respecting some additional constraints (e.g. a specific language must be spoken by at least one crew

on some flight (Quesnel et al., 2020)).

In this work, we focus our attention to the solution of the monthly CPP, which can be formulated

as a set-partitioning problem. Typical instances of the CPP contain up to tens of thousands of flights.

Due to the size of the problem, the CPP is often solved in the literature by means of a Branch-

and-Price (B&P) algorithm (Kasirzadeh et al., 2017; Quesnel et al., 2020). B&P is a variant of the

Branch-and-Bound algorithm where linear relaxations are solved using column generation. For the

CPP, pairing candidates are generated by solving resource-constrained shortest-path sub-problems.

Because monthly CPP instances are too large to be optimally solved, solvers such as the state-

of-the-art GENCOL (Desrosiers, 2010) use a diving heuristic to find a near-optimal integer solution

(Lavoie et al., 1988; Deveci and Çetin Demirel, 2018). Such heuristic relies on a good variable selection

strategy to fix pairings. One of those strategies is based on the variables fractional values (Sadykov

et al., 2019; Quesnel et al., 2017), and quickly reaches a relatively good solution. By contrast, the

strong branching strategy yields better final solutions(Sadykov et al., 2019), but is too computationally

expensive to be used in practice.

Recently, Machine Learning (ML) has been more intensively used in the combinatorial optimiza-
tion domain. ML exploits statistical redundancies of a family of problems to leverage good solution

strategies to those problems. Using ML, we can consider producing a new branching strategy that

might improve state-of-the-art combinatorial optimization solvers. Specifically, one common method

is to use imitation learning to approximate a computationally expensive oracle by a simpler model

(Alvarez et al., 2017; Gasse et al., 2019). The goal in this paper is to apply these ideas to our specific

setting of diving B&P heuristics for CPPs. We do so by proposing a new variable selection strategy for

a diving heuristic that relies on a ML model to select which pairing to fix at each node of the B&P

tree. The ML model is trained offline in an imitation learning framework, using historical decisions

from a strong branching diving heuristic as training data. Our contributions are:

• We demonstrate that imitation learning can be used to devise new data-driven diving B&P

heuristics. To the best of our knowledge, this is the first time this is done in the literature.

• Our method relies on a new score normalization scheme that better distinguishes between good

and bad branching candidates. We show that our ML-based variable selection strategy benefits

from this new normalization.

• The diving branching heuristics based on those strategies produces better solutions than the

traditional fractional branching algorithm, in a similar amount of time.



Les Cahiers du GERAD G–2022–31 2

The rest of the paper is organized as follows. Section 2 presents a literature review of the CPP and

of ML-based branching methods. Section 3 explains our methodology, Section 4 shows our results, and

finally in Section 5, concluding remarks are given.

2 Literature review

2.1 Crew pairing problem

The CPP is typically formulated as a set-partitioning problem. Let F be the set of flights to be

covered and Ω the set of all possibles pairings. The cost of a pairing p is given by cp and afp is a

binary coefficient that is equal to 1 if the pairing p ∈ Ω contains flight f , and 0 otherwise Finally, let

χp be a variable equal to 1 if pairing p is selected, and 0 otherwise.

Thus, the CPP can be expressed as (1):

min
∑
p∈Ω

cpχp (1a)

s.t.
∑
p∈Ω

afpχp = 1,∀f ∈ F (1b)

χp ∈ {0, 1},∀p ∈ Ω (1c)

For medium and large instances, Ω cannot be enumerated because it contains billions of pairings.

Therefore, the CPP is commonly solved using a (B&P) algorithm (Desaulniers et al., 2020) : lin-

ear relaxations of the CPP are solved using column generation (Barnhart et al., 1998; Lavoie et al.,

1988; Klabjan et al., 2001). Column generation works by iteratively solving a restricted master prob-

lem (RMP) and one or several subproblems. The RMP solves the linear relaxation of (1), restricted

to only some pairings of Ω. The goal of the subproblems is to find new negative-reduced-cost pair-

ings to add to the RMP. The algorithm stops when no reduced cost candidates can be generated, at

which point the current RMP solution is optimal. A branch-and-bound algorithm is applied to reach

integrality. The column generation algorithm is used to solve the linear relaxation at each node.

In practice, exploring the whole branch-and-bound tree would be too computationally expensive,

so a branching heuristic is used to quickly produce a good (but not necessarily optimal) solution

(Kasirzadeh et al., 2017). In particular, diving branching heuristics explore the branching tree in a

depth-first fashion and stop when an integer solution is reached, without performing backtracking.

A common type of branching decision for the CPP is column fixing, in which one or several pairing

variables have their values fixed to one. There exist several variable selection strategies. The fractional

branching heuristic (Sadykov et al., 2019; Quesnel et al., 2017) selects the variables with the highest

fractional values. This heuristic is fast and yields good solutions in practice. To accelerate the diving

process, it is possible to fix several candidates simultaneously as long as there are no conflicts between

the pairings (no flight being covered more than once). This degrades the final solution but it is a

powerful way of improving the computational time over the cost of the solution (Gamache et al., 1999)

The strong branching heuristic employs another variable selection strategy which yields better final

solutions than fractional branching (Sadykov et al., 2019), but is too computationally expensive to be

used in practice. It evaluates several candidate variables for branching, and then solves one relaxed

version of the underlying CPP problem for each candidate by fixing their associated values to one.

The child node yielding the lowest-cost fractional solution is then selected, and the others discarded.

An illustration of the described variable selection strategies is shown in Figure 1. In the figure, the

strong branching strategy chooses the candidate 3 because it has the lowest relaxed solution value s3

among the three candidate nodes, whereas the fractional branching strategy would have selected the

candidate 1 because of its maximum fractional value χ1 among the candidate variables.
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Figure 1: Example of branching selection for three candidate nodes

Although fractional branching can be combined with other variable selection strategies (Gamache

et al., 1999; Quesnel et al., 2017), it remains the main branching strategy used to solve the CPP.

Other variable selection strategies exist, such as reliability branching and pseudocost branching

(Achterberg et al., 2005), but they are not appropriate for a diving B&P heuristic where each variable

is branched only once. A comparison between multiple diving branching strategies within B&P can

be found in Sadykov et al. (2019).

We note that fixing a candidate to 0 is a decision of very low impact. Furthermore, such a decision is

equivalent to forbidding a pairing, which is hard to do in column generation (although not impossible,

see Villeneuve and Desaulniers (2005)). Therefore, we cannot use the product rule of Achterberg

(2009) as it requires branching on both fixed candidate values, i.e., 0 and 1, to produce a score. Still,

other types of branching rules can be found in the literature, such as inter-task fixing (Anbil et al.,

1998; Desaulniers et al., 1997; Kasirzadeh et al., 2017), which forces or forbid two flights to appear

consecutively in a pairing.

Recent developments include the work of Quesnel et al. (2017) where the authors proposed a

retrospective branching, a branching heuristic which unfixes bad pairings during diving. Some works

have been focused on the use of specific properties to the airline crew scheduling problem to improve

the solver (Saddoune et al., 2013; Quesnel et al., 2020).

Other works looked into applying machine learning to accelerate column-generation-based solvers

for crew scheduling problems. Yaakoubi et al. (2020) and Yaakoubi et al. (2021) use machine learning

to produce initial solutions and modify clusters of the CPP for the column-generation based solver.

Morabit et al. (2021) use a Graph Neural Network to select which pairings to keep during the column

generation in order to reduce the time spent when reoptimizing the restricted master problem. In

the same line of work, Quesnel et al. (2022) predict which pairings are useful by filtering the pairings

during the column generation of a crew assignment problem. As far as we know, directly applying

imitation learning to construct a new branching heuristic has never been done for the CPP.

2.2 Learning to branch

Alvarez et al. (2017) were the first to try imitating a branching heuristic. They learnt to approximate

strong branching with Extremely Random Trees on the standard benchmark MIPLIB (Achterberg
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et al., 2006). Khalil et al. (2016) modeled the task as a ranking problem, where the relative score of

each candidate is not important. Their approach is also original as the model is instance-specific, i.e.,

it is learnt while solving the given problem. Gasse et al. (2019) modeled MIPs using a bipartite graph

and used a Graph Neural Network to learn from strong branching decisions. This way of encoding

MIPs reduced the number of hand-crafted features by means of a raw representation of the MIP. Nair

et al. (2021) used this GNN idea to push it further and to learn heuristics for diving and branching.

Since in practice, MIP solvers are not embedded in computers having GPUs for huge neural networks

inference, Gupta et al. (2020) designed a cheaper framework that leverages the GNNs expressiveness

while keeping it competitive when running inside a CPU-based solver. One recent innovation is the

use of a parameterized search by Zarpellon et al. (2021) which combines two models. The first, called

NoTree, is used to predict the value of a candidate based on its features. A second model, denoted

TreeGate, is then used to encode the “tree state”, thus adapting the inference of the first model.

The second model allows better generalization over different sets of problems. Gupta et al. (2022)

showed that it is often the case that when a candidate has been ranked number 2 by the strong

branching heuristic, this candidate is the next best candidate for the next branching decision. The

authors regularized their models by hardcoding this fact into their loss function, which resulted in

faster solving times.

Other methods than imitation learning have been studied as well. Liu et al. (2022) used machine

learning to tune the neighbourhood size of the local branching heuristic. They showed that the neigh-

bourhood optimal size has to be adapted dynamically for each MIP and for each iteration of the

search. Balcan et al. (2018) have learnt an adaptive weighting of different heuristics to combine them

dynamically. They also provide a theoretical study of the learning to branch task. In this line of work,

Chmiela et al. (2021) learn a scheduling of different well-known heuristics in order to rapidly find good

feasible solutions.

Combining or improving known heuristics is a robust way of improving upon each heuristic sep-

arately but it does not allow for discovering new decision rules. Etheve et al. (2020) are the first to

try to approach the learning to branch problem with reinforcement learning. This approach is attrac-

tive because it does not require any oracle (expert solver) and can potentially find new and better

heuristics. Recently, Scavuzzo et al. (2022) built upon the work of Etheve et al. (2020) to improve

the reinforcement learning framework by introducing Tree MDPs that accelerate the convergence and

improve the branching decision quality of the model. Nevertheless, training such heuristics needs tons

of data, which is hardly practicable for large-scale problems. A survey about learning to branch can

be found in Lodi and Zarpellon (2017). Finally, other works about the use of machine learning for

combinatorial optimization problems can be found in the survey of Bengio et al. (2021).

3 Methodology

This section presents the methodology used in our experiments. We first present the variable selection

strategies used within diving B&P heuristics for CPPs. We then present our general methodology.

Finally, we explain how the dataset is collected, what normalization we use, the different models

trained and how our training and evaluation pipeline is conducted.

3.1 Variable selection strategies

As explained in Section 2.1, CPPs are typically solved via B&P (Lavoie et al., 1988; Barnhart et al.,

1998). In this paper, we will compare our ML-based variable selection strategies with those used within

the fractional and strong heuristics. The implemented fractional branching variant selects the single

candidate χp having the highest (closest-to-one) fractional value and fixes it to 1. No computations are

needed for this strategy as the fractional values are already computed from the parent node relaxation.
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Our implementation of the strong branching variable selection strategy looks one step ahead by

fixing and solving each candidate one by one, and then selects the candidate having the lowest relaxed

optimal solution. Since we are interested in a feasible solution with the lowest possible cost, strong

branching selects the candidate that increases the inferior bound the least. To reduce CPU times, it is

common to evaluate a small subset of candidates. In our case, we only evaluate the top-5 candidates

according to their fractional value. The drawback of strong branching is its computational overhead,

though it is able to yield the best solutions.

3.2 Experimental framework

The goal of this paper is to imitate strong branching decisions with a faster approximation using the

imitation learning framework (Alvarez et al., 2017). This new learned variable selection strategy is

expected to produce better solutions than fractional branching while having the same computational

complexity.

The framework is very similar to that of Alvarez et al. (2017). We use imitation learning to produce

new strategies based on an oracle obtained from strong branching decisions. To develop our heuristic,

we proceed as follows:

1. (Dataset generation) To collect data, we solve several CPP instances using the strong branching

diving heuristic. At each strong branching evaluation step and for each candidate χi (among the

top-5, according to their fractional value), we collect a set of features Mi and its strong branching

score si. The dataset also contains the parent of each candidate so that sibling nodes can be

grouped together and have their branching scores normalized together (see Section 3.2.3).

2. (Model training) A model is learned to predict a normalized version of the collected strong

branching scores si based on the features Mi.

3. (Heuristic evaluation) During testing (evaluation), the trained model is used within the solver

as a variable selection strategy. The resulting data-driven diving heuristic is therefore similar to

fractional branching, except that the fixed variable is determined by the trained model rather

than the fractional value of the variables.

An illustration of our methodological pipeline is shown in Figure 2.

3.2.1 Dataset collection

We used seven benchmark instances of the CPP literature from Kasirzadeh et al. (2017). A summary

of the instances is shown in Table 1. They consist of monthly CPPs, and can be divided into two groups

according to their size: instances 1, 2 and 3 are considered small-scale, while the remaining ones 4,

5, 6 and 7 are considered large-scale. They are solved using the diving strong branching heuristic, so

that a set of features is collected for each branching candidate.

Table 1: The seven instances from Kasirzadeh et al. (2017) used to train and test our variable selection strategies

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6 Instance 7

Flights 1013 1500 1854 5613 5743 5886 7765
Airports 26 35 41 49 34 52 54

The features Mi used in our experiments are listed in Table 2. We followed the work of Alvarez

et al. (2017) by having three types of features:

• Static problem features (nb pairing tasks, nb cols in mp).

• Dynamic problem features (frac val, var cost, frac conflicting cols, min cost conflicting cols,

dual cost).

• Dynamic optimization features (frac pairing tasks fixed, depth).
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Figure 2: Our methodology pipeline

Nonetheless, some of our features are specific to CPPs (frac pairing tasks fixed, nb pairing tasks). To

limit the number of candidates, only the top-5 most promising candidates are retained according to

their fractional value (i.e., the 5 candidates having the highest fractional χp value).

Table 2: Our collected features

Name Description

frac val χp Fractional value of the candidate in the relaxed parent solution.
var cost cp Cost of the candidate in the objective function.
frac conflicting cols Fraction of conflicting columns with this candidate.
min cost conflicting cols Minimum cost in the objective function of the candidate’s conflicting columns.
dual cost (min, avg, max) Minimum, average and maximum dual cost of the candidate among the partitioning

constraints.
frac pairing tasks fixed Fraction of pairing tasks fixed.
nb pairing tasks Number of pairing tasks.
nb cols in mp Number of columns in the master program.
depth Depth of the candidate in the B&P tree.

3.2.2 Models, training and evaluation

Three ML models are used in our study.1 The first one is a linear model which is simple enough so

that it should not present generalization issues. The second one is a multi-layer perceptron (MLP)

with 3 hidden layers and 150 neurons in each hidden layer. These two models take into account only

the features of a candidate to predict its score. Finally, we train a third model which is a very small

transformer encoder (Vaswani et al., 2017). It has 1 layer with an embedding size of 5, a feedforward

hidden size of 10 and one attention head. We keep this transformer small in order to avoid overfitting.

That model is able to consider all the candidates’ features together to predict the score of a branching

candidate.

1The code used to train these models can be found at https://github.com/Futurne/l2b_cpp.

https://github.com/Futurne/l2b_cpp
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A leave-one-out testing was used to assess the trained models, i.e., to test a model on one instance,

we trained the model on all other instances. After the exclusion of the test instance, the remaining

dataset is randomly split into training (80%) and validation (20%) data subsets to perform model

selection. The trained model is then tested on the excluded instance within the solver.

We note that the goal of this paper is not to produce the best possible model for solving CPPs,

but rather to investigate the possibility of learning a variable selection strategy for a diving branching

heuristic by means of imitation learning. Therefore, a standard hyperparameter configuration was

used without any particular fine-tuning: the training was performed for 100 epochs, using the ADAM

optimizer (Kingma and Ba, 2014) with a learning rate of 10−3 and the cross-entropy loss. We compute

the validation loss on the validation dataset at each epoch. We kept as the final trained model the one

having the lowest validation loss among the 100 epochs.

3.2.3 Normalizations of the strong branching scores

The score si of each candidate is the solution value of its relaxation once its corresponding fractional

value has been fixed to 1. In order to train our models, we need to normalize this score so that

the resulting normalized scores are comparable with each other. In doing so, we ensure that each

normalized score falls within a fixed range of values, otherwise the range of si is affected by the

underlying instance’s size. Thus, we want the normalization to produce a meaningful ranking between

the children nodes.

Recall that the model will be used to select among several candidates, the one that yields the lowest

score si. However, we often observe that several candidates yield very similar scores. Thus, the ranking

should be soft so that the normalized score reflects how good the node is with respect to its siblings.

In other words, our model should not overly penalize branching decisions that are good but not best.

Therefore, we need a normalization that keeps equivalent candidates together while distinguishing the

bad from the good candidates. Indeed, evaluating the quality of such normalization is challenging.

Our procedure starts by separating all candidates χi according to their parent node, and builds a

vector s with their associated scores si. The model task consists in predicting the normalized rank

of every child candidate, so that a decision can be taken regarding branching on the best predicted

candidate. The normalized rank of a candidate is expressed as a probability score p(χi |Mi) such that

the normalized ranks of all children of a parent node sum up to 1.

We test two normalization functions to transform the branching scores. The first one is the tempered
softmax from Nair et al. (2021):

p(χi |Mi) =
exp(−si/t)∑

k∈K exp(−sk/t)
, (2)

where t is a positive constant temperature hyperparameter that needs to be set, otherwise the softmax

saturates to 1 for the best candidate and to 0 for the others; K is the set of all children of the same

parent node (χi being one of these children).

The expression (2) is the standard norm for such a machine learning task (Guo et al., 2020).

The temperature t needs to be very well calibrated so that good candidates are grouped together.

However, this normalization tends to bring good and bad candidates too close to one another, making

it difficult for the ML predictor to provide a stable classification. In addition, this temperature is

highly dependent on the instance at hand, making it difficult, if not impossible, to define a parameter

value for each instance in advance.

To circumvent the above limitation, we propose an alternate norm (3) to better distinguish good

and bad candidates.

yi = log si (3a)
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vi =
yi − ȳ
σy

(3b)

p(χi |Mi) =
exp(−vi)∑

k∈K exp(−vk)
(3c)

where ȳ is the mean value and σy is the standard deviation of the vector y.

The intuition behind this norm is to use the logarithm in (3a) to be less sensitive to the scale of

the scores, and to use a Gaussian normalization in (3c) before applying the softmax, to obtain a more

discriminating difference between good and bad candidates. Both of those objectives are learnt with a

negative cross-entropy loss (Nair et al., 2021; Guo et al., 2020). The idea of the two norms is that they

are soft objectives for the classifier, meaning that the model is not penalized too much if it predicts a

good candidate even if it is not the best among all. Note that, in contrast to the tempered softmax

norm in (2), the proposed norm in (3) does not require any hyperparameter.

Figure 3: A comparison between the classical tempered softmax (2) (left) and our norm (3) (right)

Figure 3 shows a comparison between the distributions of the two normalizations. The tempered

softmax distribution is centered around the mean value which is 0.2 since we always have 5 candidates.

But it needs a well calibrated temperature to make sure that good and bad candidates are well

separated. Our norm produces a more discriminating rank without being too aggressive. An average

candidate will have a lower probability with our norm than with a well calibrated tempered softmax

norm. This leads to a flatter distribution in the histogram as shown in Figure 3 where candidates are

spread across the probability distribution. When there are 5 average candidates, they are centered

around 0.2. When there is one candidate that is clearly better than the others its probability score is

pushed around 0.6 to 0.8, and the four remaining bad candidates then have their probabilities around 0

to 0.1.

4 Computational results

To assess the performance of the proposed methodological pipeline, each model (linear, MLP, trans-

former encoder) is trained to imitate the strong branching scores, using either the tempered softmax (2)

or the proposed norm (3) as the normalization function. For each model, we define a variable selection

strategy that selects the candidate having the best predicted rank, according to the model. Those vari-

able selection strategies are compared based on the quality of the proposed solutions and the execution

time compared to those obtained using the strong branching heuristic.

The selection strategy based on the linear model is a direct improvement over the greedy strategy

used by fractional branching, as the linear model has access to the fractional value of each candidate

along with other features. The simplicity of this model prevents it from overfitting. In contrast, the
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transformer is more expressive than the linear model, and if the model generalizes well, the corre-

sponding variable selection strategy is expected to make better decisions. Finally, since the inference

of a model is way quicker than optimizing the relaxed version of each candidate, we expect the overall

runtime of the machine-learning-based diving heuristics to be on the same order of magnitude as the

fractional branching heuristic, and significantly faster than the strong branching one.

All B&P heuristics were implemented inside a state-of-the-art CPP solver based on the GENCOL

optimization software (Desrosiers, 2010). All our experiments were performed on computers equipped

with Intel Xeon E3-1226 v3 3.30GHz CPUs. Because of the inherent randomness of the solver, each

diving heuristic was evaluated over five distinct runs. Consequently, the following tables present

average values computed from these executions.

Table 3 shows the relative solution values of all diving heuristics compared with respect to strong

branching (lower is better). Every solution is obtained by using a specific variable selection strategy h

within the diving B&P heuristic. We compare the solution value Sh obtained with a strategy h to the

solution value SSB obtained with the strong branching heuristic. This is computed as a ratio between

the two, i.e., Sh−SSB

SSB
. We show in Table 3 the percentage of this score.

Table 3: Solution values for each instance with respect to the strong branching strategy

Solution w.r.t. SB (%) instance 1 instance 2 instance 3 instance 4 instance 5 instance 6 instance 7 mean

fractional branching 1.869 0.268 1.139 0.051 0.120 0.421 0.054 0.560
linear (our norm) 1.112 0.511 0.723 0.051 0.103 0.240 0.672 0.487
linear (softmax) 0.878 0.058 0.561 0.213 0.166 0.368 -0.043 0.314
MLP (our norm) 1.451 0.495 0.548 -0.418 0.213 0.473 0.146 0.415
MLP (softmax) 0.681 0.420 0.575 0.133 0.133 0.352 0.180 0.353
transformer (our norm) 0.916 0.420 0.345 -0.110 0.066 0.398 -0.056 0.283
transformer (softmax) 1.732 -0.078 0.892 0.565 0.265 0.095 0.121 0.513

mean (our models only) 1.128 0.304 0.607 0.072 0.158 0.321 0.170

The data-driven variable selection strategies are on average better than that used by the fractional

branching heuristic. As expected, a simple model such as the linear model already yields lower-cost

solutions compared with those obtained with fractional branching. The best model is the transformer

trained with the new norm. In fact, the gap between the solution values obtained by the transformer

diving heuristic and the strong branching is on average two times smaller than the gap between the

values obtained by the fractional branching heuristic and the strong branching. We also observe from
the table that the variable selection strategies based on the other machine learning models also perform

relatively well.

Moreover, we observe in Table 3 that the simpler models (linear and MLP) do not benefit from the

new normalization as they did not improve the results compared to their counterparts trained with the

tempered softmax norm. This could be due to the fact that the Gaussian distribution is easier to learn.

Furthermore, these models can only evaluate the candidates separately. In contrast, the transformer

has access to all 5 candidates for prediction, which means that it is able to better discriminate between

good and bad candidates. This could explain why the transformer is able to take advantage of the

more informative rank of the candidates even if the distribution is not Gaussian.

In Figure 4, we report the relative importance of the four most important features for the linear

models trained with the new norm. Understanding which features contribute the most to the outcome

of trained ML predictors can explain their behaviour and how they differ from other strategies. We

measure the importance of each feature by taking the absolute value of its corresponding parameter, and

then computing its relative percentage with respect to all the features. Features having an importance

score smaller than 5% are grouped into the “others” category.

Notice that the frac val value accounts for 47.1% of the prediction value. This explains why the

performance of our heuristics are close to that of fractional branching. It also reveals that the fractional



Les Cahiers du GERAD G–2022–31 10

Figure 4: Feature importance of the linear model trained with our norm

branching strategy is already a good proxy for the strong branching decision, which explains why it

has been successfully used in practice.

Finally, Table 4 shows the runtimes of the different diving heuristics. It also presents the relative

difference with respect to strong branching in parentheses. The relative runtime is computed by

comparing the computational runtime Th of a given diving heuristic h to the runtime TSB obtained

with the strong branching heuristic. This value is computed as Th−TSB

TSB
. The ML-based strategies

are slightly slower than fractional branching. Nonetheless, they are significantly faster than strong

branching. Unless the slight difference in execution time is unacceptable to an airline, the significant

improvement in solution quality makes the proposed framework useful for airlines to reduce the cost

of their CPP solutions.

5 Conclusions

In this work, we explored the use of machine learning for conceiving different data-driven variable

selection strategies to be used within B&P diving heuristics. In particular, our strategies are learnt

using imitation learning based on strong branching. This allows our heuristics to be as efficient as

the fractional branching heuristic while making better branching decisions. Moreover, we also propose

a new normalization for the strong branching scores that better distinguishes the good and the bad

branching candidates. This norm shows better results than the standard normalization when used

with a transformer, a model that is able to compare the branching candidates all together.

Finally, we note that our norm is harder to learn than the standard one because of its non-

Gaussian distribution. A better norm would adapt the temperature hyperparameter of the standard

norm based on the strong branching scores to make sure that good and bad candidates have well

balanced probabilities after the softmax normalization. Besides, our branching decisions are limited

by the candidates we consider at each stage of the tree. Since the trained models can only select one

of the five pre-selected top candidates (according to their fractional values), we strongly prevent them

from branching on bad candidates besides reducing their expressiveness. As future research venues,

one could explore the use of graph neural networks (Gasse et al., 2019) with a raw representation of

the candidates MIP models. Future research will also investigate the distributional shift that may

occur when using such models, which can be sensitive to small feature variations, as well as ways to

overcome that shift, for example by coupling graph neural networks and DAgger (Ross et al., 2011;

Nair et al., 2021).
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