
Les Cahiers du GERAD ISSN: 0711–2440

GPMR: An iterative method for unsymmetric partitioned
linear systems

A. Montoison, D. Orban

G–2021–62

November 2021

La collection Les Cahiers du GERAD est constituée des travaux
de recherche menés par nos membres. La plupart de ces doc-
uments de travail a été soumis à des revues avec comité de
révision. Lorsqu’un document est accepté et publié, le pdf origi-
nal est retiré si c’est nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : A. Montoison, D. Orban (Novembre 2021).
GPMR: An iterative method for unsymmetric partitioned linear
systems, Rapport technique, Les Cahiers du GERAD G– 2021–62,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2021-62) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue scien-
tifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary,
the original pdf is removed and a link to the published article is added.

Suggested citation: A. Montoison, D. Orban (November 2021).
GPMR: An iterative method for unsymmetric partitioned linear
systems, Technical report, Les Cahiers du GERAD G–2021–62,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2021-62) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2021
– Bibliothèque et Archives Canada, 2021

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche
du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2021
– Library and Archives Canada, 2021

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2021-62
https://www.gerad.ca/en/papers/G-2021-62
https://www.gerad.ca/en/papers/G-2021-62

GPMR: An iterative method for unsymmetric partitioned
linear systems

Alexis Montoison

Dominic Orban

GERAD & Department of Mathematics and Indus-
trial Engineering, Polytechnique Montréal, Montréal
(Qc), Canada, H3C 3A7

alexis.montoison@polymtl.ca

dominique.orban@gerad.ca

November 2021
Les Cahiers du GERAD
G–2021–62
Copyright © 2021 GERAD, Montoison, Orban

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publication
du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and
the users must commit themselves to recognize and abide the legal
requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2021–62 ii

Abstract : We introduce an iterative method named Gpmr for solving 2×2 block unsymmetric linear
systems. Gpmr is based on a new process that reduces simultaneously two rectangular matrices to
upper Hessenberg form and that is closely related to the block-Arnoldi process. Gpmr is tantamount
to Block-Gmres with two right-hand sides in which the two approximate solutions are summed at
each iteration, but requires less storage and work per iteration. We compare the performance of Gpmr
with Gmres and Block-Gmres on linear systems from the SuiteSparse Matrix Collection. In our
experiments, Gpmr terminates significantly earlier than Gmres on a residual-based stopping condition
with an improvement ranging from around 10% up to 50% in terms of number of iterations. We also
illustrate by experiment that Gpmr appears more resilient to loss of orthogonality than Block-Gmres.

Keywords: Sparse linear systems, iterative methods, orthogonal Hessenberg reduction, block-Arnoldi
process, Krylov subspaces, generalized saddle-point systems, unsymmetric partitioned matrices, regu-
larization, preconditioners

Acknowledgements: Research of the first author is supported by a FRQNT grant and an excellence
scholarship of the IVADO institute. Research of the second author is partially supported by an NSERC
Discovery Grant.

Les Cahiers du GERAD G–2021–62 1

1 Introduction

Consider the partitioned linear system [
M A?

B? N

] [
x?
y?

]
=

[
b?
c?

]
, (1)

where M ∈ Rm×m, N ∈ Rn×n, A? ∈ Rm×n and B? ∈ Rn×m. We assume that A? and B? are nonzero,

and that b? ∈ Rm and c? ∈ Rn are both nonzero. System (1) occurs, among others, in the discretization

of systems of partial-differential equations, including the Navier-Stokes equations by way of the finite

elements method [8]. A prime example is domain decomposition with no overlap, also known as iterative

substructuring [6], that consists in splitting a domain into k non-overlapping subregions, and that leads

to structured matrices with arrowhead form [10]. Let I be the set of all indices of the discretization

points that belong to the interior of the subdomains and Γ the set of those corresponding to the

interfaces between the subdomains. Grouping the unknowns corresponding to I by subdomain in uI
and those corresponding to Γ in uΓ, we obtain the arrowhead partitioning of the stiffness system

[
AII AIΓ

AΓI AΓΓ

] [
uI
uΓ

]
=

[
fI
fΓ

]
⇐⇒

A11 A1Γ

. . .
...

Akk AkΓ

AΓ1 . . . AΓk AΓΓ

u1
...
uk
uΓ

 =

f1
...
fk
fΓ

 , (2)

where u = (uI , uΓ) is the vector of nodal displacements and f the vector of nodal forces. For a tour of

applications leading to (1), we refer the reader to [2]. We assume that there exist nonsingular P` and

Pr with inexpensive inverses such that

K := P−1
`

[
M A?

B? N

]
P−1
r =

[
λI A
B µI

]
, λ, µ ∈ R, (3)

so that the equivalent preconditioned system[
λI A
B µI

] [
x
y

]
=

[
b
c

]
,

[
x?
y?

]
= P−1

r

[
x
y

]
,

[
b
c

]
= P−1

`

[
b?
c?

]
(4)

can be solved instead of (1). Note that λ and/or µ may vanish. For example, the ideal preconditioners
of Murphy et al. [19] and Ipsen [14] lead to (3). Although ideal preconditioners are typically impractical

because they require the solution of systems with the Schur complement S = N −B?M
−1A?, viable

preconditioners such that P`Pr = blkdiag(M,N) can be employed when M and N are both nonsingular.

Given an unstructured matrix C, a practical approach to recovering the matrix of (1) is to permute

its rows and columns with orderings determined by graph partitioning tools such as METIS [15]. This

reordering also provides a uniform partitioning to compute a parallel block-Jacobi preconditioner for (3).

When λ 6= 0, (4) can be reduced to the Schur complement system

(µI − λ−1BA)y = c− λ−1Bb, x = λ−1(b−Ay).

Such eliminated system is attractive because of its smaller size, but may have worse conditioning

than (4), e.g., when B = AT , M = MT � 0 and N = NT � 0, though not always, e.g, when (1) is

symmetric and positive definite. In this paper, we focus on applying an iterative method to (4) directly

while exploiting its block structure.

Contributions

Our main contributions are (i) a new orthogonal Hessenberg reduction process, (ii) an iterative method

based on said process named Gpmr (General Partitioned Minimal Residual) specialized for (4), and

(iii) an efficient software implementation to solve (4) in arbitrary floating-point arithmetic on CPU

and GPU.

Les Cahiers du GERAD G–2021–62 2

Related research

Numerous Krylov methods have been developed for solving general unsymmetric linear systems,

including BiLQ [16], Gmres [23], or Qmr [12]. Few are tailored specifically to the block structure

of (1).

Specialized iterative methods have been developed for special cases of (1). Estrin and Greif [9]

developed Spmr; a family of methods for (1) that exploit its block structure when N = 0 and b or c

is zero. Buttari et al. [4] developed Usymlqr, an interlacing of the methods Usymlq and Usymqr

of Saunders et al. [25], applicable when A = BT , M = MT � 0 and N = 0. Greif and Wathen [13]

formulate conditions under which Cg may be used in the case where M � 0 is maximally rank deficient

and N = NT � 0. When N = NT ≺ 0 also holds, Orban and Arioli [20] propose a family of methods

inspired from regularized least norm and least squares that apply after a translation so that either

b or c is zero, and Montoison and Orban [17] develop TriCG and TriMR, two methods related to

Block-Cg and Block-Minres. When A = BT , and M and N are either zero or symmetric definite

matrices, our orthogonal Hessenberg reduction process coincides with that of Saunders et al. [25] and

Gpmr coincides with TriMR in exact arithmetic.

Notation

All vectors are columns vectors. Vectors and matrices are denoted by lowercase Latin and capital Latin

letters, respectively. The only exceptions are 2×2 blocks, which are represented by capital Greek letters,

and the matrices denoted wk below. For a vector v, ‖v‖ denotes the Euclidean norm of v, and for a

matrix M , ‖M‖F denotes the Frobenius norm of M . The shorthand y 7→M\y represents an operator

that returns the solution of Mx = y. ei is the i-th column of an identity matrix of size dictated by the

context. Ik represents the k×k identity operator. We omit the subscript k when it is clear from the

context. We let

K0 :=

[
0 A
B 0

]
, blkdiag(λI, µI) =

[
λI 0
0 µI

]
, d :=

[
b
c

]
, D :=

[
b 0
0 c

]
. (5)

For a matrix C and a vector t, Kk(C, t) is the Krylov subspace Span
{
t, Ct, . . . , Ck−1t

}
. For a matrix T

with as many rows as C has columns, Kk(C, T) is the block-Krylov subspace Span
{
T,CT, . . . , Ck−1T

}
.

We abusively write (b, c) and l = (l1, . . . , ln) to represent the column vectors
[
bT cT

]T
and l =[

l1 · · · ln
]T

, respectively.

2 A Hessenberg reduction process

In this section, we state a new Hessenberg reduction process for general A and B, its relationship with

the block-Arnoldi process, and the modifications necessary for regularization.

Theorem 1. Let A ∈ Rm×n, B ∈ Rn×m, and p := min{m,n}. There exist V ∈ Rm×p and U ∈ Rn×p

with othonormal columns, and upper Hessenberg H ∈ Rp×p and F ∈ Rp×p with nonnegative subdiagonal

coefficients such that

V TAU = H, (6a)

UTBV = F. (6b)

Proof. Choose arbitrary unit u1 ∈ Rn and v1 ∈ Rm. For k = 1, . . . , p− 1, define

βk+1vk+1 = Auk −
∑k

i=1(vTiAuk)vi, (7a)

γk+1uk+1 = Bvk −
∑k

i=1(uTiBvk)ui, (7b)

Les Cahiers du GERAD G–2021–62 3

with positive βk+1 and γk+1 such that vk+1 and uk+1 are unit vectors. In case of breakdown, which

happens if Auk ∈ Span{v1, . . . , vk} or Bvk ∈ Span{u1, . . . , uk}, we choose an arbitrary unit

vk+1 ⊥ Span{v1, . . . , vk} or uk+1 ⊥ Span{u1, . . . , uk} and set βk+1 = 0 or γk+1 = 0, respectively.

We prove by induction that the following statement, denoted P(k), is verified:

vTj vk+1 = 0 and uTjuk+1 = 0 (j = 1, . . . , k). (8)

In view of the above, vTj vk+1 = 0 clearly holds if βk+1 = 0, while uTjuk+1 = 0 holds if γk+1 = 0. Thus

we focus on the case where (7) applies. Because v1 and u1 are unit vectors,

β2v
T
1v2 = vT1Au1 − (vT1Au1)vT1v1 = (1− ‖v1‖2)(vT1Au1) = 0,

γ2u
T
1u2 = uT1Bv1 − (uT1Bv1)uT1u1 = (1− ‖u1‖2)(uT1Bv1) = 0,

so that the base case P(1) holds. Let P(1), . . . ,P(k − 1) hold. For j = 1, . . . , k, (7) implies

βk+1v
T
j vk+1 = vTjAuk −

∑k
i=1(vTiAuk)vTj vi = vTjAuk − (vTjAuk)vTj vj = 0,

γk+1u
T
juk+1 = uTjBvk −

∑k
i=1(uTiBvk)uTjui = uTjBvk − (uTjBvk)uTjuj = 0,

so that P(k) also holds. For j = 1, . . . , k − 1, we have from (7) and P(k) that

vTk+1Auj = vTk+1

(
βj+1vj+1 +

∑j
i=1(vTiAuj)vi

)
= 0,

uTk+1Bvj = uTk+1

(
γj+1uj+1 +

∑j
i=1(uTiBvj)ui

)
= 0,

because k + 1 > j + 1. Thus, V :=
[
v1 . . . vp

]
, U :=

[
u1 . . . up

]
,

H =

vT1Au1 vT1Au2 . . . vT1Aup

β2

. . .
. . .

...
. . .

. . . vTp−1Aup
βp vTpAup

 and F =

uT1Bv1 uT1Bv2 . . . uT1Bvp

γ2

. . .
. . .

...
. . .

. . . uTp−1Bvp
γp uTpBvp

satisfy (6a)–(6b) and have the properties announced.

Algorithm 1 formalizes a Hessenberg reduction process derived from Theorem 1.

Algorithm 1 Orthogonal Hessenberg reduction

Require: A, B, b, c, all nonzero
1: βv1 = b, γu1 = c (β, γ) > 0 so that ‖v1‖ = ‖u1‖ = 1
2: for k = 1, 2, . . . do
3: for i = 1, . . ., k do

4: hi,k = v
T
i Auk

5: fi,k = u
T
iBvk

6: end for
7: hk+1,kvk+1 = Auk −

∑k
i=1 hi,kvi hk+1,k > 0 so that ‖vk+1‖ = 1

8: fk+1,kuk+1 = Bvk −
∑k

i=1 fi,kui fk+1,k > 0 so that ‖uk+1‖ = 1
9: end for

Define Vk :=
[
v1 . . . vk

]
and Uk :=

[
u1 . . . uk

]
. After k iterations of Algorithm 1, the situation

may be summarized as

AUk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk+1,k (9a)

BVk = UkFk + fk+1,kuk+1e
T
k = Uk+1Fk+1,k (9b)

V T
k Vk = UT

k Uk = Ik, (9c)

Les Cahiers du GERAD G–2021–62 4

where

Hk =

h1,1 h1,2 . . . h1,k

h2,1

. . .
. . .

...
. . .

. . . hk−1,k

hk,k−1 hk,k

 , Fk =

f1,1 f1,2 . . . f1,k

f2,1

. . .
. . .

...
. . .

. . . fk−1,k

fk,k−1 fk,k

 ,
and

Hk+1,k =

[
Hk

hk+1,ke
T
k

]
, Fk+1,k =

[
Fk

fk+1,ke
T
k

]
.

If B = AT, Algorithm 1 reduces to the orthogonal tridiagonalization process of Saunders et al. [25], Hk

and Fk are tridiagonal and Hk = FT
k . Algorithm 1 uses the Gram-Schmidt method for computing `2-

orthonormal bases Vk and Uk for simplicity. In a practical implementation, the modified Gram-Schmidt

algorithm would be used instead. While (9a)–(9b) hold to within machine precision despite loss of

orthogonality, (9c) holds only in exact arithmetic. In exact arithmetic, (9) yields

V T
k AUk = Hk and UT

kBVk = Fk,

which imply that the singular values of Hk and Fk are estimates of those of A and B, respectively.

That is in contrast with the process of Arnoldi [1], which can be used to approximate eigenvalues.

2.1 Relation with the block-Arnoldi process

For k ≥ 1,

v2k ∈ Span{b, . . . , (AB)k−1b, Ac, . . . , (AB)k−1Ac}, (10a)

v2k+1 ∈ Span{b, . . . , (AB)kb , Ac, . . . , (AB)k−1Ac}, (10b)

u2k ∈ Span{c, . . . , (BA)k−1c,Bb, . . . , (BA)k−1Bb}, (10c)

u2k+1 ∈ Span{c, . . . , (BA)kc ,Bb, . . . , (BA)k−1Bb}. (10d)

The subspaces generated by Algorithm 1 can be viewed as the union of two block-Krylov subspaces

generated by AB and BA with respective starting blocks
[
b Ac

]
and

[
c Bb

]
. Note the similarity

between (14) and a Krylov process in which basis vectors have been permuted. Let

Pk :=
[
e1 ek+1 · · · ei ek+i · · · ek e2k

]
=
[
E1 · · · Ek

]
, Ek :=

[
ek

ek

]
denote the permutation introduced by Paige [21] that restores the order in which Algorithm 1 generates

basis vectors, i.e.,

Wk :=

[
Vk 0
0 Uk

]
Pk =

[
w1 · · · wk

]
, wk =

[
vk 0
0 uk

]
:=
[
v◦k u◦k

]
, (11)

where we defined v◦k := (vk, 0) and u◦k := (0, uk), and we abusively write
[
w1 · · · wk

]
instead

of
[
v◦1 u

◦
1 · · · v◦k u◦k

]
. The projection of K0 into the block-Krylov subspace Span{w1, . . . , wk} :=

Span{v◦1 , u◦1, . . . , v◦k, u◦k} is also shuffled to block-Hessenberg form with blocks of size 2. Indeed, if

we multiply (14) on the right with Pk and use (11), we obtain

K0Wk =

[
Vk+1 0

0 Uk+1

]
Pk+1P

T
k+1

[
0 Hk+1,k

Fk+1,k 0

]
Pk = Wk+1Gk+1,k, (12)

where

Gk+1,k =

Ψ1,1 Ψ1,2 . . . Ψ1,k

Ψ2,1 Ψ2,2

. . .
...

. . .
. . . Ψk−1,k

. . . Ψk,k

Ψk+1,k

, Ψi,j =

[
0 hi,j
fi,j 0

]
.

Les Cahiers du GERAD G–2021–62 5

The two relations at line 1 of Algorithm 1 can be rearranged as[
v1 0
0 u1

] [
β 0
0 γ

]
=

[
b 0
0 c

]
⇐⇒ w1Γ = D. (13)

Identities (12) and (13) characterize the block-Arnoldi process applied to K0 with initial block D. We

summarize the process as Algorithm 2 where all wk ∈ R(n+m)×2 and Ψi,k ∈ R2×2 are determined such

that both wT
kwk = I2 and the equations on lines 1, 4 and 6 are verified.

Algorithm 2 Block-Arnoldi Process

Require: K0, D
1: w1Γ = D
2: for k = 1, 2, . . . do
3: for i = 1, . . ., k do

4: Ψi,k = w
T
iK0wk

5: end for
6: wk+1Ψk+1,k = K0wk −

∑k
i=1 wiΨi,k

7: end for

2.2 Regularization of the block-Arnoldi process

Merging (9a)–(9b) gives[
0 A
B 0

] [
Vk 0
0 Uk

]
=

[
Vk+1 0

0 Uk+1

] [
0 Hk+1,k

Fk+1,k 0

]
, (14)

which is reminiscent of the relation one would obtain from applying an orthogonalization process to K0.

Because K = K0 + blkdiag(λI, µI), (14) yields[
λI A
B µI

] [
Vk 0
0 Uk

]
=

([
0 A
B 0

]
+

[
λI 0
0 µI

])[
Vk 0
0 Uk

]
=

[
Vk 0
0 Uk

] [
λI Hk

Fk µI

]
+

[
vk+1 0

0 uk+1

] [
0 hk+1,ke

T
k

fk+1,ke
T
k 0

]
(15)

The same reasoning applied to (12) yields the following result, which parallels Montoison and Orban

[17, Theorem 2.1].

Theorem 2. Given the matrix K defined in (3) and the block right-hand side D defined in (5), the

Krylov basis Wk =
[
w1 · · · wk

]
generated by Algorithm 2 with regularization has the form (11)

where the vectors uk and vk are the same as those generated by Algorithm 1 with initial vectors b

and c. In addition,

KWk = Wk+1Sk+1,k, Sk+1,k :=

Θ1,1 Ψ1,2 . . . Ψ1,k

Ψ2,1 Θ2,2

. . .
...

. . .
. . . Ψk−1,k

. . . Θk,k

Ψk+1,k

, (16)

where

Θj,j =

[
λ hj,j
fj,j µ

]
and Ψi,j =

[
0 hi,j
fi,j 0

]
, j = 1, . . . , k, i = 1, . . . , j + 1, i 6= j.

The scalars hi,j , fi,j are those generated by Algorithm 1 applied to A and B with initial vectors b

and c.

Les Cahiers du GERAD G–2021–62 6

Proof. Algorithm 2 applied to K0 generates sparse pairs wk as in (11) because of the equivalence with

Algorithm 1. The term blkdiag(λI, µI) can be seen as a regularization term:[
λI 0
0 µI

]
wk = wkΛ with Λ :=

[
λ 0
0 µ

]
. (17)

The identities (12) and (17) allow us to write

KWk = Wk+1

Ψ1,1 + Λ Ψ1,2 . . . Ψ1,k

Ψ2,1

. . .
. . .

...
. . .

. . . Ψk−1,k

Ψk,k−1 Ψk,k + Λ
Ψk+1,k

 , (18)

which amounts to (16) because Θk,k = Ψk,k + Λ.

Note that (16) is identical to (15) where the order of the wk has been permuted according to Pk.

Because of Theorem 2, the Krylov basis Wk generated by Algorithm 2 must have the sparsity

structure (11), so that only uk and vk need be generated, and they may be generated directly from

Algorithm 1. The key point is that generating orthonormal bases of Kk(K, d) and Kk(K,D) by

the Arnoldi process and Algorithm 1, respectively, require exactly the same amount of storage and

Kk(K, d) ⊂ Kk(K,D). Thus, residual norms produced by Gmres are certain to be at least as large as

those generated by a minimum-residual method that seeks an approximate solution xk in Kk(K,D).

Such a method is the subject of the next section.

3 Derivation of Gpmr

In this section, we develop the method Gpmr based upon Algorithm 1 with regularization to solve (4)

in which the k-th iterate has the form [
xk
yk

]
= Wkzk, (19)

where zk ∈ R2k. Thanks to (13) and (16), the residual can be written

rk =

[
b
c

]
−
[
λI A
B µI

] [
xk
yk

]
= w1

[
β
γ

]
−Wk+1Sk+1,kzk

= Wk+1(βe1 + γe2 − Sk+1,kzk). (20)

Because Wk+1 has orthonormal columns, ‖rk‖ can be minimized by defining zk as the solution of the

linear least-squares problem

minimize
zk∈R

2k
‖Sk+1,kzk − (βe1 + γe2)‖. (21)

3.1 Relation between Gpmr and Block-Gmres

The k-th Block-Gmres iterate is defined by the matrix linear least-squares problem

minimize

∥∥∥∥∥
[
b 0
0 c

]
−
[
λI A
B µI

] [
xbk xck
ybk yck

]∥∥∥∥∥
F

(22)

Les Cahiers du GERAD G–2021–62 7

where (xbk, y
b
k) = Wkz

b
k and (xck, y

c
k) = Wkz

c
k. Accordingly, the k-th Block-Gmres subproblem is

minimize
z
b
k,z

c
k∈R

2k

∥∥∥Sk+1,k

[
zbk zck

]
−
[
βe1 γe2

]∥∥∥
F
, (23)

so that zbk and zck solve the subproblem associated with right-hand sides βe1 and γe2. In exact arithmetic,

the solutions of (21) and (23) are connected via zk = zbk + zck, and the Gpmr and Block-Gmres

approximations are connected via xk = xbk + xck and yk = ybk + yck. We now outline the main stages for

solving (21).

3.2 A QR factorization

The solution of (21) can be determined via the QR factorization

Sk+1,k = Qk

[
Rk

0

]
, (24)

which can be updated at each iteration, where Qk ∈ R(2k+2)×(2k+2) is a product of Givens reflections,

and Rk ∈ R(2k)×(2k) is upper triangular. At each iteration, four new reflections are necessary to

update (24). We denote their product Q2k−1,2k+2 so that QT
k = Q2k−1,2k+2 . . . Q1,4. For i = 1, . . . , k,

the structure of Q2i−1,2i+2 is

1 ... 2i−2 2i−1 2i 2i+1 2i+2 2i+3 ... 2k+2

1 1
...

. . .

2i−2 1
2i−1 × × × ×

2i × × × ×
2i+1 × × × ×
2i+2 × × × ×
2i+3 1

...
. . .

2k+2 1

where the diagonal block extracted from rows and columns 2i − 1, . . . , 2i + 2 is the product of the

following four Givens reflections
1

c4,i s4,i

s4,i −c4,i
1

1
c3,i s3,i

1
s3,i −c3,i

c2,i s2,i

s2,i −c2,i
1

1

c1,i s1,i

1
1

s1,i −c1,i

 .
The result (aout

1 , aout
2 , aout

3 , aout
4) of a matrix-vector product between the above 4×4 block and a vector

(ain
1 , a

in
2 , a

in
3 , a

in
4) can be obtained via Algorithm 3.

Algorithm 3 Procedure ref

Require: i, a
in
1 , a

in
2 , a

in
3 , a

in
4

1: t = c1,ia
in
1 + s1,ia

in
4 , a

out
4 = s1,ia

in
1 − c1,ia

in
4 , a

out
1 = t first reflection

2: t = c2,ia
out
1 + s2,ia

in
2 , a

out
2 = s2,ia

out
1 − c2,ia

in
2 , a

out
1 = t second reflection

3: t = c3,ia
out
2 + s3,ia

out
4 , a

out
4 = s3,ia

out
2 − c3,ia

out
4 , a

out
2 = t third reflection

4: t = c4,ia
out
2 + s4,ia

in
3 , a

out
3 = s4,ia

out
2 − c4,ia

in
3 , a

out
2 = t fourth reflection

Les Cahiers du GERAD G–2021–62 8

At iteration k, Algorithm 1 generates two new columns, and to update the QR decomposition we

need first to apply all previous reflections as follows

QT
k−1

Ψ1,k

...
Ψk−1,k

Θk,k

Ψk+1,k

 = Q2k−5,2k−2 . . . Q3,6

r1,2k−1 r1,2k

r2,2k−1 r2,2k

r̄3,2k−1 r̄3,2k

r̄4,2k−1 r̄4,2k

Ψ3,k
...

Ψk+1,k

=

r1,2k−1 r1,2k
...

...
r2k−2,2k−1 r2k−2,2k

r̄2k−1,2k−1 r̄2k−1,2k

r̄2k,2k−1 r̄2k,2k

hk+1,k

fk+1,k

,

and then compute and apply the four reflections that constitute Q2k−1,2k+2 such that coefficients under

the diagonal are zeroed out

Q2k−1,2k+2

r1,2k−1 r1,2k
...

...
r2k−2,2k−1 r2k−2,2k

r̄2k−1,2k−1 r̄2k−1,2k

r̄2k,2k−1 r̄2k,2k

hk+1,k

fk+1,k

=

r1,2k−1 r1,2k
...

...
r2k−2,2k−1 r2k−2,2k

r2k−1,2k−1 r2k−1,2k

0 r2k,2k

0 0
0 0

.

A procedure to compute the Givens sines and cosines, and finalize the QR factorization of Sk+1,k is

described as Algorithm 4. Note that the first parameter of Algorithm 3 and Algorithm 4 is used to

define which Givens sines and cosines are read from or written to memory.

Algorithm 4 Procedure givens

Require: k, r̄2k−1,2k−1, r̄2k−1,2k, r̄2k,2k−1, r̄2k,2k, hk+1,k, fk+1,k

1: ¯̄r2k−1,2k−1 = (r̄
2
2k−1,2k−1 + f

2
k+1,k)

1
2 annihilate fk+1,k

2: c1,k = r̄2k−1,2k−1/¯̄r2k−1,2k−1, s1,k = fk+1,k/¯̄r2k−1,2k−1

3: ¯̄r2k−1,2k = c1,k r̄2k−1,2k

4: r̄2k+2,2k = s1,k r̄2k−1,2k

5: r2k−1,2k−1 = (¯̄r
2
2k−1,2k−1 + r̄

2
2k,2k−1)

1
2 annihilate r̄2k,2k−1

6: c2,k = ¯̄r2k−1,2k−1/r2k−1,2k−1, s2,k = r̄2k,2k−1/r2k−1,2k−1

7: r2k−1,2k = c2,k ¯̄r2k−1,2k + s2,k r̄2k,2k
8: ¯̄r2k,2k = s2,k ¯̄r2k−1,2k − c2,k r̄2k,2k
9: r̊2k,2k = (¯̄r

2
2k,2k + r̄

2
2k+2,2k)

1
2 annihilate r̄2k+2,2k

10: c3,k = ¯̄r2k,2k/̊r2k,2k, s3,k = r̄2k+2,2k/̊r2k,2k

11: r2k,2k = (̊r
2
2k,2k + h

2
k+1,k)

1
2 annihilate hk+1,k

12: c4,k = r̊2k,2k/r2k,2k, s4,k = hk+1,k/r2k,2k

3.3 Gpmr iterate and residual norm computation

We have from (20) and (24):

‖rk‖ =

∥∥∥∥Qk

[
Rk

0

]
zk − (βe1 + γe2)

∥∥∥∥ =

∥∥∥∥[Rk

0

]
zk − t̄k

∥∥∥∥ , (25)

where t̄k := QT
k (βe1 + γe2) = (tk, τ̄2k+1, τ̄2k+2), tk := (τ1, . . . , τ2k) represents the first 2k components of

t̄k, and the recurrence starts with t̄0 := (τ̄1, τ̄2) = (β, γ). t̄k can be easily determined from t̄k−1 because

t̄k = Q2k−1,2k+2(t̄k−1, 0, 0). The solution of (21) is thus zk := (ζ1, . . . , ζ2k) found by solving Rkzk = tk
with backward substitution.

The definitions of t̄k and zk together with (25) yield

‖rk‖ =

√
τ̄2
2k+1 + τ̄2

2k+2. (26)

Les Cahiers du GERAD G–2021–62 9

As in Gmres, we only compute zk when ‖rk‖ is smaller than a user-provided threshold. Thanks

to (19), the solution may be computed efficiently as

xk =
∑k

i=1 ζ2i−1vi, (27a)

yk =
∑k

i=1 ζ2iui. (27b)

We summarize the complete procedure as Algorithm 5.

Algorithm 5 Gpmr

Require: A, B, b, c, λ, µ, ε > 0, kmax > 0
1: βv1 = b, γu1 = c (β, γ) > 0 so that ‖v1‖ = ‖u1‖ = 1
2: τ̄1 = β, τ̄2 = γ Initialize t̄0
3: ‖r0‖ = (τ̄

2
1 + τ̄

2
2)

1
2 compute ‖r0‖

4: k = 0
5: while ‖rk‖ > ε and k < kmax do
6: k ← k + 1
7: q = Auk Orthogonal Hessenberg reduction
8: p = Bvk
9: for i = 1, . . ., k do

10: hi,k = v
T
i q

11: fi,k = u
T
i p

12: q = q − hi,kvi
13: p = p− fi,kui
14: end for
15: hk+1,kvk+1 = q hk+1,k > 0 so that ‖vk+1‖ = 1
16: fk+1,kuk+1 = p fk+1,k > 0 so that ‖uk+1‖ = 1
17: r̄1,2k = h1,k, r̄2,2k−1 = f1,k
18: if k 6= 1 then (r̄1,2k−1, r̄2,2k) = (0, 0) else (r̄1,2k−1, r̄2,2k) = (λ, µ)
19: for i = 1, . . . , k − 1 do Apply Q2k−5,2k−2, . . . , Q1,4

20: if i 6= k − 1 then (ρ, δ) = (0, 0) else (ρ, δ) = (λ, µ)
21: r2i−1,2k−1, r2i,2k−1, r̄2i+1,2k−1, r̄2i+2,2k−1 = ref(i, r̄2i−1,2k−1, r̄2i,2k−1, ρ, fi+1,k)
22: r2i−1,2k, r2i,2k, r̄2i+1,2k, r̄2i+2,2k = ref(i, r̄2i−1,2k, r̄2i,2k, hi+1,k, δ)
23: end for
24: r2k−1,2k−1, r2k−1,2k, r2k,2k = Compute and apply Q2k−1,2k+2

givens(k, r̄2k−1,2k−1, r̄2k−1,2k, r̄2k,2k−1, r̄2k,2k, hk+1,k, fk+1,k)

25: τ2k−1, τ2k, τ̄2k+1, τ̄2k+2 = ref(k, τ̄2k−1, τ̄2k, 0, 0) update t̄k

26: ‖rk‖ = (τ̄
2
2k+1 + τ̄

2
2k+2)

1
2 compute ‖rk‖

27: end while
28: ζ2k = τ2k/r2k,2k compute zk
29: for i = 2k − 1, . . . , 1 do

30: ζi = (τi −
∑2k

j=i+1 ri,jζj)/ri,i
31: end for
32: xk =

∑k
i=1 ζ2i−1vi compute xk

33: yk =
∑k

i=1 ζ2iui compute yk

3.4 Memory requirements

Table 1 summarizes the storage costs of k iterations of Gpmr, Gmres and Block-Gmres.

Table 1: Memory requirements for k iterations of Gpmr, Gmres and Block-Gmres.

(xk, yk) (q, p) (Vk, Uk) tk zk Qk Rk

Gpmr m+ n m+ n k(m+ n) 2k 2k 8k k(2k + 1)
Gmres m+ n m+ n k(m+ n) k k 2k k(k + 1)/2

Block-Gmres 2(m+ n) 2(m+ n) 2k(m+ n) 4k 4k 8k k(2k + 1)

Some Gpmr variables are paired in Table 1 to easily identify their Gmres and Block-Gmres

counterparts. Note that tk and zk can share the same storage because Rktk = zk can be solved in-place.

Les Cahiers du GERAD G–2021–62 10

4 Implementation and numerical experiments

We implemented Algorithm 5 in Julia [3], version 1.6, as part of our Krylov.jl collection of Krylov

methods [18]. Our implementation of Gpmr is applicable in any floating-point system supported by

Julia, and runs on CPU and GPU. The GPU support can be particularly relevant for (2) because,

as a Krylov method, Gpmr only requires linear operators that model AIΓu, BΓIv, u 7→MII\u and

v 7→ NΓΓ\v. For instance, v 7→ NΓΓ\v can be the forward and backward substitutions with the factors

of an LU decomposition of NΓΓ. The use of abstract linear operators allows us to store AIΓ and

BΓI as well as decompositions of the diagonal blocks of (2) on distinct compute nodes and leverage

parallel architectures, such as GPUs. When the matrices are unstructured, Duff and Scott [7] propose

a robust arrowhead reordering such that each diagonal block is nonsingular and recovers a system of

the form (2).

We evaluate the performance of Gpmr on systems generated from unsymmetric matrices in the

SuiteSparse Matrix Collection [5]. We use METIS to form a 2×2 block matrix and use the two diagonal

blocks to build a right block-Jacobi preconditioner Pr with λ = µ = 1. We set P` = I so the residual

norm of (1) is identical to that of (4). The right-hand side (b?, c?) is generated so the exact solution

of (1) is the vector of ones. We compare Gpmr to our implementation of Gmres without restart in

terms of number of iterations. Each algorithm stops as soon as ‖rk‖ ≤ εa + ‖(b, c)‖εr with absolute

tolerance εa = 10−12 and relative tolerance εr = 10−10. Table 2 summarizes our results, which show an
improvement in terms of number of iterations ranging from about 10% up to 50% in favor of Gpmr.

Figure 1 reports residual histories of Gpmr, Gmres and Block-Gmres where the two approximate

solutions are summed on problems scircuit, sme3Dc, PR02R and sherman5.

Table 2: Number of iterations of Gpmr and Gmres on systems from the SuiteSparse Matrix Collection.

name size nnz Gmres Gpmr gain

sherman5 3312 20793 25 20 20%
powersim 15838 67562 141 101 28%
Ill Stokes 20896 191368 59 54 9%

sme3Dc 42930 3148656 127 78 39%
rma10 46835 2374001 48 41 15%

ecl32 51993 380415 58 42 28%
venkat50 62424 1717792 48 35 27%

poisson3Db 85623 2374949 56 50 11%
ifiss mat 96307 3599932 42 33 21%
hcircuit 105676 513072 47 37 21%
PR02R 161070 8185136 97 68 30%
scircuit 170998 958936 48 24 50%

transient 178866 961790 567 470 17%
ohne2 181343 11063545 50 39 22%

thermomech dK 204316 2846228 128 84 34%
marine1 400320 6226538 84 60 29%

Freescale1 3428755 18920347 456 344 25%

The Gpmr and Block-Gmres residuals are nearly superposed except for scircuit, on which Block-

Gmres stagnates. The same phenomenon occurs on a generalized saddle point build using matrices

well1033 as A and illc1033 as B, M = I, N = 0, λ = 1 and µ = 0. Figure 2 reports residual histories

of Gpmr, Gmres and Block-Gmres on the generalized saddle point system in double and quadruple

precision. Although theoretically equivalent, Gpmr appears to be less sensitive to arithmetic errors

due to loss of orthogonality than its counterpart implementation based on Block-Gmres. Indeed, the

number of Gpmr and Gmres iterations is the same in double and quadruple precision.

When K, defined in (3), is symmetric, Algorithm 1 coincides with the orthogonal tridiagonalization

process of Saunders et al. [25] because AT = B and Gpmr is theoretically equivalent to TriMR. We

verify numerically the equivalence between the two methods on symmetric quasi-definite systems,

with matrices A from the SuiteSparse Matrix Collection, M = N = I, λ = 1 and µ = −1. Each

Les Cahiers du GERAD G–2021–62 11

algorithm stops with the same tolerance as above. Because Gpmr can be viewed as TriMR with full

reorthogonalization, we use different floating-point systems to observe any loss of orthogonality in the

Krylov basis. Figure 3 reports residual histories of Gpmr in double precision and TriMR in double,

quadruple and octuple precision. The plots suggest that reorthogonalization is a more powerful device

than extended precision.

0 10 20 30 40 50

10−5

100

k

‖r
k
‖

scircuit

Gmres
Block-Gmres

Gpmr

0 20 40 60 80 100 120

10−3

100

103

k

‖r
k
‖

sme3Dc

Gmres
Block-Gmres

Gpmr

0 20 40 60 80

105

1010

k

‖r
k
‖

PR02R

Gmres
Block-Gmres

Gpmr

0 5 10 15 20 25

10−5

100

k

‖r
k
‖

sherman5

Gmres
Block-Gmres

Gpmr

Figure 1: Residual history of Gpmr, Gmres and Block-Gmres.

0 100 200 300

10−10

10−5

100

k

‖r
k
‖

Gmres
Block-Gmres

Gpmr

0 100 200 300

10−10

10−5

100

k

‖r
k
‖

Gmres
Block-Gmres

Gpmr

Figure 2: Residual history of Gpmr, Gmres and Block-Gmres on the generalized saddle point system in double (left) and
quadruple precision (right).

Les Cahiers du GERAD G–2021–62 12

0 50 100 150

10−3

100

103

k

‖r
k
‖

lp_osa_07

TriMR– double
TriMR– quadruple
TriMR– octuple

Gpmr

0 100 200 300 400 500 600

10−10

10−5

100

k

‖r
k
‖

lpi_klein3

TriMR– double
TriMR– quadruple
TriMR– octuple

Gpmr

Figure 3: Residual history of Gpmr and TriMR.

5 Discussion and extensions

Based upon Algorithm 1, it is possible to develop another method, Gpcg, in the spirit of Fom [22].

The k-th Gpcg iterate is defined by the Galerkin condition WT
k rk = 0. Its associated subproblem

selects zk in (19) as the solution of the square system

Skzk = βe1 + γe2, (28)

where Sk denotes the leading (2k)×(2k) submatrix of Sk+1,k in (16). However, Gpcg may break down

if Sk is singular, and in that respect shares the disadvantages of Fom, whereas the Gpmr iterates are

always well defined. Gpcg could still be relevant for unsymmetric structured and positive-definite linear

systems, such as those arising from the finite-element discretization of advection-diffusion equations [26],

where Sk is guaranteed to be nonsingular. Indeed, if K is positive definite, its projection Sk = WT
kKWk

into the k-th Krylov subspace is also positive definite, which ensures that (28) has a unique solution.

The same observation holds for Fom and BiCG [11], which should be restricted to certain classes of

linear systems to avoid breakdowns.

Although the focus of Gpmr is on unsymmetric linear systems, Figure 3 shows that it is also relevant

for ill-conditioned symmetric linear systems. Moreover, Gpmr allows to solve symmetric partitioned

systems with symmetric indefinite blocks M and N , whereas TriMR requires them to be zero or

definite matrices.

A variant with restart in the spirit of Gmres(k) is easily implemented on top of Gpmr. A

limited-memory variant of Gpmr can be also developed and compared to Dqgmres [24]. We leave the

investigation of such extension to future work.

References
[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q.

Appl. Math., 9:17–29, 1951. DOI: 10.1090/qam/42792.

[2] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:
1–137, 2005. DOI: 10.1017/S0962492904000212.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM Rev., 59(1):65–98, 2017. DOI: 10.1137/141000671.

[4] A. Buttari, D. Orban, D. Ruiz, and D. Titley-Peloquin. USYMLQR: A tridiagonalization method for
symmetric saddle-point systems. SIAM J. Sci. Comput., 41(5):409–432, 2019. DOI: 10.1137/18M1194900.

[5] T. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Software,
38(1):1–25, 2011. DOI: 10.1145/2049662.2049663.

http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/18M1194900
http://dx.doi.org/10.1145/2049662.2049663

Les Cahiers du GERAD G–2021–62 13

[6] V. Dolean, P. Jolivet, and F. Nataf. An introduction to domain decomposition methods: algorithms,
theory, and parallel implementation. SIAM, 2015. DOI: 10.1137/1.9781611974065.

[7] I. S. Duff and J. A. Scott. Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel
Computing, 31(3–4):275–289, 2005. DOI: 10.1016/j.parco.2004.12.008.

[8] H. C. Elman. Preconditioners for saddle point problems arising in computational fluid dynamics. Applied
Numerical Mathematics, 43(1–2):75–89, 2002. DOI: 10.1016/S0168-9274(02)00118-6.

[9] R. Estrin and C. Greif. SPMR: A family of saddle-point minimum residual solvers. SIAM J. Sci. Comput.,
40(3):1884–1914, 2018. DOI: 10.1137/16M1102410.

[10] M. C. Ferris and J. D. Horn. Partitioning mathematical programs for parallel solution. Mathematical
Programming, 80(1):35–61, 1998. DOI: 10.1007/BF01582130.

[11] R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical Analysis, pages 73–89.
Springer, 1976. DOI: 10.1007/BFb0080116.

[12] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian linear
systems. Numer. Math., 60(1):315–339, 1991. DOI: 10.1007/BF01385726.

[13] C. Greif and M. Wathen. Conjugate gradient for nonsingular saddle-point systems with a
maximally rank-deficient leading block. J. Comput. Appl. Math., 358:1–11, 2019. DOI:
https://doi.org/10.1016/j.cam.2019.02.016.

[14] I. C. Ipsen. A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput., 23(3):1050–1051,
2001. DOI: 10.1137/S1064827500377435.

[15] G. Karypis and V. Kumar. METIS: A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices, 1997.

[16] A. Montoison and D. Orban. BiLQ: An iterative method for nonsymmetric linear systems with a quasi-
minimum error property. SIAM J. Matrix Anal. Appl., 41(3):1145–1166, 2020. DOI: 10.1137/19M1290991.

[17] A. Montoison and D. Orban. TriCG and TriMR: Two iterative methods for symmetric quasi-definite
systems. SIAM J. Sci. Comput., 43(4):2502–2525, 2021. DOI: 10.1137/20M1363030.

[18] A. Montoison, D. Orban, and contributors. Krylov.jl: A Julia basket of hand-picked Krylov methods.
https://github.com/JuliaSmoothOptimizers/Krylov.jl, June 2020.

[19] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for indefinite linear systems.
SIAM J. Sci. Comput., 21(6):1969–1972, 2000. DOI: 10.1137/S1064827599355153.

[20] D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite Linear Systems, volume 3 of
Spotlights. SIAM, 2017. DOI: 10.1137/1.9781611974737.

[21] C. C. Paige. Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal., 11(1):
197–209, 1974. DOI: 10.1137/0711019.

[22] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of
computation, 37(155):105–126, 1981. DOI: 10.1090/S0025-5718-1981-0616364-6.

[23] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. and Statist. Comput., 7(3):856–869, 1986. DOI: 10.1137/0907058.

[24] Y. Saad and K. Wu. DQGMRES: A direct quasi-minimal residual algorithm based on incomplete
orthogonalization. Numerical linear algebra with applications, 3(4):329–343, 1996. DOI: 10.1002/(sici)1099-
1506(199607/08)3:4¡329::aid-nla86¿3.0.co;2-8.

[25] M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric
linear equations. SIAM J. Numer. Anal., 25(4):927–940, 1988. DOI: 10.1137/0725052.

[26] T. Xuemin and J. Li. BDDC for nonsymmetric positive definite and symmetric indefinite problems. In
Domain Decomposition Methods in Science and Engineering XVIII, pages 75–86. Springer, 2009. DOI:
10.1007/978-3-642-02677-5˙7.

http://dx.doi.org/10.1137/1.9781611974065
http://dx.doi.org/10.1016/j.parco.2004.12.008
http://dx.doi.org/10.1016/S0168-9274(02)00118-6
http://dx.doi.org/10.1137/16M1102410
http://dx.doi.org/10.1007/BF01582130
http://dx.doi.org/10.1007/BFb0080116
http://dx.doi.org/10.1007/BF01385726
http://dx.doi.org/https://doi.org/10.1016/j.cam.2019.02.016
http://dx.doi.org/10.1137/S1064827500377435
http://dx.doi.org/10.1137/19M1290991
http://dx.doi.org/10.1137/20M1363030
https://github.com/JuliaSmoothOptimizers/Krylov.jl
http://dx.doi.org/10.1137/S1064827599355153
http://dx.doi.org/10.1137/1.9781611974737
http://dx.doi.org/10.1137/0711019
http://dx.doi.org/10.1090/S0025-5718-1981-0616364-6
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1002/(sici)1099-1506(199607/08)3:4<329::aid-nla86>3.0.co;2-8
http://dx.doi.org/10.1002/(sici)1099-1506(199607/08)3:4<329::aid-nla86>3.0.co;2-8
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1007/978-3-642-02677-5_7

	Introduction
	A Hessenberg reduction process
	Relation with the block-Arnoldi process
	Regularization of the block-Arnoldi process

	Derivation of Gpmr
	Relation between Gpmr and Block-Gmres
	A QR factorization
	Gpmr iterate and residual norm computation
	Memory requirements

	Implementation and numerical experiments
	Discussion and extensions

