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Abstract : This paper presents an efficient method for extracting the second-order sensitivities from
a system of implicit nonlinear equations. We design a custom automatic differentiation (AutoDiff)
backend that targets highly parallel graphics processing units (GPUs) by extracting the second-order
information in batch. When the nonlinear equations are associated to a reduced space optimization
problem, we leverage the parallel reverse-mode accumulation in a batched adjoint-adjoint algorithm
to compute efficiently the reduced Hessian of the problem. We apply the method to extract the
reduced Hessian associated to the balance equations of a power network, and show that a parallel
GPU implementation leads to a 30 times speed-up on the largest instances, comparing to our reference
CPU implementation.
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1 Introduction

System of nonlinear equations are ubiquitous in numerical computing. Resolving such nonlinear sys-
tems typically depends on efficient iterative algorithms, as for example Newton-Raphson. In this
article, we are interested in the resolution of a parametric system of nonlinear equations, where the
solution depends on a vector of parameters p ∈ Rnp . These parametric systems are, in their abstract
form, written as

Find x such that g(x,p) = 0 , (1)

where the (smooth) nonlinear function g : Rnx × Rnp → Rnx depends jointly on an unknown variable
x ∈ Rnx and the parameters p ∈ Rnp .

The solution x(p) of (1) depends implicitly on the parameters p: of particular interest are the
sensitivities of the solution x(p) with relation to the parameters p. Indeed, these sensitivities can be
embedded inside an optimization algorithm (if p is a design variable) or in an uncertainty quantification
scheme (if p encodes an uncertainty). It is well known that propagating the sensitivities in an iterative
algorithm is nontrivial [11]. Fortunately, there is no need to do so, as we can exploit the mathematical
structure of (1) and compute directly the sensitivities of the solution x(p) using the Implicit Function
Theorem.

By repeating this process one more step, we are able to extract second-order sensitivities at the
solution x(p). However, this operation is computationally more demanding and involves the manipula-
tion of third-order tensors ∇2

xxg,∇2
xpg,∇2

ppg. The challenge is to avoid forming explicitly such tensors
by using reverse mode accumulation of second-order information, either explicitly by using the specific
structure of the problem — encoded by the function g — or by using automatic differentiation.

As illustrated in Figure 1, this paper covers the efficient computation of the second-order sensitivi-
ties of a nonlinear system (1). The sparsity structure of the problem is passed to a custom Automatic
Differentiation (AutoDiff) backend that automatically generates all the intermediate sensitivities from
the implementation of g(x,p). To get a tractable algorithm, we use an adjoint model implementation
of the generated first-order sensitivities to avoid explicitly forming third-order derivative tensors. As
an application, we compute the reduced Hessian of the nonlinear equations corresponding to the power
flow balance equations of a power grid [27]. The problem has an unstructured graph structure, leading
to some challenge in the automatic differentiation library, that we discuss extensively. We show that
the (dense) reduced Hessian associated to the power flow equations can be computed efficiently in
parallel, by using a batch of Hessian-vector products. The underlying motivation is to embed the
reduction algorithm in a real-time tracking procedure [26], where the reduced Hessian updates have to
be fast to track a suboptimal solution.

Nonlinear system

Projectiong(x,p) = 0

Reduced gradient∇xg,∇pg

Reduced Hessian∇2
xxg,∇2

xpg,∇2
ppg

F

∇pF

∇2
ppF

Figure 1: Reduced space algorithm. This article focuses on the last block, in red. If F is an objective function, the
reduced gradient ∇pF and the reduced Hessian ∇2

ppF can be used in any nonlinear optimization algorithm.

In summary, we aim at devising a portable, efficient, and easy maintainable reduced Hessian algo-
rithm. To this end, we leverage the expressiveness offered by the Julia programming language. Due to
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the algorithm’s design, the automatic differentiation backend and the reduction algorithm are trans-
parently implemented on the GPU without any changes to the algorithm’s core implementation, thus
realizing a composable software design.

1.1 Contributions

Our contribution is a tractable SIMD algorithm and implementation to evaluate the reduced Hessian
from a parametric system of nonlinear equations (1). This consists of three closely intertwined com-
ponents. First, we implement the nonlinear function g(x,p) using the programming language Julia [5]
and the portability layer KernelAbstractions.jl to generate abstract kernels working on various
GPU architectures (CUDA, AMDGPU). Second, we develop a custom AutoDiff backend on top of the
portability layer to extract automatically the first-order sensitivities ∇xg,∇pg and the second-order
sensitivities ∇2

xxg,∇2
xpg,∇2

ppg. Third, we combine these in an efficient parallel accumulation of the
reduced Hessian associated to a given reduced space problem. The accumulation involves both Hessian
tensor contractions and two sparse linear solves with multiple right-hand sides. Glued together, the
three components give a generic code able to extract the second-order derivatives from a power grid
problem, running in parallel on GPU architectures. Numerical experiments with Volta GPUs (V100)
showcase the scalability of the approach, with a 30x speed-up on the largest instances, comparing to
a reference CPU implementation.

2 Prior art

In this article we extract the second-order sensitivities from the system of nonlinear equations using
automatic differentiation (AutoDiff). AutoDiff on Single Instruction, Multiple Data (SIMD) architec-
tures alike the CUDA cores on GPUs is an ongoing research effort. Forward-mode AutoDiff effectively
adds tangent components to the variables and preserves the computational flow. In addition, a vector
mode can be applied to propagate multiple tangents or directional derivatives at once. The technique
of automatically generating derivatives of function implementations has been investigated since the
1950s [3, 20].

Reverse- or adjoint-mode AutoDiff reverses the computational flow and thus incurs a lot of access
restrictions on the final code. Every read of a variable becomes a write, and vice versa. This leads to
application-specific solutions that exploit the structure of an underlying problem to generate efficient
adjoint code [7, 12, 14]. Most prominently, the reverse mode is currently implemented as backpropa-
gation in machine learning. Indeed, the backpropagation has a long history (e.g., [8]) with the reverse
mode in AutoDiff being formalized for the first time in [17]. Because of the limited size and single ac-
cess pattern of neural networks, current implementations [1, 15, 22] reach a high throughput on GPUs.
For the wide field of numerical simulations, however, efficient adjoints of GPU implementations remain
challenging. In this work we combine the advantages of GPU implementations of the gradient with
the evaluation of Hessian-vector products first introduced in [23].

Reduced-space methods have been applied widely in uncertainty quantification and partial differen-
tial equation (PDE)-constrained optimization [6], and their applications in the optimization of power
grids is known since the 1960s [10]. However, extracting the second-order sensitivities in the reduced
space has been considered tedious to implement and hard to motivate on classical CPU architectures
(see [16] for a recent discussion about the computation of the reduced Hessian on the CPU). To the
best of our knowledge, this paper is the first to present a SIMD focused algorithm leveraging the GPU
to efficiently compute the reduced Hessian of the power flow equations in polar formulation.

3 Reduced space problem

In Section 3.1 we briefly introduce the power flow nonlinear equations to motivate our application. We
present in Section 3.2 the reduced space problem associated with the power flow problem, and recall
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in Section 3.3 the first-order adjoint method, used to evaluate efficiently the gradient in the reduced
space, and later applied to compute the adjoint of the sensitivities.

3.1 Presentation of the power flow problem

We present a brief overview of the steady-state solution of the power flow problem. The power grid
can be described as a graph G = {V,E} with nv vertices and ne edges. The steady state of the network
is described by the following nonlinear equations, holding at all nodes i ∈ V ,

P inj
i = vi

∑
j∈A(i)

vj(gij cos (θi − θj) + bij sin (θi − θj)) ,

Qinj
i = vi

∑
j∈A(i)

vj(gij sin (θi − θj)− bij cos (θi − θj)) ,
(2)

where at node i, (P inj
i and Qinj

i ) are respectively the active and reactive power injections; vi is the
voltage magnitude; θi the voltage angle; and A(i) ⊂ V is the set of adjacent nodes: for all j ∈ A(i),
there exists a line (i, j) connecting node i and node j. The values gij and bij are associated with the
physical characteristics of the line (i, j). Generally, we distinguish the (PV ) nodes — associated to the
generators — from the (PQ) nodes comprising only loads. We note that the structure of the nonlinear
equations (2) depends on the structure of the underlying graph through the adjacencies A(·).

We rewrite the nonlinear equations (2) in the standard form (1). At all nodes the power injection
P inj
i should match the net production P g

i minus the load P d
i :

g(x,p) =

P inj
pv − P g + P d

pv

P inj
pq + P d

pq

Qinj
pq +Qd

pd

 = 0 ,x =

θpvθpq
vpq

 . (3)

In (3), we have selected only a subset of the power flow equations (2) to ensure that the nonlinear
system g(x,p) = 0 is invertible with respect to the state x. The unknown variable x corresponds to
the voltage angles at the PV and PQ nodes and the voltage magnitudes at the PQ nodes. However,
in contrast to the variable x, we have some flexibility in choosing the parameters p.

In optimal power flow (OPF) applications, we are looking at minimizing a given operating cost
f : Rnx × Rnp → R (associated to the active power generations P g) while satisfying the power flow
equations (3). In that particular case, p is a design variable associated to the active power generations
and the voltage magnitude at PV nodes: p = (P g,vpv). We define the OPF problem as

min
x,p

f(x,p) subject to g(x,p) = 0 . (4)

3.2 Projection in the reduced space

We note that in Equation (3), the functional g is continuous and that the dimension of the output
space is equal to the dimension of the input variable x. Thanks to the particular network structure of
the problem (encoded by the adjacencies A(·) in (2)), the Jacobian ∇xg is sparse.

Generally, the nonlinear system (3) is solved iteratively with a Newton-Raphson algorithm. If at
a fixed parameter p the Jacobian ∇xg is invertible, we compute the solution x(p) starting from an
initial guess x0: xk+1 = xk − (∇xgk)

−1g(xk,p) for k = 1, · · · . We know that if x0 is close enough to
the solution, then the convergence of the algorithm is quadratic.

With the projection completed, the optimization problem (4) rewrites in the reduced space as

min
p

F (p) := f
(
x(p),p

)
, (5)

reducing the number of optimization variables from nx + np to np, while at the same time eliminating
all equality constraints in the formulation.



Les Cahiers du GERAD G–2021–56 4

3.3 First-order adjoint method

With the reduced space problem (5) defined, we compute the reduced gradient ∇pF required for the
reduced space optimization routine. By definition, as x(p) satisfies g(x(p),p) = 0, the chain rule yields

∇pF = ∇pf +∇xf · ∇px with ∇px = −
(
∇xg)

−1∇pg .

However, evaluating the full sensitivity matrix ∇px involves the resolving of nx linear system.

On the contrary, the adjoint method requires the resolving of a single linear system. For every dual
λ ∈ Rnx , we introduce a Lagrangian function defined as

`(x,p,λ) := f(x,p) + λ>g(x,p) . (6)

If x satisfies g(x,p) = 0, then the Lagrangian `(x,p,λ) does not depend on λ and we get `(x,p,λ) =
F (p). By using the chain rule, the total derivative of ` with relation to the parameter p satisfies

dp` =
(
∇xf · ∇px+∇pf

)
+ λ>

(
∇xg · ∇ux+∇pg

)
=
(
∇pf + λ>∇pg

)
+
(
∇xf + λ>∇xg

)
∇px .

We observe that by setting the first-order adjoint to λ = −(∇xg)
−>∇xf

>, the reduced gradient ∇pF

satisfies
∇pF = ∇p` = ∇pf + λ>∇pg , (7)

with λ evaluated by solving a single linear system.

4 Parallel reduction algorithm

We present in Section 4.1 the adjoint-adjoint method, and detail in Section 4.2 how to evaluate ef-
ficiently the second-order sensitivities with Autodiff. By combining together the Autodiff and the
adjoint-adjoint method, we devise in Section 4.3 a parallel algorithm to compute the reduced Hessian.

4.1 Second-order adjoint over adjoint method

Among the different Hessian reduction schemes presented in [21] (direct-direct, adjoint-direct, direct-
adjoint, adjoint-adjoint), the adjoint-adjoint method has two key advantages to evaluate the reduced
Hessian on the GPU. First, it avoids forming explicitly the dense tensor ∇2

ppx and the dense matrix
∇px, leading to important memory savings on the larger cases. Second, it enables us to compute the
reduced Hessian slice by slice, in an embarrassingly parallel fashion.

Conceptually, the adjoint-adjoint method extends the adjoint method (see §3.3) to compute the
second-order derivatives ∇2f ∈ Rnp×np of the objective function f((x(p),p). The adjoint-adjoint
method computes the matrix ∇2f slice by slice, by using np Hessian-vector products (∇2f)w (with
w ∈ Rnp).

By definition of the first-order adjoint λ, the derivative of the Lagrangian function (6) with respect
to x is null:

∇xf(x,p) + λ
>∇xg(x,p) = 0 . (8)

Let ĝ(x,p,λ) := ∇xf(x,p) + λ>∇xg(x,p). We define a new Lagrangian associated with (8) by
introducing two second-order adjoints z,ψ ∈ Rnx and a vector w ∈ Rnp :

ˆ̀(x,p,w,λ; z,ψ) := (∇p`)
>w+

z>g(x,p) +ψ>ĝ(x,p,λ) . (9)
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By computing the derivative of ˆ̀ and eliminating the terms corresponding to ∇xλ and ∇pλ, we get
the following expressions for the second-order adjoints (z,ψ):{

(∇xg)z = −
(
∇pg

)>
w

(∇xg)
>ψ = −(∇2

xp`)w − (∇2
xx`)z .

(10)

Then, the reduced-Hessian-vector product reduces to(
∇2f

)
w = (∇2

pp`)w + (∇2
px`)

>z + (∇pg)
>ψ . (11)

As ∇2` = ∇2f +λ>∇2g, we observe that both Equations (10) and (11) require evaluating the product
of the three tensors ∇2

xxg, ∇2
xpg, and ∇2

ppg, on the left with the adjoint λ and on the right with
the vector w. Evaluating the Hessian-vector products (∇2

xxf)w, (∇2
xpf)w and (∇2

ppf)w is generally
easier, as f is a real-valued function.

4.2 Second-order derivatives

To avoid forming the third-order tensors ∇2g in the reduction procedure presented previously in
Section 4.1, we exploit the particular structure of Equations (10) and (11) to implement with automatic
differentiation an adjoint-tangent accumulation of the derivative information. For any adjoint λ ∈ Rnx

and vector w ∈ Rnp , we build a tangent v = (z,w) ∈ Rnx+np , with z ∈ Rnx solution of the first
system in Equation (10). Then, the adjoint-forward accumulation evaluates a vector y ∈ Rnx+np as

y =

(
λ>∇2

xxg λ>∇2
xpg

λ>∇2
pxg λ>∇2

ppg

)
v , (12)

(the tensor projection notation will be introduced more thoroughly in Section 4.2.3). We detail next
how to compute the vector y by using forward-over-reverse AutoDiff.

4.2.1 AutoDiff

AutoDiff transforms a code that implements a multivariate vector function y = g(x), Rn 7→ Rm with
inputs x and outputs y into its differentiated implementation. We distinguish two modes of AutoDiff.
Applying AutoDiff in forward mode generates the code for evaluating the Jacobian vector product
y(1) = ∇g(x) · x(1), with the superscript (1) denoting first-order tangents—also known as directional
derivatives. The adjoint or reverse mode, or backpropagation in machine learning, generates the code
of the transposed Jacobian vector product x(1) = y(1) · ∇g(x)T , with the subscript (1) denoting first-
order adjoints. The adjoint mode is useful for computing gradients of scalar functions (m = 1) (such
as Lagrangian) at a cost of O (cost(g)).

4.2.2 Sparse Jacobian accumulation

To extract the full Jacobian from a tangent or adjoint AutoDiff implementation, we have to let x(1)

and y(1) go over the Cartesian basis of Rn and Rm, respectively. This incurs the difference in cost
for the Jacobian accumulation: O (n) · cost(g) for the tangent Jacobian model and O (m) · cost(g)
for the adjoint Jacobian model. In our case we need the full square (m = n) Jacobian ∇xg of the
nonlinear function (1) to run the Newton–Raphson algorithm. The tangent model is preferred whenever
m ≈ n. Indeed, the adjoint model incurs a complete reversal of the control flow and thus requires
storing intermediate variables, leading to high cost in memory. Furthermore, SIMD architectures
are particularly well suited for propagating the n independent tangent Jacobian vector products in
parallel [24].

If n becomes larger (»1000), however, the memory requirement of all n tangents may exceed
the GPU’s memory. Since our Jacobian is sparse, we apply the technique of Jacobian coloring that
compresses independent columns of the Jacobian and reduces the number of required seeding tangent
vectors from n to the number of colors c (see Figure 2).
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Figure 2: Jacobian compression via column coloring. On the left, the original Jacobian. On the right, the compressed
Jacobian.

4.2.3 Second-order derivatives

For higher-order derivatives that involve derivative tensors (e.g., Hessian) we introduce the projection
notation < · · · > introduced in [19] and illustrated in Figure 3 with < x(1),∇2g(x),x(1) >, whereby ad-
joints are projected from the left to the Jacobian and tangents from the right. To compute second-order
derivatives and the Hessian projections in Equation (12), we use the adjoint model implementation
given by

y = g(x),x(1) =< x
(1),∇g(x) >= y(1) · ∇g(x)T , (13)

and we apply over it the tangent model given by

y = g(x), y(1) =< ∇g(x),x(1) >= ∇g(x) · x(1) , (14)

yielding
y = g(x),

y(2) =< ∇g(x),x(2) >,

and
x(1) =< y(1),∇g(x) >,

x
(2)
(1) =< y(1),∇

2g(x),x(2) > + < y
(2)
(1) ,∇g(x) > .

(15)

Notice that every variable has now a value component and three derivative components denoted
by (1), (2), and (2)

(1) amounting to first-order adjoint, second-order tangent, and second-order tangent
over adjoint, respectively. In Section 4.3, we compute the Hessian ∇2g ∈ Rm×n×n vector product on
the GPU by setting y(2)

(1) = 0 and extracting the result from x
(2)
(1) ∈ Rn.

4.3 Reduction algorithm

We are now able to write down the reduction algorithm to compute the Hessian-vector products∇2f ·w.
We first present a sequential version of the algorithm, and then detail how to design a parallel variant
of the reduction algorithm.

4.3.1 Sequential algorithm

We observe that by default the Hessian reduction algorithm encompasses four sequential steps:
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X X =

n

n

m

Figure 3: Hessian derivative tensor projection < y(1),∇2g(x),x(2) >. Notice that the Hessian slices along the n
directions are symmetric.

Algorithm 1: Reduction algorithm.
Data: Vector w ∈ Rnp

SpMul: b =
(
∇ug

)
w ;

SparseSolve: (∇xg)z = −b ;
TensorProjection: Compute (yx,yp) with (12) and v = (z,w);
SparseSolve: (∇xg)>ψ = −yx ;
MulAdd: (∇2f)w = yp + (∇pg)>ψ ;

1. SparseSolve: Get the second-order adjoint z by solving the first linear system in (10).
2. TensorProjection: Define the tangent v := (z,w), and evaluate the second-order derivatives

using (12). TensorProjection returns a vector y = (yx,yp), with{
yx =< λ>,∇xxg,z > + < λ>,∇xpg,w > ,

yp =< λ>,∇pxg,z > + < λ>,∇ppg,w > ,
(16)

with “<>" denoting the derivative tensor projection introduced in Section 4.2.3 (and illustrated
in Figure 3).

3. SparseSolve: Get the second-order adjoint ψ by solving the second linear system in Equa-
tion (10): (∇xg)

>ψ = −yx.
4. SpMulAdd: Compute the reduced Hessian-vector product with Equation (11).

The first SparseSolve differs from the second SparseSolve since the left-hand side is different: the
first system considers the Jacobian matrix (∇xg), whereas the second system considers its transpose
(∇xg)

>.

To compute the entire reduced Hessian ∇2f , we have to let w go over all the Cartesian basis vectors
of Rnp . The parallelization over these basis vectors is explained in the next paragraph.

4.3.2 Parallel algorithm

Instead of computing the Hessian vector products (∇2f)w1, · · · , (∇2f)wn one by one, the parallel
algorithm takes as input a batch of N vectors W =

(
w1, · · · ,wN

)
and evaluates the Hessian-vector

products
(
(∇2f)w1, · · · , (∇2f)wN

)
in a parallel fashion. By replacing respectively the SparseSolve

and TensorProjection blocks by BatchSparseSolve and BatchTensorProjection, we get
the parallel reduction algorithm presented in Algorithm 2 (and illustrated by Figure 4). On the
contrary to Algorithm 1, the block BatchSparseSolve solves a sparse linear system with multiple
right-hand-sides B = (∇pg)W , and the block BatchTensorProjection runs the Autodiff algorithm
introduced in Section 4.2 in batch. As explained in the next section, both operations are fully amenable
to the GPU.
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Algorithm 2: Parallel reduction algorithm.
Data: N vectors w1, · · · ,wN ∈ Rnp

Build W = (w1, · · · ,wN ) ,W ∈ Rnp×N ;
SpMul: B =

(
∇pg

)
W ,B ∈ Rnx×N , ∇pg ∈ Rnx×np ;

BatchSparseSolve: (∇xg)Z = −B ;
BatchTensorProjection: Compute (Yx, Yp) with V = (Z,W ) ;
BatchSparseSolve: (∇xg)>Ψ = −Yx ;
SpMulAdd: (∇2f)W = Yp + (∇pg)>Ψ ;

W B (∇2f)W

z1 y1 ψ1

z2 y2 ψ2

z3 y3 ψ3

z4 y4 ψ4

sync sync

SpMul

B = (∇pg)W

BatchSparseSolve

zi = −(∇xg)
−1bi

BatchAutoDiff BatchSparseSolve

ψi = −(∇xg)
−>yi

SpMullAdd

Figure 4: Parallel computation of the reduced Hessian vector products on the GPU.

5 SIMD GPU implementation

In the previous section, we have devised a parallel algorithm to compute the reduced Hessian. This algo-
rithm involves two key ingredients, both running in parallel: BatchSparseSolve and
BatchTensorProjection. We present in Section 5.1 how to implement BatchTensor
Projection on GPU by leveraging the Julia language. Then, we focus on the parallel resolution
of BatchSparseSolve in Section 5.2. The final implementation is presented in Section 5.3.

5.1 Batched AutoDiff

5.1.1 AutoDiff on GPU

Our implementation attempts to be architecture agnostic, and to this end we rely heavily on the
just-in-time compilation capabilities of the Julia language. Julia has two key advantages for us: (i) it
implements state-of-the-art automatic differentiation libraries and (ii) its multiple dispatch capability
allows to write code in an architecture agnostic way. Combined together, this allows to run AutoDiff
on GPU accelerators. On the architecture side we rely on the array abstraction implemented by the
package GPUArrays.jl [4] and on the kernel abstraction layer KernelAbstractions.jl. The
Julia community provides three GPU backends for these two packages: NVIDIA, AMD, and Intel
oneAPI. Currently, CUDA.jl is the most mature package, and we are leveraging this infrastructure to
run our code on an x64/PPC CPU and NVIDIA GPU. In the future our solution will be rolled out
transparently onto AMD and Intel accelerators with minor code changes.

5.1.2 Forward evaluation of sparse Jacobians

The reduction algorithm in Section 4.3 requires (i) the Jacobian ∇xg to form the linear system in (10)
and (ii) the Hessian vector product of λ>∇2g in (16). We use the Julia package ForwardDiff.jl [25]
to apply the first-order tangent model (14) by instantiating every variable as a dual type defined as
T1S{T,C} = ForwardDiff.Dual{T, C}}, where T is the type (double or float) and C is
the number of directions that are propagated together in parallel. This allows us to apply AutoDiff
both on the CPU and on the GPU in a vectorized fashion, through a simple type change: for in-
stance, Array{TIS{T, C}}(undef, n) instantiates a vector of dual numbers on the CPU, whereas
CuArray{TIS{T, C}}(undef, n) does the same on a CUDA GPU. (Julia allows us to write code
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where all the types are abstracted away). This, combined with KernelAbstractions.jl, allows
us to write a portable residual kernel for g(x,p) that is both differentiable and architecture agnostic.
By setting the number of Jacobian colors c to the parameter of type T1S{C} we leverage the GPUs
by propagating the tangents in a SIMD way.

5.1.3 Forward-over-Reverse Hessian projections

As opposed to the forward mode, generating efficient adjoint code for GPUs is known to be hard.
Indeed, adjoint automatic differentiation implies a reversal of the computational flow, and in the back-
ward pass every read of a variable translates to a write adjoint, and vice versa. The latter is particularly
complex for parallelized algorithms, especially as the automatic parallelization of algorithms is hard.
For example, an embarrassingly parallel algorithm where each process reads the data of all the input
space leads to a race condition in its adjoint that is challenging to address. Current state-of-the-art
AutoDiff tools use specialized workarounds for certain cases. However, a generalized solution to this
problem does not exist. The promising AutoDiff tool Enzyme [18] is able to differentiate CUDA kernels
in Julia, but it is currently not able to digest all of our code.

To that end, we hand differentiate our GPU kernels for the Forward-over-Reverse Hessian pro-
jection. We then apply ForwardDiff to these adjoint kernels to extract second-order sensitivities
according to the Forward-over-Reverse model. Notably, our test case (see Section 3.1) involves re-
versing a graph-based problem (with vertices V and edges E). The variables of the equations are
defined on the vertices. To adjoin or reverse these kernels, we pre-accumulate the adjoints first on
the edges and then on the nodes, thus avoiding a race condition on the nodes. This process yields a
fully parallelizable adjoint kernel. Unfortunately, current AutoDiff tools are not capable of detecting
such structural properties. Outside the kernels we use a tape (or stack) structure to store the values
computed in the forward pass and to reuse them in the reverse (split reversal). The kernels themselves
are written in joint reversal, meaning that the forward and reverse passes are implemented in one
function evaluation without intermediate storage of variables in a data structure. For a more detailed
introduction to writing adjoint code we recommend [13].

5.2 Batched sparse linear algebra

The block BatchSparseSolve presented in Section 4.3 requires the resolution of two sparse linear
systems with multiple right-hand sides, as illustrated in Equation (10). This part is critical because
in practice a majority of the time is spent inside the linear algebra library in the parallel reduction
algorithm. To this end, we have wrapped the library cuSOLVER_RF in Julia to get an efficient LU
solver on the GPU. For any sparse matrix A ∈ Rn×n, the library cuSOLVER_RF takes as input an LU
factorization of the matrix A precomputed on the host, and transfers it to the device. cuSOLVER_RF
has two key advantages to implement the resolution of the two linear systems in BatchSparseSolve.
(i) If a new matrix Ã needs to be factorized and has the same sparsity pattern as the original matrix
A, the refactorization routine proceeds directly on the device, without data transfer between the
host and the device. (allowing to match the performance of the state-of-the-art CPU sparse library
UMFPACK [9]). (ii) Once the LU factorization has been computed, the forward and backward solves
for different right-hand sides b1, · · · , bN can be computed in parallel, in batch mode.

5.3 Implementation of the parallel reduction

By combining the batch AutoDiff with the batch sparse linear solves of cuSOLVER_RF, we get a
fully parallel algorithm to compute the reduced Hessian projection. We compute the reduced Hessian
∇2f ∈ Rnp×np by blocks of N Hessian-vector products. If we have enough memory to set N = np, we
can compute the full reduced Hessian in one batch reduction. Otherwise, we set N < np and compute
the full reduced Hessian in Nb = div(n,N) + 1 batch reductions.
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Tuning the number of batch reductions N is nontrivial and depends on two considerations. How
efficient is the parallel scaling when we run the two parallel blocks BatchTensorProjection and
BatchSparseSolve? and Are we fitting into the device memory? This second consideration is
indeed one of the bottlenecks of the algorithm. In fact, if we look more closely at the memory usage of
the parallel reduced Hessian, we observe that the memory grows linearly with the number of batches
N . First, in the block BatchTensorProjection, we need to duplicate N times the tape used in
the reverse accumulation of the Hessian in Section 5.1, leading to memory increase from O(MT ) to
O(MT ×N), with MT the memory of the tape. The principle is similar in SparseSolve, since the
second-order adjoints z and ψ are also duplicated in batch mode, leading to a memory increase from
O(2nx) to O(2nx ×N). This is a bottleneck on large cases when the number of variables nx is large.

The other bottleneck arises when we combine together the blocks BatchSparseSolve and
BatchTensorProjection. Indeed, BatchTensorProjection should wait for the first block
BatchSparseSolve to finish its operations. The same issue arises when passing the results of
BatchTensorProjection to the second BatchSparseSolve block. As illustrated by Figure 4, we
need to add two explicit synchronizations in the algorithm. Allowing the algorithm to run the reduction
algorithm in a purely asynchronous fashion would require a tighter integration with cuSOLVER_RF.

6 Numerical experiments

In this section we provide extensive benchmarking results that investigate whether the computation of
the reduced Hessian ∇2f with Algorithm 2 is well suited for SIMD on GPU architectures. We show
that our GPU implementation is 30 times faster than its sequential CPU equivalent on the largest
instances and provide a path forward to further improve our implementation. Then, we illustrate that
the reduced Hessian computed is effective to track a suboptimal in a real-time setting.

6.1 Experimental setup

6.1.1 Hardware

Our workstation Moonshot is provided by Argonne National Laboratory. All the experiments run on
a NVIDIA V100 GPU (with 32GB of memory) and CUDA 11.3. The system is equipped with a
Xeon Gold 6140, used to run the experiments on the CPU (for comparison). For the software, the
workstation works with Ubuntu 18.04, and we use Julia 1.6 for our implementation. We rely on our
package KernelAbstractions.jl and GPUArrays.jl to generate parallel GPU code.

All the implementation is open-sourced, and an artifact is provided to reproduce the numerical
results.1

6.1.2 Benchmark library

The test data represents various case instances (see Table 1) in the power grid community obtained
from the open-source benchmark library PGLIB [2]. The number in the case name indicates the
number of buses (graph nodes) nv in the power grid: nx is the number of variables, while np is the
number of parameters (which is also equal to the dimension of the reduced Hessian and the parameter
space Rnp).

6.2 Numerical results

6.2.1 Benchmark reduced Hessian evaluation

For the various problems described in Table 1, we benchmarked the computation of the reduced Hessian
∇2f for different batch sizes N . Each batch computes N columns of the reduced Hessian (which has

1Available on https://github.com/exanauts/ExaPF-Opt/tree/master/papers/pp2022

https://github.com/exanauts/ExaPF-Opt/tree/master/papers/pp2022
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a fixed size of np × np). Hence, the algorithm requires Nb = div(np, N) + 1 number of batches to
evaluate the full Hessian.

Table 1: Case instances obtained from PGLIB.

Case nv ne nx np

IEEE118 118 186 181 107
IEEE300 300 411 530 137

PEGASE1354 1,354 1,991 2,447 519
PEGASE2869 2,869 4,582 5,227 1,019
PEGASE9241 9,241 16,049 17,036 2,889

GO30000 30,000 35,393 57,721 4,555

In Figure 5, we compare on various instances (see Table 2) the reference CPU implementation
together with the full reduced Hessian computation ∇2f on the GPU (with various batch sizes N).
The CPU implementation uses the sparse LU solver UMFPACK with iterative refinement disabled2

(it yields no numerical improvement, however, considerably speeds up the computation). We scale the
time taken by the algorithm on the GPU by the time taken to compute the full reduced Hessian on
the CPU: a value below 1 means that the GPU is faster than the CPU. We observe that the larger
the number of batches N , the faster the GPU implementation is. The speed-up is not large on small
instances (≈ 2 for IEEE118 and IEEE300), but we get up to a 30 times speed-up on the largest instance
GO30000, when using a large number of batches. We observe also that the computation time decreases
almost linearly as we increase the number of batches, until we reach the scalability limit of the GPU
(generally, when N ≥ 256 = 28).

22 23 24 25 26 27 28 29

Batch size N

10 2

10 1

100

R
at

io
 (G

PU
 / 

C
PU

)

case30000
case1354
case9241pegase
case2869
case118
case300

Figure 5: Parallel scaling of the total reduced Hessian accumulation ∇2f with batch size N : A ratio value < 1
indicates a faster runtime compared with that of UMFPACK and AutoDiff on the CPU in absolute time. The dotted
lines indicate the linear scaling reference. Lower values imply a higher computational intensity.

Table 2: Size of key matrices (seed matrix W , multiple right-hand sides B, and final reduced Hessian ∇2f) for a batch
size of N . On GO30000, instantiating the three matrices W,B,∇2f for N = 256 already takes 286MB in the GPU
memory.

.

Cases Dimensions
W ∈ Rnp×N B ∈ Rnx×N ∇2f ∈ Rnp×np

IEEE118 107×N 181×N 107× 107
IEEE300 137×N 530×N 137× 137

PEGASE1354 519×N 2, 447×N 519× 519
PEGASE2869 1, 019×N 5, 227×N 1, 019× 1, 019
PEGASE9241 17, 036×N 17, 036×N 2, 889× 2, 889

GO30000 30, 000×N 35, 393×N 4, 555× 4, 555

2We set the parameter UMFPACK_IRSTEP to 0.
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Figure 6 shows the relative time spent in the linear algebra and the automatic differentiation
backend. At small batch sizes N the bottleneck is the linear solver, while the derivative computation
taking only a small fraction of the total runtime. As we increase N the computational intensity is
higher, leading to a more efficient usage of the linear solver cuSOLVER_RF with multiple right-hand
sides. However, the batched automatic differentiation backend leads a to a smaller speed-up, increasing
the fraction of the total runtime spent in the block BatchAutoDiff. But even for N = 512, the
forward and backward solves still amount to more than two-third of the total running time.
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Figure 6: Decomposition of the runtime against the number of batch N , on case PEGASE 9241. With increasing
batch size the derivative computation becomes more dominant. Notice the required number of batches div(np, N) for
the reduced Hessian ∇2f decreases with increasing N .

6.2.2 Discussion

Our analysis shows that the reduced Hessian scales with the batch size, while hitting a utilization
limit for larger test cases. First, our kernels may still have potential for improvement, thus further
improving utilization scaling as long as we do not hit the memory capacity limit. However, the sparsity
of the power flow problems represents a worst-case problem for SIMD architectures, common in graph-
structured applications. Indeed, in contrast to PDE-structured problems, graphs are difficult to handle
in SIMD architectures because of their unstructured sparsity patterns.

The second bottleneck is the sparse linear algebra: As Figure 6 shows, the time spent in
cuSOLVER_RF amounts to more than two-thirds of the total computation time on the GPU. We
hope that future improvements in cuSOLVER_RF will help decrease that time further. An alternative
is to implement multiple right-hand sides, block preconditioned, iterative linear solvers. They represent
a promising portable alternative for other GPU architectures such as AMD or Intel Xe that may not
provide an optimized direct linear solver like cuSOLVER_RF.

6.3 Real-time tracking algorithm

Finally, we illustrate the benefits of our reduced Hessian algorithm by embedding it in a real-time
tracking algorithm.

Let wt = (P d
t ,Q

d
t ) be the loads in (3), indexed by time t and updated every minute. In that

setting, the reduced space problem is parameterized by the loads wt:

min
pt

F (pt;wt) := f
(
x(pt),pt;wt

)
. (17)

The real-time algorithm aims at tracking the optimal solutions p?t associated with the sequence of
problems (17), for all time t. To achieve this, we update the tracking point pt by exploiting the
reduced Hessian at every minute. The procedure is the following:
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1. For new loads wt = (P d
t ,Q

d
t ), compute the reduced gradient gt = ∇pF (pt;wt) and the reduced

Hessian Ht = ∇2
ppF (pt;wt) using Algorithm 2.

2. Update the tracking control pt with pt+1 = pt + dt, where dt is a descent direction computed
as solution of the dense linear system

Ht dt = −gt . (18)

In practice, we use the dense Cholesky factorization implemented in cuSOLVER to solve the dense
linear system (18) efficiently on the GPU.

We compare the tracking controls {pt}t=1,··· ,T with the optimal solutions {p?t }t=1,··· ,T associated
to the sequence of optimization problems (17). Note that solving (17) to optimality is an expensive
operation, involving calling a nonlinear optimization solver. On the contrary, the real-time tracking
algorithm involves only (i) updating the gradient and the Hessian for the new loads wt and (ii) solving
the dense linear system (18).

We depict in Figure 7 the performance of the real-time tracking algorithm, by comparing with the
optimal solution. We observe in the first subplot that the operating cost associated to {pt}t is close
to the optimal cost associated to {p?t }t. The second subplot depicts the evolution of the absolute
difference |pt − p?t |, component by component. We observe that the difference remains tractable: the
median (Quantile 50%) is almost constant, and close to 10−2 (which in our case is not a large deviation
from the optimum) whereas the maximum difference remains below 0.5. At each time t, the real-time
algorithm takes in average 0.09s to update pt, with

1. 0.05s to compute the gradient gt and the reduced Hessian Ht (the reduced Hessian is evaluated
with a number of batches N = 256).

2. 0.04s to solve the dense linear system (18) with cuSOLVER.

Hence, this real-time use case leverages the high parallelism of our algorithm to evaluate the reduced
Hessian.

Figure 7: Performance of the real-time tracking algorithm on PEGASE1354, comparing with the optimal solutions.
The real-time algorithm runs every minute, during one hour. The first plot shows the evolution of the operating cost
along time, whereas the second plot shows the evolution of the absolute difference between the tracking control pt
and the optimum p?t .
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7 Conclusion

In this paper we have devised and implemented a practical batched algorithm (see Algorithm 2)
to extract the second-order sensitivities from a system of nonlinear equations on SIMD architectures.
Our implementation on NVIDIA GPUs leverages the programming language Julia to generate portable
kernels and differentiated code. We have observed that the batch code achieves a 30x speed-up on the
largest cases, compared with a CPU implementation. We have illustrated the interest of the reduced
Hessian when used inside a real-time tracking algorithm.

Our solution adheres to the paradigm of differential and composable programming, leveraging
the built-in metaprogramming capabilities of Julia. The method can be extended to other classes
of problems (such as uncertainty quantification, optimal control, trajectory optimization, or PDE-
constrained optimization). By reducing sparse problems to dense ones, we believe that this approach
is promising to solve large-scale nonlinear optimization problems on GPU architectures.
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