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Abstract : This paper studies a stochastic variant of the vehicle routing problem (VRP) where both
customer locations and demands are uncertain. In particular, potential customers are not restricted
to a predefined customer set but are continuously spatially distributed in a given service area. The
objective is to maximize the served demands while fulfilling vehicle capacities and time restrictions.
We call this problem the VRP with stochastic customers and demands (VRPSCD). For this problem,
we first propose a Markov Decision Process (MDP) formulation representing the classical centralized
decision-making perspective where one decision-maker establishes the routes of all vehicles. While the
resulting formulation turns out to be intractable, it provides us with the ground to develop a new
MDP formulation of the VRPSCD representing a decentralized decision-making framework, where ve-
hicles autonomously establish their own routes. This new formulation allows us to develop several
strategies to reduce the dimension of the state and action spaces, resulting in a considerably more
tractable problem. We solve the decentralized problem via Reinforcement Learning, and in particular,
we develop a Q-learning algorithm featuring state-of-the-art acceleration techniques such as Replay
Memory and Double Q Network. Computational results show that our method considerably outper-
forms two commonly adopted benchmark policies (random and heuristic). Moreover, when comparing
with existing literature, we show that our approach can compete with specialized methods developed
for the particular case of the VRPSCD where customer locations and expected demands are known
in advance. Finally, we show that the value functions and policies obtained by our algorithm can be
easily embedded in Rollout algorithms, thus further improving their performances.

Keywords: Stochastic vehicle routing problem, approximate dynamic programming, Q-learning, de-
centralized decision-making
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1 Introduction

Freight distribution plays a crucial role in the supply chain system for its significant contribution to

the overall operating cost, as well as for its impact on the service level provided to customers (Ghiani,

Laporte, and Musmanno 2004). The current growth of e-commerce, by drastically increasing the

volume of home deliveries, mostly in the form of parcel distribution, is further contributing to the

relevance and the challenges of the last-mile transportation distribution. Fortunately, new tools are

available to planners nowadays. On the one hand, advances in Information Technology (IT) enable

fully connected distribution systems where vehicle and customer statuses are updated in real-time

and shared across the system. On the other hand, the rapidly approaching advent of Autonomous

Vehicles (AVs) and Unmanned Aerial Vehicles not only allows the planner to overcome several operating

constraints afflicting traditional transportation, such as driver shift schedules but also opens the door

to entirely different management paradigms, where traditional centralized decision making may shift

towards a more autonomous and decentralized approach. It is not a surprise, however, that these new

opportunities come with a completely new set of planning challenges, thus calling for new streams of

research (see, for example Narayanan, Chaniotakis, and Antoniou 2020).

One of the core decision problems in freight distribution is known under the name of the vehicle

routing problem (VRP, Toth and Vigo 2014). In its simpler definition, the VRP consists in dispatching

a fleet of vehicles, initially located at a depot, to serve the demand of a known set of customers in

such a way that a given performance measure is optimized (typically operations costs). In general,

several side constraints must be fulfilled, such as vehicle capacities, time restrictions, Etc. The VRP

has been intensively studied in the last 50 years, and the related literature is extremely rich (Vidal,

Laporte, and Matl 2020). Most of this vast literature focuses on deterministic and static versions of the

problem. However, when dealing with freight distribution in real-life contexts, a portion of the data

may be unknown at the moment of planning, thus calling for stochastic versions of the VRP (SVRP).

The most studied sources of uncertainty in literature are customer demands, customer locations, and

travel and service times. For a complete review on stochastic VRPs, we refer the reader to Gendreau,

Jabali, and Rei (2014), Oyola, Arntzen, and Woodruff (2018).

This paper introduces a stochastic variant of the VRP where both customer locations and de-

mands are uncertain. We call this problem the Vehicle Routing Problem with Stochastic Customers

and Demands (VRPSCD). In our setting, the planner has no information about the exact number of

customers, their position within the service area, and their expected demands before the day of opera-

tion. Similarly to the work of Gendreau, Laporte, and Séguin (1995, 1996), the stochastic information

is revealed in two phases: 1) at the beginning of each operating day, customer locations and expected

demands become known, and 2) upon the visit to a customer, its actual demand is observed. We

do not assume the knowledge of the probability distribution underlying the customers’ locations and

demand realization processes. However, we do assume the availability of historical data in the form

of customer demand realizations. The VRPSCD then consists in dispatching a homogeneous fleet of

vehicles initially located at the depot to serve the demands of the realized set of customers within

a given deadline. Vehicles are allowed to perform so-called preventive restocking (see, for example

Louveaux and Salazar-González 2018), thus enabling the possibility to return to the depot before the

vehicle capacity is filled. The objective is to maximize the total served demand.

The way the VRPSCD models the uncertainty, alongside the considered information realization

process, finds application in several real-world problems. Companies offering courier services, for

example, typically possess statistical information about the expected number of requests and volumes

for a given geographical area. However, the actual customer locations are only revealed shortly before

operations. The second layer of uncertainty in the VRPSCD is given by customer demands. Typically,

the uncertainty in customer demands is due to factors such as inaccurate descriptions of the parcel

provided by customers and the adoption of simplified models to estimate the actual space a given

set of parcels occupies in the vehicle (see, for example Côté, Gendreau, and Potvin 2020, Ghosal

and Wiesemann 2020). Further examples of similar information realization processes can be found
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in contexts such as waste collection for industrial applications, beverage distribution for convenience

stores, fuel distribution for gas stations, and others.

Several streams of literature are related to the VRPSCD. The first one focuses on variants of the

VRP where customers are known in advance while their demand is stochastic. Within this stream, we

can identify two main problem settings. In the first, vehicles must fully serve all customer demands.

Due to the uncertainty on the latter, vehicles may have to return to the depot to reload and continue

the service. The objective is to minimize the expected total costs, which includes returns to the

depot (see, for example Bertsimas 1992, Laporte et al. 2002, Secomandi 2000, 2001, Teodorović and

Pavković 1992, Dror, Laporte, and Trudeau 1989, Louveaux and Salazar-González 2018, Florio, Hartl,

and Minner 2020). In the second stream, similarly to the VRPSCD, a deadline on the duration of the

operations is imposed. As a result, not all customers may be served, and the objective is to maximize

the total demand serviced within the deadline (see, for example Goodson, Ohlmann, and Thomas 2013,

Goodson, Thomas, and Ohlmann 2016, Erera, Morales, and Savelsbergh 2010, Mendoza, Rousseau,

and Villegas 2016).

In addition to stochastic demands, the VRPSCD also considers stochastic customers. Stochastic

customers and demands have been studied in Gendreau, Laporte, and Séguin (1995, 1996). The

authors consider a predefined customer set with known locations. Customers are characterized by a

service request probability, together with their expected demands. Similar to the VRPSCD introduced

in this paper, customers and demands are revealed in two phases. The first phase reveals the subset

of customers requesting service. The actual demands are observed upon visiting the customers. It is

worth noting that stochastic customers’ presence has also been studied in several works focusing on

the Traveling Salesman Problem (see, for example Campbell and Thomas 2008, Jaillet 1988).

From the modeling perspective, this paper can be seen as a generalization of the work by Gendreau,

Laporte, and Séguin (1995, 1996) on the one hand, and the work by Goodson, Ohlmann, and Thomas

(2013), Goodson, Thomas, and Ohlmann (2016) on the other. In fact, we generalize the problem setting

in Gendreau, Laporte, and Séguin (1995, 1996) by considering customer locations to be continuously

spatially distributed in the service area, rather than restricted to a predefined discrete set. On the other

hand, the problem in Goodson, Ohlmann, and Thomas (2013), Goodson, Thomas, and Ohlmann (2016)

can be seen as a particular case of our model where customer locations and their expected demands

are known in advance.

We can broadly classify solution methods for stochastic VRPs into two main categories (Gendreau,

Jabali, and Rei 2016): the a priori optimization and the re-optimization categories. By somewhat

generalizing the definition provided by Gendreau, Jabali, and Rei (2016), we say that a method be-

longs to the a priori category when it establishes a set of complete routes here and now, before the

stochastic information is revealed. This feature is common to several mathematical frameworks for

stochastic VRPs, including two-stage stochastic programming, chance-constraint programming, robust

optimization, and distributionally robust optimization. These routes may be modified, for example

in two-stage stochastic programming, as the stochastic information is revealed, according to a set of

predefined rules called recourse policies. On the other hand, we say that a method belongs to the

re-optimization paradigm when it builds routes dynamically by iteratively leveraging the information

revealed during operations, rather than relying (solely) on a priori routes. It is worth noting that,

according to this definition, solution methods providing operating policies such as those obtained by

stochastic dynamic programming and related approximation methods are re-optimization methods.

In our problem setting, given that the set of potential customers is not known in advance, nor

is their location, the a priori approach cannot be straightforwardly applied. For this reason, we

make the choice to address the VRPSCD via the re-optimization paradigm. More specifically, we

first provide a complete model of the VRPSCD in terms of a Markov Decision Process (MDP). This

model represents the classical centralized decision-making perspective, where the decision-maker has

full information on the vehicles’ and clients’ statuses and establishes the routes for all vehicles. The

resulting model is, however, intractable even for small problem instances. The main challenge comes
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from the multi-vehicle nature of the VRPSCD and the consequent explosion in the dimension of the

state and action spaces. Nonetheless, this formulation provides us with the ground to develop a new

decentralized MPD formulation of the VRPSCD, which allows us to reduce the dimension of the state

and action spaces drastically. One could think of the resulting formulation as representing a different

decision-making framework where vehicles autonomously decide the next action to be taken based on

the information currently available to them. As it will be clarified in Section 4, while this formulation

can be cast in terms of autonomously regulated vehicles, the resulting decision policy can also be

applied in a centralized operating fashion. The decentralized formulation also opens the door to two

approximation strategies. The first is based on the observation that two vehicles will choose the same

action if they are in the same situation. As a result, instead of searching for one policy for each

vehicle, we rather search for a single policy that is the same for all vehicles. We will see in Section 4

that this is crucial for the success of the proposed solution algorithm. In the second approximation

strategy, the decentralized method facilitates the selection of information that is more relevant to the

decision-making of a single vehicle (for example, the set of closest customers).

To find the resulting operational policy, we resort to Reinforcement Learning (Watkins and Dayan

1992, Sutton and Barto 2018), and in particular, we implement a Q-learning algorithm (Watkins

and Dayan 1992), which is an approximate and model-free form of the Value Iteration Algorithm

for stochastic dynamic programming (Bertsekas 2010). It is an off-line method in the sense that it

provides an operational policy that is computed entirely before the beginning of the operations. Q-

learning enables us to estimate the value of each state-action pair via simulation. In its simplest form,

states and actions are discrete, and state-action values are represented as a lookup table. However,

this paper proposes a continuous state representation and incorporates a two-layer artificial neural

network to approximate the Q values. Our implementation features two main key elements. First,

the challenges of variable-sized customer sets are addressed by adopting a fixed-size vector based on a

particular heatmap-style encoding technique. Second, given the proposed decentralized model and our

choice to develop a single policy for all vehicles, our algorithm is only required to maintain a single set

of Q values, which is iteratively updated according to the simulation data from all vehicles. Finally,

we develop several state-of-the-art techniques to improve the overall performance of our algorithm,

including Replay Memory (Mnih et al. 2015) and Double Q Network (Van Hasselt, Guez, and Silver

2016). We call the resulting algorithm DecQN.

We conduct a thorough computational analysis. First, given that, to the best of our knowledge,

no instance set is available for the VRPSCD in the literature, we construct a new instance set. We

then implement two benchmark policies to compare with the DecQN. Results show that the DecQN

considerably outperforms the considered benchmark policies. To provide a comparison with exist-

ing literature, we trained our DecQN on instances of the VRPSD, which is a particular case of the

VRPSCD where the customer set is not stochastic. Results show that even though our algorithm

is not tailored to exploit the in-advance knowledge of customer locations, it is competitive with the

current state-of-the-art algorithm for the VRPSD (Goodson, Thomas, and Ohlmann 2016). Further

computational analysis is then geared towards testing how the training phase of the DecQN can be

guided towards generalization over different instances and problem dimensions, such as duration limits,

stochastic variability, Etc. Finally, in the last experiment, we show that the obtained policies can be

easily employed in an on-line algorithm, such as the Rollout Algorithm, thus further improving their

performances.

To summarize, the contributions of the present work are as follows:

• We introduce the VRPSCD, which is a variant of the VRP with stochastic customers and de-

mands. Our model generalizes existing works by allowing potential customers to be continuously

distributed in a given service area instead of being constrained to a predefined set of customers.

• For this new problem, we provide a formulation based on MDPs, representing the traditional

centralized decision-making framework. Given the fact that we are dealing with multiple vehicles,

the resulting problem is intractable even for small problem instances.
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• We then provide a decentralized MDP-based formulation of the VRPSCD. Among the main

contributions of this paper is that this new decentralized formulation allows us not only to

decompose the problem by vehicle, but also to search for a single policy that is the same for all

vehicles. Another contribution descending from the decentralized formulation is that it enables

us to develop computationally efficient state and action space aggregation strategies.

• We solve the resulting problem via a state-of-the-art Q-learning algorithm, called DecQN, fea-

turing recent accelerating strategies such as Replay Memory (Mnih et al. 2015) and Double Q

Networks (Van Hasselt, Guez, and Silver 2016). It is worth noting that the learning nature of

the DecQN, together with the decentralized formulation, is a key factor for the efficiency of the

overall algorithm because simulated experiences can be shared among vehicles.

• We perform an extensive computational experiment. Results show that the DecQN clearly out-

performs two benchmark policies for VRPSCD. Furthermore, when tested on instances of the

VRPSD, DecQN is competitive with state-of-the-art methods specifically designed for that prob-

lem. Moreover, we show that the training phase of the DecQN can be generalized to tackle

problem instances varying in terms of several dimensions, such as duration limits and stochas-

tic variability. Finally, we show that the obtained off-line policies are suitable to be used as

base policies in on-line algorithms, such as the Rollout Algorithm, thus further improving their

performances.

The paper is organized as follows. We begin with a detailed literature review in Section 2. In

Section 3 we describe the problem in detail by introducing the notations and providing the first

centralized MDP formulation. We then present the decentralized approach in Section 4 and describe

the proposed Q-learning algorithm in Section 5. In Section 6 the experimental results are presented.

Finally, we conclude this research in Section 7.

2 MDP-based solution methods for stochastic and dynamic VRPs

This section reviews works addressing stochastic or dynamic versions of the VRP and adopting the

re-optimization paradigm according to the provided definition, i.e., methods building solutions dynam-

ically by iteratively leveraging the information revealed during operations. More specifically, given the

existing links with our approach, we focus on MDP-based solution methods, including approximate

dynamic programming, reinforcement learning, and multi-agent reinforcement learning. For a more

general review on re-optimization methods, the reader is referred to Psaraftis, Wen, and Kontovas

(2016), Ritzinger, Puchinger, and Hartl (2016).

Dynamic programming (DP)(Bellman 1958) provides a solid theoretical framework and a family

of algorithms to solve decision problems stated in terms of MDPs. Unfortunately, classical DP al-

gorithms, such as Value Iteration and Policy Iteration, tend to be affected by the so-called curses of

dimensionality (Powell 2011); thus, their applicability is limited to relatively small-sized decision prob-

lems. Furthermore, these algorithms assume the knowledge of the probability distribution governing

the evolution of the system at hand, although this assumption rarely holds in real-life problems. Sev-

eral approaches have been proposed in the literature to overcome the above difficulties; some limit the

state-space exploration to a subset of the possible system states (Secomandi and Margot 2009), others

provide approximated versions of the classical DP algorithms, e.g., the Approximate Value Iteration

such as the Q-learning (Watkins and Dayan 1992), or the Approximate Policy Iteration (API) such

as Policy Gradients (Williams 1992, Sutton et al. 2000). Generally speaking, depending on how the

computational effort is distributed, whether during or before operations, we can classify these methods

into on-line and off-line algorithms, respectively.

The Rollout Algorithm (RA) is one of the most common on-line algorithms and adopts a base pol-

icy and simulation over a scenario sample to approximate the value function (Bertsekas, Tsitsiklis, and

Wu 1997). Secomandi (2001) introduced an RA for the single-vehicle VRPSD, where the vehicle must

serve all customers and minimize the total travel time. The same problem was addressed by Novoa and
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Storer (2009). They improved the work of Secomandi (2001) by employing a different base policy and

using a two-step, rather than the classical one-step, rollout. Fan, Wang, and Ning (2006) addressed the

VRPSD with multiple vehicles. They statically partitioned the customer set according to a geographi-

cal criterion and applied the method by Secomandi (2001) on each partition. Goodson, Ohlmann, and

Thomas (2013), Goodson, Thomas, and Ohlmann (2016) extended this problem by incorporating a

duration limit within which all operations must be completed. Unlike previous works, the objective

function is to maximize the total served demand. Goodson, Ohlmann, and Thomas (2013) proposed

a fixed-route heuristic comprising a neighborhood search heuristic to generate alternative routes and

an approximate method to estimate the value of each route. They embedded the fixed-route heuristic

into an RA. Inspired by the decomposition proposed by Fan, Wang, and Ning (2006), they presented

a dynamic decomposition method to dynamically re-partition customers among vehicles during op-

erations. In particular, customers are assigned to the same partition if they are visited by the same

route according to the results of the fixed-route heuristic. Goodson, Thomas, and Ohlmann (2016)

propose a new procedure, called restocking fixed-route heuristic, to estimate the expected value of a

fixed route. Using an auxiliary dynamic program, they provide route evaluations both with or with-

out preventive restocking. Similar to Goodson, Ohlmann, and Thomas (2013), they could not solve

instances with more than 25 customers and used the dynamic decomposition method, enabling them

to handle instances with up to 100 customers.

In addition to the RA, other on-line methods have been proposed in the literature. For the single-

vehicle VRPSD, Secomandi and Margot (2009) presented the Partial Re-optimization method, where

a subset of states is heuristically selected and evaluated by backward DP. For the VRPSD with two

vehicles, Zhu et al. (2014) introduced the Paired Cooperative Re-optimization method inspired by the

Partial Re-optimization approach proposed by Secomandi and Margot (2009). The authors formulated

the problem as a bilevel MDP and suggested a heuristic procedure to approximate the value function.

We can find several off-line methods that have been successfully applied to SVRPs (Powell and

Topaloglu 2006, Godfrey and Powell 2002). For the single-vehicle VRPSD, Secomandi (2000) pro-

posed an API method and compared it with an RA. For the single-vehicle VRP with stochastic

customers, Nazari et al. (2018) presented an Actor-Critic method. The authors assume that potential

customers’ locations are unknown, and customers can require service at any point in the service area.

The authors encode the stochastic customer set via an Attention mechanism to obtain a representation

in terms of a vector whose size is invariant with the number of customers. Stochastic customer sets

have also been addressed in the context of the TSP. Dai et al. (2017) adopt structure2vec for graph

embedding, Kool, van Hoof, and Welling (2018) propose an attention encoder, while Miki, Yamamoto,

and Ebara (2018) implement a Convolutional Neural Network.

The literature on re-optimization methods for VRPSCD with multiple vehicles is relatively scarce.

In particular, to the best of our knowledge, no off-line re-optimization method has been proposed for

this problem in the literature. However, for the multi-vehicle VRP with deterministic demands and

stochastic customer realizations, a multi-agent attention model has been proposed in Zhang et al.

(2020). The model is trained according to the policy gradient method and provides a policy that

generates a set of routes.

Multi-agent RL-based algorithms have also been introduced for the Dial-a-Ride Problem with

multiple vehicles and stochastic orders (Qin et al. 2020, Tang et al. 2019, Kullman et al. 2020, Holler

et al. 2019). Qin et al. (2020) and Tang et al. (2019) implemented Q values in the form of one

Deep Q Network (DQN) for each vehicle and used a central combinatorial optimization problem as a

coordinator to assign orders to vehicles. Kullman et al. (2020) adopted an attention encoder-decoder

as the central coordinator and trained the model with Actor-Critic. For a similar problem, Holler

et al. (2019) compared Actor-Critic and DQN methods without observing significant performance

differences.

Summarizing the above literature review, we can say that re-optimization algorithms seem to be

promising for the solution of stochastic and dynamic versions of the VRP and have received increased
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attention, especially during the last decade. However, to the best of our knowledge, no re-optimization

method exists in the literature for the VRPSCD introduced in this paper. The VRPSCD generalizes

several existing problems, such as those introduced in Gendreau, Laporte, and Séguin (1995, 1996)

and Goodson, Ohlmann, and Thomas (2013), Goodson, Thomas, and Ohlmann (2016), and it is an

extremely challenging problem. The fact that the set of potential customers is not known in advance

makes it difficult to adopt route-based policies. On the other hand, the fact that the number of

customers is stochastic requires particular techniques to enable fixed-size vector representations to be

suitably adopted in a Reinforcement Learning algorithm. We argue that the decentralized formulation

proposed in this paper, together with the adoption of the heatmap-style representation of the stochastic

customer set, are original contributions to the literature and essential components for the success of

the proposed approach.

3 The centralized VRPSCD

In Section 3.1 we formally define the VRPSCD and introduce some notation. The centralized MDP

formulation is provided in Section 3.2.

3.1 Problem definition

We are given a service area and a depot located in the service area where a set V of m homogeneous

vehicles with capacity Q is initially placed. Customers may request service from any point in the service

area. The set of customers requesting service C0 is revealed at the beginning of the operation period

(e.g., every morning). We denote n the number of realized customers (n = |C0|). Each customer c ∈ C0
is characterized by a location lc, and a probabilistic demand whose expected value d̄c is assumed to be

known. Accordingly, each customer is defined by a tuple of (lc, d̄c). The customer’s actual demand d̂c
is only realized upon the first visit. We assume that the customer’s demand is splitable, meaning

that if a vehicle is unable to fully serve the customer, it will do so to the fullest extent possible. The

rest of the demand may be served by the same or a different vehicle at a later moment. The time

taken to travel between locations a and b is assumed to be deterministic and is denoted τa,b. Vehicles

begin their trips at the depot, serve a certain subset of customers, and end their routes at the depot.

Furthermore, vehicles must complete their operations before a given duration limit L. Vehicles may

return to the depot during their trip for restocking operations after leaving a customer and before

visiting the next one, even if the vehicle capacity has not been filled yet. Such a policy is known in

the literature as restocking. The objective is to maximize the expected total served demand.

3.2 The centralized formulation

In this section, we provide a centralized MDP formulation of the VRPSCD. We use the term centralized

to refer to the classical decision-making approach, where routes are built by one central decision-maker.

An MDP formulation generally consists of a state which represents the current status of the system,

a control action, and a function describing the transition of the system to a new state once an action

is taken and the exogenous information is revealed.

In our centralized MDP formulation, the decision epoch is any point in time at which either new

information is revealed, such as at the beginning of the horizon, when the set of customers is revealed,

and during operations, when at least one vehicle arrives at a customer, or when a vehicle arrives at the

depot. At each decision epoch k, the status of the system is captured and represented by a state sk.

For the VRPSCD, we represent the state of the system as follows:

sk = ([(lc, hc, d̄c, d̂c)]c∈C0 , [(lv, av, qv)]v∈V , tk), (1)

where the first two groups of components refer to the state of customers and vehicles, respectively, and

the last component indicates the time.
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Note that although the customer and vehicle state components are naturally indexed by the decision

epoch k, we have simplified the notation by omitting the index k. The state of each customer c ∈ C0 is

represented as a tuple of (lc, hc, d̄c, d̂c). The first two components indicate the location and customer’s

availability, while the last two components are the customer’s expected demand and the customer’s

unserved demand. The customer’s availability hc takes value 1 if the customer is available to be served

and 0 otherwise. The customer’s unserved demand indicates the volume of demand that is observed

but not served yet. For each vehicle v ∈ V, a tuple of (lv, av, qv) forms its state, where lv, av, and qv are

the destination location, arrival time at destination, and the current available capacity, respectively.

The time of the system at decision epoch k is denoted as tk.

An m-dimensional vector of xk = (x1
k, ..., x

m
k ) denotes the action set, where xvk indicates the next

location vehicle v travels to. We define V̄k = {v ∈ V|av = tk} the subset of vehicles that arrive at their

destinations and are available to take action at decision epoch k. We call V̄k the set of active vehicles.

At decision epoch k, the action xk belongs to the action space A(sk) defined as:

A(sk) ={xk ∈ {C0 ∪ {depot}}m : (2)

xvk = lv, ∀ v ∈ V \ V̄k, (3)

xvk = depot, ∀ {v ∈ V̄k|qv = 0}, (4)

xvk 6= xv
′

k , ∀ {v, v′ ∈ V|v 6= v′, xv
′

k 6= depot}, (5)

xvk ∈ J(sk, v) ∪ depot, ∀ v ∈ V̄k, (6)

xvk 6= depot, ∀
{
v ∈ V̄k| J(sk, v) \X−vk 6= ∅, lv = depot}

}
, (7)

where X−vk = {x1
k, ..., x

v−1
k , xv+1

k , ..., xmk } denotes the set of actions at time k for all vehicles except

vehicle v, and J(sk, v) the set of reachable customers from vehicle v that have not been served before:

J(sk, v) = {c ∈ C0|hc = 1, τv,c + τc,depot ≤ L− tk} . (8)

In the defined action space A(sk), Condition (3) enforces the fact that vehicles cannot be relocated

when assigned to a destination. Condition (4) implies that vehicles with no available capacity should

return to the depot to replenish. Based on Condition (5), no two vehicles can choose the same

destination unless the destination is the depot. Also, Condition (6) obliges vehicles to choose actions

from the set of reachable customers J(sk, v) and the depot. Finally, in Condition (7), waiting in the

depot is only allowed when there is no feasible customer to visit.

The information about customers’ presence and demand volumes is revealed in two phases. At the

first decision epoch (k = 0), no customer is realized yet. Consequently,

s0 = ([], [(depot, 0, Q)]v∈V , t0).

At this point, a dummy action x0 = (depot)v∈V transfers the system to the next decision epoch (k = 1)

where the system time and the vehicle states remain the same; however, a scenario of realized locations

and expected demands populates the set of customers C0:

s1 = ([(lc, 1, d̄c,−1)]c∈C0 , [(depot, 0, Q)]v∈V , t1).

For each realized customer c ∈ C0, we set d̂c to −1 at the beginning and will update it upon its first

visit. When d̂c is zero, it means that the customer is fully served and no longer needs any service.

Also, hc is initially set to one for all customers; however, if customer c is already fully served or a

vehicle is on its way to serve it, hc takes the value of zero.

It is worth noting that the way the state s0 is initialized highlights one of the main features of the

VRPSCD. In this MDP formulation, we are looking to develop a policy that accounts for all possible

customer realizations and can tackle those realizations that have never been seen before. Accordingly,

the system starts with no customers, and a random set of customers will be revealed in decision epoch
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1. From this decision epoch on (k ≥ 1), C0 is assumed to be fixed. Taking the action xk from the

set of possible actions in the state sk denoted as A(sk) transits the system to the next state sk+1.

In addition to the current state and the taken action, the next state sk+1 is also dependent on the

exogenous information wk+1.

sk+1 = SM (sk, xk, wk+1).

We let w be a sample scenario of customer demands and wk ⊂ w be the set of realized demand

volumes of those customers whose actual demands are observed at decision epoch k. To elaborate on

the transition function SM (.), we divide it into two steps. In the first step, the post-decision state sxk
is the state immediately after taking action xk, but before revealing the exogenous information wk+1:

hxv
k

= 0, ∀ {v ∈ V̄k|xvk 6= depot}. (9)

av = tk + τv,xv
k
, ∀ v ∈ V̄k. (10)

lv = lxv
k
, ∀ v ∈ V̄k. (11)

tk+1 = min
v∈V

av. (12)

Equation (9) flags the chosen customers as unavailable. The arrival time as well as the location of

active vehicles are updated using Equations (10) and (11). Finally, Equation (12) progresses the time

to the next decision epoch, where the exogenous information wk+1 will be revealed. All the other

components are left unmodified.

The second step of the transition function happens at the beginning of a new decision epoch (k+1),

when the uncertain demands are revealed, by transiting from the post-decision state sxk to the next

state sk+1. Let C̃k+1 = {c ∈ C0|∃v ∈ V̄k+1 ∧ lc = lv} be the set of customers that are being served at

decision epoch k + 1. If the actual demand of a customer in C̃k+1 is not yet realized (d̂c = −1), its

value will be set to the observed demand wck+1.

d̂c = wck+1, ∀ {c ∈ C̃k+1|d̂c = −1}. (13)

Let ηk+1
v be the demand volume that vehicle v ∈ V̄k+1 serves at decision epoch k + 1, defined as:

ηk+1
v = min{d̂cv , qv}, ∀ {v ∈ V̄k+1|lv 6= depot}, (14)

where cv refers to a customer c ∈ C̃k+1 that is served by vehicle v (i.e. lc = lv). The unserved demands

of customers in C̃k+1 and the available capacity of vehicles in V̄k+1 are then updated as follows:

d̂cv = d̂cv − ηk+1
v , ∀ {v ∈ V̄k+1|lv 6= depot}. (15)

qv =

{
qv − ηk+1

v if lv 6= depot,

Q otherwise .
∀ v ∈ V̄k+1. (16)

Also, customers in C̃k+1 whose demands are not fully served will be available again to be served later:

hc = 1, ∀ {c ∈ C̃k+1|d̂c > 0}. (17)

These two steps are illustrated in Figure 1 using an example of 4 customers and 2 vehicles. We define

the terminal decision epoch K as a point of time at which all vehicles are located at the depot, and

vehicles have no other choice than to stay in the depot (A(sK) = {(depot)v∈V}).

The reward function R(sk, xk, w) is defined as the demands to be served by taking action xk in

state sk, based on the exogenous information w:

R(sk, xk, w) =
∑

{v∈V̄|xv
k 6=depot}

min{qv, dwxv
k
} (18)

dwc =

{
wc
k̄

if d̂c = −1,

d̂c otherwise.
∀ c ∈ C0, (19)
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t0=0

1 2

(a) At decision epoch k =
0, no customer is realized

2

4

1 3

t1=0

1 2

(b) Customers are realized
at decision epoch k = 1

15
10

2

4

1 3

t1=0

1

2

(c) Vehicles in V̄1 = {1, 2}
choose the action
x1 = (2, 4) from A(s1),
and Equations (9)–(12)
transit the state s1 to the
post-decision state sx1

15
10

2

4

1 3

t2=10

1

2

(d) The next decision epoch
k = 2 is the moment vehi-
cle 2 arrives at customer 2
(t2 = 10) and observes its
actual demand (w2

2). Equa-
tions (13)–(17) transit the
post-decision state sx1 to s2

Figure 1: The transition function in a centralized MDP formulation

where wc
k̄

is the demand of customer c observed when the vehicle v visits the customer c at the

decision epoch k̄. The decision epoch k̄ refers to the moment when the vehicle v ∈ V̄, which has

selected customer xvk at the decision epoch k, arrives at its destination:

k̄ = {k′ ∈ [0, ...,K]|tk′ = tk + τv,xv
k
}.

For an active vehicle that decides in k, the decision epoch k̄ can be further than k + 1 in time, and

other vehicles may decide while it is en route. However, it is worth noting that the reward for its

action at decision epoch k is solely determined by its state, action, and the delayed observed demands,

not by the other vehicles.

In this formulation, the value of being in state sk is defined as V (sk). This function indicates the

expected cumulative reward the system can collect from state sk onward:

V (sk) = max
xk∈A(sk)

Ew[R(sk, xk, w) + γV (sk+1)], (20)

where γ is a discount factor and we remind that sk+1 = SM (sk, xk, wk+1).

There are some challenges making this formulation intractable for the VRPSCD. First, the di-

mension of the state representation is dependent on the cardinality of customers, which is stochastic.

Consequently, the size of the vector sk would be variable and dependent on the number of realized

customers, preventing the use of many solution methods that assume a fixed-size state. For example,

no linear regression method can be implemented to approximate the value function in Equation (20),

when the size of the input (state vector) is variable. Furthermore, the variable number of customers

combined with the continuous representation of their state greatly expands the state space. On the

other side, having multiple vehicles makes the size of the action space, defined in Equations (2)–(7),

excessively large. Denoting n the number of customers available to be served at decision epoch k,

the size of the action space will be n!
(n−m)! . For example, for 8 vehicles and 50 customers, 2 × 1013

various actions are available to be taken. Even for mid-size problems, handling such a large action set

is computationally prohibitive.

The following section explains how the decentralized formulation allows us to cope with the chal-

lenges mentioned above.

4 The decentralized VRPSCD

The main idea behind decentralizing the VRPSCD is to allow vehicles to establish the next customer to

be visited based on partial observations of the surrounding environment. In our approach, we enforce
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the restriction that only one vehicle, called the active vehicle, is allowed to make a decision at a given

decision epoch. In particular, the vehicle makes a decision based upon the observation of the system

state from its point of view. While in this setting, vehicles decide individually, the objective function

is to maximize the demands collectively served by all vehicles. It is worth noting that although it is

suggestive to think of the decentralized formulation in terms of self-deciding AVs, the resulting policy

can also be operated centrally. In fact, given the full knowledge of the system, and according to the

current vehicle states, the central dispatcher can compute the observed state relative to each vehicle

and apply the decentralized policy to decide which is the next customer to be visited.

Decentralizing the problem has several advantages: first of all, since the decision is restricted to

one vehicle only, the size of the action space will be drastically reduced to n (from potentially up to
n

(n−m)! ), where n is the number of available customers in the current decision epoch. Second, it allows

us to represent the system state based on the point of view of the active vehicle by ignoring the less

relevant information for the active vehicle. This enables us to reduce the size of the state space hugely.

Third, given the assumption that the operating fleet is homogeneous, and the fact that two identical

vehicles would make the same action if the observed states are identical, the proposed approach creates

one policy only, shared by all vehicles, instead of m policies.

Starting from the centralized formulation, we show how to obtain the decentralized formulation in

Section 4.1. In Section 4.2, we provide a detailed description of the vehicle observation function and

its encoding. Finally, in Section 4.3, we discuss cooperation issues and show how they are addressed

in our decentralized approach.

4.1 The decentralized formulation

To model the decentralized VRPSCD, we define two levels of state representation. The first level is

the global state. The global state sk is the state that we presented in the centralized MDP formulation,

and it is responsible for keeping track of the evolution of the entire system. In the second level, we

introduce the observation function O(sk, v̄), which takes as input the global state sk and the current

active vehicle v̄, and returns ok,v̄, which is the state as observed by vehicle v̄:

ok,v̄ = O(sk, v̄). (21)

The observation ok,v̄ is comprised of four parts:

ok,v̄ = [Fk|Hk|Gk|tk], (22)

where Fk is the state of a subset of customers that are judged more promising for v̄, Hk is an aggregated

overview of all customers in the service area, Gk is the state of vehicles, and tk is the time at decision

epoch k. Details of the observation function and the observed state will be provided in Section 4.2;

however, the main point is that the size of the observed state is significantly smaller than the size of

the global state.

In our approach, only one vehicle at a time is allowed to make a decision. If multiple vehicles are

potentially active at decision epoch k, one is randomly chosen as the active vehicle v̄. Therefore, the

set of active vehicles V̄k reduces to one active vehicle v̄.

In addition to the state representation, we redefine the action and the action space specifically for

the active vehicle as xk = (xv̄k) and A(sk, v̄), respectively. We have:

A(sk, v̄) ={xk ∈ {J(sk, v̄) ∪ {depot}} : (23)

xk = depot if qv̄ = 0, (24)

xk 6= depot if J(sk, v̄) 6= ∅, lv̄ = depot}, (25)

where Condition (23) obliges xk to be a customer from the set of feasible customers J(sk, v̄) or the

depot, Condition (24) forces the active vehicle to travel to the depot when it has no remaining capacity,

and Condition (25) does not allow the vehicle to stay at the depot if there are reachable customers to

be served.
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As mentioned earlier, we use the global state sk to keep track of the system dynamics. Therefore,

the state transition function SM (.) and its associated equations (Equations (9)-(17)) are still applicable

here, given that V̄k = {v̄}. Figure 2 illustrates the two levels of state representation as well as their

interactions for an example of two vehicles. At each decision epoch k, if the current location of the

active vehicle v̄ is the depot, its capacity is replenished (Equation (16)); otherwise, the actual demand

of the customer c ∈ C̃k is realized (Equation (13)) and the active vehicle v̄ serves it to the fullest

extent. At this point, the available capacity of v̄ (Equation (16)) as well as the unserved demand

of the customer c ∈ C̃k is updated (Equations (15) and (17)). Then, the active vehicle v̄ observes

ok,v̄ = O(sk, v̄) and chooses an action xk from the action set A(sk, v̄) to travel. Equations (9)–(11)

transit the global state sk to the post-decision state sxk and Equation (12) updates the time of the next

decision epoch. The operation terminates at decision epoch K where all vehicles have returned to the

depot and there is no customer to be served or no time to serve any additional customers.

S1

O1,1

1

2

S2

O2,2

S3

O3,2

S4

O4,1x

x x

global state

observation

x

Sk

Ok,v

global state

observation

observation
function

post-decision

transition
function

w2 w3 w4

Figure 2: A schema of system dynamics in decentralized approach for an example of two vehicles

In our approach, we look for a policy π that indicates the best location to travel to for the active

vehicle v̄ in the feasible action space A(sk, v̄), when the observation of the global state is ok,v̄. The

resulting policy selects actions such that the total served demand by all vehicles is maximized. The

optimal policy π∗ can be obtained by solving the following equations for each observation ok,v̄ at

decision epoch k:

V (ok,v̄) = max
xk∈A(sk,v̄)

Ew[R(sk, xk, w) + γV (O(sk+1, v̄
′))], (26)

π∗(ok,v̄) = arg max
xk∈A(sk,v̄)

Ew[R(sk, xk, w) + γV (O(sk+1, v̄
′))], (27)

where v̄′ is the active vehicle in decision epoch k+ 1 and V (ok,v̄) is the expected reward-to-go starting

from observation ok,v̄ onward. In the terminal global state sK , there is no customer available to be

served. Hence:

V (O(sK , v)) = 0, ∀ v ∈ V.

4.2 The observation function and its representation

The primary purpose of the observation function is to suitably select the most relevant information

for the active vehicle and aggregate the remaining information. More specifically, we focus on the

customers’ state, which forms the most considerable portion of the information in the state represen-

tation sk. For this purpose, we identify a subset of customers Cv̄ ⊂ C0 that are judged more promising

for the active vehicle and call it the set of target customers. Therefore, instead of keeping the in-detail

information of all customers, the observation function only maintains the comprehensive information

of target customers and aggregates the rest.

Customers in the set of target customers should have certain characteristics. For a target customer

c ∈ Cv̄, the simplest desirable attributes are: 1) requesting large demand volumes (dc), and 2) being
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close to the active vehicle (τc,v̄). In our problem, customers with higher demands are more promising

because of their potential contribution to the objective function. On the other hand, visiting customers

closer to the active vehicle is more favorable due to the duration limit. Therefore, we define a new

measure to identify the target customers. Accordingly, we choose ñ customers with higher ρc,v̄:

ρc,v̄ =
min(d̃c, qv̄)

τc,v̄
,

d̃c =

{
d̄c d̂ = −1

d̂c otherwise
, (28)

where ñ is a hyper-parameter. This measure normalizes the customers’ demands by their distance to the

active vehicle, and also accounts for the available capacity. For example, for two customers c1, c2 ∈ C0,

with τc1,v̄ < τc2,v̄ and both demands greater than the available capacity (dc1 ≥ qv̄, dc2 ≥ qv̄), the closer

one to v̄ (i.e., customer c1) is more appealing (ρc1,v̄ > ρc2,v̄), even if its demand is much smaller than

the other customer (dc1 < dc2). The effectiveness of selecting target customers according to their score

ρc,v̄ was validated through preliminary computational tests.

In order to keep in-detail information of target customers, we represent each customer using a set

of features as (lc, τc,v̄, τc,d, d̃c,min(d̃c, qv̄), µc). In this feature set, lc refers to the customer’s location,

τc,v̄ is the travel time between the customer and the active vehicle, τc,d is the travel time between the

customer and the depot, d̃c is the customer’s unserved demand (or expected demand, if not realized

yet), min(d̃c, qv̄) shows the portion of customer’s demand that can be served by the active vehicle,

and µc indicates whether the actual demand is realized or not. The vector of target customers is

denoted Fk:

Fk = [(lc, τc,v̄, τc,d, d̃c,min(d̃c, qv̄), µc)]c∈Cv̄

Less relevant data may now be aggregated. In particular, we seek an aggregated representation

of the remaining customers to provide the active vehicle with an overview of the service area. The

challenge here is that the stochastic customer set necessitates an aggregating technique that handles a

variable number of inputs while delivering a fixed-size output. To this purpose, we propose a heatmap-

style approach to encode all customers in the service area as a fixed-size vector Hk. In particular, we

divide the service area into a set of square-shaped partitions. We denote P the set of partitions and

Cp ⊂ C0 the subset of customers that are located in partition p ∈ P . We characterize each partition

by two values (ξcp, ξ
d
p) representing the number of customers and the total expected demands in that

partition, respectively.

ξcp = |Cp|, ξdp =
∑
c∈Cp

d̃c

We define Hk = [(ξcp, ξ
d
p)]p∈P the fixed-size vector representing the aggregated information of all cus-

tomers in the service area. In addition to Hk and Fk, the state of the vehicles Gk forms the third

segment of the observation representation. We define Gk = [(lv, av, qv)]v∈V , which has the same

representation used in the centralized state.

The main difference between sk and ok,v̄ is the customers’ state, with a variable size, replaced by

a fixed-size vector [Fk, Hk]. The observation representation has two advantages: first, it overcomes

the problem of a variable-sized state representation that was previously addressed. Second, depending

on the hyper-parameter ñ and the number of partitions |P |, the dimension of the observation can be

much lower than the state representation. In particular, the customers’ state in sk has the dimension

of 4 ∗ |C0|, while the dimension for [Fk, Hk] is (6 ∗ ñ+ 2 ∗ |P |). As a numerical example, if we assume

the average number of customers to be 50, the dimension of the customers’ state will be on average

200. However, this value for ok,v̄ will be 110 (60 + 50), where ñ and |P | are assumed to be 10 and 25,

respectively.

In addition to making the observation representation considerably smaller, the idea of identifying
and focusing on target customers enables us to reduce the dimension of the active vehicle’s action space
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by limiting its actions to target customers. Therefore, in the definition of J(sk, v̄) (Equation (8)), which

is used to construct the active vehicle’s action space A(sk, v̄), we substitute C0 with Cv̄. As a result,

the size of the action space is reduced to |Cv̄|+ 1, where |Cv̄| ≤ ñ.

4.3 Cooperation issues

In a decentralized setting, non-cooperating vehicles will generally provide suboptimal policies for the

VRPSDC. This is illustrated in Figure 3. The example considers 4 customers (C0 = {1, 2, 3, 4}) and

2 vehicles (Q = 100, L = 30). Figure 3(a) shows the position of customers and the depot, the

deterministic demands ({10, 10, 1, 1}), and the travel times. Notice that the duration limit is such that

vehicles cannot serve customers to the left and to the right of the depot within the time limit. Non-

cooperating vehicles will try to increase their total served demand regardless of (or even competing

with) other vehicles. In the example of the figure, one vehicle will travel to customer 1, and the other

vehicle to customer 2, with 20 total served demand (Figure 3(b). However, by considering collaboration

among vehicles (Figure 3(c), one vehicle would serve the customers to the left, while the other would

serve the customers to the right, with total served demand 22. In this example, the cooperating

strategy was globally advantageous; however, one of the vehicles had to ”sacrifice” its own reward to

let the other vehicle collect a higher reward.

(a) An example of 4 customers
and 2 vehicles with Q = 100, L =
30

(b) Without collaboration (c) With collaboration

Figure 3: An example of collaboration in VRP

Similar cooperation issues have been considered, for example, in Cooperative Multi-Agent System

(CMAS) (Stone and Veloso 2000). In CMASs, a set of agents (corresponding to vehicles in our case)

share the environment and act independently to reach a given goal (Panait and Luke 2005). The
approach aims to find a policy (or policies) for agents in order to maximize a given global objective

function. Although an agent does not decide for other agents, its action may significantly affect

their decision strategy. More specifically, the value of each action for an agent depends on what the

other agents choose. Consequently, similarly to what we discussed for the decentralized VRPSCD, the

collaboration of agents is crucial to achieving an optimal decision policy. In CMAS, the collaboration

is addressed by a central coordination mechanism. The role of this mechanism is typically to take

into account the action of all agents in evaluating their value. For example, the Q-learning algorithm

considers the central coordination by defining the Q values as the value of taking a joint action xk
in state sk (not the action of the individual agent, xvk). Similarly, in approximate policy iteration

methods, such as the policy gradient, the value function employed to iteratively evaluate policies in

the training phase plays the role of the central coordination mechanism. This value function, which is

usually defined as in Equation (20), estimates the cumulative rewards all agents may collect from the

current state.

In contrast to CMASs, where a central coordination mechanism plays a crucial role in enabling

collaboration between agents, our decentralized approach proposed in this study eliminates the neces-

sity of a central coordinator. In fact, the decentralized approach exploits the special characteristic of

the VRPSCD that forces vehicles to decide sequentially (one per decision epoch). Consequently, the

reward function and the transition function will be constructed based on its action (xv̄k), independently
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from the other vehicles. This results in a value function only dependent on the action of the active

vehicle (xv̄k), not on the joint action (xk).

5 Solution method

The VRPSCD, in both centralized and decentralized formulations, has a considerably large state and

action space. The consequent so-called courses of dimensionality make it hard to solve the VRPSCD by

conventional stochastic dynamic programming. Specialized approximate methods have been proposed

in the literature to overcome the difficulties arising in these cases (Powell 2011). In this paper, we

consider the Q-learning algorithm. Our preliminary experiments suggest that Q-learning is not able to

solve the centralized formulation of the VRPSCD due to its huge state-action space. For this reason,

in this section, we only report on our implementation of the decentralized formulation. In particular,

in Section 5.1 we give a general overview of the Q-learning algorithm. In Section 5.2 we provide

the details of our implementation of the decentralized VRPSCD, which features a neural network to

approximate the Q-values, as well as several techniques to accelerate the convergence of the algorithm,

such as Replay Memory and Double Q Networks.

5.1 An overview of Q-learning algorithm

Q-learning is a model-free algorithm based on approximate value iteration in which an agent learns

how to behave in order to maximize the collected reward through a sequence of interactions with the

environment, resulting in a policy that satisfies Equation (27). More specifically, this method iteratively

updates the value of making the action xk in state sk, known as the Q factor of that state-action pair

(Q(sk, xk)). In fact, it is possible to rewrite the Bellman equation (defined in Equation (26)) in terms

of Q factors as follows:

V (sk) = max
xk∈A(sk)

Q(sk, xk), (29)

where:

Q(sk, xk) = R(sk, xk, w) + γ max
xk+1∈A(sk+1)

Q(sk+1, xk+1). (30)

The reader is referred to (Powell 2011) for a complete overview of the algorithm. Algorithm 1 illustrates

a generic Q-learning framework. To summarize, this algorithm simulates the problem for several

trials (Trials MAX) over different sample scenarios of stochastic components of the problem. The

simulation follows the so-called ε-greedy policy, which enables random exploration of the action space.

The level of exploration is typically larger in the initial phases of the algorithm when actions are

mostly chosen randomly. As the algorithm proceeds, actions with higher estimated values are generally

preferred. Q-learning exploits the interactions between the agent and the environment to update the

Q values (the so-called experiences). An experience is defined as a tuple of (sk, xk, rk, sk+1), describing

interaction of the agent with the environment consisting of the agent observation of the state sk, its

action xk, the received reward rk (in VRPSCD, rk = R(sk, xk, w)) and the observation of the next

state sk+1. For each state-action pair experienced, we estimate their Q value as Q̂(sk, xk) using the

following equation:

Q̂(sk, xk) = rk + γ max
xk+1∈A(sk+1)

Q(sk+1, xk+1), (31)

where γ is the discount factor. Then, we update the Q(sk, xk) according to the following equation:

Q(sk, xk)← Q(sk, xk) + α ∗ [Q̂(sk, xk)−Q(sk, xk)], (32)

where α is the step size (learning rate).

Algorithm 1 returns a set of Q values that can be used as the decision policy. In particular, the

optimal decision policy will be:

π∗(sk) = arg max
xk∈A(sk)

Q(sk, xk). (33)
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Algorithm 1: Generic Q-learning Algorithm

Initialize: set Q values to 0
while trials < Trials MAX do

Choose a sample scenario w
Observe state s0
Set k = 0, simulate =True
while simulate do

Take action: xk =

{
random action in A(sk) ε

arg maxx′∈A(sk)Q(sk, x
′) 1− ε

Transit to sk+1 = SM (sk, xk, wk+1) and observe the reward rk

Estimate and update new Q values:

• Q̂(sk, xk) =

{
rk A(sk+1) = ∅
rk + γmaxx′∈A(sk+1) Q(sk+1, x

′) otherwise

• Set Q(sk, xk) = Q(sk, xk) + α[Q̂(sk, xk)−Q(sk, xk)]

Set k = k + 1
if A(sk) = ∅ then

Set simulate =False
end

end
Set trials = trials+ 1
Decay the exploration rate ε

end
return Q values

5.2 The DecQN algorithm

As previously mentioned, our preliminary implementation of the Q-learning algorithm could not solve

the centralized formulation of the VRPSCD. For the Q-learning to be successful, in fact, sufficient

exploration of state-action pairs is required, which is impractical for very large state-action spaces,

such as the one of the centralized formulation. The decentralized formulation proposed in Section 4,

on the other hand, has a considerably smaller state-action space, and it is more suitable to be addressed

by Q-learning. For this purpose, by using the proposed observation function O(sk, v̄), Equations (31)

and (32) can be rewritten as follows:

Q̂(ok,v̄, xk) = R(sk, xk, w) + γ max
xk+1∈A(sk+1,v̄′)

Q(O(sk+1, v̄
′), xk+1), (34)

Q(ok,v̄, xk)← Q(ok,v̄, xk) + α ∗ [Q̂(ok,v̄, xk)−Q(ok,v̄, xk)], (35)

where v̄′ is the active vehicle at decision epoch k + 1.

In this study, we implement the Q values in the form of an artificial neural network instead of

the traditional look-up tables. This method is called Q-network in the literature. The Q-network

has the purpose of returning the approximate Q value for a given observation-action pair (ok,v̄, xk).

Generally speaking, for computational efficiency, it is desirable to design the Q-network in such a way

that only one forward call is sufficient to return the Q values for all (|Cv̄|+ 1) actions in A(sk, v̄). To

this purpose, we consider a neural network that returns ñ + 1 Q values in every call. Notice that,

under some circumstances, the number of target customers can be less than ñ, making the cardinality

of A(sk, v̄) variable, but restricted to ñ+ 1. Therefore, in the vector of ñ+ 1 Q values approximated

by the Q-network, we associate the first |Cv̄| values to the Q value of target customers Cv̄ and assign

the last one to the depot. Q values not associated with target customers nor the depot will be set to 0.

We implement a neural network with two hidden layers. This network gets the observation repre-

sentation (ok,v̄) as the input layer and returns approximate Q values in the output layer. We denote

hin and hout, respectively, the size of the input and output layers, where hin = 6ñ+ 2|P |+ 3m+ 1 and
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hout = ñ+ 1. The hidden layers are assumed to be fully connected dense layers linked by an activation

function (a rectified linear unit, ReLU). The size of the hidden layers is chosen based on empirical tests.

In particular, we set their size to 2
3 (hin−hout) +hout and 1

3 (hin−hout) +hout, respectively. Denoting

by θ the trainable weights of the proposed neural network, the Q value of an observation-action pair is

represented as Q(ok,v̄, xk, θ). It is worth noting that any equation involving Q(ok,v̄, xk) will also apply

to Q(ok,v̄, xk, θ).

To train the proposed network, we aim at minimizing the so-called loss function. We define this

function based on the difference between the new estimation of the values Q̂(ok,v̄, xk, θ) and the current

estimation Q(ok,v̄, xk, θ), denoted as ∆ (i.e., ∆ = Q̂(ok,v̄, xk, θ) − Q(ok,v̄, xk, θ)). Among several loss

functions used in the literature, we found that the Huber loss function performs better than the

commonly used functions such as Mean Squared Error (MSE) and Mean Absolute Error (MAE). The

Huber loss acts as an MSE for small ∆, while it works like an MAE for larger differences. The Huber

loss is defined as:

Huber(∆) =

{
1
2∆2 for |∆| ≤ δ
δ(|∆| − 1

2δ) otherwise
(36)

where δ is a control parameter. We obtained the best results by setting δ = 5 and used the Adam

optimizer (Kingma and Ba 2014) to update the network in order to minimize the loss function.

Algorithm 2 summarizes our DecQN algorithm. Similar to what was suggested by Mnih et al.

(2015), our preliminary results showed that using the target network (Van Hasselt, Guez, and Silver

2016) and the replay memory help the model achieve better convergence. Having a target network

(parameterized by θ̄ in Algorithm 2) allows the model to learn from a stable target. The target

network θ̄ is periodically copied from the primary network θ every βd trials. In the replay memory,

experiences are stored in a First-In-First-Out list, denoted as B, with a fixed size of N . At every

decision epoch, with a probability of βt, a random batch of experiences (B̃) is sampled from this list to

update the weights (θ) in the neural network. Several advantages have been mentioned for using the

replay memory (Mnih et al. 2015) such as breaking the correlation between consecutive experiences

and giving more chances to those experiences that happen more. The exploration rate (ε) and the

learning rate (α) are linearly decayed during the training phase. The decaying rate is decided based

on the length of the training process.

As previously noticed, one of the main features of the proposed approach is that we only develop a

single set of Q values, resulting in a policy shared among all vehicles. In particular, the experiences of

all vehicles obtained via simulation are utilized for training a single set of Q values. Building a single

policy offers several benefits: first, it allows vehicles to exchange their experiences (i.e., interactions

with the environment) under a single policy. Also, it makes the development of the policy more sample

efficient. In particular, the experiences of all m vehicles are gathered to construct one policy, which

minimizes the total required simulated samples, rather than utilizing the experiences of each vehicle to

establish its policy. Finally, maintaining and storing one policy is more manageable than maintaining

m policies.

6 Experimental results

In this section, we present our computational experience. First, since no instance set is available in the

literature, we construct a new set of instances for the VRPSCD. We then design four main experiments.

The first one is aimed at evaluating the overall performance of the DecQN algorithm. To this purpose,

we first implement two additional benchmark policies, i.e., the random policy and a heuristic policy. We

then perform an extensive computational experiment to compare the three algorithms. The purpose

of the second experiment is to compare the DecQN with the existing literature. The challenge is that

no direct comparison is possible, given that, to the best of our knowledge, the VRPSCD has not been

addressed before. The closest problem in the literature we are aware of is the VRPSD, for which
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Algorithm 2: The DecQN

Initialize the Q-network and the target Q-network with random weights θ, θ̄
Initialize the replay memory B with the size of N
Initialize Trials MAX, βt, βd as the training length, the probability for updating the network, the number of

trials between two substitution of the target network, respectively
while trials < Trials MAX do

Choose a sample scenario w and observe a new set of customers C0
Set t0 = 0, k = 0, v̄prev = ∅, Buff = [∅]v∈V , and simulate = True
while simulate do

Set v̄= a random v ∈ V̄, where V̄ = {v ∈ V|av = tk}
if k > 0 then

Transit from sxk−1 to sk and observe the reward r

Buff[v̄prev ] = (sk−1, v̄prev , xk−1, sk, v̄)
if Buff [v̄] 6= ∅ then

(s, v, x, s′, v′)←− Buff[v̄]
Add (s, v, x, r, s′, v′) to B

end

end
Observe ok,v̄ = O(sk, v̄)

Take action: xk =

{
random action in A(sk, v̄) rand[0, 1] < ε

arg maxx′ Q(ok,v̄ , x
′, θ) otherwise

Transit from sk to sxk
if rand[0, 1] < βt then

Estimate and update new Q values:

• Sample a batch of experiences B̃ from B

• Compute the estimation Q̂(O(s, v), x, θ) ={
r A(sk, v) = {depot} ∧ lv = depot

r + γmaxx′ Q(O(s′, v′), x′, θ̄) otherwise
,

∀(s, v, x, r, s′, v′) ∈ B̃
• Compute the loss function:

Φ = EB̃
[
Huber

(
Q (O(s, v), x, θ)− Q̂ (O(s, v), x, θ)

)]
• Update the network weights θ: θ = θ − α∇θΦ

end
Set k = k + 1, and v̄prev = v̄
if A(sk, v̄) = ∅ ∧ lv = depot, ∀v ∈ V then

Set simulate = False
end

end
Set trials = trials+ 1

Every βd trials, set θ̄ = θ
Decay the learning rate α and the exploration rate ε

end
return Q values

Goodson, Thomas, and Ohlmann (2016) developed the current state-of-the-art method. As mentioned

earlier, the VRPSD can be seen as a particular case of the VRPSCD where both customer locations

and expected demands are known in advance. Even though our algorithm does not take advantage

of the specific characteristics of the problem, it turns out, quite surprisingly, that our algorithm is

competitive and sometimes outperforms the results in Goodson, Thomas, and Ohlmann (2016). The

third experiment can be seen as an extension of the second one, where we investigate the possibility

of modifying the training phase of the DecQN to develop a policy able to address a larger range of

instances aggregated over specific parameters, such as the duration limit and stochastic variability.

Finally, the last experiment provides a simple demonstration of the fact that the policies provided by

our algorithm can be easily embedded as base policies in rollout algorithms.

Regarding the hyper-parameters in Algorithm 2, we consider a minibatch of 32 experiences (|B̃| =
32) uniformly sampled from the replay memory with N = 50000, where βt = 0.05. We also replace the
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target network every 1000 trials (βd = 1000). The hyper-parameters related to the maximum number

of trials (Trials MAX) and the decaying factor for the learning rate (α) and the exploration rate (ε)

will be specified for each experiment later. All the procedures have been implemented in python and

executed on 3.6 GHz Intel Xeon processors with 64 GB RAM (no GPUs are used).

The experiments mentioned above are described in Sections 6.1 to 6.4 in detail. Also, a discussion

on computational time is provided in Section 6.5.

6.1 Performance of DecQN in VRPSCD

In this section, we compare the performance of the proposed DecQN with the random policy and a

heuristic policy. Given that the VRPSCD is new in the literature, we generate a new set of instances

in Section 6.1.1. We then describe the details of the benchmarks in Section 6.1.2. We report about

the computational experiment and results in Section 6.1.3.

6.1.1 VRPSCD instances

As custom when building computational experiments in learning-based methods, we need to provide

two types of input data, one to be used in the training phase of the algorithm, the other in the testing

phase. Elements of these two sets are samples of the problem at hand. Although training and testing

sets are distinct, they are typically generated by sampling from the same distributions.

In the context of the VRPSCD, we define an instance i as the tuple i = (A,Ψnz
,Ψl,Ψd̄,Ψd̂,m,Q,L),

where A denotes the geography of the service area, which is assumed to be partitioned into a set of

zones Z, and Ψnz
,Ψl,Ψd̄,Ψd̂ denote the probability distribution functions of the number of customers

nz per zone z ∈ Z (customer density), customer locations, expected demands, and actual demands,

respectively. Furthermore, m,Q,L indicate the number of vehicles, their capacity, and the duration

limit, respectively. By varying the service area A, the distributions Ψnz ,Ψl,Ψd̄,Ψd̂, and the values

of parameters m, Q, and L, one can obtain different instances. As it will be clear in the detailed

description below, this experiment considers three different distributions for the customer density Ψnz
,

and three different values of the vehicle capacity Q, resulting in a set I of 9 instances. Furthermore,

the distribution Ψnz
of the customer density uniquely determines the values of the number of vehicles

m and the time limit L. Given an instance i, a realization î (also referred to as sample, or scenario) can

be obtained by sampling from distributions Ψnz ,Ψl,Ψd̄,Ψd̂. The set of all realizations î of i is denoted

Î(i). It follows a detailed description of the method to generate problem instances and realizations.

We consider a squared-shape service area A of dimension 100 × 100 with a depot located at the

center (depot = (50, 50)). Customers can potentially be located at any position inside the service area.

However, in real-life applications, certain zones of the service area never generate requests, such as

non-residential areas. Therefore, for a given service area partitioned into a set of 5× 5 square-shaped

zones Z, we randomly pick a subset Z of active zones, in which customers must be located. In our

experiment, we consider 15 active zones out of 25 (i.e., 60% of the zones are active). Figure 4 shows

the layout of the considered region.

To generate the customer locations and demands, we make the assumption that active zones are

homogeneous in the sense that the customer density Ψnz and distributions Ψl, Ψd̄, Ψd̂ do not de-

pend on the specific zone. The customer density Ψnz
specifies the probability distribution of the

number nz of requests for each active zone. We consider three possible levels of customer density

D = {Low, Moderate, High}. In particular, nz takes values {0, 1, 2, 3} for Low, {2, 3, 4, 5} for Mod-

erate, and {4, 5, 6, 7} for High customer densities, with probabilities {0.1, 0.4, 0.4, 0.1}, respectively.

The corresponding expected number of customers at each zone n̄z is 1.5, 3.5, and 5.5, respectively.

The total expected number of customers n̄ for a given Ψnz is calculated as n̄ = E[
∑
z∈Z nz] = |Z| ∗ n̄z,

resulting in 23, 53, and 83 customers for Low, Moderate, and High customer density, respectively.

Once nz is sampled according to the distribution Ψnz
for each zone z ∈ Z, the customer locations are
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Figure 4: The layout of active zones

generated following the distribution Ψl. In this experiment, we choose Ψl to be the uniform distribu-

tion function over (x,y)-coordinates inside a given zone. The above process allows us to sample the

initial set of customers C0.

Given a customer c ∈ C0, the expected demand d̄c and actual demand d̂c are sampled according to

distributions Ψd̄ and Ψd̂, respectively. These distributions are chosen following the method proposed

in Gendreau, Laporte, and Séguin (1995). In particular, Ψd̄ is the discrete uniform distribution over

the values {5, 10, 15}. Once the value d̄c has been sampled, the actual demands follow the distribution

Ψd̂ which is the discrete uniform distribution on values {d̄c − 5, ..., d̄c, ..., d̄c + 5}. In order to avoid

the no-demands case when d̄c = 5, we use the discrete uniform distribution function on values {d̄c −
4, ..., d̄c, ..., d̄c + 4}.

We determine the number of vehiclesm and the time limit L uniquely as functions of the distribution

Ψnz
by linking them through the concept of the filling rate. The filling rate f indicates the portion of

all demands that can be served by all vehicles without replenishment:

f =
E[
∑
c∈C0 d̄c]

m ∗Q
.

In the equation above, E[
∑
c∈C0 d̄c] is the expected total demand and can be approximated by n̄z∗|Z|∗ ¯̄d,

where ¯̄d is the average expected demand of a customer. Since the distribution function Ψd̄ assigns

expected demands 5, 10, or 15 to customers uniformly (with a probability of 1
3 ), the average expected

demand of a customer ( ¯̄d) will be equal to 10 ( 5+10+15
3 ) in all instances. By fixing the filling rate and

the vehicle capacity to 1 and 75, respectively, the number of vehicles for each level of customer density

Ψnz can then be obtained by the definition of the filling rate:

m =

⌈
E[
∑
c∈C0 d̄c]

f ∗Q

⌉
=

⌈
n̄z ∗ |Z| ∗ ¯̄d

f ∗Q

⌉
=

⌈
n̄z ∗ 15 ∗ 10

1 ∗ 75

⌉
= d2 ∗ n̄ze. (37)

In this way, the number of required vehicles for each class of customer density is 3, 7, and 11, re-

spectively. Notice that, according to the expression E[
∑
c∈C0 d̄c], the expected total demand at each

instance will be 230, 530, and 830 for Low, Moderate, and High customer density, respectively.

To determine the duration limit L for a given instance with the customer density distribution

Ψnz
and its associated m, we utilize the average travel time of vehicles acquired by solving a set

of 250,000 realizations of that instance via the Greedy policy (described in Section 6.1.2). In this

process, we assumed that L = ∞, Q = 75, and realizations are randomly sampled from distributions

Ψnz ,Ψl,Ψd̄,Ψd̂. To make the duration limit constraining, we let the duration limit be the average

travel time of all vehicles multiplied by 0.75. The resulting duration limits for Low, Moderate, and

High customer densities are 221.47, 195.54, and 187.29, respectively. To complete the description of

the instance generation, we need to determine the values Q. According to Equation (37), the number

of vehicles m is determined such that when Q = 75, vehicles can serve the total expected demand
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without replenishing at the depot. Therefore, for a given duration limit, while using smaller capacities

(< 75) may increase the frequency of restocking operations, which results in serving fewer customers in

a limited time, considering larger vehicle capacities (> 75) may not necessarily affect the performance

of vehicles. Therefore, in this experiment, we consider three possible values Q = {25, 50, 75}.

To summarize, the instance set I is obtained by varying the customer density distribution function

Ψnz ∈ D = {Low, Moderate, High} and the vehicle capacity Q ∈ Q = {25, 50, 75}, resulting in 9

different instances. Fixing the customer density distribution also uniquely determines the number of

vehicles m and the time limit L. The rest of the instance-defining elements, namely the service area A
and the distributions Ψl,Ψd̄,Ψd̂ are kept fixed throughout the experiment. In other words an instance

in this experiment is completely identified by the pair (Ψnz
, Q). Finally, realizations î of an instance

i are obtained by sampling from distributions Ψnz
,Ψl,Ψd̄,Ψd̂.

6.1.2 Benchmarks

We compare DecQN with two policies that are capable of handling stochastic customers with stochastic

demands in real-time. These policies cannot handle the preemptive restocking, however. Therefore,

the action set is redefined as:

A(sk, v̄) =

{
{depot} qv̄ = 0 || J(sk, v̄) = ∅
J(sk, v̄) otherwise.

(38)

The first benchmark is the Random Policy. In this policy, an action is randomly picked from the

action set A(sk, v̄). This policy is important because it is exactly the policy that our model starts

with when the exploration rate in the ε-greedy method is 1. Therefore, the improvement of our model

over the Random policy demonstrates the effect of the learning. The performance of this policy will

be reported as RP.

The second benchmark is the Greedy Policy. Given that the objective function in the VRPSCD is

to maximize the expected total served demand, this policy selects customers according to the potential

reward in terms of served demands. In particular, at each decision epoch the Greedy policy chooses

the customer c ∈ A(sk, v̄) with the highest d̃c. We recall that d̃c was defined in Equation (28) and

gives the expected or the remaining demand of customer c. If several customers have the same d̃c, this

policy selects the closer one. The results of the Greedy policy are reported as GP.

6.1.3 Results and discussion

In this experiment, for each instance i ∈ I, we generated the training set by sampling 5 million

realizations î from Î(i). We then trained the DecQN on these realizations. The exploration rate

decayed from 1.0 to 0.1 in the first 300K trials. The learning rate also decreased linearly from 10−3

to 10−4 in the first 2 million trials. In order to test the trained policies, we generate a new set of

realizations, called the test set. For each instance i ∈ I, the test set is also sampled from Î(i). More

specifically, we generate 500 customer realizations and 500 demand realizations for each instance,

resulting in 250,000 scenarios. It is important to notice that although the training and the test sets

are sampled from the same distributions, they are disjoint.

We then apply DecQN, Random, and Greedy policy to the test set and compare the performances.

The aggregated results are reported in Table 1. In this table, the first four columns indicate the

characteristics of the instance. As an upper bound, the expected total demand at each instance is

reported in column E
∑
dc. The results of DecQN, along with the results of the two benchmarks,

are reported in columns DecQN, RP, and GP, respectively. The column % E
∑
dc shows the ratio

of demands served by DecQN in each instance. Note that the reported results for each instance are

averaged over 250,000 tests.
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Table 1: Results of DecQN compared with Random and Greedy policies

Ψnz Q m L E
∑
dc DecQN % E

∑
dc RP GP %Imp. RP %Imp. GP

25 159.12 69.18% 99.97 143.00 59.18% 11.28%
L 50 3 221.47 230 193.11 83.96% 120.56 171.37 60.18% 12.69%

75 210.10 91.35% 128.90 192.36 63.00% 9.23%

Avg: 60.79% 11.06%

25 360.93 68.10% 217.95 321.54 65.60% 12.25%
M 50 7 195.54 530 452.67 85.41% 264.50 417.96 71.14% 8.30%

75 501.24 94.57% 269.57 460.03 85.94% 8.96%

Avg: 74.23% 9.84%

25 552.54 66.57% 334.03 502.53 65.41% 9.95%
H 50 11 187.29 830 703.04 84.70% 402.77 664.81 74.55% 5.75%

75 778.66 93.81% 412.20 738.23 88.91% 5.48%

Avg: 76.29% 7.06%
Total Avg: 70.43% 9.76%

We define the measure %Imp. X to evaluate the improvement percentage of our method (DecQN)

over another method X, computed as:

%Imp. X =
DecQN−X

X
× 100

In Table 1, columns %Imp. RP and %Imp. GP refer to the percentage improvement of our DecQN

over the Random and Greedy policies. Notice that in this table, customer densities L, M, and H are

acronyms for Low, Moderate, and High customer densities, respectively.

Averaged results on all instances show that DecQN outperforms the Random and Greedy policies by

70.43% and 9.76%, respectively. The significant improvement over the Random policy demonstrates

the effect of the learning. According to Table 1, %Imp. GP falls from 11.06% to 7.06% as the

customer density increases. To explain this behavior, we argue that as the customer density increases,

the instance becomes relatively simpler for the Greedy policy. To demonstrate this, we need to analyze

the sensitivity of GP to variations in customer density. However, since the value of the served demands

by the Greedy policy depends on the specification of the solved instance, we must normalize it by

removing its reliance on customer density. To this purpose, we divide the GP by E
∑
dc. Notice that

the value of E
∑
dc solely depends on the level of Ψnz ; hence, % GP∑

dc
gives us a normalized measure that

can be used to assess the performance of the Greedy policy with respect to the variations in customer

density. This value can also be viewed as the ratio of demands served by the Greedy policy. Table 2

(on the left) reports computed values of % GP∑
dc

for different instances. Accordingly, as the customer

density rises, the Greedy policy can serve a more significant ratio of demands. More specifically, the

average ratio of demands served by the Greedy policy increases from 73.44% to 76.53%, when the

customer density increases from Low to High. It can also be intuitively inferred that as customers

in the service area become dense, the decision problem for each vehicle will be more of a customer

selection problem than a routing problem where a long-term collective reward plays a decisive role. As

a result, for policies such as the Greedy, where the routing factor is ignored, a more densely populated

service area would be preferred than one with fewer customers. On the other hand, Table 2 (on the

right), which reports the ratio of demands served by the DecQN, demonstrates that the performance

of the DecQN remains approximately constant as the customer density varies. Following what was

discussed earlier, we may attribute this result to the fact that, unlike the Greedy policy, the DecQN

accounts for routing.

To analyze how the vehicle capacity impacts results, we study the sensitivity of %Imp. GP to the

changes in the vehicle capacity. It can be observed in Table 1 that the %Imp. GP is higher when Q

is smaller. For example, in instances with High customer density, the %Imp. GP declines from 9.95%
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Table 2: The ratio of demands served by DecQN and Greedy policy

% GP
E
∑
dc

Q

25 50 75 Avg

Ψnz

L 62.17% 74.51% 83.63% 73.44%
M 60.67% 78.86% 86.80% 75.44%
H 60.55% 80.10% 88.94% 76.53%

Avg: 61.13% 77.82% 86.46% 75.14%

% DecQN
E
∑
dc

Q

25 50 75 Avg

Ψnz

L 69.18% 83.96% 91.35% 81.50%
M 68.10% 85.41% 94.57% 82.69%
H 66.57% 84.70% 93.81% 81.70%

Avg: 67.95% 84.69% 93.25% 81.96%

to 5.48% when the vehicle capacity increases from 25 to 75. A possible reason explaining this result

is that, according to Table 2, as Q rises, the percentage of demands served by both policies approach

to serve almost all demands (i.e., from 67.95% and 61.13% to 93.25% and 86.46%, respectively).

Thus there is a lower margin of improvement in higher vehicle capacities, which reduces the potential

difference between their performances.

Another significant finding from Table 2 (on the right) is that for a given Q, the ratio of demands

served by DecQN (%DecQN
E
∑
dc

) remains almost constant as the customer density varies. In particular, it

can be seen that the value of %DecQN
E
∑
dc

, averaged across different values of Q, remains around ≈ 82% for

each level of customer density. This finding is noteworthy because it implies that our method scales

effectively and does not suffer from the curses of dimensionality that arise in ADP-based methods

when the number of customers or/and vehicles grows.

6.2 Performance of DecQN in VRPSD

The VRPSD can be seen as a particular version of the VRPSCD, where the set of customers, including

their locations and expected demands, is known in advance. Even though the DecQN, being designed

to handle stochastic customer sets, does not exploit the specific characteristics of having previous

knowledge about fixed customers, we show in this experiment that DecQN can compete with the

solution method proposed by Goodson, Thomas, and Ohlmann (2016), which is the best-performing

benchmark specialized for VRPSDs with duration limits and multiple vehicles.

In Section 6.2.1, we define the instance set and describe how we generate the instance realizations.

For each instance, we train a model for 3 million trials. Similarly to the first experiment, we decay

the exploration rate and the learning rate from 1.0 and 10−3 to 0.1 and 10−4, respectively, in the first

300K and 1.5 million trials. We describe the benchmark in Section 6.2.2 and discuss the results in

Section 6.2.3.

6.2.1 VRPSD instances

The VRPSD, as a particular version of the VRPSCD, assumes that the number of customers, their

locations and their expected demands are given in advance. Therefore, the distribution functions

Ψnz
,Ψl,Ψd̄ in Section 6.1.1 do not play a role in this experiment. The remaining instance-defining

components (A,Ψd̂,m,Q,L) are defined according to the procedure used in Goodson, Thomas, and

Ohlmann (2016). The authors used the R101 and C101 instances of Solomon (Solomon 1987) and took

the first n customers to generate the set C0 with n = 25, 50, 75, and 100. Concerning expected demands,

the authors used the deterministic demands provided by the Solomon instances. To determine the

number of vehicles m and the duration limit L, Goodson, Thomas, and Ohlmann (2016) solved each

instance as a classical VRP using a heuristic with a vehicle capacity of 100. The authors used the

resulting number of routes as the number of required vehicles and multiplied the length of the longest

route by 0.75, 1.25, and 1.75, constructing the set of three possible duration limits, denoted as L =

{Short, Medium, Long}. They also varied the vehicle capacity Q to assume values {25, 50, 75}.
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Concerning the distribution functions of the customer demands, they characterized Ψd̂ by an in-

stance identifier U , denoted as the stochastic variability of the demands. The stochastic variability

U may have a value in U = {Low, Moderate, High}. In particular, Ψd̂ takes the distribution func-

tion of {d̄/2, d̄, 3d̄/2} with probabilities (0.05, 0.9, 0.05) for Low, {0, d̄/2, d̄, 3d̄/2, 2d̄} with probabilities

(0.05, 0.15, 0.6, 0.15, 0.05) for Moderate, and {0, d̄/2, d̄, 3d̄/2, 2d̄} with a uniform probability for High

stochastic variability, respectively. For details, the reader may refer to Goodson, Thomas, and Ohlmann

(2016). In consequence, the authors conduct experiments on 216 instances, comprised of 8 different

sets of customers (i.e., four levels for the number of customers {25, 50, 75, 100} × two classes of in-

stances {R101, C101}). In particular, for each set of customers with the same locations and expected

demands, they did tests on 27 distinct instances.

Testing the DecQN on the full set of instances is time-consuming and beyond the scope of this

paper. Therefore, we choose a subset of relatively challenging instances. In particular, we focus on

instances with n = 75 constructed from R101 Solomon instances. In these instances, the number

of vehicles m is 11. We also restrict this experiment to instances with Q = 50. Therefore, in this

experiment, we identify a VRPSD instance i ∈ I as a pair (L,U) with L ∈ L and U ∈ U . The set

I = L × U of instances contains nine elements. Notice that in the selected instances, duration limits

Short, Medium, and Long are 103.05, 171.75, and 240.45, respectively.

6.2.2 Benchmarks

Goodson, Thomas, and Ohlmann (2016) proposed an RA based on a restocking fixed-route policy.

The RA is a form of forward-dynamic programming that can be viewed as a one-step policy itera-

tion (Bertsekas 2013). At each decision epoch, they generate a set of fixed routes using a local search

heuristic. Each fixed route is then evaluated using a reward-to-go function for a set of sample demand

realizations. Finally, the fixed route with the highest reward-to-go is picked, and the next move on

that route is taken. To account for the preemptive actions, they solve an auxiliary dynamic program

to evaluate the reward-to-go of following a fixed route with and without performing the restocking

move. Since the size of the auxiliary dynamic program is highly dependent on the size of the problem,

their proposed method cannot handle instances with more than 25 customers. Therefore, they also

proposed a dynamic decomposition method to partition customers between vehicles, enabling them to

handle instances of up to 100 customers.

Goodson, Thomas, and Ohlmann (2016) obtain the initial fixed route by solving the VRPSD for a

given instance i ∈ I using a Simulated Annealing method. They showed that the high-quality initial

fixed route plays a vital role in this method. According to their findings, the RA that starts with a

high-quality initial solution outperforms the one that starts with a low-quality (randomly produced)

fixed route by an average of 11.2%. We refer to the benchmark policy as GHQ when the algorithm

starts with a high-quality fixed route and denote it GLQ when it begins with a low-quality fixed route.

6.2.3 Results and discussion

To test the obtained policies, we construct a set of realizations for each instance i ∈ I, denoted as Î(i),

by generating a set of 500 demand realizations for customers in the VRPSD. Table 3 shows the results

of our method for the selected instances along with the benchmarks. In this table, the first two columns

indicate the characteristics of the instance. The total served demand by DecQN averaged over 500

realizations (Î(i)) for each instance i ∈ I is reported as DecQN. Column (%E
∑
dc) shows the ratio

of demands that DecQN serves. Note that the total expected demand for each instance is 1079. The

results of the benchmarks are shown in columns GLQ and GHQ. Columns %Imp. GLQ and %Imp.

GHQ display the percentage improvement of our method over GLQ and GHQ, respectively. Notice

that in Table 3 duration limits S, M, and L, respectively refer to Short, Medium, and Long. Also,

stochastic variability L, M, and H are abbreviations for Low, Moderate, and High, respectively.
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Table 3: Results of DecQN compared with Goodson, Thomas, and Ohlmann (2016)

L U DecQN % E
∑
dc GLQ GHQ %Imp. GLQ %Imp. GHQ

S
L 793.45 73.54% 738.25 833.95 7.48% -4.86%
M 766.97 71.08% 718.45 794.68 6.75% -3.49%
H 745.76 69.12% 704.93 760.43 5.79% -1.93%

Avg: 71.25% 6.67% -3.43%

M
L 1053.27 97.62% 1019.21 1077.53 3.34% -2.25%
M 1036.22 96.04% 1002.8 1066.94 3.33% -2.88%
H 1021.5 94.67% 977.11 1043.61 4.54% -2.12%

Avg: 96.1% 3.74% -2.42%

L
L 1079.31 100.03% 1078.32 1078.29 0.09% 0.09%
M 1080 100.09% 1076.31 1076.89 0.34% 0.29%
H 1079.1 100.0% 1072.28 1075.28 0.64% 0.36%

Avg: 100.04% 0.36% 0.25%
Total Avg: 89.13% 3.59% -1.86%

Overall, results show that DecQN outperforms the GLQ on average by 3.59%, while GHQ outper-

forms DecQN by 1.86%. Comparing the percentage improvements, averaged for each level of duration

limit, demonstrates the considerable impact of the duration limit on the gap between solution methods.

In particular, when the duration limit becomes longer, the absolute value of %Imp. GLQ and %Imp.

GHQ fall from 6.67% and 3.43% to 0.36% and 0.25%, respectively. This reduction in the absolute gaps

may be explained by observing that as the two methods become capable of serving almost all demands

in the VRPSCD (e.g., by extending the duration limit), the range of potential difference between their

performance becomes narrower. This logic is also supported by results reported in the fourth column

(% E
∑
dc) of Table 3. Accordingly, the DecQN serves almost all demands (at least 94.67%) when the

duration limit is Medium or Long.

Regarding the impact of the stochastic variability on the performances, Table 3 shows a considerable

reduction in the absolute gaps (%Imp. GLQ and %Imp. GHQ) as U increases from Low to High,

in instances with Low duration limit. This behavior can be explained by looking into the difference

between GLQ and GHQ. Figure 5 illustrates the trend of served demands by DecQN, GLQ, and GHQ

in different levels of duration limit with respect to changes in stochastic variability. In this figure,

results for different duration limits are identified by an indication appended to the policy name. For

example, DecQN-S refers to the results of DecQN in instances with a Short duration limit. As shown

in this figure, the increase in U narrows the gap between GLQ and GHQ when the duration limit

is Low. This finding implies that as the stochastic variability increases, having a high-quality initial

solution becomes less important. This figure also explains why the gap between GLQ and GHQ, and

consequently %Imp. GLQ and %Imp. GHQ, do not follow a descending trend (as in instances with

Short L) when U rises. As can be seen, the amount of served demands in instances with Medium and

Long duration limit are very close to the total expected demand (i.e., 1079), making the performance of

policies bounded. Hence the gap between GLQ and GHQ cannot follow the same trend as in instances

with a Short duration limit. Another important finding that can be concluded from this figure is that

while the performance of GHQ, when U increases from Low to High in instances with Short L, drops

by 8.82% (from 833.95 to 760.43), the performance of our DecQN decreases only by 6.01% (from 793.45

to 745.76). It can be deduced that our method is relatively better at dealing with stochastic variability

than GHQ. This finding is important because our method does not presume any distribution function

for stochastic components.

To conclude, it is worth noting that the DecQN is analogous to the GLQ because they both start

from a random initial policy and solution, respectively. Results showed that the DecQN method could

outperform GLQ by 3.59% on average. On the other hand, the average gap between DecQN and

GHQ, where a high-quality initial solution is provided, is −1.86%. However, results showed that the
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Figure 5: Performance of DecQN, GLQ, and GHQ with respect to the stochastic variability

advantages of starting from a high-quality initial solution become less pronounced for higher values of

stochastic variability.

6.3 Generalized DecQN

The previous experiment showed that DecQN could compete with the best-performing method in the

literature to solve a VRPSD. However, we had to train a new policy for each instance i ∈ I. In fact,

a trained policy for an instance i is not optimized to solve another instance i′. In this experiment, we

further explore the flexibility of the DecQN in terms of generalizing it to handle a set of instances.

More specifically, we investigate the possibility of training one policy to solve a group of VRPSD

instances I ′, where I ′ ⊂ I. This also has some practical advantages, as it would be beneficial for a

manager to apply the same policy regardless of, for example, the duration limit.

Using the instances defined in Section 6.2.1 (represented as I = L × U)), we carry out this exper-

iment in three steps. In the first step, we aggregate instances with respect to the duration limit L.

Accordingly, we train three policies, each for a level of U ∈ U . More specifically, in instances aggregated

over L, the duration limit follows a uniform distribution function to pick a value from L. Similarly,

we generalize the method over the stochastic variability U in the second step. For this purpose, for

each level of L ∈ L, we train a policy that can handle different stochastic variabilities. In the last step,

we generalize the DecQN over both components. In this setting, a single policy is trained to solve all

nine instances. To provide enough information for the policy, we append the value of the component

on which we are aggregating to the observation representation. For example, for aggregating over the

duration limit, we pass L as an extra component into the Equation (22). We have:

ok,v̄ = [FkHk|Gk|tk|L]

Once we obtain a policy, it is tested on all instances considered in the training phase. Observe

that the considered training and testing realization sets are disjoint. For the first step, Table 4 reports

the results of the trained policies (DecQNL) and compares them with those trained in experiment 2

(DecQN) and two benchmark policies (GLQ and GHQ). In this table, the first two columns indicate the

characteristics of the test instances. Results show that the aggregation over the duration limit performs

on average 1.86% and 3.67% worse than the individual policies (DecQN) and the GHQ, respectively.

However, it still outperforms the GLQ by 1.62%. It can also be seen that the gap between DecQNL and

DecQN enhances when the duration limit gets longer. Also, the aggregation works relatively better in

higher stochastic variability.

Table 5 reports the results of the second step (DecQNU ), where instances are aggregated with

respect to the stochastic variability. Similarly to the previous analysis, we compare the results with
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Table 4: Results of DecQN generalized over the duration limit L

U L DecQNL DecQN GLQ GHQ %Imp. DecQN %Imp. GLQ %Imp. GHQ

L
S 765.63 793.45 738.25 833.95 -3.51% 3.71% -8.19%
M 1027.03 1053.27 1019.21 1077.53 -2.49% 0.77% -4.69%
L 1078.96 1079.31 1078.32 1078.29 -0.03% 0.06% 0.06%

Avg: -2.01% 1.51% -4.27%

M
S 737.13 766.97 718.45 794.68 -3.89% 2.6% -7.24%
M 1017.7 1036.22 1002.8 1066.94 -1.79% 1.49% -4.62%
L 1078.22 1080 1076.31 1076.89 -0.16% 0.18% 0.12%

Avg: -1.95% 1.42% -3.91%

H
S 722.39 745.76 704.93 760.43 -3.13% 2.48% -5.00%
M 1002.76 1021.5 977.11 1043.61 -1.83% 2.63% -3.91%
L 1079.77 1079.1 1072.28 1075.28 0.06% 0.7% 0.42%

Avg: -1.64% 1.94% -2.83%
Total Avg: -1.86% 1.62% -3.67%

the individual (DecQN) and benchmark (GLQ and GHQ) policies. Results show that our method

can handle a broader range of instances at the expense of performing on average 0.33% worse than

the individual policies. Interestingly, it can be seen that the generalized DecQN outperforms the

individual policies in instances with Medium and Long duration limits on average by 0.13% and 0.03%,

respectively. Although the generalized model has a gap of -2.18% with the GHQ, it still outperforms

the GLQ considerably (3.23%).

Table 5: Results of DecQN generalized over the stochastic variability U

L U DecQNU DecQN GLQ GHQ %Imp. DecQN %Imp. GLQ %Imp. GHQ

S
L 773.54 793.45 738.25 833.95 -2.51% 4.78% -7.24%
M 760.22 766.97 718.45 794.68 -0.88% 5.81% -4.34%
H 745.32 745.76 704.93 760.43 -0.06% 5.73% -1.99%

Avg: -1.15% 5.44% -4.52%

M
L 1051.71 1053.27 1019.21 1077.53 -0.15% 3.19% -2.40%
M 1038.64 1036.22 1002.8 1066.94 0.23% 3.57% -2.65%
H 1024.55 1021.5 977.11 1043.61 0.30% 4.86% -1.83%

Avg: 0.13% 3.87% -2.29%

L
L 1078.68 1079.31 1078.32 1078.29 -0.06% 0.03% 0.04%
M 1080.28 1080 1076.31 1076.89 0.03% 0.37% 0.31%
H 1080.3 1079.1 1072.28 1075.28 0.11% 0.75% 0.47%

Avg: 0.03% 0.38% 0.27%
Total Avg: -0.33% 3.23% -2.18%

Finally, Table 6 reports the results of testing the single trained policy in the third step (DecQNAll)

on all nine instances. Similar to Tables 4 and 5, we compare the performance of the generalized DecQN

with the individual and benchmark policies. Results show that we can train a single policy to solve

a set of different instances concerning U and L at the expense of reducing on average 1.72% of the

performance. Confronting these results with those obtained in Tables 4 and 5, we can deduce that

most of the performance deterioration comes from the generalization over the time limit dimension

L. This experiment implies that, in addition to stochastic customers and demands that are uncertain

in advance, the generalized DecQN can also handle other unknown instance components (e.g., the

duration limit) that only become evident during the operation period.
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Table 6: Results of DecQN generalized over both U and L

L U DecQNAll DecQN GLQ GHQ %Imp. DecQN %Imp. GLQ %Imp. GHQ

S
L 755.88 793.45 738.25 833.95 -4.74% 2.39% -9.36%
M 743.02 766.97 718.45 794.68 -3.12% 3.42% -6.50%
H 731.63 745.76 704.93 760.43 -1.89% 3.79% -3.79%

Avg: -3.25% 3.32% -6.55%

M
L 1026.51 1053.27 1019.21 1077.53 -2.54% 0.72% -4.73%
M 1019.22 1036.22 1002.8 1066.94 -1.64% 1.64% -4.47%
H 1009.27 1021.5 977.11 1043.61 -1.20% 3.29% -3.29%

Avg: -1.79% 1.88% -4.17%

L
L 1078.05 1079.31 1078.32 1078.29 -0.12% -0.03% -0.02%
M 1078.72 1080 1076.31 1076.89 -0.12% 0.22% 0.17%
H 1077.89 1079.1 1072.28 1075.28 -0.11% 0.52% 0.24%

Avg: -0.12% 0.24% 0.13%
Total Avg: -1.72% 1.81% -3.53%

6.4 On-line-off-line DecQN

In the previous experiments, we investigated the performance of the trained Q-network as a policy.

More specifically, for a given Q-network that provides Q values for observation-action pairs, the policy

applied the action with the maximum Q value. This section investigates the use of the trained Q-

network as a reward-to-go approximation function in an on-line RA. In Section 6.4.1, the proposed

RA is explained in detail. We use instances and trained policies as illustrated in Section 6.1. Finally,

we compare the performance of the proposed on-line-off-line DecQN with the purely off-line method

in Section 6.4.2.

6.4.1 Proposed rollout algorithm

The Rollout Algorithm is an on-line method in the form of forward-dynamic programming that can be

viewed as a one-step policy iteration (Bertsekas 2013). Bertsekas and Tsitsiklis (1996) showed that if

we roll out a known heuristic policy (the so-called base policy) to approximate reward-to-go values, the

resulting policy will be improved over the base policy. In practice, the rollout algorithm estimates the

reward-to-go value of an available action at the current decision epoch by simulating the base policy

after choosing that action. Interested readers may refer to a survey by Bertsekas (2013) for a detailed

discussion about RAs.

Similar to what defined in Equation (20), we let V π(sk) be the expected reward that can be

obtained by starting from the state sk and following the base policy π. Accordingly, we define the

rollout policy Π as:

Π(sk) = arg max
xk∈A(sk)

[
R(sk, xk) + E

w∈W
[γV π(sk+1)]

]
. (39)

In our case, the base policy is provided by the Q values trained by the DecQN method in the pre-

vious experiment. Therefore, we substitute the approximate value function V π(sk+1) according to

Equation (29). Also, following the decentralized formulation, we replace sk and A(sk) with ok,v̄ and

A(sk, v̄), respectively. We rewrite the rollout policy Π as:

Π(ok,v̄) = arg max
xk∈A(sk,v̄)

[
R(sk, xk) + E

w∈W
[γ max
x′∈A(sk+1,v̄′)

Q(ok+1,v̄′ , x
′)]

]
, (40)

where v̄′ represents the active vehicle in decision epoch k + 1.

Note that, since the set of customers is realized at the beginning of the operation, the customer

demands are the only source of uncertainty in the equation above. Therefore, the expectation function
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E(.) is computed over a finite set of sample scenarios for the realization of the stochastic demands

(W ). It is important to note that, according to Equation (18), which defines the reward function for

DecQN, the actual reward is realized with a delay. However, it is not feasible to wait to receive the

actual reward through on-line methods, such as RA. Therefore, instead of using the reward function

as in Equation (18), we define it as follows:

R(sk, xk) =

{
d̃c xk is a c ∈ C0
0 otherwise

, (41)

where d̃c is the unserved demand of customer c, if its actual demand is already realized; otherwise, it

is the expected demand (Equation (28)).

The RA proceeds at decision epoch k by simulating the system for each possible action xk ∈ A(sk, v̄)

for one step and observe the immediate reward R(sk, xk) as well as the next observation ok+1,v̄′ . In the

next observation, the maximum Q value of available actions is considered as the approximate reward

expected to be obtained onward, denoted as f̄ . The expected reward-to-go of each action is computed

for a set of demand realizations (W ). The action with the maximum f̄ will be selected as the best

action to take (x∗) at decision epoch k.

Given the delayed reward mechanism, we decided to simulate the problem for two steps for each

action (instead of the traditional one-step) in our implementation. Therefore, the implemented Equa-

tion (40) has been modified as:

Π(ok,v̄) = arg max
xk∈A(sk,v̄)

E
w∈W

[R(sk, xk) + γR(sk+1, xk+1) + γ2 max
xk+2∈A(sk+2,v̄′′)

Q(ok+2,v̄′′ , xk+2)], (42)

where xk+1 is the action in decision epoch k + 1 according to the base policy π (i.e., xk+1 =

arg maxx′∈A(sk+1,v̄′)Q(ok+1,v̄′ , x
′)) and v̄′′ is the active vehicle in decision epoch k + 2. Algorithm 3

illustrates our proposed RA for each decision epoch k.

6.4.2 Results and discussion

In Section 6.1, we tested each trained policy for 250,000 realizations. However, because the rollout

algorithm requires substantial on-line computing, testing across the same realization set would be

computationally expensive. Therefore, we test the proposed on-line-off-line DecQN for each instance

i ∈ I, with I = D × Q, on Î(i) with 2,500 realizations (50 customer realizations × 50 demand

realizations). For this experiment, we set the size of the sample scenarios for the rollout algorithm

(|W |) to 50.

Table 7 reports the results of the on-line-off-line DecQN (RA-DecQN) and compares them with the

performance of the off-line policy (DecQN). The average improvement of the rollout algorithm over

the off-line DecQN is seen in column %Imp. DecQN. According to the results, the proposed rollout

outperforms the off-line version by an average of 1.46% in all cases. The average improvement of the

rollout algorithm over the off-line DecQN is shown in Table 8. This table helps us to analyze how

changes in customer density and vehicle capacity affect %Imp. DecQN. Accordingly, as the customer

density decreases from High to Low, the gap widens significantly. Specifically, the average improvement

over the off-line DecQN in instances with high customer density is 0.93%, whereas this value in low-

density instances is 2.43%. It is essential to notice that, as discussed in the first experiment, the

importance of a good routing strategy is magnified in instances with a lower customer density. This

finding shows that the on-line-off-line method improves the off-line policy in terms of routing aspects.

Furthermore, the sensitivity analysis over the changes in the vehicle capacity also confirms this finding.

According to Table 8, the improvement percentage considerably increases from 0.63% to 2.01% when

the vehicle capacity changes from 25 to 75. It is worth to notice that as the vehicle capacity becomes

larger, vehicles are allowed to perform longer routes which highlights the necessity of an effective
routing strategy.
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Algorithm 3: Proposed Rollout Algorithm

input : Q values, sk, v̄, W
output: x∗

1 f∗ ←− 0
2 build the action set A(sk, v̄)

3 for xk ∈ A(sk, v̄) do
4 f̄ ←− 0
5 ok,v̄ ←− O(sk, v̄)

6 take action xk and receive the reward rk = R(sk, xk)
7 for w ∈W do
8 state transition k to k + 1:

9 sk+1 ←− SM (sk, xk, w)
10 v̄′ ←− {v ∈ V|av = minv∈V av}
11 ok+1,v̄′ ←− O(sk+1, v̄

′)

12 take action xk+1 = arg maxx′ Q(ok+1,v̄′ , x
′) and receive r′k = R(sk+1, xk+1)

13 state transition k + 1 to k + 2:

14 sk+2 ←− SM (sk+1, xk+1, w)
15 v̄′′ ←− {v ∈ V|av = minv∈V av}
16 ok+2,v̄′′ ←− O(sk+2, v̄

′′)

17 f ←− [rk + γr′k + γ2 maxxk+2∈A(sk+2,v̄
′′)Q(ok+2,v̄′′ , xk+2)]

18 f̄ ←− f̄ + f

19 end

20 f̄ ←− f̄/|W |
21 if f̄ > f∗ then
22 x∗ ←− xk
23 f∗ ←− f̄
24 end

25 end

In Section 6.1, we demonstrated that the average improvement over GP drops from 11.16% to 7.89%,

when the vehicle capacity increases from 25 to 75. However, this experiment shows that the on-line-

off-line DecQN partly compensates for this reduction.

Table 7: Results of on-line-off-line DecQN compared with off-line DecQN

Ψnz Q RA-DecQN DecQN %Imp. DecQN

L
25 164.34 161.34 1.86%
50 202.72 196.87 2.97%
75 217.08 211.85 2.47%

M
25 358.34 358.22 0.03%
50 461.00 455.40 1.23%
75 510.47 501.45 1.80%

H
25 551.71 551.66 0.01%
50 708.65 701.44 1.03%
75 790.34 776.71 1.75%

Avg: 1.46%

6.5 Computation time

The computation time is an important factor in optimization problems. In fact, real-world problems

have very limited computational budget. Unlike on-line methods, where the majority of the compu-

tation is done during the process, off-line policies have the advantage of being developed in advance

and used whenever needed. The computation time for using the off-line policy to obtain an action is

negligible once it is trained. Hence, the computational time of training the off-line policies is usually
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Table 8: Results of on-line-off-line DecQN compared with off-line DecQN - Averages

%Imp. DecQN
Q

25 50 75 Avg

Ψnz

L 1.86% 2.97% 2.47% 2.43%
M 0.03% 1.23% 1.80% 1.02%
H 0.01% 1.03% 1.75% 0.93%

Avg: 0.63% 1.74% 2.01% 1.46%

the main concern. Therefore, we only report the approximate times for training the off-line policies.

Depending on the number of trials, the training of each model took an average of 24 to 36 CPU hours.

Regarding the computation time in on-line-off-line DecQN, Table 9 illustrates the average CPU

time for each decision epoch. Although, as expected, the computation time grows as the number of

customers increases, the on-line-off-line DecQN can decide in 0.21 seconds, even in the most complex

problems. Therefore, the proposed rollout algorithm can also be regarded as an efficient on-line method.

Table 9: Computation time of on-line-off-line DecQN per decision epoch

Ψnz

L M H

CPU time (s) 0.10 0.17 0.21

7 Conclusion

In this study, we focused on a version of the VRP in which customer locations and demands are stochas-

tic, and a fleet of capacitated vehicles must complete the service within a specified time limit. The

goal is to maximize the total served demand. For this problem, we provided two formulations based

on Markov Decision Processes. The first formulation describes the traditional centralized decision-

making perspective, while the second models a decentralized decision-making framework where vehi-

cles autonomously establish their routes according to the observed state of the system. This second

formulation enabled us to drastically reduce the dimension of the state and the action spaces, thus

resulting in a more tractable problem. Variable-sized stochastic customer sets have been addressed

via a new heatmap-style representation of the customer demands. This approach, in particular, par-

titions the stochastic customers geographically and encodes them as a fixed-size vector. We then

solved the resulting problem by developing a Q-learning algorithm. We implemented a two-layer ar-

tificial neural network to approximate state-action Q factors. Computational results showed that our

method significantly outperforms two benchmark policies. Furthermore, we evaluated the DecQN on

the VRPSD, which is a particular case of VRPSCD, and showed that our method could compete with

the state-of-the-art solution method specialized for that problem. As a further investigation into the

capabilities of our framework, we tested and showed that the DecQN could be generalized over several

problem components, such as the stochastic variability of demands. Finally, in our last experiment,

we demonstrated that the obtained policies and value function can be employed as a base policy and

a reward-to-go estimator in an online rollout method.

In respect to possible future lines of research, we observe that the DecQN can efficiently handle

problems with stochastic customer sets. It is therefore promising to investigate how the DecQN

could be extended to tackle dynamic versions of the VRP, where customers arise dynamically during

the execution period. Another potential avenue is to investigate employing deep neural networks to

construct a more sophisticated observation function, to better identify relevant information for the

active vehicle.
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