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nécessaire et un lien vers l’article publié est ajouté.
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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2021-43) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2021–43 ii

Abstract : Binary quadratic programming (BQP) is a class of combinatorial optimization problems
comprising binary variables, quadratic objective functions and linear/non-linear constraints. In this
paper, we propose a unified framework to reformulate any BQP problem with linear constraints to a
new BQP problem defined on a graph. This framework relies on the concept of stars in the graph and
partitioning the quadratic costs into in-star and out-of-star interactions. We exploit the star-based
structure of the new reformulation to develop a decomposition-based column generation algorithm. In
our computational experiments, we evaluate the performance of our methodology on different applica-
tions with different quadratic structures in which the quadratic component of the problem is dealt with
in the column generation master problem and in its subproblem. Results suggest that the framework
outperforms the state-of-the-art solver in almost all the instances having zero out-of-star interactions
both in terms of dual bound and computational time.

Keywords: Binary quadratic programming, combinatorial optimization, column generation, semi-
assignment problem, multiple object tracking problem
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1 Introduction

Binary quadratic programming (BQP) is a large class of combinatorial optimization problems that

arose from modeling real-life applications, for example, in management, engineering, logistics and

network design (Punnen et al. 2019). Given graph G = (V,E) with node set V = {1, 2, . . . , |V |} and

edge set E = {1, 2, . . . ,m}, a BQP problem with linear constraints on graph G can be specified using

a quadratic cost matrix q ∈ Rm×m and a linear cost vector c ∈ Rm and is formulated as follows:

BQP: min
∑
e∈E

cexe +
∑

(e,f)∈E

qefxexf

s.t. x ∈ X,
(1)

where X ⊆ {0, 1}m is the set of feasible binary vectors and E = E × E.

Many quadratic combinatorial optimization problems can be naturally formulated in this fashion.

Some important examples include the quadratic assignment problem (Cela 2013), the quadratic knap-

sack problem (Pisinger 2007), the quadratic travelling salesman problem (Fischer 2014, Rostami et al.

2016, Punnen et al. 2017), the quadratic shortest path problem (Hu and Sotirov 2018b, Rostami et al.

2018a), the quadratic spanning tree problem (Assad and Xu 1992, Rostami and Malucelli 2015, Pereira

and da Cunha 2020) and the quadratic set covering problem (Escoffier and Hammer 2007, Punnen

et al. 2019).

The main difficulty of solving BQP stems from the quadratic structure of the objective function

rather than the combinatorial nature of the problem. For example, when X = {0, 1}m, problem (1) is

equivalent to unconstrained quadratic binary optimization and hence to the max-cut problem, which

is NP-hard (Barahona 1983). In general, BQP problems are NP-hard, even if the linear optimization

problem over the same feasible set is tractable. This is the case for many BQP problems including the

quadratic spanning tree problem, the quadratic assignment problem, and the quadratic shortest path

problem (Assad and Xu 1992, Rostami et al. 2018a), while their linear counterparts are polynomially

solvable.

One way to deal with the challenges of BQP is to employ data-driven methods to identify patterns

and structures in the objective function, constraint matrices, or instances (Punnen et al. 2017, Bettiol

et al. 2020). In this paper, we employ such a technique to exploit the structure of the quadratic cost

matrix q and propose a new reformulation for BQP with exponentially many variables. This new

formulation is then used to distinguish an important category of BQP with a specific cost structure

where the quadratic interaction between non-adjacent edges is zero. The relaxation of the obtained

linear programming (LP) formulation can be efficiently tackled by the proposed column generation

(CG) approach.

1.1 Literature review

One of the most natural ways to solve BQP problems with an exact method is to linearize the quadratic

terms of the model and solve the resulting mixed-integer linear program (MILP) using state-of-the-art

solvers. However, two main concerns appear when dealing with the MILP reformulation: the increased

size of the problem (in terms of variables and constraints) and the quality of the obtained dual bounds.

There have been many attempts to deal with these concerns in the literature. Adams and Forrester

(2005) and Sherali and Smith (2007) provide different reduced-size MILP reformulations of BQP, while

Hahn et al. (2012) and Rostami and Malucelli (2015) develop the reformulation-linearization technique

(RLT), which generally provides stronger MILP reformulations.

Semi-definite programming (SDP), quadratic reformulation, and cutting-plane methods are alter-

native approaches used to generate strong relaxations of BQP. In SDP, which is considered as an

extension of MILP reformulations, non-negativity constraints are replaced by positive semi-definite
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constraints (Helmberg et al. 2000, Oustry 2001). In quadratic reformulation, one must alter the objec-

tive function of a BQP problem and transform it into an equivalent convex/non-convex BQP problem

to generate tighter dual bounds (Billionnet et al. 2009, Rostami et al. 2018c). The use of valid in-

equalities, which are generated and added in a cutting-plane fashion, is another approach commonly

adopted in the literature (Fischer 2014).

Another relevant approach to obtain a stronger reformulation for BQP is to use decomposition

techniques. Variants of decompositions such as Lagrangian decomposition, graph partitioning, and

CG methods are employed to explore the bounds of unconstrained BQP problems (Mauri and Lorena

2011, 2012). For constrained BQP problems, Chen et al. (2017) represent bounds for BQP using a

Lagrangian-based heuristic method. Examples of using decompositions to explore bounds for a specific

BQP problem can be observed in the quadratic knapsack problem and minimum spanning tree problem

(Billionnet and Soutif 2004, Pereira and da Cunha 2020).

There are a few papers in the literature reformulating a BQP model for a specific application into an

MILP with an exponential number of variables, which is solved by CG. Aloise et al. (2010) reformulate

the mixed 0-1 quadratic programming model of the modularity maximization problem and solve the

reformulation using a stabilized CG. In a related study, a CG heuristic is used in a districting problem

to produce the best territories for the purpose of financial product pricing (De Fréminville et al. 2015).

Rostami et al. (2016) propose a lower bounding procedure for the asymmetric quadratic traveling

salesman problem. They reformulate the problem as an MILP with an exponential number of cycles

as variables and solve the relaxation using a CG. Another application that has been studied through

column generation is the adjacent-only quadratic minimum spanning tree problem (AQMSTP). Pereira

et al. (2015) suggest a reformulation of AQMSTP and employ row and column generation to evaluate

the lower bounds. Recently, Yarkony et al. (2020) developed an extended MILP formulation for corre-

lation clustering. They consider solving correlation clustering for several computer vision applications

through CG, Benders decomposition, and dynamic programming (DP).

In recent years, employing data-driven methods to efficiently solve large-scale optimization prob-

lems has drawn researchers’ attention. Such methods aim to tackle real-life problems by identifying

the patterns and structures inherent in these problems. There are different extents of data-driven

approaches. Exploring the constraint matrix structures, finding important patterns in a specific prob-

lem class, and revealing the structure of a data instance related to a large-scale problem, are among

the notable techniques. One of the structures explored in the MILP literature is the singly bordered

block diagonal (BBD) structure. Exploiting this structure in the constraint matrices of an MILP leads

to Dantzig-Wolfe (DW) decomposition, Lagrangian relaxation, and branch-and-price (Bergner et al.

2015, Khaniyev et al. 2018). By exploiting and rearranging the structure of the constraint’s matrix in

general MILP, Bergner et al. (2015) provide a computational proof-of-concept to show that the DW

reformulation can be automated and forced to all MILPs. To our knowledge, there are few method-

ological studies concerning structures in BQP problems. Bettiol et al. (2020) tackle BQP from the

CG perspective and construct an approach to study the structure of block-decomposable problems in

BQP. They present two types of relaxations which acquire strong lower bounds for general BQP and

block-decomposable BQP specifically. The relaxations are based on DW reformulation, while CG is

used as their solution method. In addition, some literature explores the linearizability of the quadratic

cost matrices of BQP. Linearizability is verified when there exists a linear cost matrix for the prob-

lem whose associated cost is always equal to the quadratic cost of that problem on all feasible space.

Punnen et al. (2017) investigate the structure of quadratic cost matrices to propose necessary and

sufficient conditions for linearizability of the quadratic traveling salesman problem. In another work

in this area, Hu and Sotirov (2018a) represent a linearization-based lower bounding scheme applicable

to several BQP problems using a certificate for a quadratic function to be non-negative on the feasible

set.



Les Cahiers du GERAD G–2021–43 3

1.2 Main contributions

Our main contributions are summarized as follows:

• We propose a unifying framework for general BQP which relies on detecting the patterns of data

instances by exploiting the quadratic cost matrix q.

• Based on the obtained specific structure, we present a CG algorithm to provide valid dual bounds

for the reformulation.

• We extract a large class of BQP problems whose special quadratic matrix structure derives the

greatest benefit from our dual bounding methodology.

• To demonstrate the flexibility of our modeling framework, we consider three BQP problems

whose formulations have special structures that lead to different master problems and pricing

subproblems, i.e., (i) quadratic master problem and unconstrained BQP pricing subproblem, (ii)

linear programming master problem and unconstrained BQP pricing subproblem, and (iii) linear

programming master problem and constrained BQP pricing subproblem.

• To evaluate our solution method, we perform extensive computational experiments on instances

of the quadratic semi-assignment problem, as well as a problem of data association for multiple

object tracking (MOT) in computer vision.

The rest of the paper is organized as follows. In Section 2, we present our generic framework

by means of star-based reformulation and introduce the class of BQP problems that motivated this

study. In Section 3, we propose a column generation method to solve the reformulation. Section 4 is

dedicated to presenting and reformulating two BQP problems, QSAP and MOT, as our illustrative

examples. Finally, in Section 5, we explain our test sets and display the computational results from

the introduced problems.

2 Proposed framework

Exploring data to find possible structures and patterns is a new strategy emerging to tackle difficult

optimization problems (Khaniyev 2018). Inspired by this, in the following section we first develop a

canonical form of the generic mathematical model of BQP and argue that several important applica-

tions in the literature are captured by this model. Second, we investigate a large class of BQP problems

with special properties and elaborate on how this class takes advantage of our proposed framework.

Note that the matrices and vectors are shown in bold text throughout the paper.

2.1 Reformulation

In order to tackle the complexity of BQP model in (1) using decomposition, we introduce the concept

of star formulation (Pereira et al. 2013). Consider the BQP problem defined on graph G = (V,E)

in (1). Without loss of generality, we assume that V = N ∪H where N can potentially be an empty

set. For each v ∈ H, we define δ(v) ⊆ E as the set of edges incident to node v and let A = ∪v∈Hδ(v) be

the set of all edges with one endpoint in H, considering that when the set N is empty, both endpoints

of all edges of the related graph are included in H. So, if N 6= ∅, A is the set of edges with exactly

one endpoint in H and if N = ∅, then A = E. Two distinct edges of A, say e = {i, j} and f = {k, `},
are adjacent if they share a common endpoint v in H, i.e., if {i, j} ∩ {k, `} = v ∈ H. We denote by A
the set of distinct pairs of adjacent edges in A:

A =
{

(e, f) ∈ A×A : e = {i, j}, f = {k, `}, {i, j} ∩ {k, `} = v ∈ H
}

(2)

The graphs depicted in Figure 1 demonstrate the concept of adjacent edges by defining sets A

and A.
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Figure 1: Example of graphs with adjacent edges in A. Graph on left: A = {a, b, d, e, f, g}, A = {(a, b), (d, e), (d, f),
(d, g), (e, f), (e, g), (f, g)} Graph on right: A = {a, b, c, d, e, f}, A = {(a, b), (a, d), (a, e), (a, f), (b, c), (b, e), (b, f), (c, d), (c, e),
(c, f), (d, e), (d, f)}

We introduce star-shaped sub-graph s based on above definitions. For each v ∈ H we define a

star s centered at node v as any subset of δ(v) and let Sv be the set of all stars centered at node v.

Therefore, S =
⋃
v∈H S

v includes all the possible stars centered at nodes v ∈ H in the graph. As an

example, in the left graph of Figure 1, we can consider s = {e, f, g} as a star centered at the common

endpoint of these edges.

Our methodology relies on the concept of star structures to partition the objective function

of (1) at any feasible solution x̄ into four parts: in-stars linear costs, out-of-stars linear costs, in-

stars quadratic costs, and out-of-stars quadratic costs. More precisely, given feasible solution x̄ =

(x̄1, x̄2, . . . , x̄m1 , . . . , x̄m) ∈ X ⊆ {0, 1}m, we can rewrite it as x̄ = (x̄1, x̄2) with x̄1 ⊆ {0, 1}m1 and

x̄2 ⊆ {0, 1}m−m1 and where x̄1 ∈ A and x̄2 ∈ E \A. Therefore, the objective function of (1) at x̄ can

be written as: ∑
e∈A

cex̄e +
∑

e∈E\A

cex̄e +
∑

(e,f)∈A

qef x̄ex̄f +
∑

(e,f)∈E\A

qef x̄ex̄f

Based on this representation of the objective function and the fact that each star s ∈ S consists

of a subset of pairs in A, we can reformulate this BQP problem in terms of stars. For each s ∈ S let

Cs =
∑
e∈s ce +

∑
e,f∈s qef represent the total cost of star s. We define a new binary decision variable

λs for each star s ∈ S to indicate if the corresponding star s is included in the solution of the BQP

problem or not. By preserving the definition of variable x ∈ X, we propose the following star-based

reformulation:

min
∑
s∈S

Csλs +
∑

e∈E\A

cexe +
∑

(e,f)∈E\A

qefxexf (3)

s.t. (x,λ) ∈ F(x, λ) (4)

x ∈ {0, 1}m (5)

λ ∈ {0, 1}|S| (6)

The objective function of the reformulation minimizes the total cost of the problem and consists

of three different parts. The first part corresponds to the cost of the star, including the linear costs of

the edges inside the star s and the interaction between adjacent edges of that star. The second term of

the objective function reflects the linear cost of the edges which are not incorporated in any possible

star, while the third quadratic cost is associated with the interaction between pairs of non-adjacent

edges. Constraint (4) links the feasible region of the problem to the stars by coupling the original

variables x and new variables λ. It can also include the constraints which are only related to the

variables λ and the constraints which are only associated with variables x. We assume, without loss

of generality, that such linking constraints can always be found, because for each e ∈ A, there exist a

parameter bes ∈ [0, 1] such that xe =
∑
s∈S besλs and

∑
s∈S bes = 1 (e.g., see Section 4). Since some of

the constraints in the original model can be included in the definition of the star in this reformulated

counterpart, the x-only constraints can be considered as a subset of X in (1).
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Although modeling BQP problems based on separating adjacent edge interactions and non-adjacent

edge interactions is the principal notion behind the proposed model, each term of the objective func-

tion can potentially be eliminated based on the specific problem structure in different applications.

Nonetheless, we keep the first term of the objective function as the basis of our reformulation. This

will be further explained in Section 2.2.

As we observe in the right graph of Figure 1, a given set of star centers (H) can potentially comprise

the whole node set of the graph (V ) in some problems (H = V ). Intuitively, for BQP problems with

this property, set A contains all the graph’s edges. To illustrate this, consider the quadratic minimum

spanning tree (QMST) problem (Assad and Xu 1992), in which the quadratic cost comprises the

interactions between all pairs of edges. In this problem, the set H is equal to all nodes of the graph

(H = V ). Thus, in the reformulated model of QMST, the objective function consists of a linear

term to represent the cost of stars and a quadratic term for interactions between non-adjacent edges.

Another notable example is the uncapacitated single allocation p-Hub median problem (USApHMP)

(O’Kelly 1987, Meier et al. 2016, Rostami et al. 2018d) which is a BQP problem. This problem can

be reformulated using our star-based model, consisting of linear costs inside the possible stars and

quadratic interactions between stars with different centers.

2.2 Motivation through adjacent-only class

Although the model presented in Section 2.1 is a generic reformulation of BQP, special structure

assumptions for quadratic matrix q offer promising properties for solving the problem. This structure

is our principal motivation behind the proposed reformulation scheme.

There are a variety of real-life applications that can be modeled as BQP problems, where interac-

tions appear only between adjacent edges. In these adjacent-only cases, interaction costs are zero for

pairs of edges that do not share a common endpoint in the defined subset H. Due to equation (2), in

this BQP class the quadratic cost q for the pairs of edges (e, f) that are not covered by the set A are

zero. The third term of the objective function in (3) is therefore eliminated in the star-based reformu-

lation, and the stars interact with one other only through linear costs. Thus, the new formulation for

this particular class is an integer linear problem that is less complex to solve than the generic model.

The quadratic interaction between two adjacent edges may depend on their common endpoint, or may

be independent of it, resulting in different sparsity levels of matrix q.

Numerous problems in the literature on BQP satisfy these assumptions. Some notable examples

include the adjacent-only quadratic minimum spanning tree problem (Pereira et al. 2013, Pereira and

da Cunha 2020), the quadratic travelling salesman problem (Fischer 2014, Punnen et al. 2017), the

adjacent quadratic assignment problem (Fischer et al. 2009), the adjacent quadratic shortest path

problem (Hu and Sotirov 2018b) and variants of the correlation clustering and the modularity maxi-

mization problems (Bonizzoni et al. 2008, Aloise et al. 2010, Yarkony et al. 2020). More details about

this class of BQP problems, modeling and solution methodology are presented in Section 4.

3 Solution methodology

In this section, we propose the general idea of solving the presented generic reformulation

of (3)–(6) to handle all BQP problems. It is observed that the use of star representation in the

proposed reformulation results in an exponential number of variables λs, s ∈ S. Column generation

algorithm has been introduced in the literature as a promising solution method for dealing with this

problem. CG is an efficient iterative algorithm for providing dual bounds for problems with an expo-

nential number of variables (columns) (Dantzig and Wolfe 1960). In each iteration of the algorithm, it

solves one restricted master problem (RMP) which is the problem restricted to a small subset of the

variables, and one or several pricing subproblems. Using the dual information of the RMP, the pricing

subproblem is solved to verify the optimality of the master problem and the CG algorithm stops if the
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optimality condition is satisfied. Otherwise, one or more new variables determined by the suproblem

will be added to the RMP and the updated RMP will be solved in the new iteration.

Since the generic reformulation (3)–(6) is a non-convex quadratic problem, the standard CG pro-

cedure cannot be directly applied. If the model is convex, meaning that the matrix q is positive

semidefinite, then either the underlying nature of that problem brings out a convex quadratic sub-

problem or convex quadratic master problem. In the case of a convex RMP, the primal and dual

solutions of the RMP can be obtained by state-of-the-art solvers (Rostami et al. 2018b). However,

in our proposed framework, we do not restrict the definition of q to positive semidefinite matrices.

Therefore, one has to deal with the quadratic term of the objective function. Different types of

convexification (Billionnet et al. 2009), linearization, semidefinite programming relaxation and BQP

relaxation for block-decomposable problems (Bettiol et al. 2020) are alternative options for handling

the BQP master problem. Nevertheless, some of these methods require additional complex constraints

and variables which may adversely affect their performance. Here, we follow linearization techniques

to transform the quadratic objective function to an equivalent MILP. We define yef as the linearized

variable to replace the quadratic terms xexf , (e, f) ∈ E \A, impose a set of linking constraints P(x,y)

to guarantee yef = xexf , and consider S̄ ⊆ S as a feasible subset of stars to obtain the following RMP

for the LP relaxation of the problem:

min
∑
s∈S̄

Csλs +
∑

e∈E\A

cexe +
∑

(e,f)∈E\A

qefyef (7)

s.t. (x,λ) ∈ F̄(x,λ) (8)

(x,y) ∈ P(x,y) (9)

y ∈ R|(e,f)∈E\A|
+ (10)

λ ∈ [0, 1]|S̄| (11)

where F̄(x,λ) is a subset of F(x,λ) restricted to S̄.

In each iteration, we add a subset of columns s ∈ S \ S̄ which potentially improves the objective

function of (7). To this end, we solve an auxiliary problem to find the most negative reduced cost

column to add to the master problem. Thus, a column entering the basis can be found by computing

the minimum reduced cost star with respect to the quadratic and linear costs of the edges inside

the star.

According to the definition of the cost of stars Cs, the pricing subproblem can either be a linear

problem or a BQP problem. In a simple setting, this subproblem can take the form of an unconstrained

BQP (UBQP) problem. Nevertheless, it is possible that one must explicitly incorporate constraints in

the binary quadratic subproblem in some specific applications. Given that the essence of solving a BQP

problem to exact solution is NP-hard, intuitively adding columns with negative reduced cost without

solving the subproblem to optimality can be a promising alternative when applying CG algorithm.

However, to provide a valid dual bound, we need to solve the subproblem to optimality (Aloise et al.

2010, De Fréminville et al. 2015). Specifically, in the case of a UBQP subproblem, a number of solution

approaches based on greedy and heuristic methods are proposed to solve this problem (Kochenberger

et al. 2014). Even in the case where the pricing is a constrained BQP problem and obtaining an

exact solution is necessary, the size of the problem is much smaller than the compact formulation in

Section 1, meaning the problems are relatively easy to solve. In addition, when the subproblem is a

constrained BQP problem, we have better options in terms of linearization techniques such as RLT to

solve it exactly. In the following section, we use examples to demonstrate how to deal with each of

these cases.
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4 Applications of the model and the solution strategy

The objective of this section is to demonstrate how our modeling framework and the solution strategy

described in Sections 2 and 3 can be applied to different BQP problems. To this end, we consider three

BQP problems whose formulations have special structures that lead to different master problems and

pricing subproblems, described as follows:

• Quadratic master problem and unconstrained BQP pricing subproblem

• Linear programming master problem and unconstrained BQP pricing subproblem

• Linear programming master problem and constrained BQP pricing subproblem

We consider the quadratic semi-assignment problem (QSAP) in addition to two problems from the

adjacent-only class of BQP to outline the computational advantages of our method in this class. In the

following subsections, we provide a brief description and literature review for each problem, as well as

the compact BQP models. Then, we describe how to reformulate them as (3) to (6) and obtain dual

bounds using our CG solution method.

4.1 Quadratic semi-assignment problem (QSAP)

In this problem, we are given a set of clients N = {1, ..., n} and a set of servers H = {1, ..., h}. Suppose

there is a linear cost cij associated with the assignment of client i ∈ N to server j ∈ H and there is a

quadratic cost qijkl associated with the assignment of client i ∈ N to server j ∈ H and client k ∈ N
to server l ∈ H simultaneously. The QSAP has variety of applications in the area of scheduling (Stone

1977, Chrétienne 1989) and partitioning (Hansen and Lih 1992). The hub network design problem

is also considered as a special case of QSAP (Saito et al. 2009). By transferring this problem to the

previously-defined graph G, with the node set V consisting of n clients and h servers and the edge

set E, and by recalling the concepts of Section 2.1, we rewrite the linear cost as ce, e ∈ A, the quadratic

cost as qef and the binary decision variable as xe. Hence, denoting by variable xe equals 1 if the client i

is assigned to server j, and 0 otherwise, the BQP problem of semi-assignment on graphs is formulated

as follows:

min
∑
e∈A

cexe +
∑

(e,f)∈E

qefxexf (12)

s.t.
∑
e∈δ(i)

xe = 1 ∀i ∈ N (13)

xe ∈ {0, 1} ∀e ∈ A. (14)

The QSAP is known to be NP-hard, and solving it even for small size instances is very time-

consuming (Sahni and Gonzalez 1976). Using RLT is a common approach in the literature to solve

the QSAP and there are also some studies on polynomial algorithms, heuristics and lower bounding

methods for special cases of the QSAP. We refer the reader to Saito et al. (2009) and the references

therein for more details.

4.1.1 Reformulation

We reformulate the QSAP as the general star-based model (3) to (6). To this end, without loss of

generality, we assume that every server j is a center of a star-shaped sub-graph s. So, the binary

variable λs corresponds to selecting this star. We define parameter Bjs ∈ {0, 1} to indicate if server

j is the center of star s or not, the parameter Dis ∈ {0, 1} to identify if client i is included in star s,

and Des ∈ {0, 1} to denote whether edge e belongs to star s or not. The out-of-star interactions in the

QSAP result in a quadratic reformulation, so based on the notation given above, and according to the
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formulation (7)–(11), the linearized RMP can be expressed as follows:

[RMP-QSAP]: min
∑
s∈S̄

Csλs +
∑

(e,f)∈E\A

qefyef (15)

s.t.
∑
s∈S̄

Bjsλs ≤ 1 ∀j ∈ H (16)

∑
s∈S̄

Disλs = 1 ∀i ∈ N (17)

∑
s∈S̄

Desλs = xe ∀e ∈ A (18)

(x,y) ∈ P(x,y) (19)

0 ≤ xe ≤ 1 ∀e ∈ A (20)

y ∈ R|(e,f)∈E\A|
+ (21)

λ ∈ [0, 1]|S̄| (22)

where yef is the linearization variable. Constraints (16) impose that at most one star can be chosen

among all the stars centered at j. Constraints (17) are the set partitioning linking constraints, which

impose that each client must be included in exactly one star. Constraints (18) are the linking con-

straints, and enforce that if an edge is selected in the optimal solution, then it can be included in only

one selected star.

4.1.2 Column generation

Starting from a feasible set of possible stars as initial columns, the algorithm solves the [RMP-QSAP]

restricted to the current set of stars in each iteration. The corresponding dual solutions construct one

pricing subproblem per each server j ∈ H, which aims to find a star related to j with the minimum

reduced costs. In the next iteration of the algorithm, these stars are added to [RMP-QSAP] as the

new columns to possibly improve the objective value of the master problem. The algorithm terminates

when there are no more columns with negative reduced cost to be added.

Let πj , ρi and γij be the dual solutions corresponding to constraints (16)–(18), respectively. For

each server j we consider a set of incident edges to that server. Therefore, we can use them to rewrite

the dual solutions based on edges. The star with minimum reduced cost can be found by solving the

following pricing subproblems on graphs, one for each server j:

min
∑
e∈δ(j)

(ce − ρe − γe)ze +
∑

e,f∈δ(j):f>e

qefzezf − πj (23)

s.t. ze ∈ {0, 1} ∀e ∈ δ(j) (24)

where binary decision variable ze, e ∈ δ(j) indicates if client i is part of the star centered at server j.

4.2 Adjacent-only quadratic semi-assignment problem (AQSAP)

In this section, we consider a special class of the QSAP in which the quadratic costs are restricted

to the adjacent edges only. Consider the QSAP of assigning n clients to h servers, this time in a

distributed processing system. If client i ∈ N is assigned to server j ∈ H, the required processing

time cij , is computed based on the processing speed of the server and the client’s demand. In this

type of problem, where multiple clients are assigned to the same server, there is no predefined priority

and the order of processing the requirements is unknown. In this situation, every client i ∈ N aims

to minimize the worst-case completion time. Hence, the completion time of client i is set to CTi =∑
j∈H xij

∑
k∈N ckjxijxkj , where the binary variable xij = 1 indicates assigning client i to server j
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(Drwal 2014). In order to obtain an assignment to minimize the total completion time for all clients,∑
i∈N CTi, the objective function on graphs is:

min
∑
e∈A

cexe +
∑

(e,f)∈A

qefxexf (25)

where the constraints of the problem are exactly the same as (13) and (14) and the equation below

holds:

qef = ce + cf . ∀(e, f) ∈ A (26)

This formulation is valid for all assignment problems in which multiple clients compete for a single

machine and each assigned client has to undergo the completion time of the machine. This problem

includes a large class of the QSAP, while the structure of its quadratic matrix lends it to the class of

problems described in Section 2.2. We denote this problem by adjacent-only QSAP (AQSAP) in the

rest of the paper. We observe two fundamental properties of the current problem: (i) similar to the

QSAP, the linear costs for the edges which are not covered by stars are zero, and (ii) the non-adjacent

edges do not interact with each other. Therefore, there are no out-of-star interactions between edges

in the AQSAP, which in turn leads to the following reformulation:

min
∑
s∈S

Csλs (27)

s.t.
∑
s∈S

Bjsλs ≤ 1 ∀j ∈ H (28)∑
s∈S

Disλs = 1 ∀i ∈ N (29)

λ ∈ [0, 1]|S| (30)

In this case, the reformulation is linear and CG is directly applicable. In order to solve the refor-

mulation with CG, the pricing subproblem on graphs for every star center j can be written as:

min
∑
e∈δ(j)

(ce − ρe)ze +
∑

e,f∈δ(j):f>e

qefzezf − πj (31)

s.t. ze ∈ {0, 1} ∀e ∈ δ(j) (32)

where πj , j ∈ H and ρi, i ∈ N are the duals associated with constraints (28) and (29), respectively,

and we transfer them on the edges incident to j. Similar to the QSAP, here we end up with a UBQP

pricing subproblem. Implementation details of CG, and extensive computational experiments to find

dual bounds, are provided in Section 5.

4.3 Multiple object tracking

Multiple object tracking (MOT) and, more specifically, multiple people tracking is a well-known appli-

cation in computer vision that aims to track multiple objects (people) in a sequence of video frames.

MOT is associated with a variety of applications like self-driving cars, human-computer interaction,

security and video surveillance, sports analysis, some games like Microsoft Kinect, traffic analysis,

etc. (Shen et al. 2018, Emami et al. 2018). Despite recent developments in this area, it is still a

very challenging task due to occlusion and scene cluttering. As a result of the advancement of object

detection technologies, detection-based methods are the most dominant techniques in MOT (Tang

et al. 2017, Shen et al. 2018). MOT consists of three main components: (i) detecting the objects,

in which a person detector is utilized for each individual frame to find the potential locations of all

the people, (ii) affinity, or score estimation, which demonstrates how likely detections are related to a

single identity, and (iii) data association, in which these hypotheses are linked across the frames based

on the estimated scores to form tracks (Henschel et al. 2018).



Les Cahiers du GERAD G–2021–43 10

In general, while object detection and score determination are deep learning tasks, data association

is a combinatorial optimization problem. Once the detections and their unary and pair-wise scores

are computed, they are given as inputs to the data association problem to generate the associated

tracks. To further elaborate, MOT on a sequence of frames (from t0 to t3) is depicted in Figure 2. It

shows that the output of the data association algorithm is recognizing four tracks (people) and two

false detections, represented by crossmarks. Data association algorithms can be categorized as online

or offline algorithms (Emami et al. 2018). Here we consider the offline data association case.

Figure 2: Graphical representation of data association in MOT

Essentially, a data association problem can be modeled with respect to a graph G = (V,E). A

detection i ∈ N is represented by a node in this graph. We consider another set of nodes H =

{1, 2, . . . , h} which are dummy nodes related to the tracks (target people). h is an upper bound on

the number of target people in the video, which is predefined as an input. More precisely, we define

the graph where the vertex set V consists of all detections, i.e., potential bounding boxes of potential

candidates of people in a video sequence N and all possible tracks (target people) H. Similar to

Section 2.1, consider A as a subset of edges E which are incident in a node in H. Therefore, edge

e = {i, j} ∈ A denotes a possible linking of a detection to a track (person).

Given T = {1, 2, . . . , T } as the set of all frames, each detection i belongs to a frame t ∈ T . We

introduce two other subsets of edges based on our definitions in Section 2.1: δ(i) ⊆ A is a subset of

edges in A incident to node i and δt(i) is a subset of δ(i) when the edges stem from the frame t.

Each edge e = {i, j} ∈ A has a cost ce ∈ R defined via a logit function and reflects the likelihood

of detection i ∈ N being a correct detection. This cost is called unary cost in the computer vision

literature (Henschel et al. 2018). Unary cost is fixed for each detection i and is not dependent on tracks.

For every pair of edges (e, f) which are incident in a node in H, a pair-wise cost qef ∈ Rm×m is to be

paid. Note that the interaction between edges e and f is non-zero if, and only if, the detections i and k

are assigned to a distinct track. Pair-wise cost identifies how likely two detections belong to the same

person. The probabilities which determine the costs are inferred based on detection scores. There are

several ways to estimate these score terms from the geometry features, color histogram, appearance,

and other features related to the image data. Depending on the unary and pair-wise probabilities the

cost can be negative or positive, resulting in non-convexity of the problem (Dehghan and Shah 2017,

Henschel et al. 2018).

Similar to the model presented in Henschel et al. (2018), the MOT data association problem to

minimize the total cost of labeling is expressed as:

min
∑
e∈A

cexe +
∑

(e,f)∈A

qefxexf (33)

s.t.
∑
e∈δ(i)

xe ≤ 1 ∀i ∈ N (34)

∑
e∈δt(j)

xe ≤ 1 ∀j ∈ H, ∀t ∈ T (35)

xe ∈ {0, 1} ∀e ∈ A (36)



Les Cahiers du GERAD G–2021–43 11

where constraints (34) are needed to mandate that more than one track assignment is not possible for

every detection i. Constraints (35) restrict the model to select at most one detection associated with

each track inside every frame.

Although the BQP model from Henschel et al. (2018) only contains constraints (34), any type of

potential side constraint can be added to this primary model, depending on the structure of the problem

(Dehghan and Shah 2017). Here, based on the assumption of using only one detector (body detector)

and having one detection per person as inputs to the problem, we append the frame constraints in (35)

to the basis model from Henschel et al. (2018), guaranteeing that no two detections inside a frame are

associated with the same person.

There are a few works in the literature on object tracking which are related to our modeling and

solution method. Leal-Taixe et al. (2012) study the problem of tracking multiple objects across multiple

cameras. Their LP minimum cost flow formulation of the problem has block structural properties

and they explore the results using a branch-and-price algorithm. Wang et al. (2017) model the MOT

problem through an ILP and suggest using CG for MOT and solving the associated pricing subproblem

with dynamic programming. They consider a pool of constructed tracklets (short tracks along with a

few frames) as input for their model and choose the optimal one among them based on DP. However,

in this study, we deal with the quadratic interactions between many detections simultaneously.

4.3.1 Reformulation

To reformulate the problem as the general star-based model, (3) to (6), we identify each track j as

the center of a possible star s. According to the definition of the problem, the pair-wise costs of MOT

correspond only to the pairs of edges associated with the same person, meaning that if the edges are

adjacent in H, their corresponding quadratic cost is non-zero and otherwise it is zero. Therefore, we

can exploit the special structure of the adjacent-only class in this problem. Moreover, since the cost

ce is zero for the edges that are not incident to nodes in H, the objective function of our reformulation

is reduced to the cost of stars. Thus, the star-based reformulation of MOT is given bellow:

[RMP-MOT]: min
∑
s∈S̄

Csλs (37)

s.t.
∑
s∈S̄

λs ≤ h (38)

∑
s∈S̄

Disλs ≤ 1 ∀i ∈ N (39)

λ ∈ [0, 1]|S̄| (40)

This model consists of one set of star-only constraints (38) enforcing the maximum number of tracks,

and one set of coupling constraints (39) to impose labeling every detection with at most one track.

4.3.2 Column Generation

The CG process starts from an empty set of feasible stars where we solve a pricing subproblem for each

person j ∈ H as a star center. Let π and ρi, i ∈ N , be the dual variables associated with constraints (38)

and (39), respectively. We further define binary variable ze = 1 when edge e is selected in the star and

ze = 0 otherwise. Given this, the pricing subproblem corresponding to center j ∈ H is as follows:

min
∑
e∈δ(j)

(ce − ρe)ze +
∑

e,f∈δ(j):f>e

qefzezf − π (41)

s.t.
∑

e∈δt(j)

ze ≤ 1 ∀t ∈ T (42)

ze ∈ {0, 1} ∀e ∈ δ(j) (43)
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where constraint (42) restricts each star to select a maximum of one detection per frame.

Note that this CG process requires only one subproblem to be solved at each iteration. This is due

to the fact that neither linear nor quadratic costs are dependant on the star centers; the centers can

be realized identical. More specifically, suppose that j, l ∈ H are possible star centers (tracks) and

i, k ∈ V \H are the detections. The quadratic interaction between e1 = {i, j} and f1 = {k, j}, qe1f1
is equal to the the quadratic interaction between e2 = {i, l} and f2 = {k, l}, qe2f2 .

Note that the pricing subproblem in this case is a constrained BQP problem that can be solved

using both exact and approximation algorithms. The implementation details are provided in Section 5.

5 Computational experiments

In this section, we provide a rigorous experimental study to evaluate our suggested framework on

test instances of quadratic semi-assignment and MOT in terms of dual bound and computing time.

We attempt to answer this fundamental question through our experiments: For which types of BQP

problems it is worthwhile to perform star-based reformulation and the proposed CG alongside a state-

of-the-art solver, instead of solving the original BQP formulation directly with the solver?

GUROBI version 9.0.1 is chosen as our benchmark mixed-integer programming (MIP) solver and

through our experiments we deduce that for what types of BQP problems GUROBI alone can achieve

better results and for what types using the proposed framework alongside the solver can improve

the results. To this end, we first solve the primary model of BQP and its linearized variants using

GUROBI. Then, we apply our reformulation framework and solve the pricing of CG with the same

BQP model or linearized variants using GUROBI while the master problem is also handled by the

solver. This leads to different strategies to solve the original BQP model and the reformulated model.

We considered a time limit of 3 hours to solve each instance.

For the sake of comparison, the root node dual bound of the RMP is selected as a reliable indicator

to be compared with the solver dual bound. Yet, the dual bound is not the only measure of efficiency;

we single out the computation time needed to complete the CG in the root node and for GUROBI to

solve the problem.

We compare the trade-off between computation time and the quality of the dual bound using the

methodology of performance profiles (Dolan and Moré 2002, Bergner et al. 2015) in the related section

of each problem. These two criteria are described below:

Dual bound performance profile: The first set of graphs are based on the dual bound quality

regardless of time required to compute that bound. For each instance and each method, we

compute the ratio between the dual bound of each method and the best bound among them. The

horizontal axis reports this ratio, thus the vertical axis corresponds to the fraction of instances

with at least this ratio of bound performance displayed for each method. A large value is

considered for the ratio where the method could not provide any dual bound for an instance

within the time limit.

Time performance profile: The second type of graphs are generated based on the time needed

to obtain the best dual bound. In this analysis, for each instance, we first find the best dual

bound among all the obtained dual bounds by different methods. Then, for every method which

yielded the best dual bound, we consider the ratio between the time required by that method

to attain the best dual bound and the shortest time among all of them. This ratio provides the

performance index in the horizontal axis. We report the fraction of instances with a maximum of

a specific time ratio in the vertical axis. A large value is assigned to the ratio where the method

is not able to achieve the best dual bound for an instance. Before moving on, let us make the

following remarks:
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Remark 1. For each method, the probability that the method will win over the rest of the methods is

defined by the fraction of instances with the best performance (Dolan and Moré 2002). Hence, we refer

to the ratio of instances with the performance equal to one, as the number of wins of the associated

method.

Remark 2. When running the CG algorithm, we do not have to wait until the termination of the CG

procedure to obtain a valid lower bound. If the CG could not converge in our desired time, we have

information about the intermediate quality of dual bound in each iteration at the expense of slightly

more computations (Lübbecke and Desrosiers 2005). Nonetheless, to attain a valid dual bound, we

must solve the pricing of that iteration to optimality.

Remark 3. Primal bounding methodologies are beyond the scope of the current study, thus we do not

embed the CG in a branch-and-bound tree. However, we compute primal bounds by applying a trivial

heuristic to the solutions of CG for each instance of the problem. In this heuristic, we solve the IP

model for the master problem of the last iteration where all available columns are considered as binary

variables. In Appendix C, we discuss the obtained upper bounds in more details.

Remark 4. The reported computation time for the experiments is comprised of the time to attain both

LB and UB.

Remark 5. It is well-accepted that difficulties in proving optimality may appear when column gen-

eration is solving a degenerate, large-scale problem. In addition, dual variables may oscillate from a

good one to a much worse one, deriving the same value for many iterations of CG. Recent computa-

tional experiments show that it is possible to alleviate these effects using stabilization techniques such

as dual-optimal inequalities and stabilized column generation algorithms. In this study, although we

implemented BoxPen, in-out separation, and interior-point stabilization techniques, the results were

improved for some methods of CG, but not for all of them (Desaulniers et al. 2006, Rousseau et al.

2007). Hence, we have decided to keep the unstabilized results in our reports. In addition, since our

main focus is on the application of the standard CG algorithm, further specialized CG enhancements

were not performed. However, one can test different techniques to accelerate the CG to solve the

proposed star-reformulation in an arbitrary application.

All the algorithms and models were implemented in the Python programming language. They

were performed on a shared cluster with a four-core, 3.05GHz processor and 128GB RAM running

under Linux 7.8. In the following sections, we present the test instances, parameter settings and

computational results for data association in MOT and both versions of the QSAP. The instance-by-

instance tables in Appendix B provide more details on the results of each problem.

5.1 QSAP experiments

We generate random instances for QSAP, introduced in Section 4.1, where the processing cost cij for

assigning a client i to a machine j is computed as dmi×prj . The client unit of demand for processing i

is identified by dmi, while prj indicates the required time for processing a unit in machine j. They

are randomly generated over (0, 100) and (0, 10), respectively, from uniform distribution. We carry

out our experiments considering different combinations of parameters n ≤ 50 and h ≤ 14, since in

practice h is smaller than n. To investigate the impacts of the sparsity and structure of the quadratic

matrix on the performance of our framework, we run the experiments on 5 randomly-generated data

sets with different sparsity of quadratic matrices, each comprised of 41 instances. We embark on our

experiments, using an adjacent-only QSAP data set and adding out-of-star interactions incrementally

to observe the effects. Indeed, the quadratic matrix of the first problem consists of in-star interactions

only, while the next problems include 10%, 15%, 20%, and 25% out-of-star interactions, respectively,

in addition to the in-star interactions. We should take into account that, in real-life applications of

BQP, the quadratic matrix is mostly very sparse. Therefore, adding just 10% out-of-star interactions

on top of the in-star interactions results in a fairly dense quadratic matrix. Data generated by altering

parameters n and h are defined in the QSAP-associated tables in Appendix B.



Les Cahiers du GERAD G–2021–43 14

As mentioned in Section 4.1, the pricing subproblems (23) and (31) are unconstrained BQP prob-

lems. In order to heuristically solve these subproblems, we employ an open-source solver, qbsolv (Booth

et al. 2017). Based on divide and conquer and dynamic programming, the solver partitions the problem

into multiple subproblems and solves them using a tabu search algorithm. When the heuristic solver

fails to find an improving column to add, we switch to an iteration of an exact method. In addition, as

mentioned before, to retrieve information on the intermediate dual bounds, the pricing has to be solved

to optimality. Hence, we apply a hybrid strategy to solve the pricing subproblem in which, after calling

qbsolv for a fixed number of CG iterations, it switches to an exact method (branch-and-bound) for

one iteration. In the exact iteration, either the BQP formulation of the subproblem or the linearized

version is solved by GUROBI. We chose standard linearization technique (SLT) to construct the set

P(x, y) in constraints (19). The concept of standard linearization is presented in Appendix A.

We now provide a brief description of the different methods we used to solve instances of the QSAP

and the AQSAP.

GUROBI+BQP: The BQP model (12)-(14) solved by GUROBI.

GUROBI+SLT: Linearized reformulation (using SLT) of the BQP model (12)–(14) solved by

GUROBI.

CG+BQPPricing: CG algorithm for the model (15)–(21) where the UBQP pricing is solved by

GUROBI.

CG+SLTPricing: CG algorithm for model (15)–(21) where the standard linearization of pricing

subproblem is solved by GUROBI.

CG+HeuristicBQPPricing: CG algorithm for model (15)–(21) where the UBQP pricing is solved

by using the hybrid heuristic method described above.

CG+HeuristicSLTPricing: CG algorithm for model (15)–(21) where the UBQP pricing is solved

using the hybrid heuristic in which the exact iteration solves the standard linearized pricing

subproblem by GUROBI.

Figures 3 to 7 show the results of all methods in terms of performance profile for both the AQSAP

and the QSAP. In each figure, the left diagram compares all GUROBI and CG methods in terms of

dual bounds performance, while the right one gives the time performance comparison of the methods.

According to the description provided for the dual bound performance profile, the dual bound ratio is

between zero and one for this application. However, the diagrams on the right-hand side corresponding

to time performance always consist of performance ratios which are greater than or equal to 1. Clearly,

for both bound and time performance profiles, a method with a larger fraction of instances with a ratio

closer to 1 is preferable.

AQSAP results

The results for the AQSAP instances are given in Figure 3. According to LB performance analysis in

Figure 3a, CG hybrid methods have the most wins in terms of providing the best LB (83% and 80% for

CG+HeuristicBQPPricing and CG+HEURISTICBQPPricing, respectively) among all the methods,

though CG+BQPPricing outperforms the hybrid methods in a few quantiles. For instance, all the

instances are solved by CG+BQPPricing to 90% of the best LB, while only 95% of them could reach

this ratio when solved by CG+HeuristicPricing. We also observe that in general, GUROBI solves the

BQP model (GUROBI+BQP) slightly better than it solves the linearization model (GUROBI+SLT).

If we seek a method that is able to achieve at least 20% of the best LB, then all of the tested methods

achieve this. However, if we increase the requirement to 40%, we can observe that all the CG methods

perform better than non-CG GUROBI methods. Finally, looking for a method with 100% performance,

CG+HeuristicBQPPricing is the best choice.

The next analyses are related to computing time. The time performance profile in Figure 3b shows

that the best time to find the best LB for almost 50% of instances belongs to the CG+Heuristic-
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BQPPricing method. It also demonstrates the superiority of this method in all other quantiles. Com-

paring the GUROBI methods with CG, the GUROBI methods are inefficient at finding the best LBs,

to such an extent that even the best GUROBI method obtains the best time performance in just

2% of cases. In addition, using the GUROBI+SLT method, only 15% of instances and using the

GUROBI+BQP, only 12% of instances could converge to the best LB within 2 orders of magnitude of

the best time.

Looking at both graphs simultaneously confirms the superiority of the CG-based methods over the

non-CG GUROBI methods, with a large gap for almost all intervals. Likewise, comparing the different

methods of CG indicates that, as theory suggests, combining heuristics and exact methods to solve

the pricing problems improves the results both in terms of computing time and LB in most instances.

(a) Dual bound performance profile (b) Time performance profile

Figure 3: Performance profiles for AQSAP instances

QSAP results

The results for the QSAP instances are shown in Figures 4 and 7 where, to increase the density of the

quadratic matrix, we add more out-of-star interactions to the AQSAP problem each time to generate

our data sets.

Considering the graph 4a, where we have only 10% out-of-star interactions (quadratic costs), the

overall interpretation of the results is very similar to adjacent-only QSAP. CG+HeuristicBQPPricing

has the greatest number of instances with the best LB among all the methods (44%); however, this

time CG+BQPPricing outperforms the hybrid counterpart in more intervals compared to the AQSAP.

The performance of the GUROBI methods is almost the same as before. GUROBI+BQP is superior

to GUROBI+SLT while it still has a huge LB performance gap compared to all the CG methods.

Nevertheless, in the next LB performance profile represented in Figure 5a, both GUROBI methods

outperform CGs in the interval [0.95, 1]. Comparing the CG methods with one another in this figure

demonstrates that the CG methods with exact pricing generally outperform heuristic pricing methods.

Considering this figure and the next LB performance figures, 6a and 7a, the number of wins for

both GUROBI methods is more than for CG methods. Indeed, adding more out-of-star interactions

incrementally to the data sets in Figures 6a and 7a results in enhancing the performance of GUROBIs.

However, in the most dense quadratic matrix in Figure 7a, the CG methods still outperform GUROBI

methods in some quantiles. For example, we can observe the superiority of both CG+BQPPricing and

CG+SLTPricing to GUROBI methods when a ratio smaller than 70% is considered. An overview of

LB performance profiles for all of the data sets in the QSAP demonstrates that, CG methods are more

robust because they can achieve satisfactory LB performance for most of the instances. While if we

need higher LB ratios, we aim to use GUROBI. For instance, in the case of 20% out-of-star density
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and for a minimum requirement of 60% LB performance, we would opt for CG+BQPPricing as all the

instances reach this when they are solved using this method. In contrast, the best GUROBI method,

GUROBI+BQP, satisfies this requirement in only 82% of problem instances.

(a) Dual bound performance profile (b) Time performance profile

Figure 4: QSAP-10% out-of-star density

(a) Dual bound performance profile (b) Time performance profile

Figure 5: QSAP-15% out-of-star density

The second analysis is related to the time performance profiles. As shown in Figure 3b, all CG

methods perform better than GUROBI methods in all quantiles when it comes to AQSAP. Starting

from the plot associated with time performance in Figure 4, when we add out-of-star interactions,

the GUROBI methods move upside of the figure and get closer to the CG methods. This is due to

the fact that the speed of the GUROBI methods increases when instances consist of some out-of-star

interactions in addition to the in-star interactions. Still, although the most wins in Figure 4b belong

to the GUROBI+BQP method (39%), all CG algorithms perform better than GUROBIs in all other

intervals. Comparing GUROBI methods together, similar to LB analysis, GUROBI+BQP outperforms

GUROBI+SLT in terms of time and it is still superior even when we add more out-of-star costs. It is

interesting to note that, based on the last vertical lines of Figure 4b, around 47% of instances could not

obtain the best LB when they are solved by the best CG method (CG+HeuristicBQPPricing), while

this number is 57% for GUROBI+BQPPricing as the best GUROBI method. Although inefficiency at

finding the best LB increases for CG methods by adding more out-of-star costs, GUROBI methods can
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reach the best lower bound for more instances, in more dense matrices, due to their speed improvement.

Regarding the vertical lines for the GUROBI+BQP method in Figures 5b and 6b, our interpretation is

that this method could not obtain the best LB in the time limit for more than 40% of instances, whereas

it obtained the best LB in the best time for the other 60% of instances. Moreover, it is observed that as

often seen in the literature, CG methods with exact pricing are slower than their hybrid counterparts

for all instances of adjacent-only problems. Nonetheless, their advantages are weakened in more dense

quadratic matrices. As an example, Figure 7b shows that the CG+HeuristicBQPPricing method

outperforms CG+BQPPrcing in only 8% of cases.

(a) Dual bound performance profile (b) Time performance profile

Figure 6: QSAP-20% out-of-star density

(a) Dual bound performance profile (b) Time performance profile

Figure 7: QSAP-25% out-of-star density

Looking at the trend in all of the time performance on Figures 4b to 7b, we observe that the

GUROBI methods outperform CG methods when the quadratic cost matrix of QSAP is more dense.

For instance, in Figure 7b we have 25% out-of-star quadratic costs and still in approximately 68% of the

instances, the best GUROBI method (GUROBI+BQP) is within one order of magnitude with respect to

the best time. Nevertheless, when we solve the instances using the best CG method (CG+BQPPricing),

only around 25% of the cases are within this order. However, we should remark that, in our time

performance analysis, we do not reflect the computing time of the instances which could not obtain
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the best LB. In an extreme example, suppose that CG stopped in few seconds with a high ratio of the

best LB while GUROBI found the best LB in 3 hours. In this situation, since CG did not yield the

best LB, we assign a very large number (100000) to its time performance.

Considering both performance profile analyses and the instance-by-instance details of Appendix B,

it can be deduced that the proposed star-based reformulation and CG, even with a basic implemen-

tation, outperforms GUROBI in terms of computing time and LB for most of the instances of the

AQSAP. Additionally, in a large number of instances, given a heuristic solution for the optimal value,

optimality can be proved in the root node for this problem. By evaluating the general QSAP, the

performance of the framework is reduced by augmenting the out-of-star quadratic matrix and it might

not be highly effective when the matrix is fairly dense. It should be noted that, since the majority of

real applications of BQP consist of sparse quadratic matrices, 10% to 25% out-of-star interactions in

addition to in-star interactions provides the proper condition to investigate the effects of having dense

matrices in our proposed reformulation.

5.2 MOT experiments

In addition, for the MOT data association problem, we perform our tests based on a well-known

benchmark, the MOT challenge datasets (Milan et al. 2016). Our tests are performed on different

instances from the same video sequence (MOT16-09) of this benchmark and produce instances by

altering the input parameters in the sequence. These parameters include the number of frames in

the video (T ), the maximum number of tracks (h), and the maximum number of considered adjacent

frames (d). Trivially, the estimated upper bound h has to be increased by enlarging the number of

investigated data frames to avoid missing track of any person in a real case. However, one has to

consider the effects of this parameter on the growth of the problem size in the pre-estimation. In

addition, we set the quadratic cost of two nodes which are more than d frames apart to zero in our

implementation. We alter this parameter to demonstrate its influence on enlarging the quadratic

matrix and problem size and generating various instances. The majority of the dataset configurations

in this section are based on Henschel et al. (2018).

It is worth noting that to be able to compare two entire MOT algorithms, detection of objects and

the precision of estimating unary and pair-wise cost, which are normally obtained using deep learning

techniques, are very crucial. However, since in the current paper we aim to compare the proposed

reformulation of data association and CG with the results of an MIP solver, computing real accurate

costs are beyond the scope of our research. Therefore, although we explore the real detection of the
MOT challenge dataset, we estimate naive unary and pair-wise costs for these detections based on

some basic factors such as distance between the detections.

We should remark that each frame in the MOT16-09 sequence includes 15 to 25 detections; there-

fore, the number of decision variables in the represented formulation of (33) is between 15×h×T and

25 × h × T . To better realize the large scale of the problem, assume we investigate a data instance

related to 10 frames of a video sequence consisting of an average of 20 detections in each frame and we

aim to track a maximum number of 35 people in the sequence. This instance includes 7000 decision

variables in the represented BQP formulation, which generates a graph of the problem with 235 nodes

in total. We show 27 generated instances from the mentioned data set in Tables C.11 and126C.12 of

Appendix B.

Similar to the semi-assignment problem, here we evaluate the efficiency of star-based reformulation

of MOT compared with the solver. In Section 4.3, we discussed that the pricing subproblem of MOT

is a constrained BQP problem. So, we can apply a naturally tighter linearization, RLT, to solve the

subproblems in addition to previously-used standard linearization in the QSAP. In Appendix A, we

clarify this linearization when it is applied to the MOT formulation. Here, the solution methods are

briefly introduced:

GUROBI+BQP: The BQP model (33)–(36) solved by GUROBI.
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GUROBI+SLT: Linearized reformulation (using SLT) of the BQP model (33)–(36) solved by

GUROBI.

GUROBI+RLT: Linearized reformulation (using RLT) of the BQP model (33)–(36) solved by

GUROBI.

CG+BQPPricing: CG algorithm for model (37)–(40) where constrained BQP pricing is solved by

GUROBI.

CG+SLTPricing: CG algorithm for the model (37)–(40) where the standard linearization of the

pricing subproblem is solved by GUROBI.

CG+RLTPricing: CG algorithm for the model (37)–(40) where the linearized pricing subproblem

using RLT is solved by GUROBI.

As discussed in the previous section, we investigate the performance of the methods through two

types of performance profiles. Moreover, we report the experimental details for each instance of the

problem in instance-by-instance tables in Appendix B.

According to the LB performance plot in Figure 8a, all the CG-based methods outperform their

GUROBI-based counterparts in almost all of the intervals. The only exception occurs when it comes

to comparing the CG+BQPPricing method with the GUROBI+BQP method. The GUROBI method

demonstrates superior performance in almost 20% of the instances. As we mentioned in the definition

of the dual bound performance profile, we assign a large number for the performance ratio when

the method fails to provide a valid dual bound for an instance within the time limit. Given that 5

is considered as a large ratio in our analyses, the figure indicates that in 22% of the instances, the

CG+BQPPricing could not obtain an LB within the time limit. We identify the dual bound for

these instances by NA in Table C.12. Another remark related to the LB performance graph is that

all three CG methods have a number of wins that is equal to, or greater than the best GUROBI

method (GUROBI+RLT). Evidently, when we apply RLT to solve the pricing subproblem of the CG

reformulation, the number of wins is the highest among all the methods with a large gap. Overall, the

best method is CG+RLTPricing, since it obtains the best LB for 96% of the instances and the worst

LB outcome for this method for the rest of the instances is less than 1.25 times the best LB. It should

be noted that the negative objective function of the data association problem in MOT is reflected in

an LB performance ratio greater than 1.

(a) Dual bound performance profile (b) Time performance profile

Figure 8: Performance profiles for MOT problem

Although according to Figure 8a the ratio of obtained LB by GOROBI+RLT to the best LB

is at most 1.25, Figure 8b shows that its computational time is not competitive compared to CGs.

More specifically, less than 20% of the test set is solved by the GOROBI+RLT within 2 orders of
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magnitude with respect to the fastest method. Hence, it still outperforms other GUROBI methods.

The performance profiles in Figure 8 delineate the superiority of the RLT method. Evidently, when

RLT is directly applied to the BQP formulation (the BQP+RLT method), it outperforms the other

GUROBIs. Moreover, when it is used as the method for solving the pricing subproblem of CG (the

CG+RLTPricing method), it has better performance than the other CG methods. Considering both

LB and time performance, we observe that CG+RLTPricing obtains not only the best LB in 96% of

the cases, but also in the shortest time for almost all of these cases. We detail the experiments on dual

bound and time, as well as UB and the parameters of the instances, later in the appendices.

Given the instance-by-instance tables in Appendix B and the performance analyses, we can infer

that star-based reformulation and CG methodology computationally outperform the GUROBI solver

in obtaining LB for the data association problem in MOT. Moreover, similar to CG+RLTPricing,

which outperforms GUROBI+RLT, the other CG methods outperform their GUROBI counterparts

both in terms of LB and computational time. Evidently, CG+RLTPricing achieves the best LB in

nearly all the cases and, in the situation where it stops before the time limit, it converges to the optimal

solution for the vast majority of instances.

6 Conclusion

In this study, we developed a reformulation framework and solution methodology for BQP problems.

This framework, based on in-star and out-of-star interaction between pairs of edges in the BQP prob-

lem’s graph, exploits the quadratic matrix structure. Using our proposed framework, we studied the

special structure of the quadratic matrix in a large class of BQP problems which resulted in a huge

improvement in solving these problems. We proposed different column generation methods to provide

dual bounds for BQP. To evaluate the efficiency of our framework, we perform extensive experiments

on two BQP problems with different characteristics: the quadratic semi-assignment problem and the

multiple object tracking problem. We compare the lower bound and computing time of the proposed

star reformulations and CG methods with a state-of-the-art MIP solver on instances of these problems.

One notable outcome of this study is that, in the adjacent-only class of problems, a basic implemen-

tation of the presented framework can already compete with the solver, showing large improvements

both in terms of dual bound and computation time. When out-of-stars quadratic costs are added

to the problem incrementally, the potential of the framework to compete with the solver decreases.

Nevertheless, it is interesting to note that even in the case of QSAP with a fairly dense out-of-star

quadratic matrix, the CG methods still obtain promising results in some instances. Particularly on

larger instances, where all the tested methods meet the time limit, CG methods outperform the MIP

solver in many cases.

Appendices

A Linearization

Standard linearization technique (SLT) is a known technique in the literature to transform the BQP

into its equivalent mixed integer programming (MIP) by substituting the quadratic terms with extra

binary variables yef . For instance, linearized constraints for the MOT problem are as follows:

yef ≥ xe + xf − 1 ∀(e, f) ∈ A (A.1)

yef ≤ xe ∀(e, f) ∈ A (A.2)

yef ≤ xf ∀(e, f) ∈ A (A.3)

yef ≥ 0 ∀(e, f) ∈ A (A.4)

where it suggests O(n3) decision variables and constraints be added to the BQP.
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Reformulation linearization technique (RLT) is another type of linearization. For MOT BQP

formulation and the pricing of its star-based reformulation, we could exploit a tighter linearization

which is similar to RLT. Considering (35) and multiplying it once by xf ,∀f ∈ δt
′
(j) : t′ 6= t and then

generating the same constraint for xe, we obtain following strong valid inequalities instead of SLT

constraints, (A.2) and (A.3):∑
e∈δt(j)

yef ≤ xf ∀t ∈ T, ∀j ∈ H,∀f ∈ δt
′
(j) : t′ 6= t (A.5)

∑
f∈δt(j)

yef ≤ xe ∀t ∈ T, ∀j ∈ H,∀e ∈ δt
′
(j) : t′ 6= t (A.6)

B Instance-by-instance tables

In the following, we detail the computational results for each problem in two tables consisting of dual

bounds and computational time. For each problem, one table demonstrates the experiments for the

instances in which at least one of the compared methods stops within the time limit. The other

table contains instances in which all the methods reach the time limit; thus, the three hours of fixed

computation time is not reported in this table to avoid repetition. As an index of efficiency for each

method, we report the ratio of the obtained lower bound to the best known feasible solution (BFS).

The BFS is computed by comparing the obtained upper bounds of all methods in the three hour

timeframe.
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Table B.1: AQSAP- Comparing GUROBI and CG- At least one of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing GUROBI+SLT CG+SLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

10-3 3038.8 3038.8 1 0 3038.8 1 2 3038.8 1 8 3038.8 1 6 3038.8 1 1 3038.8 1 2
10-4 2829.3 2829.3 1 0 2829.3 1 4 2829.3 1 11 2829.3 1 8 2829.3 1 2 2829.3 1 1
15-3 32202.4 32202.4 1 52 32202.4 1 56 32202.4 1 18 32202.4 1 14 32202.4 1 40 32202.4 1 16
15-4 21336.7 21336.7 1 524 21336.7 1 57 21336.7 1 28 21336.7 1 28 21335.4 1 314 21336.7 1 17
15-6 4472.7 4472.7 1 327 4456.6 1 41 4456.6 1 25 4456.6 1 16 4472.7 1 233 4456.6 1 10
18-3 8168.7 8168.7 1 43 8168.7 1 298 8168.7 1 35 8168.7 1 24 8168.7 1 25 8168.7 1 142
18-4 6747.3 6747.3 1 1852 6744.1 1 142 6744.1 1 5 6744.1 1 8 6747.3 1 909 6744.1 1 127
18-6 5906.2 4862.4 0.82 10800 5894.2 1 96 5894.2 1 53 5894.2 1 43 4769.9 0.81 10800 5894.2 1 147
18-8 4916 4176 0.85 10800 4916 1 96 4916 1 83 4916 1 82 3949 0.8 10800 4916 1 160
20-3 15549.8 15549.8 1 1099 15549.8 1 430 15549.7 1 10 15549.8 1 25 15549.8 1 345 15549.8 1 531
20-4 13657.3 12596.4 0.92 10800 13657.3 1 333 13657.3 1 58 13657.3 1 25 12835.8 0.94 10800 13657.3 1 331
20-6 9781.5 7037.9 0.72 10800 9781.5 1 227 9781.5 1 101 9781.5 1 52 6617 0.68 10800 9781.5 1 293
20-8 8559.1 5281.5 0.62 10800 8559.1 1 105 8559.1 1 10 8559.1 1 31 5292 0.62 10800 8559.1 1 176
20-10 4810.8 3978.4 0.83 10800 4810.8 1 151 4810.8 1 18 4810.8 1 59 3875 0.81 10800 4810.8 1 195
22-3 42873.5 41549.9 0.97 10800 42873.5 1 1744 42873.5 1 51 42873.5 1 74 42873.5 1 7360 42873.5 1 1612
22-4 24085.5 20842.4 0.87 10800 24082.7 1 500 24082.7 1 27 24082.7 1 76 20325.5 0.84 10800 24082.7 1 590
22-6 18316.3 13156.1 0.72 10800 18316.3 1 237 18316.3 1 28 18316.3 1 66 11492.1 0.63 10800 18316.3 1 404
22-8 7394.2 5446.3 0.74 10800 7384.8 1 205 7384.8 1 13 7384.8 1 31 4988.8 0.67 10800 7384.8 1 293
22-10 6017.8 4668.6 0.78 10800 6015.3 1 188 6015.3 1 95 6015.3 1 49 4406 0.73 10800 6015.3 1 284
22-12 4519.2 3768.7 0.83 10800 4507.3 1 158 4507.3 1 100 4507.3 1 73 3448.4 0.76 10800 4507.3 1 197
25-3 42794.9 40199.4 0.94 10800 42794.9 1 3127 42794.9 1 51 42794.9 1 72 41760 0.98 10800 42794.9 1 2417
25-4 14012.7 12582.1 0.9 10800 14012.7 1 598 14012.7 1 16 14012.7 1 79 12657.1 0.9 10800 14012.7 1 656
25-6 9478.1 6401.8 0.68 10800 9478.1 1 1937 9478.1 1 684 9478.1 1 174 5580 0.59 10800 9478.1 1 1477
25-8 8807.1 6016.4 0.68 10800 8796.6 1 581 8796.6 1 566 8796.6 1 252 5629.2 0.64 10800 8796.6 1 614
25-10 6318.8 4439.3 0.7 10800 6300 1 975 6300 1 98 6300 1 99 3880.8 0.61 10800 6300 1 591
25-12 4744 2882.8 0.61 10800 4736.2 1 265 4736.2 1 228 4736.2 1 179 2445.8 0.52 10800 4736.2 1 348
30-3 48847.1 43337.6 0.89 10800 48811.3 1 1741 48811.3 1 70 48811.3 1 98 45839.1 0.94 10800 48811.3 1 1863
30-4 20369.8 14991.8 0.74 10800 20210.9 0.99 10800 20349 1 3665 20349 1 1143 14924.2 0.73 10800 20349 1 9636
30-6 14167 7396.7 0.52 10800 14135.6 1 10800 14143.7 1 2001 14143.7 1 2287 7126.4 0.5 10800 14143.6 1 10800
30-8 10322.5 5967 0.58 10800 10310.2 1 6378 10310.2 1 2612 10310.2 1 964 5205.9 0.5 10800 10310.2 1 2953
30-14 6680.8 3151.4 0.47 10800 6679.7 1 1875 6679.7 1 214 6679.7 1 831 2710.4 0.41 10800 6679.7 1 818
40-14 10365.5 4145.3 0.4 10800 10163.6 0.98 10800 10345.1 1 10800 10355.7 1 4062 3573.3 0.34 10800 10346.6 1 10800
50-4 49468.9 21334.4 0.43 10800 49290.5 1 10800 49462.2 1 6895 49461.5 1 10800 18143.5 0.37 10800 47815.1 0.97 10800
50-6 40831 27484.4 0.67 10800 40753 1 10800 40820.8 1 4156 22875.6 0.56 10800 10049.1 0.25 10800 33571.4 0.82 10800
50-8 34960.5 17393.6 0.5 10800 34916.6 1 10800 34960.5 1 7146 15940.7 0.46 10800 8443.7 0.24 10800 27262 0.78 10800
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Table B.2: AQSAP-Comparing GUROBI and CG- None of the methods stop within the time limit

Instance
(n-h)

BFS
GUROBI+

BQP
CG+

BQPPricing
CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

GUROBI+
SLTPricing

CG+
SLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

40-3 46076.8 30559.7 0.66 43217.3 0.94 46059 1 46059 1 26953.3 0.58 42981.1 0.93
40-4 37297 16980.5 0.46 33348.9 0.89 29908.8 0.80 29908.8 0.80 15234.8 0.41 33305.3 0.89
40-6 17322.9 6164.7 0.36 14903.7 0.86 14903.7 0.86 14903.7 0.86 4854.7 0.28 15287.1 0.88
40-8 16018.9 5411.6 0.34 15025 0.94 13450.9 0.84 15991.2 1 4606.8 0.29 14450 0.90
50-3 52448.4 32173.2 0.61 52183.3 0.99 52442.3 1 52442.3 1 26415.1 0.50 49418.9 0.94
50-14 11696.4 3412.2 0.29 11601.7 0.99 11685.2 1 4748.7 0.41 3965.8 0.34 9139 0.78
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A closer look at Tables B.3 to C.10 proves that in some cases of the QSAP with out-of-star

interactions, one has to choose the solution methodology by considering the trade-off between time

and the quality of LB. The reason is that CG may stop in a shorter time with a slightly worse LB,

which we do not consider in our performance analysis. In addition, for larger-size instances of different

data sets in QSAP, a significant pattern is observed in the results. When the number of servers (h) is

relatively large compared to number of clients (n), one of the CG methods yields the best results, while

instances with a smaller number of servers are solved by GUROBI with better bounds. Interestingly,

in a relevant subset of instances where none of the methods stop before the time limit, CG provides

a better LB demonstrating there is still potential to improve our approach to be more competitive in

solving large-scale problems.

According to the tables associated with the MOT problem, increasing the parameter d for a problem

with a fixed number of frames (T ) results in more computational time, highlighting the effects of

density of the quadratic matrix in the complexity of the problem. Table C.12 demonstrates that in

many cases CG algorithms converge to the optimal solution of the problem. Specifically, when we use

CG+RLTPricing and the problem can be solved within the time limit, optimality is proved in almost

all the instances.
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Table B.3: QSAP- 10% out-of-star quadratic matrix density- Comparing GUROBI and CG- At least one of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing GUROBI+SLT CG+SLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

10-3 3061.4 3061.4 1 0 3050.1 1 6 3050.1 1 6 3050.1 1 3 3061.4 1 2 3050.1 1 2
10-4 2829.3 2829.3 1 1 2829.3 1 5 2829.3 1 5 2829.3 1 5 2829.3 1 1 2829.3 1 2
15-3 33075.4 33075.4 1 4 32311 0.98 77 32311 0.98 10 32311 0.98 6 33075.4 1 11 32311 0.98 22
15-4 21665.4 21665.4 1 21 21372.1 0.99 71 21372.1 0.99 18 21372.1 0.99 14 21665.4 1 348 21372.1 0.99 12867
15-6 4497.2 4497.2 1 7 4466.2 0.99 40 4466.2 0.99 15 4466.2 0.99 15 4497.2 1 79 4466.2 0.99 64
18-3 8383 8383 1 4 8273 0.99 164 8273 0.99 41 8273 0.99 32 8383 1 13 8273 0.99 180
18-4 6884.3 6884.3 1 23 6758 0.98 144 6758 0.98 29 6758 0.98 24 6884.3 1 119 6758 0.98 169
18-6 5957.5 5957.5 1 248 5897.7 0.99 123 5897.7 0.99 47 5897.7 0.99 39 5957.5 1 4021 5897.7 0.99 135
18-8 4956.1 4956.1 1 4762 4924.1 0.99 125 4924.1 0.99 43 4924.1 0.99 40 3786.8 0.76 10800 4924.1 0.99 129
20-3 16245.3 16245.3 1 20 15736.8 0.97 533 15736.8 0.97 103 15736.8 0.97 55 16245.3 1 75 15736.8 0.97 561
20-4 13942.2 13942.2 1 492 13681.7 0.98 459 13681.7 0.98 53 13681.7 0.98 25 13942.2 1 1701 13681.7 0.98 502
20-6 9919.2 9919.2 1 4867 9787.3 0.99 224 9787.3 0.99 42 9787.3 0.99 23 5084.5 0.51 10800 9787.3 0.99 270
20-8 8706.3 6559.9 0.75 10800 8566.3 0.98 156 8566.3 0.98 76 8566.3 0.98 31 4588.4 0.53 10800 8566.3 0.98 250
20-10 4878.3 4298.2 0.88 10800 4827.6 0.99 194 4827.6 0.99 87 4827.6 0.99 34 3125.4 0.64 10800 4827.6 0.99 280
22-3 44517.4 44517.4 1 444 42919 0.96 1092 42919 0.96 34 42919 0.96 21 44517.4 1 1632 42919 0.96 1432
22-4 25071.6 25071.6 1 4806 24092.1 0.96 589 24092.1 0.96 89 24092.1 0.96 36 25071.6 1 9336 24092.1 0.96 768
22-6 18961.7 14956.3 0.79 10800 18341.3 0.97 312 18341.3 0.97 89 18341.3 0.97 31 10373.4 0.55 10800 18341.3 0.97 391
22-8 7587.9 6234.8 0.82 10800 7390.8 0.97 322 7392.3 0.97 109 7392.3 0.97 59 4715.4 0.62 10800 7392.3 0.97 511
22-10 6124.3 5123.1 0.84 10800 6031.4 0.98 336 6031.4 0.98 84 6031.4 0.98 107 3988.6 0.65 10800 6031.4 0.98 432
22-12 4583.5 4035.2 0.88 10800 4511.1 0.98 353 4511.1 0.98 111 4511.1 0.98 126 2821 0.62 10800 4511.1 0.98 478
25-3 44875.1 44875.1 1 206 43205.4 0.96 3207 43273.8 0.96 516 43273.7 0.96 176 44875.1 1 918 43273.7 0.96 4427
25-4 14811.7 14811.7 1 83 14137.4 0.95 1256 14137.4 0.95 122 14137.4 0.95 66 14811.7 1 567 14137.4 0.95 1298
25-6 9972.8 7807.7 0.78 10800 9490.4 0.95 2361 9494.8 0.95 376 9494.8 0.95 195 4679.2 0.47 10800 9494.8 0.95 2629
25-8 9088.3 6594.8 0.73 10800 8800.7 0.97 2051 8800.7 0.97 673 8800.7 0.97 402 4730.9 0.52 10800 8800.7 0.97 1492
25-10 6554.3 4794.3 0.73 10800 6305.8 0.96 2698 6305.9 0.96 367 6305.8 0.96 543 2535.2 0.39 10800 6305.8 0.96 1822
25-12 4966.7 2331.8 0.47 10800 4737.7 0.95 1130 4738.4 0.95 1024 4738.4 0.95 916 1706.5 0.34 10800 4738.4 0.95 1712
30-3 53502.1 53502.1 1 203 53502.1 0.94 8255 50132.5 0.94 412 50132.5 0.94 79 53502.1 1 2902 50132.5 0.94 9692
30-4 21896.3 21896.3 1 1359 20293.8 0.93 10800 20469.2 0.93 4229 20469.2 0.93 4350 21896.3 1 8366 20431.4 0.93 10800
30-6 15527.6 10779.1 0.69 10800 14073.2 0.91 10800 14175.1 0.91 2324 14170.6 0.91 3722 6271 0.40 10800 14163.5 0.91 10800
30-8 10807.5 4332.3 0.40 10800 10315.8 0.95 8560 10315.9 0.95 4120 10315.9 0.95 2720 2643.3 0.24 10800 10315.9 0.95 8120
30-14 6978.9 2537.3 0.36 10800 6681.2 0.96 7894 6681.4 0.96 1063 6681.4 0.96 10800 1781.4 0.26 10800 6681.4 0.96 10800
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Table B.4: QSAP-10% out-of-star quadratic matrix density- Comparing GUROBI and CG- None of the methods stop within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

GUROBI+
SLTPricing

CG+SLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

40-3 51693.8 38850.4 0.75 42972 0.83 35176.7 0.68 45140.8 0.87 32442.4 0.63 42972 0.83
40-4 42582.4 21564 0.51 32631.2 0.77 29474.6 0.69 29474.6 0.69 8965.4 0.21 32624.8 0.77
40-6 19870.8 6052 0.3 15025.5 0.76 3614.2 0.18 3614.2 0.18 3272.2 0.16 13398.2 0.67
40-8 18865.9 3981.4 0.21 8148 0.43 6590.5 0.35 6590.5 0.35 3289.8 0.17 8148.1 0.43
40-14 11635 2919.5 0.25 5890.6 0.5 5888 0.5 4373.7 0.37 2436.4 0.2 5921.8 0.5
50-3 60996.3 50548.7 0.83 53212.6 0.87 53929.1 0.88 50319.1 0.82 35160.1 0.58 48302.3 0.79
50-4 62141.8 28749.9 0.46 48821.6 0.79 50272.7 0.81 46924.5 0.76 16379.5 0.26 45135.3 0.73
50-6 51569.9 13775.9 0.27 39816.6 0.77 40662.1 0.79 13699 0.27 7959 0.15 25648.7 0.5
50-8 44208.2 8031.6 0.18 34076.6 0.77 34742.4 0.79 14741.6 0.33 6638.9 0.15 19770.9 0.45
50-14 14426.3 3238.6 0.22 5320.3 0.37 3734.4 0.26 4335.9 0.30 2830.9 0.20 4189.6 0.29
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C Primal bounding

As mentioned before, primal bounding methodologies are beyond the scope of this project. However,

to show the strength of proposed reformulation framework and CG for the adjacent-only class of BQPs,

we obtain the primal bounds for GUROBI and all of the CG methods. In the next sections we first

discuss the obtained UB in adjacent-only problems and then we point out some discussions on QSAP

as an example of general BQPs.

C.1 Upper bound for adjacent-only problems

Although we use a very trivial heuristic to find the feasible solutions after CG methods terminate, in

a relatively large fraction of instances in adjacent-only problems, the BFS is obtained through CG,

meaning that the reformulation and CG outperform GUROBI in terms of both primal bound and dual

bound for these problems.

In Figure 1, we demonstrate a comparison of different methods for attaining the BFS for each

instance. This figure proves the capabilities of CG methods to find the best upper bounds in both

the AQSAP and MOT problem. According to Figure 1a, CG+HeuristicBQPPricing obtains the BFS

for largest fraction of instances (93%) among all of the methods. For MOT, Figure 1b indicates that

CG+RLTPricing is the best method, finding the BFS for 70% of instances.
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Table C.5: QSAP- 15% out-of-star quadratic matrix density- Comparing GUROBI and CG in different methods - At least one of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing GUROBI+SLT CG+SLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

10-3 3172.5 3172.5 1 0 3067.9 0.97 4 3067.9 0.97 4 3067.9 0.97 4 3172.5 1 2 3067.9 0.97 1
10-4 2881.7 2881.7 1 1 2862.4 0.99 5 2862.4 0.99 5 2862.4 0.99 4 2881.7 1 1 2862.4 0.99 1
15-3 33324.7 33324.7 1 2 32313.8 0.97 54 32313.8 0.97 14 32313.8 0.97 10800 33324.7 1 8 32313.8 0.97 18
15-4 22318.5 22318.5 1 6 21376.6 0.96 63 21376.6 0.96 26 21376.6 0.96 20 22318.5 1 65 21376.6 0.96 65
15-6 4568.5 4568.5 1 4 4470.1 0.98 41 4470.1 0.98 16 4470.1 0.98 21 4568.5 1 38 4470.1 0.98 56
18-3 8669.3 8669.3 1 2 8285.5 0.96 182 8285.5 0.96 24 8285.5 0.96 22 8669.3 1 6 8285.5 0.96 212
18-4 6978.7 6978.7 1 10 6763.7 0.97 194 6763.7 0.97 29 6763.7 0.97 26 6978.7 1 38 6763.7 0.97 193
18-6 6126.4 6126.4 1 130 5898 0.96 122 5898 0.96 62 5898 0.96 59 6126.4 1 1544 5898 0.96 137
18-8 5034.8 5034.8 1 419 4925.8 0.98 97 4925.8 0.98 57 4925.8 0.98 52 5034.8 1 7584 4925.8 0.98 122
20-3 16434.4 16434.4 1 9 15760.5 0.96 600 15760.5 0.96 71 15760.5 0.96 45 16434.4 1 27 15760.5 0.96 550
20-4 14529.7 14529.7 1 97 13681.7 0.94 349 13681.7 0.94 32 13681.7 0.94 19 14529.7 1 788 13681.7 0.94 444
20-6 10257.6 10257.6 1 1707 9788 0.95 206 9788 0.95 57 9788 0.95 25 8734.4 0.85 10800 9788 0.95 283
20-8 9062.6 9062.6 1 9703 8566.4 0.95 227 8566.4 0.95 84 8566.4 0.95 36 5478.7 0.6 10800 8566.4 0.95 289
20-10 4965.2 4965.2 1 4169 4829.7 0.97 196 4829.7 0.97 110 4829.7 0.97 50 3239.9 0.65 10800 4829.7 0.97 315
22-3 45955.1 45955.1 1 222 42919 0.93 897 42919 0.93 52 42919 0.93 37 45955.1 1 1037 42919 0.93 1525
22-4 26366.2 26366.2 1 899 24093.1 0.91 464 24093.1 0.91 121 24093.1 0.91 44 26366.2 1 4682 24093.1 0.91 654
22-6 19512 19512 1 8792 18341.3 0.94 256 18341.3 0.94 73 18341.3 0.94 29 11861.2 0.61 10800 18341.3 0.94 433
22-8 8214.5 8214.5 1 4946 7393 0.9 525 7393 0.9 106 7393 0.90 78 5234.4 0.64 10800 7393 0.9 492
22-10 6349.8 5412.2 0.85 10800 6034.3 0.95 259 6034.3 0.95 168 6034.3 0.95 237 4141.8 0.65 10800 6034.3 0.95 368
22-12 4939.1 3403.4 0.69 10800 4511.1 0.91 433 4511.1 0.91 160 4511.1 0.91 131 3177.6 0.64 10800 4511.1 0.91 490
25-3 48713.8 48713.8 1 117 43288.9 0.89 4418 43349.3 0.89 287 43349.3 0.89 202 48713.8 1 377 43349.3 0.89 4186
25-4 16521.4 16521.4 1 46 14214.6 0.86 1685 14214.6 0.86 121 14214.6 0.86 75 16521.4 1 241 14214.6 0.86 1631
25-6 10827.9 10827.9 1 7729 9495.5 0.88 1932 9495.5 0.88 384 9495.5 0.88 191 5551.8 0.51 10800 9495.5 0.88 1895
25-8 10227.6 5978.8 0.58 10800 8801.9 0.86 4584 8801.9 0.86 952 8801.9 0.86 511 5319.3 0.52 10800 8801.9 0.86 2642
25-10 7063.3 4147.7 0.59 10800 6306.4 0.89 3336 6306.5 0.89 942 6306.5 0.89 840 2750.4 0.39 10800 6306.5 0.89 2130
25-12 5714.7 2494 0.44 10800 4738.4 0.83 1328 4738.4 0.83 10156 4738.4 0.83 10283 1804.4 0.32 10800 4738.4 0.83 10800
30-3 57082.6 57082.6 1 93 50126.8 0.88 10800 50207 0.88 1751 50207 0.88 264 57082.6 1 1025 50206.6 0.88 10800
30-4 24213 24213 1 109 20338.4 0.84 10800 20497.5 0.85 2085 20497.5 0.85 1132 24213 1 2207 20464.8 0.85 10800
30-6 18614.7 12465.7 0.67 10800 14146.5 0.76 10800 14178 0.76 809 14170.6 0.76 2739 7506.8 0.4 10800 14164.8 0.76 10800
30-8 14294 5066.5 0.35 10800 10315.4 0.72 5906 10316.2 0.72 5366 10316.1 0.72 3479 3269.6 0.23 10800 10316.1 0.72 8978
30-14 10284 2560.9 0.25 10800 6681 0.64 9593 6681.7 0.64 1371 6681.7 0.64 1365 1913.8 0.18 10800 6681.7 0.64 4691
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Table C.6: QSAP- 15% out-of-star quadratic matrix density- Comparing GUROBI and CG- None of the methods stop within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

GUROBI+
SLTPricing

CG+SLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

40-3 55430.1 47346.3 0.85 41261.2 0.74 34545.8 0.62 45138.8 0.81 36149.5 0.65 42274.4 0.76
40-4 47234.8 32290.2 0.68 32858.1 0.7 30129.9 0.64 30129.9 0.64 15269.6 0.32 32361.9 0.69
40-6 25063.4 6785.9 0.27 14519.2 0.58 5082.2 0.2 5082.2 0.2 3558 0.14 14122.5 0.56
40-8 27886.8 4382.9 0.16 8117.5 0.29 4652.8 0.17 4652.8 0.17 3512.4 0.13 8200.1 0.29
40-14 17160.5 2929.9 0.18 6253.1 0.36 3814.5 0.22 3263.6 0.19 2589.7 0.15 6274.5 0.37
50-3 65385.1 59427.3 0.91 53082.8 0.81 53776.8 0.82 50607.7 0.77 43112.9 0.66 49664.3 0.76
50-4 70572.9 40464.5 0.57 48807.7 0.69 49460.9 0.7 46713.3 0.66 20173.8 0.29 44474.4 0.63
50-6 62755.8 14993 0.24 39683.7 0.63 40812.9 0.65 14234.6 0.23 8856.8 0.14 32200.2 0.51
50-8 53815.1 8260.5 0.15 33595 0.62 34896.4 0.65 17103.3 0.32 7084.9 0.13 18782.7 0.35
50-14 26288.9 3124.8 0.12 4524.7 0.17 701.5 0.03 4107.3 0.16 3070.6 0.12 4326.9 0.16
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(a) AQSAP methods (b) MOT methods

Figure 1: Comparing methods in terms of obtaining BFS

C.2 Upper bound for QSAP

Akin to the heuristic in AQSAP and MOT, we use all of the entered columns in the QSAP-RMP to

build our IP model to obtain a valid UB for QSAP. However, instead of solving the IP version of the

last RMP directly, we solve an RMP with a slightly different objective function. In this model, we

build a new quadratic cost function to reflect the interaction between each pair of stars (columns) of

the RMP as below: {
Qs,s′ = 0, if s and s′ have i or j in common

Qs,s′ =
∑
e∈s,f∈s′ qef , otherwise

Therefore, the alternative model to solve is:

min
∑
s∈S

Csλs +
∑
s∈S

∑
s′>s∈S

Qss′λsλs′ s.t. (28− 30) (C.7)

Through the new definition of quadratic costs, we discard many impossible interactions among

stars from the beginning. This leads to reaching the same feasible solution as with the previously

mentioned heuristic in a much shorter time. Nonetheless, even with this reformulation the obtained

feasible solutions are not promising. We do not report the details on UB of QSAP, but we would like

to provide some remarks to direct future research on this topic:

Remark 6. GUROBI methods, and in particular GUROBI+BQP, attain the BFS in the vast majority

of cases in QSAP data sets. However, as the tables in Appendix B suggest, it could not find the best

LB and close the optimality gap for many instances of the problems, While CG methods can prove

optimality in many instances of adjacent-only problems.

Remark 7. Evidently, GUROBI provides a high-quality feasible solution in a few seconds at the begin-

ning of the branch-and-bound process based on strong heuristics, but it does not improve this primal

bound hugely during the process.

Remark 8. Interestingly, we observe that in the cases where CG methods terminate within the time

limit, the obtained UB is fairly close to the BFS provided by GUROBI. In the contrast, when the CG

methods reach the three-hour time limit, they suggest a weak UB, while their associated LB is still

better than GUROBI in a relevant subset of instances.
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Table C.7: QSAP- 20% out-of-star quadratic matrix density- Comparing GUROBI and CG- At least one of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing GUROBI+SLT CG+SLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

10-3 3213.4 3213.4 1 0 3077.4 0.96 5 3077.4 0.96 3 3077.4 0.96 3 3213.4 1 1 3077.4 0.96 1
10-4 3001.4 3001.4 1 1 2869 0.96 9 2869 0.96 5 2869 0.96 4 3001.4 1 1 2869 0.96 2
15-3 34726.1 34726.1 1 2 32316.1 0.93 60 32316.1 0.93 11 32316.1 0.93 10 34726.1 1 6 32316.1 0.93 21
15-4 23852.4 23852.4 1 7 21377.4 0.9 72 21377.4 0.9 19 21377.4 0.9 19 23852.4 1 54 21377.4 0.9 75
15-6 5132.6 5132.6 1 5 4471.5 0.87 52 4471.5 0.87 21 4471.5 0.87 21 5132.6 1 33 4471.5 0.87 66
18-3 9895.4 9895.4 1 2 8291.7 0.84 182 8291.7 0.84 31 8291.7 0.84 26 9895.4 1 5 8291.7 0.84 227
18-4 7357.1 7357.1 1 6 6766.7 0.92 174 6766.7 0.92 44 6766.7 0.92 35 7357.1 1 19 6766.7 0.92 174
18-6 6379.6 6379.6 1 43 5898.1 0.92 138 5898.1 0.92 54 5898.1 0.92 48 6379.6 1 374 5898.1 0.92 138
18-8 5446 5446 1 228 4925.5 0.9 116 4925.5 0.9 55 4925.5 0.9 48 5446 1 3503 4925.5 0.9 134
20-3 18140.5 18140.5 1 8 15773.9 0.87 533 15773.9 0.87 189 15773.9 0.87 13 18140.5 1 39 15773.9 0.87 627
20-4 15836 15836 1 73 13681.7 0.86 394 13681.7 0.86 28 13681.7 0.86 20 15836 1 553 13681.7 0.86 461
20-6 11201.2 11201.2 1 1681 9788 0.87 197 9788 0.87 51 9788 0.87 26 11201.2 1 6065 9788 0.87 286
20-8 10102.4 10102.4 1 2891 8566.6 0.85 169 8566.6 0.85 124 8566.6 0.85 40 6217.2 0.62 10751 8566.6 0.85 219
20-10 5464.7 5464.7 1 4997 4831.7 0.88 242 4831.7 0.88 167 4831.7 0.88 71 3796.1 0.69 10751 4831.7 0.88 337
22-3 49327.2 49327.2 1 248 42917.7 0.87 1066 42919 0.87 64 42919 0.87 28 49327.2 1 692 42919 0.87 1693
22-4 28349 28349 1 705 24093.1 0.85 524 24093.1 0.85 113 24093.1 0.85 45 28349 1 4661 24093.1 0.85 659
22-6 21754.1 21754.1 1 7202 18337.9 0.84 214 18344 0.84 115 18344 0.84 46 13208.7 0.61 10800 18344 0.84 431
22-8 9714.9 6911.3 0.71 10800 7394.2 0.76 342 7394.2 0.76 132 7394.2 0.76 87 6078.8 0.63 10800 7394.2 0.76 470
22-10 7733.6 5698.1 0.74 10800 6034.5 0.78 322 6034.5 0.78 243 6034.5 0.78 263 4724.3 0.61 10800 6034.5 0.78 438
22-12 5974.1 3903.7 0.65 10800 4511.1 0.76 685 4511.1 0.76 461 4511.1 0.76 687 3156.2 0.53 10800 4511.1 0.76 818
25-3 51647 51647 1 88 43346 0.84 4549 43370.9 0.84 218 43370.9 0.84 149 51647 1 321 43370.9 0.84 4396
25-4 17712.6 17712.6 1 21 14221.2 0.8 1669 14228.2 0.8 112 14228.2 0.8 69 17712.6 1 74 14228.2 0.8 1812
25-6 12832.8 12832.8 1 2871 9495.5 0.74 2300 9495.5 0.74 241 9495.5 0.74 196 9895.7 0.77 10800 9495.5 0.74 2235
25-8 13672.4 7316.1 0.54 10800 8802.1 0.64 5744 8802.1 0.64 542 8802.1 0.64 384 5445.1 0.4 10800 8802.1 0.64 2463
25-10 9206.1 4485.7 0.49 10800 6311 0.69 2446 6311 0.69 1284 6311 0.69 957 2617.4 0.28 10800 6311 0.69 1967
25-12 8316.1 2788.9 0.34 10800 4738.4 0.57 1181 4738.4 0.57 366 4738.4 0.57 295 2092.4 0.25 10800 4738.4 0.57 1173
30-3 61853.4 61853.4 1 48 50149.5 0.81 10800 50268.5 0.81 1105 50268.5 0.81 237 61853.4 1 257 50260.7 0.81 10800
30-4 31188.4 31188.4 1 222 20271.2 0.65 10800 20534.9 0.66 10800 20535.1 0.66 1557 31188.4 1 2317 20485.1 0.66 10800
30-6 25956.1 13397.9 0.52 10800 14158.2 0.55 10800 14170.6 0.55 2629 14170.6 0.55 1965 8937 0.34 10752 14167.1 0.55 10800
30-8 22159.8 6551.6 0.3 10800 10316 0.47 10800 10316.2 0.47 4722 10316.2 0.47 2499 3578.7 0.16 10800 10316.2 0.47 7811
30-14 10000 2696.1 0.27 10800 6681.2 0.67 3044 6681.7 0.67 1185 6681.7 0.67 1191 2059.8 0.21 10800 6681.7 0.67 1461
50-3 71284.3 71281.1 1 4427 53119.7 0.75 10800 53649.2 0.75 10800 49488.7 0.69 10800 71284.3 1 5015 49430.2 0.69 10800
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Table C.8: QSAP- 20% out-of-star quadratic matrix density- Comparing GUROBI and CG- None of the methods stop within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

GUROBI+
SLTPricing

CG+SLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

40-3 59972.9 50584.6 0.84 42125.5 0.7 38673.8 0.64 45219.8 0.75 43825.9 0.73 42125.5 0.7
40-4 53056.6 37264.5 0.7 32994.7 0.62 26597.2 0.5 26597.2 0.5 14365.2 0.27 32254.8 0.61
40-6 29733.5 7813.6 0.26 15166.2 0.51 8320.1 0.28 8320.1 0.28 4022.8 0.14 14483.6 0.49
40-8 41010.5 5559.4 0.14 7742.1 0.19 4589.3 0.11 4589.3 0.11 3819.8 0.09 8439 0.21
40-14 28785.3 2945.6 0.1 5193.6 0.18 4788.3 0.17 2892.6 0.1 2773.3 0.1 5362.9 0.19
50-4 77901.2 57771.6 0.74 48799.5 0.63 49810.1 0.64 47129.8 0.6 27889.7 0.36 43984.5 0.56
50-6 74931.2 21463.3 0.29 39954.6 0.53 40953.9 0.55 16697.4 0.22 10209.2 0.14 24392.7 0.33
50-8 70230.7 10598.1 0.15 33909 0.48 34744.5 0.49 16170 0.23 7731.2 0.11 19306 0.27
50-14 27759.7 3352.6 0.12 4637 0.17 237.9 0.01 25.4 0 3280 0.12 4155.6 0.15
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Table C.9: QSAP- 25% out-of-star quadratic matrix density- Comparing GUROBI and CG- At least one of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing CG+HeuristicBQPPricing CG+HeuristicSLTPricing GUROBI+SLT CG+SLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

10-3 3456.3 3456.3 1 1 3090.6 0.89 7 3090.6 0.89 5 3090.6 0.89 4 3456.3 1 1 3090.6 0.89 1
10-4 3161 3161 1 1 2889 0.91 6 2889 0.91 8 2889 0.91 6 3161 1 0.1 2889 0.91 2
15-3 37682.9 37682.9 1 2 32316.1 0.86 66 32316.1 0.86 11 32316.1 0.86 8 37682.9 1 6 32316.1 0.86 20
15-4 25935.9 25935.9 1 6 21382.6 0.82 77 21382.6 0.82 26 21382.6 0.82 22 25935.9 1 53 21382.6 0.82 89
15-6 6285.4 6285.4 1 3 4472.8 0.71 52 4472.8 0.71 24 4472.8 0.71 23 6285.4 1 50 4472.8 0.71 65
18-3 10703.9 10703.9 1 2 8295.1 0.77 168 8295.1 0.77 37 8295.1 0.77 38 10703.9 1 5 8295.1 0.77 221
18-4 9346.3 9346.3 1 7 6768.2 0.72 203 6768.2 0.72 32 6768.2 0.72 29 9346.3 1 23 6768.2 0.72 222
18-6 7765.1 7765.1 1 76 5898.5 0.76 124 5898.5 0.76 51 5898.5 0.76 41 7765.1 1 722 5898.5 0.76 142
18-8 6158.9 6158.9 1 187 4926.2 0.8 116 4926.2 0.8 80 4926.2 0.8 71 6158.9 1 2245 4926.2 0.8 131
20-3 20576.4 20576.4 1 10 15777.7 0.77 519 15777.7 0.77 52 15777.7 0.77 16 20576.4 1 33 15777.7 0.77 704
20-4 16772.2 16772.2 1 34 13672.3 0.82 462 13681.7 0.82 51 13681.7 0.82 22 16772.2 1 154 13681.7 0.82 712
20-6 12269.6 12269.6 1 960 9788 0.8 239 9788 0.8 77 9788 0.8 27 12269.6 1 4011 9788 0.8 285
20-8 11938.8 8905.4 0.75 10800 8566.6 0.72 175 8566.6 0.72 174 8566.6 0.72 43 7221.3 0.6 10800 8566.6 0.72 264
20-10 6446.6 6446.2 1 10800 4831.7 0.75 238 4831.7 0.75 140 4831.7 0.75 68 4245 0.66 10800 4831.7 0.75 346
22-3 50813.7 50813.7 1 126 42911.5 0.84 1037 42919 0.84 42 42919 0.84 42 50813.7 1 307 42919 0.84 1644
22-4 30416.8 30416.8 1 621 24088.6 0.79 376 24093.2 0.79 95 24093.2 0.79 54 30416.8 1 1807 24093.2 0.79 729
22-6 24468.6 24468.6 1 9098 18344 0.75 249 18344 0.75 98 18344 0.75 59 17087.8 0.7 10800 18344 0.75 360
22-8 11778.1 8561.1 0.73 10800 7394.5 0.63 336 7394.5 0.63 125 7394.5 0.63 90 7731.5 0.66 10800 7394.5 0.63 443
22-10 11110 5756.4 0.52 10800 6031.4 0.54 334 6034.7 0.54 257 6034.7 0.54 164 5340.2 0.48 10800 6034.7 0.54 491
22-12 7911.4 4341.5 0.55 10800 4511.1 0.57 590 4511.1 0.57 812 4511.1 0.57 723 3369.7 0.43 10800 4511.1 0.57 973
25-3 54414.9 54414.9 1 59 43328.4 0.79 3991 43371.8 0.79 368 43371.8 0.79 283 54414.9 1 150 43371.8 0.79 4858
25-4 19097.4 19097.4 1 22 14228.2 0.75 2513 14228.2 0.75 175 14228.2 0.75 75 19097.4 1 45 14228.2 0.75 2209
25-6 15827.4 12459.5 0.79 10800 9495.5 0.6 3070 9495.5 0.6 378 9495.5 0.6 131 12407.8 0.78 10800 9495.5 0.6 1609
25-8 16732 7807.2 0.47 10800 8802.2 0.53 3526 8802.2 0.53 969 8802.2 0.53 475 6141.4 0.37 10800 8802.2 0.53 1659
25-10 13344.2 5355.8 0.4 10800 6311.2 0.47 1363 6311.2 0.47 389 6311.2 0.47 271 2873 0.22 10800 6311.2 0.47 1273
25-12 13607.4 2724.5 0.2 10800 4738.2 0.35 8340 4738.4 0.35 251 4738.4 0.35 195 2379.3 0.17 10800 4738.4 0.35 1505
30-3 65491.3 65491.3 1 28 50150.8 0.77 10800 50270.9 0.77 904 50270.9 0.77 272 65491.3 1 190 50263.2 0.77 10800
30-4 35820.9 35820.9 1 95 20266.7 0.57 10800 20537.4 0.57 6451 20537.4 0.57 6451 35820.9 1 1277 20509.3 0.57 10800
30-6 33203.3 17039.6 0.51 10800 14130.9 0.43 10800 14170.6 0.43 7491 14170.6 0.43 3041 9725.1 0.29 10800 14154.8 0.43 10800
30-8 29178.4 7536.3 0.26 10800 10316.1 0.35 8469 10315.9 0.35 1600 10316.2 0.35 2229 4109.8 0.14 10800 10316.2 0.35 6692
30-14 19586.9 2892.1 0.15 10800 6681 0.34 9217 6681.7 0.34 1482 6681.7 0.34 1422 2200.3 0.11 10800 6681.7 0.34 3186
40-14 43918.3 3333.9 0.07 10800 5011.2 0.11 10800 4716.2 0.1 1540 3076 0.07 10800 3023 0.06 10800 5011.2 0.11 10800
50-3 74787.6 74784.1 1 236 53079.8 0.71 10800 54068.7 0.72 10800 53284.7 0.71 10800 74787.6 1 2195 49006.6 0.66 10800
50-4 78766.4 78766.4 1 6021 49097.3 0.62 10800 49789.4 0.63 10800 46368.8 0.59 10800 34921.2 0.44 10800 43522.7 0.55 10800
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Table C.10: QSAP- 25% out-of-star quadratic matrix density- Comparing GUROBI and CG- None of the methods stops within the time limit

Instance
(n-h)

BFS
GUROBI+BQP CG+BQPPricing

CG+Heuristic
BQPPricing

CG+Heuristic
SLTPricing

GUROBI+
SLTPricing

CG+SLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

40-3 65784.3 62862.9 0.96 43109.1 0.66 37974.2 0.58 45150.2 0.69 56372.6 0.86 42429.9 0.64
40-4 59743.9 42785.1 0.72 33286.3 0.56 25012.1 0.42 25012.1 0.42 20339 0.34 32641 0.55
40-6 32760 9700.7 0.3 15083.3 0.46 8542.3 0.26 8542.3 0.26 4741.8 0.14 14156.1 0.43
40-8 47935.6 6240.7 0.13 8894.1 0.19 7232.1 0.15 15955.3 0.33 4242.9 0.09 8104.8 0.17
50-6 77643.1 23153.4 0.3 39887.4 0.51 40757.6 0.52 17943.3 0.23 12969 0.17 30068.9 0.39
50-8 74816.2 10268 0.14 34265.7 0.46 32813.6 0.44 17908.1 0.24 8371.8 0.11 18971.5 0.25
50-14 27759.7 3489 0.13 4515.4 0.16 404 0.01 50.7 0 3591.2 0.13 3668.6 0.13
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Table C.11: Data association on MOT16-09 data set- Comparing GUROBI and CG- At least one of the methods stops within the time limit

Instance
(T -h-d)

BFS
GUROBI+BQP CG+BQPPricing GUROBI+SLT CG+SLTPricing GUROBI+RLT CG+RLTPricing

LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time LB LB/BFS Time

3-20-2 -266.4 -401.7 1.51 10800 -266.8 1 75 -266.4 1 1089 -266.8 1 64 -266.4 1 509 -266.8 1 12
4-25-2 -486.2 -1064.7 2.19 10800 -486.2 1 72 -486.2 1 6969 -486.2 1 950 -486.2 1 367 -486.2 1 70
4-25-3 -516.7 -1372.8 2.66 10800 -516.7 1 507 -551.9 1.07 10800 -538.2 1.04 10800 -516.7 1 5498 -516.7 1 78
5-25-2 -636.1 -1693.5 2.66 10800 -636.1 1 200 -665.3 1.05 10800 -636.1 1 4674 -636.1 1 5939 -636.1 1 466
5-25-3 -740.1 -1774.6 2.4 10800 -740.1 1 6522 -1477.4 2 10800 -740.1 1 6347 -754.8 1.02 10800 -740.1 1 555
5-25-4 -783.2 -2024.3 2.58 10800 -783.2 1 7291 -2177.8 2.78 10800 -783.2 1 5676 -806.7 1.03 10800 -783.2 1 400
6-25-3 -910.1 -2359 2.59 10800 -1365.8 1.5 10800 -2754.3 3.03 10800 -945.1 1.04 10800 -937.6 1.03 10800 -913.1 1 733
6-25-4 -1014.5 -2817 2.78 10800 -1898.7 1.87 10800 -3883 3.83 10800 -1070.2 1.05 10800 -1064.4 1.05 10800 -1014.5 1 822
6-25-5 -1110.1 -3087.7 2.78 10800 -2260.7 2.04 10800 -3493 3.15 10800 -2288.8 2.06 10800 -1137.2 1.02 10800 -1110.6 1 821
7-30-3 -1040.5 -2932.4 2.82 10800 -2509.7 2.41 10800 -3915.9 3.76 10800 -1135.1 1.09 10800 -1077.3 1.04 10800 -1040.8 1 1304
7-30-4 -1172.7 -3538.3 3.02 10800 -3038 2.59 10800 -4499 3.84 10800 -1267 1.08 10800 -1236.6 1.05 10800 -1172.8 1 1374
7-30-5 -1336.9 -3753 2.81 10800 -3496.2 2.62 10800 -5062.4 3.79 10800 -1456.3 1.09 10800 -1417.3 1.06 10800 -1336.9 1 1718
8-30-3 -1229.1 -3379.1 2.75 10800 -2261.9 1.84 10800 -4567.4 3.72 10800 -1741.7 1.42 10800 -1303.5 1.06 10800 -1229.7 1 4293
8-30-4 -1497.8 -4778.2 3.19 10800 -3806.2 2.54 10800 -5646.2 3.77 10800 -2002 1.34 10800 -1638.2 1.09 10800 -1497.8 1 4252
8-30-5 -1619.4 -5207.5 3.22 10800 -4373.9 2.7 10800 -6429.1 3.97 10800 -2902 1.79 10800 -1892.7 1.17 10800 -1632.4 1.01 5088
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Table C.12: Data association on MOT16-09 data set- Comparing GUROBI and CG- None of the methods stop within the time limit

Instance
(T -h-d)

BFS
GUROBI+BQP CG+BQPPricing GUROBI+SLT CG+SLTPricing GUROBI+RLT CG+RLTPricing

LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS LB LB/BFS

9-35-4 -1790.8 -5601.5 3.13 -5377.9 3 -6569.6 3.67 -4230.2 2.36 -2026.3 1.13 -1792.1 1.00
9-35-5 -1974.7 -6624.1 3.35 NA NA -7740.1 3.92 -5085.4 2.58 -2358.4 1.19 -1988.9 1.01
9-35-6 -2065.4 -7647.6 3.7 NA NA -8519.1 4.12 -5134.7 2.49 -2535.4 1.23 -2150.4 1.04
10-35-4 -1971.7 -6472 3.28 NA NA -7357.6 3.73 -5469.1 2.77 -2288.2 1.16 -2073.7 1.05
10-35-5 -2150.6 -8116.3 3.77 NA NA -8663.3 4.03 -5700.6 2.65 -2665.1 1.24 -2346.1 1.09
10-35-6 -2405.1 -9273.5 3.86 NA NA -9792.8 4.07 -6824.3 2.84 -2988.5 1.24 -2621.2 1.09
10-35-7 -2569.7 -10134.5 3.94 NA NA -10681.3 4.16 -7544.9 2.94 -3252.3 1.27 -2833.3 1.10
11-35-4 -2167.5 -7494.8 3.46 -6969.1 3.22 -8306.2 3.83 -5996.4 2.77 -2650.4 1.22 -2412.8 1.11
11-35-6 -2687 -10773.8 4.01 -8849.4 3.29 -11098.4 4.13 -8436 3.14 -3440.9 1.28 -3074.5 1.14
11-35-9 -3141.3 -12752.7 4.06 -9512.7 3.03 -13306.3 4.24 -9496.8 3.02 -4107.9 1.31 -3540.1 1.13
12-40-4 -2467.1 -8257 3.35 -8606.6 3.49 -9107.1 3.69 -8168.3 3.31 -2915.7 1.18 -2862.4 1.16
12-40-6 -3044.7 -11709.1 3.85 -10676.2 3.51 -12016.3 3.95 -10281.8 3.38 -3762.6 1.24 -3520.2 1.16
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Kochenberger G, Hao JK, Glover F, Lewis M, Lü Z, Wang H, Wang Y (2014) The unconstrained binary
quadratic programming problem: a survey. Journal of Combinatorial Optimization 28(1):58–81.

Leal-Taixe L, Pons-Moll G, Rosenhahn B (2012) Branch-and-price global optimization for multi-view multi-
target tracking. 2012 IEEE Conference on Computer Vision and Pattern Recognition, 1987–1994 (IEEE).
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