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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: E. M. Parilina, P. V. Reddy, G. Zaccour (De-
cember 2020). Stability and negotiation of long-term agreements in
cooperative difference games with nontransferable utility, Technical
report, Les Cahiers du GERAD G–2020–77, GERAD, HEC Montréal,
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l’accès au travail et enquêterons sur votre demande.
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Abstract: In this paper, we study the time consistency of cooperative agreements in dynamic games with
nontransferable utility. An agreement designed at the outset of a game is time consistent (or sustainable)
if it remains in place for the entire duration of the game, that is, if no player would benefit from switching
to his Nash equilibrium strategy. The literature has highlighted that, since side payments are not allowed,
the design of such an agreement is very challenging. To address this issue, we introduce different notions for
the temporal stability of an agreement and characterize the agreement’s intrinsic longevity. We illustrate our
general results with a linear-quadratic difference game and show that an agreement’s longevity can be easily
assessed using the problem data. We also study the effect of information structure on the longevity of the
agreement. We illustrate our results with a numerical example.

Keywords: Time consistency, cooperative dynamic games, nontransferable utility, linear-quadratic games

Résumé : Dans cet article, nous étudions la question de la cohérence temporelle des accords de coopération
dans les jeux dynamiques à utilité non transférable. Un accord conçu au début d’un jeu est cohérent dans
le temps (ou durable) s’il reste en place pendant toute la durée du jeu, c’est-à-dire si aucun joueur ne
bénéficierait d’un passage à sa stratégie non coopérative. Comme les paiements latéraux ne sont pas autorisés,
la conception d’un tel accord est très difficile. Pour résoudre ce problème, nous introduisons différentes notions
de stabilité temporelle d’un accord et caractérisons la longévité intrinsèque de l’accord. Nous illustrons nos
résultats généraux avec un jeu linéaire-quadratique et montrons que la longévité d’un accord peut être
facilement évaluée en utilisant les données du problème.

Mots clés : Cohérence dynamique, jeux dynamiques coopératifs, utilité non transférable, jeux linéaires-
quadratiques
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1 Introduction

In many instances, agents (e.g., firms, spouses, countries) opt for long-term contracts instead of short-term

ones for essentially two main reasons. First, a long-term agreement avoids the possibly high renegotiation cost

(in dollars and time). Second, if today’s decisions influence tomorrow’s payoff, then short-term optimization

and cost-benefit analysis lead to bad decisions. To illustrate, consider climate change. If the players only

account for the impact of pollution on today’s health and wealth, they will most likely only postpone painful

but (ultimately) unavoidable decisions, which will exacerbate the problems in the longer term, leading to an

eventually higher damage cost.

One main concern with long-term agreements is their sustainability, that is, how to ensure that the

concerned parties will honor their commitments as time goes by. It is an empirical fact that some long-term

contracts break down before their maturity. A few examples of such contract breaches include the high

observed rate of divorce; Canada leaving the Kyoto Protocol; and the US, the Paris Agreement.

The literature on dynamic games has addressed this issue following two approaches. The first aims

at embedding the cooperative solution with an equilibrium property that renders the agreement stable by

construction. The early contributions in (state-space) dynamic games include [12], [24], [11], and [9]. The

books [4] and [10] provide a comprehensive introduction to cooperative equilibria in differential games. The

second stream, to which this paper belongs, seeks to build a time-consistent agreement, that is, one in which,

at each instant of time, each player finds it optimal to continue with the agreement rather than switching to

his noncooperative strategy. The concept of time consistency in differential games was proposed by [20].

In dynamic games with transferable utility (TU), one can use intertemporal payment transfers to imple-

ment a time-consistent agreement; see [29], [30], [14] and [21] for comprehensive reviews. In dynamic games

with non-transferable utility (NTU), such transfers are not allowed, which makes the design of time-consistent

agreements a formidable challenge, and explains the sparsity of the literature. Leitmann [17], Dockner and

Jørgensen [3], Hämäläinen et al. [7], Yeung and Petrosyan [26], Yeung et al. [25], de-Paz et al. [2], and

Maŕın-Solano [18] studied some cooperative differential games with non-transferable payoffs. Haurie [8] ana-

lyzed the time-consistency property of the Nash bargaining solution in NTU cooperative differential games.

Sorger [23] and Yeung and Petrosyan [27] studied these games in a discrete-time setting.

The objective of this paper is to study the existence of time-consistent individually rational (TCIR)

cooperative agreements in discrete-time dynamic games with non-transferable utility. A series of cooperative

game solutions and bargaining procedures have been developed to deal with NTU games, e.g., the Nash

bargaining solution [19], the Kalai-Smorodinsky bargaining solution [16], the Kalai proportional solution [15],

and the core by Edgeworth [5]. These bargaining solutions have two properties in common, namely, individual

rationality (i.e., no player would accept an agreement that leaves him worse than staying out of it) and

Pareto optimality. In a static game, all the Pareto solutions can be generated by solving a weighted sum

optimization problem, and in a dynamic game, by solving a weighted sum optimal-control problem [6] with

the weight vectors belonging to a unit simplex. Then, a cooperative contract signed at an initial date means,

in particular, that the players have selected and agreed on a specific weight vector. In [26], the authors

studied the existence of TCIR agreements in a class of NTU stochastic differential games. One conclusion

is that such agreements may not exist because the time-consistency requirements are too restrictive (see

also [28]). If one allows for variations in the weight vector over time, then the task becomes easier. However,

a change in the weight vector means, tautologically, that the initial agreement is not time consistent. This

approach of varying the players’ weights over time was studied in [23] and [18], while [27] provides a dynamic

programming based procedure for finding subgame-consistent cooperative solutions in discrete-time NTU

games with varying weights. For a review of dynamic cooperative NTU games, see [28].

In this paper, considering a fairly general class of discrete-time NTU games, we introduce four different

notions of inter-temporal stability related to the time consistency of an agreement. We show that the space

of individually rational agreements can be canonically decomposed into a union of disjoint sets of TCIR

agreements that break down before their maturity date and those that persist through the full duration of

the game. This result implies that the players can assess, from the outset, the intrinsic longevity of any

individually rational agreement that could be signed at an initial date. Further, we show that, for the
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class of linear-quadratic difference games, these sets can be easily computed from the problem data merely

by testing for the positive semi-definiteness of the matrices. Interestingly, for any of the classical fairness

based bargaining solutions, e.g., Nash, Kalai-Smorodinsky, and egalitarian solutions, we can determine if the

agreement will remain in place until the end of the game, and if not, when it will break down. Another

practical implication is that if designing a TCIR contract having the same horizon as the game itself is out

of reach, then the players can settle for the longest feasible time span. After, they can renegotiate a new

agreement, that is, adopt another vector of weights, as in, e.g., [18], [23], and [27].

The paper is organized as follows. In Section 2, we introduce the cooperative dynamic game model

and review the concept of Pareto optimality and provide results on the necessary and sufficient conditions

for the existence of Pareto-optimal solutions in discrete-time dynamic games. In Section 3, we introduce

four different notions of stability of cooperative agreements in the time-consistency sense. We provide a

canonical decomposition of individually rational Pareto solutions. In Section 4, we specialize these results for

the class of linear-quadratic difference games to obtain a semi-analytic procedure for constructing the sets

corresponding to time-consistent individually rational agreements when players use open-loop and feedback

information structures. In Section 5, we provide an example to illustrate our results, and we conclude in

Section 6.

1.1 Notation

We shall use the following notation. The n-dimensional Euclidean space is denoted by Rn, n ≥ 1. A′

denotes the transpose of a matrix A. A1 ⊕ A2 ⊕ · · · ⊕ An represents the block diagonal matrix obtained

by taking the matrices A1, A2, · · · , An as diagonal elements in this sequence. The n × n identity matrix is

represented by I, and the ith column of I is denoted by the vector ei ∈ Rn. We denote a positive semi-

definite (definite) matrix A as A � 0 (� 0). We denote the quadratic term x′Ax as ||x||2A, where x ∈ Rn
and A ∈ Rn×n is a symmetric matrix. The n-dimensional unit simplex is denoted by P, which is defined as

P := {(α1, α2, · · · , αn) ∈ Rn
∣∣ αi ∈ (0, 1), i = 1, 2, · · · , n,

∑n
i=1 α

i = 1}. The symbol α denotes the weight

vector (α1, α2, · · · , αn) in P.

2 Discrete-time cooperative NTU games and Pareto-optimality

Consider a multi-stage finite-horizon nonzero-sum discrete-time dynamic game with T stages. We denote by

N = {1, 2, · · · , N} the set of players and by T = {0, 1, 2, · · · , T} the set of decision instants. The evolution

of the state is governed by the following difference equation:

xt+1 = ft(xt, u
1
t , u

2
t , · · · , uNt ), x0 is given, (1)

where xt ∈ Rn represents the state of the system and uit ∈ U it ⊂ Rmi is the control action of Player i at

time period t in mi-dimensional control action set. Denote by ut := (u1
t , u

2
t , · · · , uNt ) the joint action of

the players at time t and Ut := ΠN
i=1U

i
t ⊂ Rm, m =

∑
imi, the joint action set of the players. Denote by

ũi := (ui0, u
i
1, · · · , uiT−1) a strategy, i.e., a profile of actions, of Player i, and by ũ := (ũ1, ũ2, · · · , ũN ) a joint

strategy of the players. Let Ũ i = U i0 ×U i1 × · · · ×U iT−1 be the control set of Player i and U = Ũ1 × · · · × ŨN
be the joint strategy set. Each player i ∈ N aims at minimizing the objective

J i(ũ) = hi(xT ) +

T−1∑
t=0

git(xt,ut), (2)

where hi(xT ) is Player i’s salvage value at T and git(xt,ut) is the running cost at t. We assume that the

vector function ft : Rn ×Rm → Rn, the scalar functions git : Rn ×Rm → R, and hi : Rn → R are continuous

for all t ∈ T and for all i ∈ N , and that the partial derivatives of these functions exist and are continuous in

their arguments.

Remark 1 A complete description of a dynamic game includes the specification of the information structure,

that is, the piece of information used by the players when they make their decisions. As our construction
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is independent of this structure, and to avoid usage of additional notation, we postpone the discussion on

information structure to Section 4.

We consider the situation where the players are willing to cooperate to improve their objectives. If the

utility functions (2) are transferable, then the players collectively solve a joint sum optimal-control problem.

In our paper, the utility functions are non-transferable, and if the players agree to cooperate, then they will

seek a Pareto-optimal agreement defined as a Pareto-optimal strategy profile. A Pareto-optimal solution has

the property that the cost incurred by any single player cannot be further reduced without increasing the

cost of at least one other player. Put differently, a solution that cannot be improved upon by all the players

simultaneously is a Pareto (optimal) solution.

Definition 1 (Pareto solution) The strategy ũ∗ ∈ U is said to be Pareto efficient if there does not exist ũ ∈ U
such that for all i ∈ N , Ji(ũ) ≤ Ji(ũ

∗) and for some j ∈ N Ji(ũ) < Ji(ũ
∗). The corresponding point

(J1(ũ∗), J2(ũ∗), · · · , JN (ũ∗)) is called a Pareto solution. The set of all Pareto solutions is called a Pareto

frontier.

It is well-known that the problem of finding Pareto solutions is closely related to solving a weighted sum

optimal-control problem with weights belonging to the unit simplex.

Lemma 1 (Leitmann [17]) Let α ∈ P and assume that ũ∗ ∈ U is such that

ũ∗ = arg min
ũ∈U

∑
i∈N

αiJ
i(ũ),

then ũ∗ is Pareto-optimal.

Being a sufficient condition, from the above lemma it is not clear whether we obtain all Pareto-optimal

controls solving a weighted sum optimization problem. The following lemma provides both a necessary and

sufficient characterization of Pareto solutions. It states that Pareto-optimal solutions can be obtained by

solving N constrained optimization problems; see also [22, Chapter 22].

Lemma 2 The joint strategy ũ∗ ∈ U is Pareto optimal, if, and only if, for all i, ũ∗ minimizes J i(ũ) on the

constrained set

U i :=
{
ũ ∈ U | Jj(ũ) ≤ Jj(ũ∗), ∀j ∈ i−

}
, (3)

where i− = N\i.

Proof. Assume that ũ∗ is Pareto-optimal. This implies ũ∗ ∈ U i for all i ∈ N , so U i 6= ∅. If ũ∗ does not

minimize J i(ũ) on the constrained set U i for some i, then there exists ṽ such that Jj(ṽ) ≤ Jj(ũ∗) for all

j 6= i and J i(ṽ) < J i(ũ∗). Clearly, ṽ dominates ũ∗, which contradicts the Pareto-optimality of ũ∗.

Suppose ũ∗ minimizes every J i(ũ) on U i and assume that ũ∗ is not Pareto-optimal. Then, there exists

ṽ and a player index j such that Jk(ṽ) ≤ Jk(ũ∗) for all k 6= j and Jj(ṽ) ≤ Jj(ũ∗). This is contradictory to

the minimality of ũ∗ on U j .

We observe that, for a fixed player i the constraint set U i defined in (3) depends on the entries of the

Pareto-optimal value that represents the loss of all players in i−. Therefore, all Pareto solutions can be

obtained by solving N constrained optimal-control problems. Using the above lemma, a necessary condition

for the existence of Pareto-optimal solutions for the dynamic game defined by (1–2) can be obtained. In

particular, it can be shown that corresponding to every Pareto-optimal control ũ∗ there exists a weight

vector α ∈ P. In other words, it is possible to obtain all the candidate Pareto solutions by solving the set of

necessary conditions resulting from a related weighted sum optimal-control problem. In the theorem below

we formally state this result without a proof as the theorem is a discrete time analog of the continuous time

version provided by Engwerda [6, Theorem 2.7].
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Theorem 1 Assume (J1(ũ∗), J2(ũ∗), · · · , JN (ũ∗)) is a Pareto solution for problem (1–2). Then, there exist

an α ∈ P, which is a unit simplex on N , and costate variables λt ∈ Rn, such that with Hamiltonian

Ht(xt,ut, λt+1) =
∑N
i=1 α

igit(xt,ut) + λ′t+1ft(xt,ut), ũ
∗ satisfies

Ht(x
∗
t ,u
∗
t , λt+1) ≤ Ht(x

∗
t ,ut, λt+1), ∀ut ∈ Ut (4a)

λt =

(
∂ft
∂xt

)′
λt+1 +

∑
i

αi
∂git
∂xt

, λT =
∂
(∑N

i=1 α
i hi

)
∂xT

(4b)

x∗t+1 = ft(x
∗
t ,u
∗
t ), x

∗
0 = x0. (4c)

Next, we provide conditions under which the necessary conditions for Pareto optimality given by (4) are

also sufficient, that is, conditions under which the solutions of (4) will be Pareto efficient.

Theorem 2 Assume that there exist αi ∈ (0, 1) with
∑N
i=1 α

i = 1, and the collection of vectors {λ∗t ,u∗t , x∗t },
that satisfy (4). Assume that Hamiltonian Ht(xt,ut, λt+1) =

∑
i α

igi(xt, ut)+

λ′t+1ft(xt,ut)) has a minimum with respect to ut for all t ∈ T \{T}. Let the minimized Hamiltonian be

given by H∗t (xt, λt+1) = minut
Ht(xt, ut, λt+1). Then, If H∗t (xt, λt+1) is convex with respect to xt for all

t ∈ T \{T} and h(xT ) =
∑N
i=1 α

ihi(xT ) is convex with respect to xT , then ũ∗ is Pareto efficient.

Proof. For any ũ ∈ U , we consider the difference

∑
i

αiJ i(ũ)−
∑
i

αiJ i(ũ∗) =
∑
i

αi
(
hi(xT )− hi(x∗T )

)
+

T−1∑
t=0

∑
i

αi
(
git(xt,ut)− git(x∗t ,u∗t )

)
=

T−1∑
t=1

(
Ht(xt,ut, λ

∗
t+1)−Ht(x

∗
t ,u
∗
t , λ
∗
t+1)− λ∗t

′ (xt − x∗t )
)

+H0(x0,u0, λ
∗
1)−H0(x∗0,u

∗
0, λ
∗
1) + h(xT )− h(x∗T )− λ∗T

′ (xT − x∗T ) . (5)

From the convexity of the minimized Hamiltonian and from the necessary condition (4b) we have

Ht(xt,ut, λ
∗
t+1)−Ht(x

∗
t ,u
∗
t , λ
∗
t+1) ≥ H∗t (xt, λ

∗
t+1)−H∗t (x∗t , λ

∗
t+1)

≥ ∂Ht

∂xt

′
(x∗t , λ

∗
t+1)(xt − x∗t ) = λ∗t

′(xt − x∗t ). (6)

Again from the convexity of the function h(.), and from (4b) we have

h(xT )− h(x∗T ) ≥ ∂h

∂xT

′
(x∗T )(xT − x∗T ) = λ∗T

′(xT − x∗T ). (7)

Using (6) and (7) in (5), and from x0 = x∗0, we get∑
i

αiJ
i(ũ)−

∑
i

αiJ
i(ũ∗) ≥ H0(x0,u0, λ

∗
1)−H0(x0,u

∗
0, λ
∗
1) ≥ 0.

So, ũ∗ minimizes the objective
∑
i αiJ

i(ũ∗), and this implies from Lemma 1 that ũ∗ is Pareto efficient.

Remark 2 From Theorem 1 and Theorem 2 it is clear that all the Pareto solutions associated with the NTU

game described by (1)–(2) can be obtained, under a few convexity assumptions, by solving a weighted sum

optimal-control problem, with weight vectors belonging to P. However, in general, it is not clear if there exists

a one-to-one relationship between the set of weight vectors P and the set of all Pareto solutions.
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3 Time-consistent individually rational (TCIR) Pareto-optimal solutions

In a non-transferable utility setting, we have seen in the previous section that when the players agree to

cooperate they seek to obtain Pareto-optimal solutions. Further, we have shown that all the Pareto solutions

can be obtained when the players jointly solve a weighted sum optimal-control problem with the weights

belonging to the set P. The selection of a weight vector at the outset of the game reflects the players’

individual bargaining power and is interpreted as the agreement made by the players,1 and understood to

remain in place for the duration of the game. However, as the selected Pareto solution is not in general an

equilibrium, there is no mechanism embedded in the agreement that ensures its sustainability over time; we

rule out the non-credible idea that it suffices to state that the agreement is binding to avoid it breaking down

before maturity. The issue of the durability of cooperation is the topic of this section, and main contribution

of this paper. In particular, we address the following two questions related to the sustainability of long-term

agreements when side-payments are not allowed:

1. In the set of Pareto solutions, are there agreements, which are negotiated at the outset of the game,

that will remain in place for the entire duration of the game?

2. Is there a way to measure the intrinsic longevity of an agreement? In other words, what is the maximum

duration of the agreement, which is made at the outset of the game, that can sustain without breaking

down before the maturity date?

Remark 3 In [27], the authors consider situations where agreements, which are made at the outset of the

game, break down before maturity date, and provide a re-negotiation mechanism using a dynamic programming

approach. As the agreements correspond to a weight vector in the set P their work entails varying weights at

a later stage of the game. Our work differs from [27] as our focus is towards measuring the intrinsic logetivity

of a long-term agreement.

Whether the players honor a cooperative agreement or not depends on what players will do once the

agreement breaks down. More importantly, whether the players agree to sign a long-term contract also

depends on their bargaining strengths, that is, what they can achieve on their own either individually or

through formation of coalitions. The following is a standing assumption on the behavior of the players, which

will be used throughout the paper.

Assumption 1 If the agreement breaks down at any state t, then each player i ∈ N individually minimizes

(without forming coalitions) his objective in the subgame starting at t.

Let ũα be the Pareto-optimal control corresponding to the weight vector α ∈ P. Let x̃α be the state

trajectory generated by the Pareto-optimal control ũα. Suppose that the players have been following the

Pareto-optimal control trajectory ũα until stage t − 1, and let xαt be the state value at stage t. At stage t

they may reconsider sustainability of a Pareto-optimal agreement by comparing the cost-to-go in the subgame

starting at t with state xαt with the non-cooperative outcomes in this subgame. More formally, in the sugame

starting at stage t the player i’s objective is given by

sJ i(ũ|t) = hi(xT ) +

T−1∑
τ=t

giτ (xτ ,uτ ),

and the state trajectory evolves according to

xτ+1 = fτ (xτ ,uτ ), xt = xαt , τ = t, t+ 1, · · · , T − 1,

where ũ|t := {ut,ut+1, · · · ,uT−1} denote the strategies of the players in the subgame starting at stage t. We

denote by ũi|t and ũi−|t the strategies used by player i and the players in i− in the subgame, respectively.

Following Assumption 1 when the players reevaluate the Pareto-optimal agreement at any stage t they

compare their individual Pareto cost-to-go to the non-cooperative cost-to-go in the subgame starting from

1that is, an outcome of the game when players can communicate.



6 G–2020–77 Les Cahiers du GERAD

stage t. Let ũ�|t denote the control strategies used by the players in the non-coopeartive subgame game

starting at time t when the agreement breaks down at time t. Let {x�m, m = t, t+1, · · · , T} denote the corre-

sponding state trajectory. If every player finds the Pareto-optimal cost lower than their own noncooperative

cost in the subgame starting at (t, xαt ), then no player will deviate from the agreement α ∈ P at stage t.

The cost incurred by Player i when the players use the Pareto-optimal control ũα in the subgame starting

at (t, xαt ) is given by

W i
c(t, x

α
t ) := hi(xαT ) +

T−1∑
m=t

gim(xαm,u
α
m), (8)

where the subscript c stands for cooperation. If the game is played noncooperatively in the subgame starting

from (t, xαt ), then Player i receives his Nash-equilibrium outcome, that is,

W i
nc(t, x

α
t ) := hi(x�T ) +

T−1∑
m=t

gim(x�m,u
�
m), (9)

where the subscript nc stands for noncooperation. Using the cost-to-go functions (8) and (9), we introduce

the following four notions of inter-temporal stability of an agreement.

Definition 2 A Pareto solution corresponding to a weight vector α ∈ P is individually rational, if the following

condition holds true for every i ∈ N and for a given x0 ∈ Rn:

W i
c(0, x0) ≤W i

nc(0, x0). (10)

We denote by I the set of all individually rational weight vectors, that is,

I :=
{
α ∈ P

∣∣∣ W i
c(0, x0) ≤W i

nc(0, x0), ∀i ∈ N
}
. (11)

An individually rational Pareto solution corresponding to the weight vector α ∈ P ensures that every

player receives a cost lower than the noncooperative cost in the dynamic game starting at (0, x0). The

condition in (10) can be interpreted as a necessary condition for cooperation to take place. If initially the

Pareto-optimal cost-to-go is not lower than its noncooperative counterpart, then there is no reason to enter

into an agreement. Note that the condition implicitly assumes that the players will indeed implement the

Pareto-optimal control ũα throughout the duration of the game.

Definition 3 A Pareto solution corresponding to a weight vector α ∈ P is individually rational at stage l

(0 ≤ l ≤ T ), if the following condition holds true for every i ∈ N and for a given x0 ∈ Rn:

W i
c(l, x

α
l ) ≤W i

nc(l, x
α
l ). (12)

We denote by Il the set of all individually rational weight vectors at stage l, that is,

Il :=
{
α ∈ P

∣∣∣ W i
c(l, x

α
l ) ≤W i

nc(l, x
α
l ), ∀i ∈ N

}
. (13)

Suppose that the game has been played cooperatively from the outset until stage l− 1. This means that

the players agreed on a weight vector α ∈ P at stage 0 and that the state value at stage l is xαl . If at stage l

the cooperative cost-to-go to Player i, for all i ∈ N , is at most equal to his noncooperative payoff-to-go, then

it is individually rational to cooperatively play the subgame starting in position (l, xαl ).

Definition 4 A Pareto solution corresponding to a weight vector α ∈ P is stage l (1 ≤ l ≤ T ) individually

rational for a given x0 ∈ Rn if the following condition holds true:

W i
c(t, x

α
t ) ≤W i

nc(t, x
α
t ) for all i ∈ N , 0 ≤ t ≤ l − 1, (14a)
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W i
c(l, x

α
l ) > W i

nc(l, x
α
l ) for at least one i ∈ N . (14b)

We denote by TIl the set of all time-consistent individually rational weight vectors until stage l, that is,

TIl :=
{
α ∈ P

∣∣∣ (14) holds true
}
. (15)

The above definition characterizes the conditions under which a cooperative agreement, which is indi-

vidually rational until stage l − 1, breaks down at stage l. The number l − 1 corresponds to the longest

individually rational Pareto agreement that can be sustained with the weight vector α chosen at the start of

the game. The set TIl (1 ≤ l ≤ T ) defines the long-term agreements that break down before their maturity

date.

Definition 5 A Pareto solution corresponding to a weight vector α ∈ P is time-consistent individually rational

(TCIR), if the following condition holds true for every i ∈ N , for all t ∈ T , and for all x0 ∈ Rn:

W i
c(t, x

α
t ) ≤W i

nc(t, x
α
t ).

We denote by TI the set of all time-consistent individually rational weight vectors, that is,

TI :=
{
α ∈ P

∣∣∣ W i
c(t, x

α
t ) ≤W i

nc(t, x
α
t ), ∀i ∈ N , ∀t ∈ T

}
. (16)

A TCIR agreement is a Pareto solution that is individually rational in all subgames starting along the

Pareto-optimal state trajectory. If an agreement is in the set TI, then it will remain in place until its maturity

date. Note that the set TI may be empty.

Remark 4 The set of all individually rational weight vectors given by (11) is equivalent to the imputation set

of the NTU game obtained by transforming the dynamic game described by (1)–(2) into a static game.

The following theorem characterizes the relationships between the different agreements specified in Defi-

nitions 2–5. In particular, we show that the set of all individually rational Pareto agreements given by (11)

admits a certain canonical decomposition.

Theorem 3 Consider the NTU dynamic game described by (1)–(2). The following relations hold true:

(a) I = I0.

(b) IT = P.

(c) TIl =
(
∩l−1
t=0It

)
∩ Īl, 1 ≤ l ≤ T .

(d) TIT = ∅.
(e) TIl ∩TIl+1 = ∅, 1 ≤ l ≤ T − 1.

(f) TI = ∩Tt=0It.

(g) TI ∩TIl = ∅, 1 ≤ l ≤ T − 1.

(h) I =
(
∪Tt=1TIt

)
∪TI.

Proof.

(a) Follows directly from Definitions 2–3.

(b) Along the Pareto-optimal state trajectory x̃α, the cost-to-go of the players, from (8) and (9), satisfy

W i
c(T, x

α
T ) = hi(xαT ) = W i

nc(T, x
α
T ). This implies all the weight vectors α ∈ P are individually rational

at time T .

(c) Let α ∈ TIl. Then from Definition 4, W i
c(t, x

α
t ) ≤ W i

nc(t, x
α
t ) for all i ∈ N and 0 ≤ t ≤ l − 1 and

W i
c(l, x

α
l ) > W i

nc(l, x
α
l ) for at least one i ∈ N . This implies α ∈

(
∩l−1
t=0It

)
∩ Īl, where Īl is a compliment

of set Il. Therefore, TIl ⊆
(
∩l−1
t=0It

)
∩ Īl. Next, let α ∈

(
∩l−1
t=0It

)
∩ Īl, i.e., the weight vectors satisfy

conditions (14), and this implies α ∈ TIl. So,
(
∩l−1
t=0It

)
∩ Īl ⊆ TIl.
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(d) From (b) we have ĪT = ∅, then from (c) we have that TIT =
(
∩T−1
t=0 It

)
∩ ĪT = ∅.

(e) Let A = ∩l−1
t=0It, B = Il and C = Il+1; then we have TIl = A ∩ B̄ and TIl+1 = (A ∩ B) ∩ C̄. Since

(A ∩B) ∩ (A ∩ B̄) = A ∩ (B ∩ B̄) = ∅, we have that TIl ∩TIl+1 = ∅.
(f) Follows from Definition 5 and using the same reasoning as in (c).

(g) Using the notation in (e) and letting D = ∩Tt=l+1It , we have TI ∩ TIl = (A ∩B ∩D) ∩ (A ∩ B̄) =

A ∩ (B ∩ B̄) ∩D = ∅.
(h) First, assume I = ∅. Since I0 = I , TIt ⊆ I0 and TI ⊆ I0, we have that

(
∪Tt=1TIt

)
∪ TI = ∅. The

property holds true. Next, consider I 6= ∅; then from (a), any α ∈ I is individually rational at stage 0.

However, this α may or may not be time-consistent individually rational, and this implies either that

there exists l ≤ T − 1 and l ≥ 1 such that α ∈ TIl or that α ∈ TI. So, α ∈
(
∪Tt=1TIt

)
∪ TI, and

this implies I ⊆
(
∪Tt=1TIt

)
∪ TI . Since, TI ⊆ I0 = I and TIt ⊆ I0 = I for all 1 ≤ t ≤ T , we have(

∪Tt=1TIt
)
∪TI ⊆ I.

When TIl 6= ∅, it implies that there exist agreements α ∈ P in the game that are time-consistent

individually rational until stage l − 1 and breaks down at stage l. Using Theorem 3 the agreement space

can be partitioned into regions corresponding to agreements that are time-consistent individually rational

until stage l. Properties (e) and (g) are natural consequences of Definition 4. Property (h) says that all

individually rational agreements are a disjoint union of time-consistent individually rational agreements that

remain in place until the end of the game and those that break down before the maturity date.

Remark 5 The framework presented in this section is general and existence of time-consistent agreements

can be verified in dynamic games with non-linear dynamics and objectives. Further, the framework can be

easily adapted to continuous time and stochastic settings. Moreover, Assumption 1 about players’ behavior

can be extended to a group rational setting resulting in time-consistent agreements, which have stronger

inter-temporal stability properties.

Remark 6 Following Assumption 1, Nash equilibrium strategies can be taken as the non-cooperative strategies

to be used by the players in the subgame when the agreement breaks down. In some dynamic games, the

uniqueness of the Nash equilibrium in any subgame follows from the functional forms of the reward functions

and the state dynamics. However, if the Nash equilibrium is not unique, then one faces the issue of equilibrium

selection and in the subsequent computation of cost-to-go functions (8) and (9). This difficult problem is way

beyond our objective in this paper. To uniquely define the players’ equilibrium costs in any subgame, we
assume that the players select one Nash equilibrium for every subgame on Pareto-optimal state trajectory.

4 TCIR Pareto solutions in linear-quadratic games

In this section, we show that the sets introduced in Definitions 2–5 can be computed from the problem data

when the dynamic game is of the linear-quadratic variety. To this end, we begin by introducing the discrete-

time finite-horizon linear-quadratic difference games (LQDGs). The dynamic interaction environment of the

players evolves according to the following difference equation:

xt+1 = Atxt +
∑
i∈N

Bitu
i
t, t ∈ T \{T}, x0 is given, (17)

where At ∈ Rn×n and Bit ∈ Rn×mi . Player i ∈ N uses his strategy ũi to minimize the following quadratic

objective function:

J i(ũ) =
1

2
x′TQ

i
TxT +

T−1∑
t=0

(
1

2
x′tQ

i
txt +

1

2
uit
′
Ritu

i
t

)
, (18)

where the matrices Qit ∈ Rn×n are symmetric for all t ∈ T and for all i ∈ N , and the matrices Rit are
symmetric and positive definite for all t ∈ T \{T} and for all i ∈ N .
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4.1 Pareto solutions

From Theorem 1 and Theorem 2 all the Pareto solutions associated with the NTU game, defined by (17)–(18),

can be obtained by minimizing the following weighted-sum optimal-control problem:

min
ũ

∑
i

αiJ i(ũ) subject to (17), (19)

with α ∈ P. For notational convenience we introduce for α ∈ P the next matrices Qαt :=
∑
i α

iQit for t ∈ T ,

Rα
t := ⊕Ni=1α

iRit and Bt := [B1
t B

2
t · · · BNt ] for t ∈ T \{T}. We introduce the Hamiltonian associated with

the above problem as:

Ht(xt,ut, λt+1) =
1

2
x′tQ

α
t xt +

1

2
u′tR

α
t ut + λ′t+1 (Axt + Btut) . (20)

Following Theorem 1, the necessary conditions for ũα to be Pareto-optimal are given by the following two-

point boundary value problem:

uαt = − (Rα
t )
−1

B′tλt+1, (21a)

xt+1 = Atxt + Btu
α
t , x0 is given (21b)

λt = A′tλt+1 +Qαt xt, λT = QαTxT . (21c)

Due to linearity of the above equations, the co-state vector can be taken as linear in the state variable, that

is, λt = Ktxt, and we get (
I + B′t (Rα

t )
−1

B′tKt+1

)
xt+1 = Atxt.

If the matrices Γt := I + B′t (Rα
t )
−1

B′tKt+1 are invertible for all t ∈ T \{T}, this means that the two-point

boundary value problem (21a)–(21c) is uniquely solvable and the set of matrices {Kt, t ∈ T } are solutions

of the following Ricatti difference equation:

Kt = Qαt +A′tKt+1Γ−1
t At, KT = QαT . (22)

Remark 7 If the backward difference Equation (22) admits a solution, that is, the matrices {Γt, t ∈ T \{T}}
are invertible, then the two-point boundary value problem (21) has a unique solution. To see this, let λ̃t =

λt−Ktxt be any other solution of (22). Then substituting this in (21), and after short calculations using (22),

we write the two-point boundary value problem in (x, λ̃) coordinates as follows:

xt+1 = Γ−1
t

(
Atxt −Bt(R

α
t )−1B′tλ̃t+1

)
λ̃t = A′tλ̃t+1 −A′tKt+1Γ−1

t Bt(R
α
t )−1B′tλ̃t+1.

The above system of equations is decoupled. From the terminal conditions we have λ̃T = 0, and as a result,

we have λ̃t = 0 for all t ∈ T , and therefore the solution is unique.

As the Equations (21) are necessary conditions, we have that (21a) is a candidate Pareto-optimal control.

For sufficiency, we know from Theorem 2 that the minimized Hamiltonian and the salvage value are required

to be convex in the state variable. Since, the matrices Qt, t ∈ T , are not necessarily positive semi-definite we

cannot ensure that the candidate Pareto-optimal control obtained by solving the necessary conditions (21)

is indeed Pareto-optimal.

To obtain the required sufficient conditions, we transform the dynamic problem (19) into a static opti-

mization problem by eliminating the state variable. Let the matrices Λt := Rα
t +B′tMt+1Bt be invertible for

all t ∈ T \{T} with the matrices Mt, t ∈ T computed as the solution of the following symmetric backward

Ricatti difference equation:

Mt = A′tMt+1At +Qαt −A′tMt+1BtΛ
−1
t B′tMt+1At, MT = QαT (23)



10 G–2020–77 Les Cahiers du GERAD

We define ∆t = 1
2x
′
t+1Mt+1xt+1 − 1

2x
′
tMtxt. Then, using the sum

∑T−1
t=0 ∆t and (23), it is possible to write

the weighted sum objective function (19) as

∑
i

αiJ i(ũ) =
1

2
x′0M0x0 +

T−1∑
t=0

1

2
||ut + Λ−1

t B′tMt+1Atxt||2Λt
. (24)

The next lemma relates how the candidate Pareto-optimal control (21a) obtained from the solution of the

two-point boundary value problem (21) is related to the minimizer of problem (24).

Lemma 3 Let the set of matrices {Λt, t ∈ T \{T}} be invertible and the solutions Mt of the symmetric matrix

Riccati difference Equation (23) exist for t ∈ T . If the two-point boundary value problem

λ̄t = A′tλ̄t+1 +Qαt x̄t, λ̄T = QαT x̄T (25)

x̄t+1 = Atx̄t −Bt(R
α
t )−1B′tλ̄t+1, x̄0 = x0, (26)

has a unique solution, then we set ūt = −(Rα
t )−1B′tλ̄t and γt := λ̄t−Mtx̄t. Then the sequences {x̄t,uαt , λ̄t, γt}

solve equations

ūt + Λ−1
t B′tMt+1Atx̄t = 0 (27)

γt = A′tγt+1 −A′tMt+1BtΛ
−1
t B′tγt+1 (28)

Proof. To prove (28) we have

A′tγt+1 −A′tMt+1BtΛ
−1
t B′tγt+1 − γt

= A′t
(
λ̄t+1 −Mt+1x̄t+1

)
−A′tMt+1BtΛ

−1
t B′t

(
λ̄t+1 −Mt+1x̄t+1

)
−
(
A′tλ̄t+1 +Qαt x̄t −Mtx̄t

)
= (Mt −Qαt ) x̄t +

(
−A′tMt+1 +A′tMt+1BtΛ

−1
t B′tMt+1

)
x̄t+1 −A′tMt+1BtΛ

−1
t B′tλ̄t+1

=
(
Mt −Qαt −A′tMt+1At +A′tMt+1BtΛ

−1
t B′tMt+1At

)
x̄t

+A′tMt+1BtΛ
−1
t

(
Λt(R

α
t )−1 − I −B′tMt+1Bt(R

α
t )−1

)
B′tλ̄t+1 = 0

Since, γT = λ̄T −MT x̄T = QαT x̄T −QαT x̄T = 0, we have that γt = 0 for all t ∈ T . To prove (27) we have

Λtūt + B′tMt+1Atx̄t = −Λt(R
α
t )−1B′tλ̄t+1 + B′tMt+1

(
x̄t+1 + Bt(R

α
t )−1B′tλ̄t+1

)
= − (Rα

t + B′tMt+1Bt) (Rα
t )−1B′tλ̄t+1 + B′tMt+1

(
x̄t+1 + Bt(R

α
t )−1B′tλ̄t+1

)
= −

(
I + B′tMt+1Bt(R

α
t )−1

)
B′tλ̄t+1 + B′tMt+1

(
x̄t+1 + Bt(R

α
t )−1B′tλ̄t+1

)
= B′t

(
Mt+1x̄t+1 − λ̄t+1

)
= −B′tγt+1 = 0

In the next theorem we provide a necessary and sufficient condition for Pareto-optimality for the dynamic

game (19).

Theorem 4 For every α ∈ P, let the backward recursive Equation (23) admits solutions such that the set

of matrices {Λt, t ∈ T \{T}} are positive definite. Further, if for every α ∈ P the backward recursive

Equation (22) admits a solution {Kt, t ∈ T }, then there exits a unique Pareto-optimal control given by

uαt = −(Rα
t )−1B′tKt+1x

α
t+1, t ∈ T \{T}, (29)

where xαt , t ∈ T is the Pareto-optimal state trajectory generated by the closed-loop system

xαt+1 = Āαt x
α
t , x

α
0 = x0, (30)
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where Āαt := Γ−1
t At. Further, let the cost-to-go for player i evaluated along the Pareto-optimal state trajectory

in the subgame starting at (t, xαt ) be given by

W i
c(t, x

α
t ) =

1

2
xαt P

i
c(t;α)xαt , (31)

where P ic(t;α) satisfies the following symmetric backward recursive equation

P ic(t;α) = Qit + (Āαt )′
(
K ′t+1Bt(R

α
t )−1eiR

i
te
′
i(R

α
t )−1B′tKt+1 + P ic(t+ 1;α)

)
Āαt (32)

with P ic(T ;α) = QiT .

Proof. From Remark 7, existence of the solution of (22) implies unique solvablitiy of the two-point boundary

value problem. Then, from Lemma 3 we know that candidate Pareto-optimal control (27) satisfies the

equation uαt + Λ−1
t B′tMt+1Atx

α
t = 0. Next, as the matrices Λt are positive definite the weighted sum

objective function (24) is a strictly convex function in the decision variables ut, t ∈ T \{T}, with the unique

minimizer obtained by setting ut+ Λ−1
t B′tMt+1Atxt = 0. From the sufficient condition provided in Lemma 1

this implies that this control (as a function of the state variable) is a Pareto-optimal control. This implies

that the candidate solution obtained by solving the necessary conditions is indeed Pareto-optimal. The cost-

to-go of Player i along the Pareto-optimal state trajectory xαt , t ∈ T for the subgame starting from (t, xαt )

is given by

W i
c(t, x

α
t ) =

1

2
xαt
′P ic(t;α)xαt =

1

2
xαT
′QiTx

α
T +

T−1∑
τ=t

1

2
xατ
′Qiτx

α
τ +

1

2
uiτ
′
Riτu

i
τ

=
1

2
xαt
′Qitx

α
t +

1

2
uit
′
Ritu

i
t +

1

2
xαt+1

′P ic(t+ 1;α)xαt+1.

The Pareto-optimal control of Player i is given by uit = e′iu
α
t . Then using (29) in the above equation and

equating the coefficients which are quadratic in xαt on both sides we obtain (32).

Remark 8 It is easy to verify that if the matrices Qit, t ∈ T are positive semi-definite, then the matrices

P ic(t;α) are positive semi-definite for all i ∈ N , t ∈ T .

4.2 Nash equilibrium

At any intermediate stage, the players can reconsider continuing with the agreement or not. At any stage

t ∈ T , the players will find it optimal to continue their cooperation if each player’s Pareto-optimal cost-to-go

is lower than his non-cooperative cost-to-go. Note that this comparison is carried out along the Pareto-

optimal state trajectory xαt , which means that the players have implemented the Pareto-optimal control ũα

until stage t− 1.

In this paper, we assume that players use Nash equilibrium strategies when they play non-

cooperatively towards reevaluation of the cooperative agreement in the sub-games. A Nash equilibrium

strategy profile ũ�|t := (ũi�|t, ũi
−�|t) is such that, for every player i ∈ N solves the following optimal control

problem

min
ũi|t

sJ i(ũi|t, ũi
−�|t) (33)

subject to

xτ+1 = Aτxτ +
∑
j∈i−

Bjτu
j
τ

�
+Biτu

i
τ , xt = xαt ,

where

sJ i(ũi|t, ũi
−�|t) =

1

2
x′TQ

i
TxT +

T−1∑
τ=t

(
1

2
x′τQ

i
τxτ +

1

2
uiτ
′
Riτu

i
τ

)
.
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In multistage games the interaction environment is dynamic, which is embedded in state variables and their

evolution. It is well known [1] that the Nash equilibrium solution varies with the information used by the

players when making their decisions. In the literature (see, e.g., [1] and [10]) these information structures have

been defined for dynamic games as open-loop, closed-loop and feedback information structures. In an open-

loop information structure, the players design their strategies using only the knowledge of time t (and initial

state x0). Whereas in a closed-loop and feedback information structures, players design their equilibrium

strategies using the knowledge of current time t and the current state variable xt. This implies that the

durability of the cooperative agreement depends on the information structure adopted by the players in their

non-cooperative play when reevaluating the cooperative agreement. We have the following assumption on

the behavior of players in the subgames.

Assumption 2 When determining the Nash equilibrium strategies in the subgames starting at (t, xαt ) players

use the same information structure (either open-loop or feedback) at all times t ∈ T .

Associated with the subgame the open-loop Nash-equilibrium strategies of the players are obtained as

follows. Before stating the theorem we assume that the solutions of the following matrix difference equations

exist for every i ∈ N and τ = t, t+ 1, · · · , T :

Ψτ = I +
∑
j∈N

BjτR
j
τB

j
τ

′
Kj
τ+1 (34a)

Ki
τ = Qiτ +A′τK

i
τ+1Ψ−1

τ Aτ , Ki
T = QiT (34b)

Λiτ = Riτ +Biτ
′
M i
τ+1B

i
τ (34c)

M i
τ = Qiτ −A′τM i

τ+1B
i
τΛiτ

−1
Biτ
′
M i
τ+1Aτ (34d)

+A′τM
i
τ+1Aτ , M i

T = QiT (34e)

We have the following theorem from [13] concerning the sufficient condition related to the existence and

uniqueness of the open-loop Nash equilibrium.

Theorem 5 [13, Theorem 2.5] Let the symmetric Riccati difference Equation (34e) admit solutions such

that the matrices Riτ + Biτ
′
M i
t+1B

i
τ are positive definite, for i ∈ N , τ = t, t + 1, · · · , T . If furthermore

the discrete-time open-loop Nash Riccati difference Equation (34b) admit solutions Ki
τ , i = 1, 2, · · · , N ,

τ = t, t + 1, · · · , T − 1, then there exists a unique open-loop Nash equilibrium for the subgame (33), and is

given in the feedback form by

ui�τ = Eiτx
�
τ , i ∈ N , τ = t, t+ 1, · · · , T − 1, (35)

where

Eiτ = −Riτ
−1
Biτ
′
Ki
τ+1Ψ−1

τ Aτ (36)

and x�τ is a solution of the closed-loop system for τ ≥ t
x�τ+1 = Āoτx

�
τ , Ā

o
τ = Ψ−1

τ Aτ , x
�
t = xαt . (37)

The open-loop Nash equilibrium state trajectory is obtained as x�τ = Φo(τ, t)x�t , where Φo(τ, t) =

Āoτ−1Ā
o
τ−2 · · · Āot+1Ā

o
t for τ > t and Φo(τ, τ) = I. Player i’s open-loop Nash equilibrium payoff in the

subgame starting at (t, xαt ) is given by

W i
nc(t, x

α
t ) =

1

2
xαt
′P iot x

α
t =

1

2
x�T
′QiTx

�
T +

T−1∑
τ=t

(
1

2
x�τ
′Qiτx

�
τ +

1

2
ui�τ
′
Riτu

i�
τ

)
, (38)

where

P iot = Φo(T, t)
′
QiTΦo(T, t) +

T−1∑
τ=t

Φo(τ, t)′
(
Qiτ + Eiτ

′
RiτE

i
τ

)
Φo(τ, t). (39)
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Next, associated with the subgame the feedback Nash equilibrium strategies of the players are obtained

as follows. We introduce the following matrices in preparation for the next result. Let F iτ i ∈ N , τ =

t, t+ 1, · · · , T be the set of matrices satisfying the following linear matrix equations:(
Riτ +Biτ

′
N i
τ+1B

i
τ

)
F iτ +Biτ

′
N i
τ+1

∑
j∈i−

BjτF
j
τ = −Biτ

′
N i
τ+1Aτ , i ∈ N , (40)

where the matrices N i
τ (i ∈ N ) are obtained recursively from

N i
τ =

(
Aτ +

∑
i

BiτF
i
τ

)′
N i
τ+1

(
Aτ +

∑
i

BiτF
i
τ

)
+Qiτ + F iτ

′
RiτF

i
τ , N

i
T = QiT . (41)

Associated with (40) we define the matrices for τ = t, t+ 1, · · · , T − 1

[Ωτ ]ij =

{
Riτ +Biτ

′
N i
τ+1B

i
τ i = j

Biτ
′
N j
τ+1B

j
τ i 6= j.

(42)

From [1, Corollary 6.1] and [1, Remark 6.4] we have the following result on the existence of feedback Nash

equilibrium.

Theorem 6 [1, Corollary 6.1] Let the set of matrices Ωτ , τ = t, t + 1, · · · , T − 1 be invertible, and the set

of matrices Riτ + Biτ
′
N i
τB

i
τ be positive definite for i ∈ N , τ = t, t + 1, · · · , T − 1, then there exists a unique

feedback Nash equilibrium for the subgame (33), and is given by

ui�τ = F iτx
�
τ , i ∈ N , τ = t, t+ 1, · · · , T − 1, (43)

where x�τ is a solution of the closed-loop system for τ ≥ t
x�τ+1 = Āfτx

�
τ , Ā

f
τ =

(
Aτ +

∑
i

BiτF
i
τ

)
, x�t = xαt . (44)

The feedback Nash equilibrium state trajectory is obtained as x�τ = Φf (τ, t)x�t , where

Φf (τ, t) = Āfτ−1Ā
f
τ−2 · · · Ā

f
t+1Ā

f
t for τ > t and Φf (τ, τ) = I. Player i’s feedback Nash equilibrium pay-

off in the subgame starting at (t, xαt ) is given by

W i
nc(t, x

α
t ) =

1

2
xαt
′P ift x

α
t =

1

2
x�T
′QiTx

�
T +

T−1∑
τ=t

(
1

2
x�τ
′Qiτx

�
τ +

1

2
ui�τ
′
Riτu

i�
τ

)
, (45)

where

P ift = Φf (T, t)
′
QiTΦf (T, t) +

T−1∑
τ=t

Φf (τ, t)′
(
Qiτ + F iτ

′
RiτF

i
τ

)
Φf (τ, t). (46)

4.3 TCIR Pareto-optimal solutions

In this section, we provide conditions for the existence of open-loop and feedback individually rational, and

time-consistent individually rational Pareto-optimal solutions in linear-quadratic difference games described

by (17)–(18) for an arbitrary initial state x0 ∈ Rn. In the following theorem, to save on notation we denote

the matrices P it = P iot , t ∈ T when players use open-loop information structure and by P it = P ift , t ∈ T
when players use feedback information structure in the subgames.

Theorem 7 Let α ∈ P, and let the sequence of matrices {P ic(t;α), P it , t ∈ T , i ∈ N} be generated

by (32), (39) and (46). Then, for any arbitrary initial state x0 ∈ Rn, we have

Il : =
{
α ∈ P | P il − P ic(l;α) � 0, ∀i ∈ N

}
, (47)

TI : =
{
α ∈ P | P il − P ic(l;α) � 0, ∀i ∈ N , 0 ≤ l ≤ T

}
(48)

where Il is the set of individually rational Pareto solutions at stage l, and TI the set of time-consistent

individually rational Pareto solutions.
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Proof. Starting from an arbitrary initial state x0 ∈ Rn, let xαl be the state vector reached in stage l after using

the Pareto-optimal control ũα until stage l− 1. If condition (47) is satisfied, then xαl
′P il x

α
l ≥ xαl

′P ic(l;α)xαl .

Then, from (31), (38) and (45), we have W i
nc(l, x

α
l ) ≥ W i

c(l, x
α
l ). That is, for every player i ∈ N , the Player

i’s cost when using the Pareto-optimal control is lower than the Nash equilibrium cost in the subgame starting

from (l, xαl ).

From Definition 3, we have that the Pareto solution corresponding to α is individually rational at stage l.

Next, assume that starting from an arbitrary x0, players use the Pareto-optimal control ũα until stage l−1 and

reach the state xαl . If condition (48) is satisfied for all i ∈ N and for all l ∈ T , then xαl
′P il xl ≥ xαl

′P ic(l;α)xαl .

Again, from (31), (38) and (45), for all l ∈ T and i ∈ N . That is, starting from every subgame (l, xαl ),

l ∈ T , for every Player i ∈ N , the Player i’s cost when using the Pareto-optimal control is lower than the

Nash-equilibrium cost. From Definition 5, we have that the Pareto solution corresponding to the weight α

is time-consistent individually rational.

Using the characterization provided in Theorem 7 and from the properties derived in Theorem 3, we can

evaluate the intrinsic stability, in the sense of time-consistent individual rationality, of agreements or Pareto-

optimal solutions in terms of the problem data. Further, using the results in Theorem 7, we can test if a

single-valued bargaining solution, e.g., a Nash, Kalai-Smorodinsky, and egalitarian solution, is time-consistent

individual rational or not. Recall that these solutions are Pareto-optimal and fair, and each corresponds to

a unique weight vector α∗ ∈ P.

Remark 9 Implementing any of these bargaining solutions requires to define a threat point, which gives what

each player gets in case negotiation fails. In our case, in every subgame starting from (t, xαt ), the threat point

corresponds to the vector of Nash equilibrium cost-to-go (W i
nc(t, x

α
t ), i ∈ N ).

5 Numerical illustration

To illustrate our results we analyze the trans-boundary pollution game studied in [4, Chapter 12.4]. We

consider two players (e.g., countries) involved in economic activities which result in emissions. The emissions

add to the stock of pollution according to the discrete time dynamics

St+1 = δSt + E1
t + E2

t , (49)

where 0 ≤ δ ≤ 1 accounts for the rate at which pollution is cleared naturally, Eit denotes emissions by

Player i due to economic activity at time t, and S0 is the initial stock of pollution. Player i derives a utility

U(Eit) = aiE
i
t − ci

2 E
i
t
2

from emissions, but receives a disutility Di(St) = 1
2biS

2
t , where ai, bi, ci are positive

constants for i = 1, 2. Player i seeks to minimize the net cost

J i =
wi
2
S2
T +

T−1∑
t=0

bi
2
S2
t −

(
aiE

i
t −

ci
2
Eit

2
)
, (50)

where the first term on the right hand side is the salvage value with parameter wi > 0. Clearly, the game

described by (49)–(50) is a linear-quadratic difference game. As both players incur costs due to pollution stock

(49), a negative externality, there is an incentive to cooperate. We seek to analyze the stability and intrinsic

longevity, in the sense of TCIR, of the cooperative agreements made by the players. To proceed further, we

first transform the dynamic game described by (49)–(50) into the standard form studied in Section 4.

We introduce a dummy variable zt = 1 (a constant) and define the state variable as xt = [St zt]
′. Next,

we define the control variable for player i as

uit = Eit −
[
0 ai

ci

]
xt.

Using these variables the dynamics (49) can be written as

xt+1 =

[
δ a1

c1
+ a2

c2
0 1

]
xt +

[
1
0

]
u1
t +

[
1
0

]
u2
t , x0 =

[
S0

1

]
, (51)
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and the objectives (50) of the players i = 1, 2 are given by

J i =
1

2
x′T

[
w1 0
0 0

]
xT +

T−1∑
t=0

1

2
x′t

[
b 0

0 −a
2
i

ci

]
xt +

1

2
ciu

2
i . (52)

We illustrate the results of the previous sections. The parameters for the baseline scenario are set as follows:

δ = 0.75, a1 = a2 = 5, c1 = c2 = 5, b = 1,

w1 = 1, w2 = 1, T = 7, S0 = 1.

We compare our results under two behavioral settings, that is when players use open-loop and feedback

information structures in the non-cooperative play in the subgames when reevaluating the cooperative agree-

ment. As players have access to the state variable (dynamic information) they react more aggressively in

the feedback case compared to open-loop case. This leads to higher emissions and higher costs when players

use feedback strategies. Our objective is to analyze the effect of information structure on the inter-temporal

stability of the cooperative agreement.

Figure 1 illustrates the open-loop and feedback time-consistent individually rational Pareto-optimal agree-

ments. In Table 1 we compute the time-consistent individually rational until stage l sets. We notice that in

the open-loop case all the TIl sets are empty. This implies that all the individually rational Pareto-optimal

weight vectors are time-consistent. On the other hand in the feedback case, the time-consistent individ-

ually rational until stage l sets are non-empty, implying that there exist individually rational agreements

that can break down before the maturity date. Further, from Figure 1 we observe that the open-loop costs

of players strictly dominate the feedback costs. This implies that the set of open-loop individually ratio-

nal Pareto solutions is strictly included in the set of feedback individually rational Pareto solutions. The

weights of the Nash, Kalai-Smorodinsky, and egalitarian bargaining in the open-loop and feedback cases are

αNo = αKSo = αe = αNf = αKSf = αe = 0.5. Clearly, all these agreements sustain till the date of maturity.
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(a) with open-loop strategies
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Figure 1: With w2 = 1: The thick dark region on the Pareto frontier in panels (a) and (b) indicate the TCIR Pareto-optimal
agreements.

Next, we increase the salvage value parameter of Player 2 to w2 = 2.3. This implies that Player 2

incurs higher costs than Player 1 and as a result the bargaining power of Player 1 should be higher in the

cooperative agreement. Since the players are more aggressive with feedback strategies, they receive higher

costs compared to the open-loop strategies. Figure 2 illustrates this aspect as the open-loop costs strictly

dominate the feedback costs. Further, Figure 2 illustrates the canonical decomposition of individually rational

open-loop and feedback Pareto agreements on the Pareto frontier. Table 2 gives the canonical decomposition

of individually rational Pareto-optimal weight vectors. The effect of the salvage value becomes prominent

in the subgames closer to the maturity date. This implies that the individually rational until stage l weight

vectors shift towards higher bargaining power to Player 1. However, due to higher costs of Player 2, Player 1

would be unwilling to share the costs in the subgames close to maturity date. This implies, there is a chance
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Table 1: Canonical decomposition of individually rational Pareto-optimal agreements (or weight vectors) with w2 = 1.

Stage Open-loop weights Feedback weights

t It TIt It TIt

0 [0.47265, 0.52735] [0.44456, 0.55544]
1 [0.47064, 0.52936] ∅ [0.44467, 0.55533] [0.44456, 0.44467)∪(0.55533, 0.55544]
2 [0.46793, 0.53207] ∅ [0.44485, 0.55515] [0.44467, 0.44485)∪(0.55515, 0.55533]
3 [0.46427, 0.53573] ∅ [0.44512, 0.55488] [0.44485, 0.44512)∪(0.55488, 0.55515]
4 [0.45933, 0.54067] ∅ [0.44549, 0.55451] [0.44512, 0.44549)∪(0.55451, 0.55488]
5 [0.45295, 0.54705] ∅ [0.44598, 0.55402] [0.44549, 0.44598)∪(0.55402, 0.55451]
6 [0.44626, 0.55374] ∅ [0.44626, 0.55374] [0.44598, 0.44626)∪(0.55374, 0.55402]
7 [0, 1] ∅ [0, 1] ∅

TI [0.47265, 0.52735] [0.44626, 0.55374]

that the agreement can breakdown in the later stages. This aspect is illustrated in Figure 2 for both the open-

loop and feedback individually rational Pareto agreements. More specifically, in Figure 2(b) the small dark

shaded region on the Pareto frontier illustrates the TCIR Pareto agreements. From Table 2, we observe that

in the open-loop case there exists individually rational agreements that break down at stages l = 1, 2, · · · , 6
and there does not exist agreements that can sustain till the date of maturity. On the other hand, in the

feedback case, besides existence of agreements that breakdown before the date of maturity there also exist

agreements that sustain for the entire duration. The weights of the Nash, Kalai-Smorodinsky, and egalitarian

weights for the open-loop case are computed as αNo = 0.56342, αKSo = 0.56342 and αEo = 0.56691 respectively.

From Table 2 it is clear that they breakdown at stage 4. The weights of the Nash, Kalai-Smorodinsky, and

egalitarian weights for the feedback case are αNf = 0.5577, αKSf = 0.55767, and αEf = 0.56454 respectively.

The Nash, and egalitarian bargaining agreements break down at stage 4 where as the Kalai-Smorodinsky

agreement breaks down at stage 5.
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Figure 2: With w2 = 2.3: In panels (a) and (b) decomposition of individually rational Pareto-optimal agreements which break
down before the maturity date are shaded in blue and red colors for both open-loop and feedback cases. In panel (b) the dark
shaded region on the Pareto frontier illustrates the set of feedback TCIR Pareto-optimal agreements.

Next, we increase the salvage value of Player 2 to w2 = 4. Now, Player 2 costs are significantly higher than

Player 1. This implies, as the terminal payoff’s effect becomes prominent in the later stages, Player 1 will

be unwilling to stay in cooperation in the later stages of the game. Figure 3 illustrates the decomposition of

individually rational Pareto-optimal agreements in both the open-loop and feedback cases. Table 3 illustrates

the canonical decomposition of individually rational Pareto-optimal weight vectors. In the open-loop case

there exist agreements that break down at stages l = 1, 2, 3, 4 and in the feedback case there exist agreements

that break down at stages l = 1, 2, 3, 4, 5. Further, in both information structures there does not exist a

TCIR Pareto-optimal agreement, though in the feedback case the agreements are stable for one additional

stage. The weights of the Nash, Kalai-Smorodinsky, and egalitarian weights for the open-loop case are

αNo = 0.61383, αKSo = 0.61382, and αEo = 0.62027 respectively. From Table 3 it is clear that the Nash

and Kalai-Smorodinsky agreements breakdown at stage 2, whereas the egalitarian agreements breaks down
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at stage 3. The weights of the Nash, Kalai-Smorodinsky, and egalitarian weights for the feedback case are

αNf = 0.60413, αKSf = 0.60406, and αEf = 0.61671 respectively. The Nash and Kalai-Smorodinsky agreements

breakdown at stage 3, whereas the egalitarian agreements breaks down at stage 4.

Table 2: Canonical decomposition of individually rational Pareto-optimal agreements (or weight vectors) with w2 = 2.3.

Stage Open-loop weights Feedback weights

t It TIt It TIt

0 [0.53665, 0.59025] [0.50199, 0.61374]
1 [0.54425, 0.60075] [0.53665, 0.54425) [0.51229, 0.62324] [0.50199,0.51229)
2 [0.55232, 0.61271] [0.54425, 0.55232) [0.52432, 0.63390] [0.51229,0.52432)
3 [0.56165, 0.62726] [0.55232, 0.56165) [0.53903, 0.64655] [0.52432,0.53903)
4 [0.57299, 0.64559] [0.56165, 0.57299) [0.55728, 0.66166] [0.53903,0.55728)
5 [0.58742, 0.66910] [0.57299, 0.58742) [0.57974, 0.67927] [0.55728,0.57974)
6 [0.60726, 0.69902] [0.58742, 0.59025] [0.60726, 0.69902] [0.57974,0.60726)
7 [0, 1] ∅ [0, 1] ∅

TI ∅ [0.60726, 0.61374]
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Figure 3: With w2 = 4: In panels (a) and (b) decomposition of individually rational Pareto-optimal agreements which break down
before the maturity date are shaded in blue and red colors for both open-loop and feedback cases.

Table 3: Canonical decomposition of individually rational Pareto-optimal agreements (or weight vectors) with w2 = 4.

Stage Open-loop weights Feedback weights

t It TIt It TIt

0 [0.58635, 0.64143] [0.54750, 0.66129]
1 [0.60130, 0.65783] [0.58635, 0.60130) [0.56584, 0.67750] [0.54750, 0.56584)
2 [0.61731, 0.67576] [0.60130, 0.61731) [0.58696, 0.69518] [0.56584, 0.58696)
3 [0.63572, 0.69665] [0.61731, 0.63572) [0.61232, 0.71542] [0.58696, 0.61232)
4 [0.65745, 0.72158] [0.63572, 0.64143] [0.64252, 0.73837] [0.61232, 0.64252)
5 [0.68289, 0.75105] ∅ [0.67661, 0.76254] [0.64252, 0.66129]
6 [0.71080, 0.78350] ∅ [0.71080, 0.78350] ∅
7 [0, 1] ∅ [0, 1] ∅

TI ∅ ∅

6 Conclusions

In this paper, we examined the individually rational cooperative solutions of dynamic games with non-

transferable utilities. Given that players cannot redistribute the joint costs in NTU games, they agree to

choose the joint strategies that minimize the weighted sum of their cost functions. Solving this optimization

problem, we obtain the Pareto solution corresponding to a particular vector of weights. The individual

rationality of such a Pareto solution is initially satisfied, but may break down at some intermediate period.

In this case, the individually rational cooperative solution is not time-consistent. We provide four definitions
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related to individual rationality and time consistency of Pareto solutions and examine the sets of weights

guaranteeing satisfaction of these properties. We specify the results for linear-quadratic difference games

defining the set of open-loop and feedback time-consistent individually rational Pareto solutions for this class

of games. A numerical illustration shows the time inconsistency of well-known bargaining solutions (Nash,

Kalai-Smorodinsky, and egalitarian solutions).

References
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