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Abstract: Demand response (DR) has been increasingly growing in significance among the solutions
to tackle climate change, along with the development of intermittent renewable energy sources in
the smart grid. Many models based on mathematical optimization were developed to address the
challenge of making residential customers provide flexibility services to the grid. However, comparing
and applying those models is not always straightforward because of particular data handling or specific
assumptions. In this work, we take advantage of the common aspects of DR models to build a
metamodel, and hence an open source Python library that aims to unify the concepts and the data
streaming in and out of the underlying mathematical optimization models. We demonstrate the
effectiveness of the metamodel and of the Python library by using it to implement a task scheduler
and to optimize the energy consumption for two dwellings.

Keywords: Residential flexibility, optimization, open source, smart grid

Résumé : La réponse à la demande est aujourd’hui considérée comme un levier majeur parmi les
solutions possibles pour faire face au changement climatique, si elle est combinée avec l’intégration de
ressources renouvelables intermittentes dans les nouveaux réseaux électriques intelligents. De nom-
breux modèles d’optimisation mathématique ont été développés pour répondre au défi consistant à
permettre aux particuliers de proposer des services de flexibilité au réseau. Cependant, la comparai-
son et l’utilisation de ces modèles n’est pas toujours aisée car ils se restreignent en général à des cas
particuliers ou gèrent leurs données de façon spécifique. Dans ce document, nous proposons de com-
biner les points communs de différents modèles de gestion de la flexibilité résidentielle pour proposer
un méta-modèle et une bibliothèque Python unifiant les concepts et les flux de données associés à ces
modèles. Nous montrons l’utilité de ce méta-modèle et l’efficacité de la bibliothèque Python en les
utilisant pour optimiser la consommation électrique de deux foyers.

Mots clés : Flexibilité résidentielle, optimisation, logiciel libre, réseaux électriques intelligents

Acknowledgments: This work was supported by the NSERC Energy Storage Technologies Network
(NESTNet).
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1 Introduction

The development of new renewable energy sources and the trend to electrify energy uses put energy

systems under strong pressure. On the one hand, power systems have to operate with a growing

share of intermittent sources, and on the other hand, they need to accommodate new demanding

electricity uses. This issue can be addressed by increasing the flexibility of power systems: according

to the European Network of Transmission System Operators for Electricity (ENTSO-E) [1], flexibility

is one of the five big innovation clusters which need to be addressed in the coming years. Innovations

can be made either by integrating new storage systems (batteries, hydrogen storage, etc.) or by

encouraging consumers to change their electricity use patterns. The latter resource is often called

demand response (DR).

Residential consumption is a strong lever of DR. A review of residential DR optimization techniques

was carried out in [2]. They often rely on Home Energy Management Systems (HEMSs) intended to

help consumers to modify their consumption in order to minimize an objective such as their energy

cost or their discomfort. A review of HEMSs was done in [3].

In practice, several tools have been developed to analyze and optimize residential energy consump-

tion, and a recent review of these was carried out in [4]. However, to the best of our knowledge, they

mostly cover specific aspects of home energy management and no existing platforms enable the study

of residential flexibility by considering at the same time several appliance models, user aggregation or

user discomfort in a customizable framework. In this paper, we propose a flexible and open source

Python package dedicated to the optimization of residential flexibility and able to tackle many aspects

of this question.

This paper is organized as follows. In Section 2, we extract common features and characteristics

of residential DR models, which we use in Section 3 to introduce the Pleiad framework, designed to

provide modeling tools encompassing several models. In Section 4 we explain how Pleiad can effectively

be used by building an optimization model derived from a previous work [5]. Finally in Section 5, we

show the capabilities and the results provided by the Pleiad library on a case study built using the

model defined in the previous section.

2 The Pleiad metamodel

In this section, we derive common characteristics of several residential DR models to introduce the

Pleiad metamodel, which is an abstract model designed to encompass several models. Metamodelling

aims at building a common ground for several models, which simplifies their comparison and enables

interchangeability whenever possible.

2.1 Optimization problem

All the methods and algorithms developed for DR have in common the fact that they are actually

instances of mathematical optimization problems: whatever the model and the optimization methods

used, they are composed of variables, constraints and one or several objective functions which should

be minimized. We choose to only deal with discrete-time problems and we work with a time step ∆t.

The involved variables will for example be the energy consumed between t and t+ ∆t.

2.2 Network structure and flows

DR problems also have in common an inherent network structure which is inherited from the organi-

zation of the power grid as an energy transit network to which appliances, power sources and storage

capacities are connected. One may generalize and call these three entities connectables, as they can be

connected to the network. One may then group connectables together when they have the same owner;

we refer to such groupings as nodes. For instance, a dwelling containing all its appliances as well as
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the photovoltaic (PV) panels placed on its roof is a node. Finally, several nodes may exchange power

according to predefined rules. For instance, a dwelling (node 1) may buy power from an electricity

provider (node 2) according to some contract. We call such connections exchange nodes. An example

of such a network of connectables, nodes and exchange nodes is shown in Figure 1.

D1

D2

A
- +

exchange node

node

connectable

Figure 1: Network example with 8 connectables; 3 nodes (1 aggregator [A], 2 dwellings [D1] [D2]), and 1 exchange node.

To each connectable c and to each time step t, we associate 3 variables that we call metavariables

because they are common to all objects in the metamodel:

• The energy Ec
t consumed by connectable c between t and t+ ∆t. It may be positive (if power is

actually being used) or negative (if it provides power, as is the case for a discharging battery or

PV panels);

• The cost Cc
t induced by the use of connectable c between t and t + ∆t. This cost may account

for fuel cost, for the amortization cost of the connectable, etc. It may simply be zero.

• The utility cost U c
t induced by the use of connectable c between t and t+ ∆t. This cost is a way

to account for user preferences, and measures the user’s discomfort. For example, if the use of a

dryer is particularly unpleasant at night, the associated utility cost will be high.

Within each node, logical conservation and summation rules apply. We call them metaconstraints:

• The sum of the signed consumed energies of all connectables in a node (including energy flows

through exchange nodes) must be identically zero at all times;

• At any given time, the instant cost for a node is the sum of the costs of all its connectables

(including the signed cost of power through exchange nodes);

• At any given time, the instant utility cost (discomfort) for a node is the sum of the utility costs

of all its connectables.

2.3 Inside connectables: the origin of flexibility

Each connectable has its own behavior defined by internal variables and constraints. For instance, a

battery has a current load state Q1 at time t1 as well as a current load state Q2 at time t2. Between

these times, it may exchange a signed energy flow Ec
12 with other connectables by respecting

Ec
12 = Q2 −Q1,

|Ec
12| ≤ pmax∆t,
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where pmax is a parameter establishing the maximum instant power that can flow in and out of the

battery. Such variables and constraints depend on the particular type of object or load that is being

considered. Two appliances having the same function but built by different manufacturers may function

differently and have different internal constraints.

In general, the solver optimizes an objective function within the admissible space defined by the

variables and all the constraints of the connectables. The latter are constrained by their dynamics

but could operate differently: this is where flexibility comes from. For instance, a dishwasher does not

necessarily have to start right after the end of lunch but it must have run before dinner. The maximum

ending time is a hard constraint which must be ensured, but other constraints (such as the starting

time) may be relaxed, possibly along with the introduction of a utility cost accounting for discomfort.

3 The Pleiad environment

We now introduce a framework to unify the concepts we identified in the previous section. We call

this environment Pleiad (PLanner for Electrical and Intelligent Appliances in Dwellings).

3.1 An open-source package

Pleiad is being developed in Python. It is released under an open source license and made freely

available on a gitlab repository. The package can therefore be downloaded, used, and anyone can

improve it or propose new features. We aim at improving reproducibility in the field of DR research

by providing a common ground for modeling residential DR, and by encouraging users and researchers

to publish their code using the same open source license. Other recent developments have also been

released under an open-source license, such as pandapower [6] for the analysis and optimization of

power systems. This license allowed many users to write code for the project, with 56 contributors

registered on github and more than 4,500 commits during the four years after the first release of the

library in 2016.

The up-to-date documentation of Pleiad is available on the gitlab repository [7].

3.2 A modeling package

Pleiad is a modeling tool: it helps to define a model-independent structure and then to instantiate a

model for this structure.

3.2.1 Model-independent network structure

Before modeling, the Pleiad package requires the definition of a network composed of connectables,

grouped in nodes, which are in turn connected via exchange nodes as explained in the previous section.

These objects and the network structure define the physical properties and constraints of the network.

3.2.2 Model instantiation

After the network structure is defined, the user must choose a time step ∆t, a planning horizon, and a

model to represent the internal dynamics, constraints and flexibility potentials of each connectable us-

ing variables and equations. These mathematical objects are associated to connectables, and removing

one of them automatically drops the related variables and constraints.

3.3 Typing in Pleiad

Pleiad creates mathematical optimization models converting real-world connectables into variables and

constraints. For this purpose, variables and quantities are typed and can be combined in a very natural

way into typed mathematical constraints.
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3.3.1 Typed quantities

In Pleiad, physical dimensions become intrinsic properties of quantities. Any physical quantity like

energy can be given as input with its unit. For example,

e = Energy(kWh = 5), (1)

dt = timedelta(hours = 5). (2)

All operations preserve types and are performed transparently, so that

p = e / dt

is a power-typed quantity from which the user can obtain the value in any possible unit: p.W returns

1000, which is the value (in Watts) of the associated power.

3.3.2 Typed variables and constraints

Strict quantity typing also enables to type variables and to check the physical dimensionality of equa-

tions. If the engine detects that power is compared to energy, a warning will immediately be triggered.

Finally, variables and constraints can be written in a natural way, by using symbols like +,-,==. For

instance, if p is a ”power”-typed variable, and if dt and e are given by (1) and (2), the following

constraint will be valid

constraint = (dt * p == e)

and it will be the exact translation of the following numerical equality constraint (in SI units):

(5× 3600)× p = (5× 1000× 3600).

After the optimization phase, p will be a power object equivalent to 1 kW.

3.4 Data visualization

As we saw it in Section 2, all models implemented in Pleiad must define 3 metavariables for each

connectable at each time step: energy flow, cost and utility cost. This makes it possible to define, for

example, the total cost for a node or the total energy drawn from all its appliances during some time

period.

Those three metavariables are automatically computed and made available in a pandas results

data frame as illustrated in Table 1.

Table 1: Structure of the results data frame.

Time
Dishwasher

energy
drawn

cost
utility
cost

2017-01-01T12:00 1kWh 0$ 0.1$
2017-01-01T13:00 0.5kWh 0$ 0$
2017-01-01T14:00 1kWh 0$ 0$

Pleiad also provides a data visualization interface able to generate six types of graphs: power versus

time, cost versus time, utility cost versus time, battery state of charge versus time, power retail price

versus time, schedule chart.
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4 Pleiad instances

In this section, we illustrate how Pleiad can be instantiated and used to model actual residential

appliance scheduling problems (RASPs). We developed a scheduler named ”base scheduler” that

automatically transforms a Pleiad network into a mixed-integer linear optimization problem (MILP).

We also propose a library of realistic connectables to build Pleiad networks. We emphasize that the

model and the library of connectables we propose here are only one way to use the Pleiad framework,

and we encourage using the latter with other models and other real-world data.

4.1 A model: the MILP scheduler

In this paper, we formulate a Pleiad network of connectables as a set of continuous or integer variables

and linear constraints. Such a formulation can be solved efficiently to compute appliance operating

patterns, and is a good compromise between model complexity and computation time because there

exist several high-quality optimization solvers able to solve mixed-integer linear optimization problems.

4.1.1 From connectables to MILPs: modeling rules

In the MILP scheduler, we automatically transform a network of connectables into a MILP based on

a subdivision of home appliances into three categories. The classification of loads into several types

is a modeling choice and even though it has been done previously in the literature, there appears to

be no general consensus on this question. For instance, the authors of [3] classify loads into six types

whereas the authors of [2] use a noticeably different classification of loads into three types. In our

model, we chose to use the three categories (regular, activity-based, flexible) presented in [5] as they

can encompass most of the load types of the aforementioned works.

In addition to appliances, we model batteries as shown in Figure 2, with a self-discharge rate δself,

charge and discharge efficiencies (ηc, ηd), an energy capacity Emax, and a parameter pmax defined in

paragraph 2.3. Finally, we treat power sources either as uncontrollable loads consuming a negative

power or as unlimited power sources providing electricity at a given cost.

In the MILP scheduler, we also allow to process several nodes at a time. Even if each node has its

own objective (minimize a combination of its cost and its discomfort), we choose to reduce the multi-

objective problem to a single-objective one by summing all objectives with weights chosen by the user.

For example, if all the dwellings in a building gather to reduce together their power cost, the overall
power cost will be optimized and can be attributed to each user ex-post. This way to group several

nodes together enables to prevent situations when all of them individually shift their consumption and

simply move their peak together to another time period.

4.1.2 From the MILP to the solution: optimization solvers

Once the connectables and the network have been transformed into an MILP, the latter is solved after

being translated into the formalism of commercial optimization solvers. Interfaces were developed with

IBM ILOG CPLEX Optimization Studio and Gurobi, which are easy to use in Python.

+ -
Emax

pout, network

≤pmax︷ ︸︸ ︷
pin, batt ηc

pout, batt︸ ︷︷ ︸
≤pmax

pin, networkηd
δself

Figure 2: Storage model. Parameters are written in blue, variables are in black. The four variables p are powers flowing
in and out the battery.
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4.2 A library of connectables built on data

In this paragraph, we now study how networks can be built using the Pleiad appliance library, which

provides realistic connectables. Building such a library requires collecting data so as to reflect the

behavior of the objects included in the model and to make it as realistic as possible. This step is done

in all research works, but using different methodologies. In [8], a survey was conducted to collect data

about appliance use and characteristics. The authors of [2] cite three data sources providing statistics

about appliance ownership or loads. Similarly, solar PV generation data can be found in the PVOutput

database [9]. Individual load measurements can also be found in the literature in [10] and [11]. Both

papers developed experimental protocols to record the consumption profile of several home appliances.

4.2.1 Appliances

We used load data from [10] and [11] and noticed that most of the studied appliances have (almost)

piecewise constant power consumptions and that their operation can be divided in phases. We chose

for simplicity to keep the classification of appliances of the previous paragraph and, for each appliance,

we arbitrarily determined the most suitable type before adjusting its parameters according to the

recorded power consumption and duration of each phase.

4.2.2 PV generation

We use numerical weather prediction (NWP) models to determine the PV power output. Pleiad

was interfaced with pvlib [12] which natively features NWP data fetching using the Global Forecast

System (GFS). We linearly interpolate these data minute-wise in the clear-sky index domain, which

is proven to be more accurate for resampling [13]. Once irradiance has been obtained, pvlib extracts

the characteristics of the chosen PV module from the California Energy Commission database [14] and

computes its PV output.

4.2.3 Power tariffs

Several tariffs from grid operators were included in the library, such as the power price of Ontario’s

Independent Electricity System Operator or the French regulated electricity price. Those prices vary

regularly and should be updated accordingly in the library.

5 Case study

To illustrate the effectiveness of Pleiad, we run a case study using the MILP scheduler presented above

on a network of two dwellings and an aggregator as shown in Figure 1. The aggregator possesses a

battery, PV modules and is connected to the main power grid. Each of the dwellings is equipped with

a water heater, an electric space heater, and a dishwasher. One of them has in addition an oven, a

stove, and a fridge, while the other has a TV and a garage heater.

The optimization is performed on three consecutive days (12th, 13th and 14th of November 2020)

and the PV production is automatically estimated using GFS weather forecasts.

We consider two pricing scenarios and study the behavior of the total power demand (power bought

by the aggregator from the grid). In scenario (a), the price of grid power is constant and therefore, the

power cost cannot be optimized with demand response. The objective of the optimization problem is

to minimize user discomfort in both dwellings. In scenario (b), the grid adopts a Time and Level Of

Use (TLOU) pricing scheme [15]. The lower level is taken as Ontario’s Independent Electricity System

Operator (IESO) tariff in Winter 2020. The higher level is a simple shift of the lower level, as shown

in Figure 3. The consumption of power from the grid and from the PV modules in both scenarios is

shown in Figure 4.
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Figure 3: Level of the TLOU grid electricity price in scenario (b) as a function of time, from Thursday 12th of Nov. to
Saturday 14th of Nov. 2020.

Figure 4: Signed instant power consumption from the grid, solar panels and from the battery (negative values mean that
the battery is charging) as a function of time, in scenario (a) [top] and scenario (b) [bottom], between Thursday, Nov.
12th and Saturday, Nov. 14th 2020.

The use of the MILP scheduler optimizing both cost and user discomfort, together with a TLOU

pricing structure, makes it possible to efficiently shift power consumption outside of the peak hours

when the battery and the PV modules provide enough power for both dwellings. Moreover, the power

demand does not exceed a certain amount (9 kW in this case) because of the TLOU price structure.

Using Pleiad, it is straightforward to change appliances, tune the objective function or fetch real-

world data. Here, solar production forecast data are automatically processed by pvlib using up-to-date

weather prediction data obtained online. In Figure 4, one may observe that the PV production is lower

on the first day (Nov. 12th) as this day is forecast to be more cloudy than both following days. Figures 3
and 4 were automatically generated using the Pleiad framework.
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6 Conclusion

In this paper, we presented a metamodel for residential DR models aiming at providing a common

ground for several models. This metamodel comes with a Python modeling framework called Pleiad,

which is released as an open source project on a git repository. Pleiad’s capabilities were illustrated

through the implementation of a mixed-integer linear optimization scheduler based on previous research

and with a case study carried out with realistic appliances. In this setting, Pleiad was able to connect

to real-world streaming PV data, and subsequently to reduce the power consumption of two dwellings

during peak hours.

We propose Pleiad as a common framework for future work on residential DR and as a means to

make fair comparisons between different models and enhance reproducibility of research. We encourage

the community to contribute to Pleiad by using it, by contributing their models to it, and by adding

new features.

In the future, Pleiad could be used to efficiently analyze and automatically optimize the consump-

tion of smart homes using streaming consumption and production data. Future work could also include

the study of flexibility resources shared by several users, as well as the associated economic models.
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