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recherche du Québec – Nature et technologies.
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c Université Grenoble Alpes, CNRS, Grenoble INP
(Institute of Engineering Univ. Grenoble Alpes),
Laboratoire G-SCOP, 38000 Grenoble, France

charles.audet@gerad.ca

jean.bigeon@grenoble-inp.fr

romain.couderc@grenoble-inp.fr

November 2020
Les Cahiers du GERAD
G–2020–59
Copyright c© 2020 GERAD, Audet, Bigeon, Couderc
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Abstract: This paper proposes a way to combine the Mesh Adaptive Direct Search (Mads) algorithm
with the Cross-Entropy (CE) method for non smooth constrained optimization. The CE method is
used as a search step by the Mads algorithm. The result of this combination retains the convergence
properties of Mads and allows an efficient exploration in order to move away from local minima. The
CE method samples trial points according to a multivariate normal distribution whose mean and
standard deviation are calculated from the best points found so far. Numerical experiments show an
important improvement of this method to reach the feasible region and to escape local minima.

Keywords: Cross Entropy, MADS, derivative-free optimization, blackbox optimization, constrained
optimization
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1 Introduction

This work studies inequality constrained blackbox optimization problems of the form:

min
x∈Ω⊆Rn

f(x), f : x ∈ Rn → R (1)

with

Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, ...,m},

where f : Rn → R̄ = R ∪ ±∞, c : Rn → R̄m and the set X represents bound constraints of type

` ≤ x ≤ u with `,u ∈ R̄n. The specificity of this work is due to the form of the objective function

f and of the constraints cj . They can be the result of a simulation of complex physical phenomena.

These simulations can take an important amount of time or present some discontinuities and therefore

classical optimization methods are difficult to apply. Especially, when the gradient of the objective

function and/or of the constraints are not explicitly known, hard to compute or its estimation is time

consuming. This field is called derivative-free optimization (DFO). In the worst case, the gradient does

not even exist, which is called blackbox optimization (BBO).

Specialized BBO and DFO algorithms have been developed in order to solve this kind of problem.

There are two main categories: model based algorithms [14] and direct search algorithms [5]. This

work deals with direct search algorithms which benefit from theoretical convergence results and adding

some modifications may improve their performance. In particular, the Mesh Adaptive Direct Search

(Mads) algorithm [2] ensures convergence to a point satisfying necessary conditions based on the Clarke

calculus [12]. This theoretical guarantee is a solid basis for blackbox optimization. However, blackbox

optimization algorithms must take into account two other types of difficulties. First, algorithms must be

efficient in terms of simulation evaluations (constraints and objective function). Indeed, the simulation

in engineering context is often time consuming. Second, blackbox simulations may involve multi-

extrema functions, so algorithms must be able to escape from local minimum. Mads may be trapped

in a local minimum.

To address the second difficulty, heuristics such as Variable Neighborhood Search (VNS) [1] and

Latin Hypercube Sampling (LHS) [41] were proposed to escape from local minimum. Other methods of

global optimization with no convergence guarantees exist, including Simulated Annealing [15], Genetic

Algorithm [18] or Tabu search [37]. However, these heuristic methods often require a large number of

function evaluations which is incompatible with the first difficulty. Finally, there exists also particular
method as DIRECT algorithm [24] allowing to explore the space well. Nevertheless, here again the

number of function evaluations seems to be prohibitive. In contrast, some methods have been developed

to address the first problem, by reducing the overall number of simulation evaluation such as: the use

of ensembles of surrogate [6] or of quadratic models [13] or the integration of the Nelder-Mead (NM)

algorithm [9]. These different methods improve the efficiency of the Mads algorithm, nevertheless, they

do not address the difficulty of local optima.

The objective of the present research is to propose an alternative search strategy: the Cross

Entropy (CE) [40] method. This method is a trade-off between a more global search and a limited

number of blackbox evaluations. It was introduced in 1997 , first in a context of rare event in discrete

optimization [39] and then adapted to continuous optimization [26]. The main benefit of using CE is it

often converges rapidly to a promising region in the space of variables. However, this method does not

benefit from theoretical guarantees, and once that it has found a promising region, it requires a large

number of simulation evaluations to improve the local accuracy. The two aims of this work are: global

exploration with limited number of iterations and keep the convergence guarantee. In this purpose,

CE is used as a search step. The combination we propose respect the local theoretical convergence

guarantee and may hope to escape from local minima with few evaluations.This combination will

benefit from CE’s ability to identify a promising region, with Mads’s ability to perform an efficient

local descent.
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This paper is divided as follow, Section 2 proposes an overview of the Mads and Cross Entropy

methods. Section 3 presents an algorithm combining CE and Mads. Finally, Section 4 shows the main

numerical results comparing the proposed method with Mads, Mads-LHS and Mads-VNS. Section 5

concludes on future work and on the contribution of this paper.

2 Description of Mads and Cross Entropy algorithms

In this Section, the Mads algorithm and the CE algorithm are described.

2.1 The Mads constrained optimization algorithm

The present work considers the Mads algorithm with the progressive barrier (PB) [3] to handle inequal-

ity constraints and with dynamic scaling [7] to handle the varying magnitudes of the variables. The

PB uses the constraint violation function [16].

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X ⊂ Rn

∞ otherwise.

The constraints violation function value h(x) is equal to 0 if and only if the point x belongs to Ω

and is nonnegative otherwise.

Mads is a direct search algorithm. Each iteration includes two steps. The search step where

various strategies may be used to explore the space of variables and the poll step where the space of

variable is locally explored by following strict rules guaranteeing convergence. In practice, the search

accelerates the convergence to an optimum and it may attempt to escape from local minimum. The

poll is confined to a region delimited by the so called poll size vector ∆k ∈ Rn+. All points generated

by the poll and search steps are rounded on a discretization of the space of the variables called

the mesh whose the fineness is controlled by the mesh size vector δk ∈ Rn+. In its simplest form, the

mesh [7] is defined as follows:

Mk = V k + {diag(δk)z : z ∈ Zn}

where the cache V k contains all the points visited by the start of iteration k. The mesh and the poll

size vectors are updated at the end of each iteration. The values of both vectors are reduced when

an iteration fails to improve the current solution and they are increased or remain at the same value

otherwise. Algorithm 1 provides a description of Mads, the reader may consult [7] for complete details.

Algorithm 1: The Mesh Adaptive Direct Search algorithm (Mads)

Given a user-defined set of starting point: V 0 ⊂ Rn,
and initial mesh and poll size vectors: δ0i and ∆0

i
Set the iteration counter: k ← 0.
1. Search step (optional):

Launch the simulation on a finite set Sk of mesh points.
If successful, go to 3.

2. Poll step:
Launch the simulation on the set Pk of poll points.

3. Updates:
Update the cache V k+1, the incumbent xk+1

and the mesh and poll size vectors δk+1 and ∆k+1.
Increase the iteration counter k ← k + 1 and go to 1.

The fundamental convergence result [3] of the Mads algorithm states that if the entire sequence

of trial points belongs to a bounded set, then there exists an accumulation point x∗ such that the

generalized directional derivative f◦(x∗; d) of Clarke [12] is nonnegative in every hypertangent [22]

direction d to the domain Ω at x∗ provided that x∗ is feasible. A similar result holds for the function h

over the set X in situations where the iterates never approach the feasible region.
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2.2 The Cross Entropy method for continuous optimization

The Cross Entropy method was introduced by Rubinstein in 1997 in the context of a minimization

algorithm for estimating probabilities of rare events [39]. Later, it was modified to solve combinatorial

optimization problems [40] and then in 2006 to solve continuous problems [26]. The main idea of this

method is as follows. First, each optimization problem is transformed into a rare event estimation

problem called associated stochastic problem (ASP). For instance, the deterministic problem (1) is

transformed into:

P (f(X) ≤ γ) = E(I{f(X)≤γ}) (2)

where X is a random vector. Then, this ASP is tackled efficiently by an adaptive algorithm. This

algorithm constructs a sequence of solutions which converging to the optimal solution of the ASP. The

CE method is composed of two iterative steps:

• generation a sample of random data according to a density of probability;

• density parameters update thanks to the data sampled to create a new sample in the next

iteration.

It results of this method is that it often escape from local minima.

2.2.1 An introductory example

For clarity, consider the example from [26] of minimizing the function:

f(x) = −e−(x−2)2 − 0.8e−(x+2)2 , x ∈ R. (3)

The function f has two local minima and a single global minimum at x = 2.

Figure 1: (Figure inspired by [26]) Graph of objective function f (left) and evolution of the normal distribution during the
seven first iterations with Ne = 10 and Ns = 50 (right).

Using a normal distribution the CE procedure is the following:

• Initialization : at the first iteration k = 0, a mean µ0 ∈ Rn and a standard deviation σ0 ∈ Rn
(with n the dimension of the problem) are arbitrarily chosen. A large value of σ0 is taken in

order to escape from local solutions.

• Iterative part: at each iteration k ≥ 1:

– First, a sample X1, ...,XNs
of points in Rn is generated from a normal law

V(µk−1,σk−1) where Ns is the number of samples.

– Then, f is evaluated at each sampled points and a number of elite points Ne, with the

lowest value of f. µk and σk are the mean and standard deviation of these Ne points.

– Termination: once the standard deviation becomes sufficiently small, the procedure is

stopped.
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The sequence of normal distribution is illustrated in the right part of Figure 1. This example shows

how the CE procedure escapes from the local minimum at x = −2 and converges in seven iterations

to the neighborhood of x = 2.

2.2.2 The general CE method

Before presenting the algorithm, the ASP is considered and the two iterative steps of the algorithm are

precised. Problem 1 is transformed into an ASP. Using a family of probability distribution functions

(pdf) {g(·; v) : v ∈ V} where g is the law chosen to sample the different points at each iteration. V
is the set of vector parameters of the pdf g which are calculated at each iteration. In the previous

example g is taken as the normal law and the vk ∈ V is composed of the mean and standard deviation

vk = (µk,σk). Having explained the law and its parameters, the ASP related to problem 1 can be

defined as follows:

Pv(f(X) ≤ γ) = Ev(I{f(X)≤γ}) (4)

where v ∈ V is a vector of parameter, X is a random vector with a pdf g(·; v) and γ is a variable. At

this stage, for a given value of γ, the parameter v may be estimated. Conversely, given a vector of

parameters v, the value γ may be also estimated. The CE method is based on these two estimations,

at each iterations, the algorithm estimates one then the other. In the iterative part of Example 3,

the first item corresponds to the estimation of γ and the second one to the estimation of v. More

precisely, we denote γ∗ ∈ R as the infemum of the objective function, v∗ the parameters and g(·; v∗)
the pdf associated to this infemum. The goal is to generate a sequence (γk,vk) converging to (γ∗,v∗).

To achieve this goal, a sequence of pdf g(·; v0), g(·; v1), ... converging to g(·; v∗) is created. To assure

the convergence, one must have a “measure” of the difference between the iterate pdf g(·; vk) and the

objective one g(·; v∗). The Kullback-Leibler (KL) divergence [27] is used:

D(g(·; v∗)||g(·; vk)) =

∫ ∞
−∞

g(x; v∗) ln

(
g(x; v∗)

g(x; vk)

)
dx. (5)

The iterative steps may now be described. ρ is defined as a very small quantity, corresponding to

the proportion of elite points which are kept from an iteration to another. The procedure is:

• Adaptive update of γk. With a fixed parameter of pdf vk−1, γk is defined such that it is the

(1− ρ)-quantile of f(X) under vk−1. Then, γk satisfies:

Pvk−1(f(X) ≤ γk) ≥ ρ, (6)

Pvk−1(f(X) ≥ γk) ≥ 1− ρ (7)

where X ∼ g(·; vk−1). The γk is denoted γ̂k. To obtain this estimator, a sample X1, ...,XNs is

drawn from g(·; vk−1) and evaluated. Then, the (1− ρ) quantile is:

γ̂k = fd(1−ρ)Nse. (8)

• Adaptive update of vk. With a fixed γk and knowing vk−1, vk is a solution of:

max
v

D(v) = max
v

Evk−1I{f(X)≤γk} ln(g(X; v))

= min
v
Evk−1I{f(X)≤γk} ln

(
I{f(X)≤γk}

g(X; v)

) (9)

which is the minimization of the KL divergence at iteration k (with the convention 0 ln(0) = 0).

Nevertheless, in practice, the real expectation and the real γk are not known, estimators must

be used and the following equation is solved:

ṽk ∈ argmax
v

D̂(v) = max
v

1

Ns

Ns∑
i=1

I{f(Xi)≤γ̂k} ln(g(Xi; v). (10)
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Last but not least, v̂k is not set to ṽk. Indeed, some component of ṽk could be set to 0 or 1 at

the first few iterations and the transition between ṽk−1 and ṽk could be discontinuous. To avoid these

problems, the following convex combination is rather used:

v̂k = αṽk + (1− α)v̂k−1 (11)

with 0 < α ≤ 1. Theoretically, any distribution converging in the neighborhood where the global

maximum is attained can be used including normal, exponential or beta distribution. Nevertheless, in

practice, the updating step is quite simple with the normal distribution that is often chosen. Therefore,

the detailed algorithm is the following:

Algorithm 2: The Cross Entropy (CE) algorithm with normal law

Choose µ̂0 and σ̂0

Set the iteration counter: k ← 0.
Ns number of sampled data at each iteration
Ne number of elite population
α the parameter of convex combination
1. Estimation of γk:

Generate a random sample X1, ..,XNs from N(µ̂k−1, σ̂k−1) distribution.
Evaluation of the Ns points by the simulation and then go to 2.

2. Estimation of mean and standard deviation
Let Ek be the indices of the Ne best perfoming samples.

Set µ̃k = 1
Ne

∑
i∈Ek

Xi

and (σ̃k)2 = 1
Ne−1

∑
i∈Ek

(Xi − µk)2

3. Updates:
Apply the convex combinations:

µ̂k = αµ̃k + (1− α)µ̂k−1

σ̂k = ασ̃k + (1− α)σ̂k−1

Increase the iteration counter k ← k + 1 and go to 1.

3 The CE-MADS constrained optimization algorithm

This section presents the CE-inspired search step of Mads. Section 3.1 describes how to handle

constraints, the update of the mean µ and the standard deviation σ and the condition to enter the

CE search step. Section 3.2 presents the algorithm of the CE search step.

3.1 The CE-search step

3.1.1 Handling the constraints

Section 2 presented the CE method for unconstrained optimization. In [26], the bound constrained case

is treated using a truncated normal law and a penalty approach is used for inequality constraints. In

our work, the truncated normal law is also used to treat the bound constraints. For general inequality

constraints, the algorithm does not use the penalty approach. In fact, when the algorithm chooses the

elite sample, it uses the following function Best (defined in [9] and recalled here). Thus, any points in

the cache may be selected even if its value of constraint violation is over the threshold of progressive

barrier [3]. The definition relies on both the objective and the constraint violation functions f and h.

Definition 1 The function Best : Rn × Rn 7→ Rn

Best(x,y) =

 x if x dominates y or if h(x) < h(y),
y if y dominates x or if h(y) < h(x),

Older(x,y) Otherwise

returns the best of two points.
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The function Older gives the point which was generated before the former one. Thanks to this defini-

tion, CE may treat the general inequality constraints with the terminology used in Mads.

3.1.2 Update of the mean and standard deviation

Three elements differ compared to classical CE method concerning the mean and the standard devia-

tion. First, the elite points taken to compute the mean and the standard deviation are not only the

Ns points generated by the normal law. The elite points are chosen from the cache at the iteration k,

denotes V k ⊂ Rn, so any points generated by the Mads algorithm may be selected. This set is ordered

with the function Best, in order to select the Ne elite points, it is sufficient to take the Ne first points

of V k.

Second, the mean and the standard deviation initialization procedure differs from the CE method

proceeds. Indeed, Mads always begins with a starting point, thus there is at least one point in the

cache (the set of evaluated points). Moreover, to avoid to field of exploration, bounds are always added

on the problem as follows (using x̄k the poll center at iteration k):

∀i ∈ [1, n] (`ki , u
k
i ) =


(`i, ui) if `i 6= −∞ and ui 6=∞,

(x̄ki − 10×∆k
i , ui) if `i = −∞ and ui 6=∞,

(`i, x̄
k
i + 10×∆k

i ) if `i 6= −∞ and ui =∞.
(12)

Once the problem has finite bound constraints, there are two cases to calculate the mean and the

standard deviation:

• In case where the number of points in the cache is too small to be relevant, i.e. fewer points that

the number Ne required, then the mean and the standard deviation are determined such that:

µk = x̄k (13)

σk = 2(uk − `k) (14)

• In the others cases, the same calculations are made that in the original CE process:

µk =
1

Ne

∑
j∈Ek

Xj

σk =

√√√√ 1

Ne − 1

∑
j∈Ek

(Xj − µk)2

Third, to generate the point during the CE search, the truncated normal law was always used

with the bounds created in (12). Moreover, the elite points come not only from the previous normal

sampling but also of the other kind of search step. That gives a vector of standard deviation which

tends to zero very quickly, the other methods doing generally a local search. That is why, to avoid

that the standard deviation is calculated as in (11) with a coefficient α = 0.7.

3.1.3 The condition to pass in the CE-search step

The goal of the CE method is to explore in few evaluations the space to determine the promising region.

The number of evaluations used by the CE search step must be quite small. For this purpose, Mads
does not perform the CE search step at every iteration. The standard deviation can be seen as a

measure of the incertitude on the data and is used to determine whether to launch the search step

or not. First, a new variable called σp is introduced, it represents the incertitude measured the last

time the algorithm passed through the CE search step and generated trial points. This variable is

initialized to ∞. Then, the condition to launch the CE search is the following:

||σk|| < ||σp|| (15)
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This conditions means that the current incertitude is smaller than the previous one. Each time

this conditions is respected, σp is updated with the standard deviation obtained after the CE step.

Last but not least, there is a special case. The CE method being associate with Mads which is a

local search, it is possible that the points become rapidly close to each others, reducing the standard

deviation. In some cases, that avoids to escape from unfeasible region. Thus, in case where several

iterations of Mads algorithm are passed and the feasible region is still not reached, then the CE-

SEARCH is launched with a mean equal to the current best point and a standard deviation equal to

2 times the initial standard deviation until a feasible point is found.

3.2 The complete algorithm

The CE search step of Mads algorithm is presented here:

Algorithm 3: The CE search step

1. Calculation of µk and σk :
if card(V k) < Ne:

µk = x̄0

σk update with 14
else:

µk = 1
Ne

∑
j∈Ek

Xj

(σk)2 = 1
Ne−1

∑
j∈Ek

(Xj − µk)2

2. CE search
If ||σk|| < ||σp|| :

Generate a random sample X1, ..,XNs from N (µk, 2σk) distribution
and project them on the mesh.
Evaluation of the Ns points by the simulation.
Update:

µk+1 = 1
Ne

∑
j∈Ek

Xj

(σk+1)2 = 1
Ne−1

∑
j∈Ek

(Xj − µk+1)2

(σp)2 = (σk+1)2

4 Computational experiments

The present work uses data profiles to compare the different algorithm. Data profiles [35] allow to assess

if algorithms are successful in generating solution values close to the best objective function values.

To identify a successful run, a convergence test is required. Let denote xe the best iterates obtained

by one algorithm on one problem after e evaluations, ffea a common reference for a given problem

obtained by taking the max feasible objective function values on all run instances of that problem for

all algorithms and f∗ the best solution obtained by all tested algorithms on all run instances of that

problem. Then, the problem is said to be solved within the convergence tolerance τ when:

ffea − f(xe) ≥ (1− τ)(ffea − f∗).

Different initial points constitute different problems. Moreover, an instance of a problem corresponds

to a particular pseudo-random generator seeds. The horizontal axis of a data profile represents the

number of evaluations for problems of fixed dimension, and represents group of n + 1 evaluations

when problems of different dimension are involved. The vertical axis corresponds to the proportion

of problems solved within a given tolerance τ . Each algorithm has its curve to allow comparison of

algorithms capability to converge to the best objective function value.

This section presents the numerical experiments. It is divided in two subsections. The numerical

experiments of Section 4.1 are performed on analytical test problems to calibrate the CE-search

parameters. Section 4.2 compares Mads, LH-Mads, VNS-Mads and CE-Mads without the use of models

on three real engineering problems.
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4.1 Preliminary experiments to calibrate parameters

Computational experiments are conducted using the version 3.9.1 of NOMAD [28] software package.

All tests use the Mads strategy with the use of the NM search [9] and without the use of models. When

the CE-search is used, it is the first search step to be applied.

Numerical experiments on analytical test problems are conducted to set default values for the two

algorithmic parameters: the number of sampled data at each iteration Ns and the number of elite

population Ne. CE-Mads is tested on 100 analytical problems from the optimization literature. The

characteristics and sources of these problems are summarized in Table 1 in appendix A. The number

of variables ranges from 2 to 60; 28 problems have constraints other than bound constraints. In order

to have a more precise idea of the effect between the hyper-parameters (ne and ns), three series of

tests are conducted:

• A series of tests on the 69 unconstrained test problems having a dimension from 2 to 20.

• A series of tests on the 25 constrained test problems having a dimension from 2 to 20.

• A series of tests on the 6 larger problems in term of dimension (from 50 to 60), three are

constrained and three are not.

For each test, the maximal number of function evaluations is set to 1000(n + 1), where n is

the number of variables and each problem is run with 3 different random seeds. For each

series of tests, the five following CE-MADS setup of hyper-parameters are compared: (Ne, Ns) ∈
{(2, n), (4, 2n), (6, 3n), (8, 4n), (10, 5n)} with n the dimension of the test problem. A run called NO-
MAD default is added in each series of test to compare our results with the current NOMAD software.

Data profiles are presented on Figure 2, 3 and 4 with different values of the tolerance τ .

These results are analysed by series of problems:

• On the unconstrained problems (see Figure 2), no algorithm really stands out regardless of the

value of τ , it is difficult to choose one hyper-parameter rather than another one even if the couple

Ne = 4 and Ns = 2n appears to be more efficient.

• On the constrained problems (see Figure 3), there are different behaviors according to the value

of τ . For τ = 10−3, no algorithm appears to be dominant. However, for τ = 10−5, it happens

that greater are the values of Ns and Ne, higher is the percentage of problems solved finally.

That can be explained because great Ns and Ne allow a better exploration of the space, and so

a more precise result at the end.

• Finally (see Figure 4), on the large test problems,and for small values of the tolerance τ the

CE-Mads is outperformed by the Mads algorithm with default values. It seems that the CE

method is not useful for problems with a large number of variables.

Inspection of the logs of the hyper-parameter calibration reveals the two following observations:

• The CE-Mads performance is not very sensitive to the hyper-parameter values. This allows to

avoid some calibration experiments before applying the algorithm on a new test problem.

• For problems with a large number of variables, our tests suggest to avoid using of the CE-search.

Nevertheless, this point has not been confirmed on real engineering problems given that we do

not have access to engineering test problems with large dimension.

In the remainder of the paper, the CE-search values are set to Ne = 4 and Ns = 2n as they often

perform well.

4.2 Test on engineering problems

In this section, the CE-Mads algorithm is tested on three different engineering problems. Its results

are compared with three algorithms: the Mads-default (without models), the VNS-Mads where a

VNS-search is used and the LH-Mads which is a default Mads with in addition a LHS search. The



Les Cahiers du GERAD G–2020–59 9

0 200 400 600 800 1,000

0

20

40

60

80

Number of (n+ 1) evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

NOMAD 3.9.1 no models

NOMAD 3.9.1 no models + CE Ns = 1*n Ne = 2

NOMAD 3.9.1 no models + CE Ns = 2*n Ne = 4

NOMAD 3.9.1 no models + CE Ns = 3*n Ne = 6

NOMAD 3.9.1 no models + CE Ns = 4*n Ne = 8

NOMAD 3.9.1 no models + CE Ns = 5*n Ne = 10

0 200 400 600 800 1,000

0

20

40

60

80

Number of (n+ 1) evaluations

P
er
ce
n
ta
g
e
o
f
p
ro
b
le
m
s
so
lv
ed

TAU 1E-5

NOMAD 3.9.1 no models

NOMAD 3.9.1 no models + CE Ns = 1*n Ne = 2

NOMAD 3.9.1 no models + CE Ns = 2*n Ne = 4

NOMAD 3.9.1 no models + CE Ns = 3*n Ne = 6

NOMAD 3.9.1 no models + CE Ns = 4*n Ne = 8

NOMAD 3.9.1 no models + CE Ns = 5*n Ne = 10

Figure 2: Result of calibration of the hyper-parameters of CE-MADS on the 69 unconstrained test problems.

0 200 400 600 800 1,000

0

20

40

60

Number of (n+ 1) evaluations

P
er
ce
n
ta
ge

of
p
ro
b
le
m
s
so
lv
ed

TAU 1E-3

NOMAD 3.9.1 no models

NOMAD 3.9.1 no models + CE Ns = 1*n Ne = 2

NOMAD 3.9.1 no models + CE Ns = 2*n Ne = 4

NOMAD 3.9.1 no models + CE Ns = 3*n Ne = 6

NOMAD 3.9.1 no models + CE Ns = 4*n Ne = 8

NOMAD 3.9.1 no models + CE Ns = 5*n Ne = 10

0 200 400 600 800 1,000

0

10

20

30

Number of (n+ 1) evaluations

P
er
ce
n
ta
ge

of
p
ro
b
le
m
s
so
lv
ed

TAU 1E-5

NOMAD 3.9.1 no models

NOMAD 3.9.1 no models + CE Ns = 1*n Ne = 2

NOMAD 3.9.1 no models + CE Ns = 2*n Ne = 4

NOMAD 3.9.1 no models + CE Ns = 3*n Ne = 6

NOMAD 3.9.1 no models + CE Ns = 4*n Ne = 8

NOMAD 3.9.1 no models + CE Ns = 5*n Ne = 10

Figure 3: Result of calibration of the hyper-parameter of CE-MADS on the 25 constrained test problems.

comparison with the two last algorithms is crucial because they are methods aiming to explore the space

of design variables. The Latin Hypercube search strategy is used with two parameters ninit = 100

and niter = 10: ninit is the number of LH trial points generated at the first iteration of Mads and

niter the number of LH trial points generated at each subsequent iteration. The Variable Neighbour

Search is used with the default parameters [1]. It is an metaheuristic allowing to explore distant

neighborhoods of the current incumbent solution.
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Figure 4: Result of calibration of the hyper-parameter of CE-MADS on the 6 large test problems.

4.2.1 The MDO problems

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads are tested to solve a simple multi-

disciplinary wing design optimization problem [17]. Each initial point defines a MDO problem. Solving

the problem consists in maximizing the range of an aircraft subject to 10 general constraints. The

problem has 10 scaled design variables bounded in [0; 100]. Figure 5 shows the result on a data profile

when solving 20 MDO problems on different initial points using 3000 function evaluations or less. The

initial points are real randomly selected within the bounds. Each run is done with three different seeds

in order to minimize the impact of the seed.

Figure 5 shows that the CE-Mads outperforms the other algorithms with all values of τ .

4.2.2 The STYRENE problems

The Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads algorithms are tested to optimize a

styrene production process [1]. This problem is a simulation of a chemical process. This process relies

on a series of interdependent calculation of blocks using common numerical tools as Runge-Kutta,

Newton, fixed point and also chemical related solver. The particularity of this problem is the presence

of “hidden” constraints, i.e. sometimes the process does not finish and just return an error. In the

case where the chemical process ends, the constraints (not hidden) and the objective functions may

be evaluated during a post-processing. The objective is to maximize the net value of the styrene

production process with 9 industrial and environmental regulations constraints.

In this work, a STYRENE problem possesses eight independent variables influencing the styrene

production process. The variables considered during the optimization process are all scaled and

bounded in X = [0, 100]8. As it was done for the MDO test problems, the four algorithms are

tested with 20 different starting points taken in X. A maximal number of evaluations of 3000 is used

and each problem is run with three different seeds. The STYRENE problems is particularly inter-

esting in this study, because there are two minima as it is shown in [9]. The results with τ = 10−1

allow to know the percentage of problems having found the global minimum. The results are provided

on Figure 6. On the left plot, it is interesting to notice that the CE-Mads algorithm find the global
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minimum the same number of times that the LH-Mads algorithm but is more efficient. On the right

plot, the CE-Mads algorithm seems to have the same accuracy that the VNS-Mads algorithm and is

slightly more efficient.
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Figure 5: Result on the 60 MDO instances between Mads (no models), CE-Mads, VNS-Mads and LH-Mads for τ = 10−2

(left) and τ = 10−3 (right).
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Figure 6: Result on the 60 STYRENE instances between Mads (no models), CE-Mads and LH-Mads for τ = 10−1 (left)
and τ = 10−2 (right).
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4.2.3 The LOCKWOOD problems

Finally, the Mads default (no models), LH-Mads and CE-Mads algorithms without quadratic models are

tested to solve the basic version of a pump-and-treat groundwater remediation problem from Montana

Lockwood Solvent Groundwater Plume Site [30]. The problem has 6 design variables bounded in

X = [0, 20000]6 and 4 constraints. A particularity of this problem is that each simulation run take

several seconds, so the maximum number of blackbox evaluations is set to 1500. The algorithms are

started from 20 different randomly selected initial points in X and three different seeds are used as

previously. The results are provided on Figure 7.

In this problem, reach the feasible region is not easy. Here again, the results at τ = 10−1 allows

to give an idea of the number of times the algorithm reach the feasible region. For instance, CE-Mads
and LH-Mads always reach the feasible region while Mads default reaches the feasible only 41 times on

60 instances and VNS-Mads only 46 times. The efficiency of CE-Mads and LH-Mads is comparable.

However, on the right plot, a better accuracy is reached with a greater efficiency by the CE-Mads
algorithm.
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Figure 7: Result on the 20 LOCKWOOD instances between Mads-default (no models), CE-Mads, VNS-Mads and LH-Mads
for τ = 10−1 (left) and τ = 10−2 (right).

5 Discussion

This paper introduces a way to combine the CE algorithm and the Mads algorithm so that it allows a

better space exploration. This is achieved by defining a CE-search step within the Mads algorithm.

The CE search generates some points according to a normal distribution whose mean and standard

deviation is calculated from the best points stored in the cache. This approach allows to handle the

constraints in a different ways. Moreover, the particularity of this search is that it is not performed

at each iteration of the Mads algorithm, but according to a criterion based on the value of the norm

of the standard deviation of the best points.

Numerical experiments show that in case where the problem has different minima or a feasible

region hard to reach, the CE-Mads algorithm performs well. Indeed, it attains as often as the LH-

Mads the feasible region or the global minimum but it is far more efficient, especially when a tight

accuracy is considered. Finally, even on problem, as MDO, where the classical exploration search,

LH and VNS, does not work well, the CE-Mads algorithm gives interesting results.
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Further works will be devoted to improve the link between the Mads algorithm and the CE algorithm

by adjusting the size of the mesh with the standard deviation calculated in CE.

A Appendix

# Name Source n m Bnds

1 ARWHEAD10 [19] 10 0 no
2 ARWHEAD20 [19] 20 0 no
3 BARD [34] 3 0 no
4 BDQRTIC10 [19] 10 0 no
5 BDQRTIC20 [19] 20 0 no
6 BEALE [34] 2 0 no
7 BIGGS [19] 6 0 no
8 BOX [34] 3 0 no
9 BRANIN [20] 2 0 yes
10 BROWNAL5 [19] 5 0 no
11 BROWNAL7 [19] 7 0 no
12 BROWNAL10 [19] 10 0 no
13 BROWNAL20 [19] 20 0 no
14 BROWNDENNIS [34] 4 0 no
15 BROWN BS [34] 2 0 no
16 B250 [10] 60 1 yes
17 B500 [10] 60 1 yes
18 CHENWANG F2 X0 [11] 8 6 yes
19 CHENWANG F2 X1 [11] 8 6 yes
20 CHENWANG F3 X0 [11] 10 8 yes
21 CHENWANG F3 X1 [11] 10 8 yes
22 CRESCENT [3] 10 2 no
23 DISK [3] 10 1 no
24 DIFFICULT2 [3] 10 0 no
25 ELATTAR [29] 6 0 no
26 EVD61 [29] 6 0 no
27 FILTER [29] 9 0 no
28 FREUDENSTEINROTH [34] 2 0 no
29 GAUSSIAN [34] 3 0 no
30 G2 10 [4] 10 2 yes
31 G2 20 [4] 20 2 yes
32 G2 50 [4] 50 2 yes
33 GOFFIN [29] 50 0 no
34 GRIEWANK [20] 10 0 yes
35 GULFRD [8] 3 0 no
36 HELICALVALLEY [34] 3 0 no
37 HS19 [21] 2 2 yes
38 HS78 [29] 5 0 no
39 HS83 X0 [21] 5 6 yes
40 HS83 X1 [21] 5 6 yes
41 HS114 X0 [29] 9 6 yes
42 HS114 X1 [29] 9 6 yes
43 JENNRICHSAMPSON [34] 2 0 no
44 KOWALIKOSBORNE [34] 4 0 no
45 L1HILB [29] 50 0 no
46 MAD6 X0 [29] 5 7 no
47 MAD6 X1 [29] 5 7 no
48 MCKINNON [31] 2 0 no
49 MEYER [34] 3 0 no
50 MEZMONTES [32] 2 2 yes

# Name Source n m Bnds

51 MXHILB [29] 50 0 no
52 OPTENG RBF [25] 3 4 yes
53 OSBORNE1 [34] 5 0 no
54 OSBORNE2 [29] 11 0 no
55 PBC1 [29] 5 0 no
56 PENALTY1 4 [19] 4 0 no
57 PENALTY1 10 [19] 10 0 no
58 PENALTY1 20 [19] 20 0 no
59 PENALTY2 4 [19] 4 0 no
60 PENALTY2 10 [19] 10 0 no
61 PENALTY2 20 [19] 20 0 no
62 PENTAGON [29] 6 15 no
63 PIGACHE X00 [36] 4 11 yes
64 PIGACHE X01 [36] 4 11 yes
65 POLAK2 [29] 10 0 no
66 POWELL BS [34] 2 0 no
67 POWELLSG4 [19] 4 0 no
68 POWELLSG8 [19] 8 0 no
69 POWELLSG12 [19] 12 0 no
70 POWELLSG20 [19] 20 0 no
71 RADAR [33] 7 0 yes
72 RANA [23] 2 0 yes
73 RASTRIGIN [20] 2 0 yes
74 RHEOLOGY [5] 3 0 no
75 ROSENBROCK [34] 2 0 yes
76 SHOR [29] 5 0 no
77 SNAKE [3] 2 2 no
78 SPRING X00 [38] 3 4 yes
79 SPRING X01 [38] 3 4 yes
80 SROSENBR6 [19] 6 0 no
81 SROSENBR8 [19] 8 0 no
82 SROSENBR10 [19] 10 0 no
83 SROSENBR20 [19] 20 0 no
84 TAOWANG F2 X00 [42] 7 4 yes
85 TAOWANG F2 X01 [42] 7 4 yes
86 TREFETHEN [23] 2 0 yes
87 TRIDIA10 [19] 10 0 no
88 TRIDIA20 [19] 20 0 no
89 TRIGONOMETRIC [34] 10 0 no
90 VARDIM8 [19] 8 0 no
91 VARDIM10 [19] 10 0 no
92 VARDIM20 [19] 20 0 no
93 WANGWANG F3 [43] 2 0 yes
94 WATSON9 [34] 9 0 no
95 WATSON12 [34] 12 0 yes
96 WONG1 [29] 7 0 no
97 WONG2 [29] 10 0 no
98 WOODS4 [19] 4 0 no
99 WOODS12 [19] 12 0 no
100 WOODS20 [19] 20 0 no

Table 1: Description of the set of 100 analytical problems.
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Nomenclature

The following list describes symbols used within the body of the document. In what follows, if the

symbol is bold then it is a vector otherwise it is a scalar.

` The lower bound of a decision variable

∆k The frame size parameter at iteration k

δk The mesh size parameter at iteration k

ε The stopping criterion

γ A parameter to estimate in an associated stochastic problem

u The upper bound of a decision variable

E The expectation

N The normal distribution

V Set of parameters of a probability density function

X The bounded constraints set of type ` ≤ x ≤ u
µ The mean

Ω The feasible set

ρ A percentage of quantile

σ The standard deviation

τ The mesh size adjustment parameter

X A random vector

cj The jth constraint

D A positive spanning set

Ek The set of indices of elite points

F k The frame at iteration k

g(·; ·) A probability density function

h The measure of constraints violation

Ix Indicator function of x

k The iteration counter

Mk The mesh at iteration k

n The dimension of a problem

Ns Number of sampled data at each iteration

Ne Number of elite population

V The cache

v A parameter of a probability density function
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polyphase code design problem by tabu search and variable neighbourhood search. European Jour-
nal of Operational Research 151(2), 389–399 (2003). DOI 10.1016/S0377-2217(02)00833-0. URL
http://dx.doi.org/10.1016/S0377-2217(02)00833-0
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