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Abstract: Conditional estimation given specific covariate values (i.e., local conditional estimation
or functional estimation) is ubiquitously useful with applications in engineering, social and natural
sciences. Existing data-driven non-parametric estimators mostly focus on structured homogeneous data
(e.g., weakly independent and stationary data), thus they are sensitive to adversarial noise and may
perform poorly under a low sample size. To alleviate these issues, we propose a new distributionally
robust estimator that generates non-parametric local estimates by minimizing the worst-case conditional
expected loss over all adversarial distributions in a Wasserstein ambiguity set. We show that despite
being generally intractable, the local estimator can be efficiently found via convex optimization under
broadly applicable settings, and it is robust to the corruption and heterogeneity of the data. Experiments
with synthetic and MNIST datasets show the competitive performance of this new class of estimators.
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1 Introduction

We consider the estimation of conditional statistics of a response variable, Y ∈ Rm, given the value

of a predictor or covariate X ∈ Rn. The single most important instance of these types of problems

involves estimating the conditional mean, or also known as the regression function. Under finite variance

assumptions, the conditional mean EP[Y |X = x0] is technically defined as ψ?(x0) for some measurable

function ψ? that solves the minimum mean square error problem

min
ψ

EP[‖Y − ψ(X)‖22],

where the minimization is taken over the space of all measurable functions from Rn to Rm. While the

optimal solution ψ? is unique up to sets of P-measure zero, unfortunately, solving for ψ? is challenging

because it is an infinite-dimensional optimization problem. The regression function ψ? can be efficiently

found only under specific settings, for example, if one assumes that (X,Y ) follows a jointly Gaussian

distribution. However, these specific situations are overly restrictive in practice.

In order to bypass the infinite-dimensional challenge involved in directly computing ψ?, we may

instead consider a family of optimization problems that are parametrized by x0. More specifically, in

the presence of a regular conditional distribution, the conditional mean EP[Y |X = x0] can be estimated

pointwise by β̂ defined as

β̂ ∈ arg min
β
EP[‖Y − β‖22|X = x0]

for any covariate value x0 of interest. This presents the challenge of effectively accessing the conditional

distribution, which is particularly difficult if the event X = x0 has P-probability zero.

Using an analogous argument, if we are interested in the conditional (τ × 100%)-quantile of Y

given X, then this conditional statistics can be estimated pointwise at any location x0 of interest by

β̂ ∈ arg min
β
EP[max{−τ(Y − β), (1− τ)(Y − β)}|X = x0].

The previous examples illustrate that the estimation of a wide range of conditional statistics can be

recast into solving a family of finite-dimensional optimization problems parametrically in x0

min
β

EP[`(Y, β)|X = x0] (1)

with an appropriately chosen statistical loss function `.

Problem (1) poses several challenges, some of which were alluded to earlier. First, it requires the

integration with respect to a difficult to compute conditional probability distribution. Second, the

probability measure P is generally unknown, hence we lack a fundamental input to solve (1). Finally,

in a data-driven setting, there may be few, or even no, observations with value covariate X = x0.

To alleviate these difficulties, our formulation, as we shall explain, involves two features. First,

we consider a relaxation of problem (1) in which the event X = x0 is replaced by a neighborhood

Nγ(x0) of a suitable radius γ ≥ 0 around x0. Second, we introduce a data-driven distributionally robust

optimization (DRO) formulation (e.g. [7, 11, 22]) in order to mitigate the problem that P is unknown.

In turn, the DRO formulation involves a novel class of conditional ambiguity set which copes with the

underlying conditional distribution being unknown.

In particular, we propose the following distributionally robust local conditional estimation problem

min
β

sup
Q∈B∞

ρ ,Q(X∈Nγ(x0))>0

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
, (2)

where the maximization is taken over all probability measures Q that are within ρ distance in the ∞-

Wasserstein sense of a benchmark nominal model, which often corresponds to the empirical distribution

of available data. The probability measures Q are constrained so that Q(X ∈ Nγ(x0)) > 0 to eliminate

the complication of conditioning on a set of measure zero.
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Contributions. Resting on formulation (2), our main contributions are summarized as follows.

1. We introduce a novel paradigm of non-parametric local conditional estimation based on distribu-

tionally robust optimization. In contrast to classical non-parametric conditional estimators, our

new class of estimators are endowed by design with robustness features. They are structurally built

to mitigate the impact of model contamination and therefore they may be reasonably applied to

heterogeneous data (e.g., non i.i.d. input).

2. We demonstrate that when the ambiguity set is a type-∞ Wasserstein ball around the empirical

measure, the proposed min-max estimation problem can be efficiently solved in many applicable

settings, including notably the local conditional mean and quantile estimation.

3. We show that this class of type-∞ Wasserstein local conditional estimators can be considered as a

systematic robustification of the k-nearest neighbor estimator. We also provide further insights on

the statistical properties of our approach and empirical evidence, with both a synthetic and real

data sets, that our approach can provide more accurate estimations in practically relevant settings.

Related work. One can argue that every single prediction task in machine learning ultimately relates to

conditional estimation. So, attempting to provide a full literature survey on non-parametric conditional

estimation is an impossible task. Since our contribution is primarily on introducing a novel conceptual
paradigm powered by DRO, we focus on discussing well-understood estimators that encompass most of

the conceptual ideas used to mitigate the challenges exposed earlier.

The challenges of conditioning on zero probability events and the fact that x0 may not be a part of

the sample are addressed based on the idea of averaging around a neighborhood of the point of interest

and smoothing. This gives rise to estimators such as k-NN (see, for example, [12]), and kernel density

estimators, including, for instance the Nadaraya-Watson estimator ([29, 39]) and the Epanechnikov

estimator [13], among others. Additional averaging methods include, for example, random forests [8]

and Classification and Regression Trees (CARTs, [9]), see also [19] for other techniques.

These averaging and smoothing ideas are well understood, leading to the optimal selection (in a

suitable sense) of the kernel along with the associated tuning parameters such as the bandwidth size.

These choices are then used to deal with the ignorance of the true data generating distribution by

assuming a certain degree of homogeneity in the data, such as stationarity and weak dependence, in

order to guarantee consistency and recovery of the underlying generating model. However, none of

these estimators are directly designed to cope with the problem of general (potentially adversarial)

data contamination.

The later issue revolving around the evaluation of an unknown conditional probability model is

connected with robustness, another classical topic in statistics [20]. Much of the classical literature on

robustness focuses on the impact of outliers. The work of [41] studies robust-against-outliers kernel

regression which enjoys asymptotic consistency and normality under i.i.d. assumptions in a setting

where the data contamination becomes negligible. In contrast to this type of contamination, our

estimators are designed to be min-max optimal in the DRO sense by supplying the best response

against a large (non-parametric) class of adversarial contamination.

Our results can also be seen as connected to adversarial training, which has received a significant

amount of attention in recent years [18, 23, 26, 32, 34, 38]. Much of the work in this area focuses on

designing well-crafted attacks and associated robust learning procedures to mitigate the effect of the

attacks. This is the spirit precisely of the work in [25], in the context of k-NN estimation. One can

interpret our approach as training conditional estimators against adversarial attacks, the difference,

in the k-NN estimation setting for example, is that our attacks are optimal in a specific sense. The
proposed estimator is thus provably the best for a uniform class of distributional attacks.

DRO-based estimators have generated a great deal of interest because they possess various desirable

properties in connection to various forms of regularization (e.g., variance [30]; norm [33]; shrinkage [31]).

The tools that we employ are related to those currently being investigated. Our formulation considers
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adversarial perturbations based on the Wasserstein distance [7, 15, 22, 27]. In particular, the type-∞
Wasserstein distance [17] is recently applied in DRO formulations [4, 6, 40]. In particular, the work

of [5] considers adversarial conditional estimation, taking as input various classical estimators (e.g.,

k-NNs, kernel methods, etc.) and proposes a robustification approach considering only perturbation in

the response variable. Our method whereas allows perturbations both to the covariate and response

variables, which is technically more subtle because of the local conditioning problem. Within the k-NN

DRO conditional robustification, our numerical experiments in Section 4 show substantial benefits of

our local conditioning approach, especially in dealing with non-homogeneity and sharp variations in

the underlying density.

Notations. For any integer M ∈ N+, we denote by [M ] the set {1, . . . ,M}. For any set S, M(S) is

the space of all probability measures supported on S.

2 Local conditional estimate using type-∞ Wasserstein ambiguity
set

We start by delineating the building blocks of our distributionally robust estimation problem (2). The
nominal measure is set to the empirical distribution of the available data, P̂ = N−1

∑
i∈[N ] δ(x̂i,ŷi),

where δ(x̂,ŷ) represents the Dirac distribution at (x̂, ŷ). The ambiguity set B∞ρ is a Wasserstein ball

around P̂ that contains the true distribution P with high confidence.

Definition 1 (Wasserstein distance) Let D be a metric on Ξ. The type-p (1 ≤ p < +∞) Wasserstein

distance between Q1 and Q2 is defined as

Wp(Q1,Q2) , inf
{(
Eπ[D(ξ1, ξ2)p]

) 1
p : π ∈ Π(Q1,Q2)

}
,

where Π(Q1,Q2) is the set of all probability measures on Ξ× Ξ with marginals Q1 and Q2, respectively.

The type-∞ Wasserstein distance is defined as the limit of Wp as p tends to ∞ and amounts to

W∞(Q1,Q2) , inf

{
ess sup

π

{
D(ξ1, ξ2) : (ξ1, ξ2) ∈ Ξ× Ξ

}
: π ∈ Π(Q1,Q2)

}
.

We assume that (X,Y ) admits values in X × Y ⊆ Rn × Rm, and the distance D on X × Y is

D
(
(x, y), (x′, y′)

)
= DX (x, x′) + DY(y, y′) ∀(x, y), (x′, y′) ∈ X × Y,

where DX and DY are continuous metric on X and Y , respectively. The joint ambiguity set B∞ρ is now

formally defined as a type-∞ Wasserstein ball in the space of joint probability measures

B∞ρ ,
{
Q ∈M(X × Y) : W∞(Q, P̂) ≤ ρ

}
.

We assume further that the compact neighborhood Nγ(x0) around x0 is prescribed using the distance

DX as Nγ(x0) , {x ∈ X : DX (x, x0) ≤ γ}, and the loss function ` is jointly continuous in y and β.

To solve the estimation problem (2), we study the worst-case conditional expected loss function

f(β) , sup
Q∈Bρ,Q(X∈Nγ(x0))>0

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
,

which corresponds to the inner maximization problem of (2). To ensure that the value f(β) is well-

defined, we first investigate the conditions under which the above supremum problem has a non-empty

feasible set. Towards this end, for any set Nγ(x0) ⊂ X , define the quantities κi,γ as

0 ≤ κi,γ , min
x∈Nγ(x0)

DX (x, x̂i) + inf
y∈Y

DY(y, ŷi) ∀i ∈ [N ]. (3)
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The value κi,γ signifies the unit cost of moving a point mass from an observation (x̂i, ŷi) to the fiber set

Nγ(x0)× Y. We also define x̂pi as the projection of x̂i onto the neighborhood Nγ(x0), which coincides

with the optimal solution in the variable x of the minimization problem in (3). The next proposition

asserts that f(β) is well-defined if the radius ρ is sufficiently large.

Proposition 1 (Minimum radius) For any x0 ∈ X and γ ∈ R+, there exists a distribution Q ∈ Bρ that

satisfies Q(X ∈ Nγ(x0)) > 0 if and only if ρ ≥ mini∈[N ] κi,γ .

Figure 1: Illustration around the neighborhood of x0 with ρ < γ. Black crosses are samples in the set I.

We now proceed to the reformulation of f(β). Let I be the index set defined as

I , {i ∈ [N ] : DX (x0, x̂i) ≤ ρ+ γ} , (4a)

and I is decomposed further into two disjoint subsets

I1 = {i ∈ I : DX (x0, x̂i) + ρ ≤ γ} and I2 = I\I1. (4b)

Intuitively speaking, I contains the indices of data points whose covariate x̂i is sufficiently close to

x0 measured by DX , and are thus relevant to the local estimation problem. The index set I1 indicates
the data points that lie strictly inside the neighborhood, while the set I2 contains those points that are

on the boundary ring of width ρ around the neighborhood Nγ(x0). The value f(β) can be efficiently

computed in a quasi-closed form thanks to the following result.

Theorem 1 (Worst-case conditional expected loss computation) For any γ ∈ R+, suppose that ρ ≥
mini∈[N ] κi,γ . For any β ∈ Y, let v?i (β) be defined as

v?i (β) , sup
yi

{`(yi, β) : yi ∈ Y, DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i)} ∀i ∈ I. (5)

The worst-case conditional expected loss is equal to f(β) =
(∑

i∈I αi
)−1∑

i∈I αiv
?
i (β), where α admits

the value

∀i ∈ I : αi =


1 if i ∈ I1 or (I1 = ∅ and v?i (β) = maxj∈I2 v

?
j (β)),

1 if v?i (β) >

∑
i∈I1 v

?
i (β) +

∑
j∈I2:v?j (β)>v?i (β)

v?j (β)

|I1|+ |{j ∈ I2 : v?j (β) > v?i (β)}|
,

0 otherwise.

If we possess an oracle that evaluates (5) at a complexity O, then by Theorem 1, quantifying f(β)

is reduced to calculating |I| values of v?i (β) and then sorting these values in order to determine the
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value of α. Thus, computing f(β) takes an amount of time of order O
(
|I|(log |I| + O)

)
. Moreover,

f(β) depends solely on the observations in the locality of x0 whose indices belong to the index set I,

the cardinality of which can be substantially smaller than the total number of training samples N .

If ` is a convex function in β, then a standard result from convex analysis implies that f , being a

pointwise supremum of convex functions, is also convex. If Y , and hence β, is unidimensional, a golden

section search algorithm can be utilized to identify the local conditional estimate β∗ that solves (2) in

an amount of time of order O
(

log(1/ε)|I|(log(|I|) +O)
)
, where ε > 0 is an arbitrary accuracy level.

Fortunately, in the case of conditional mean and quantile estimation, we also have access to the closed

form expressions of v?i (β) as long as DY is an absolute distance.

Corollary 1 (Value of v?i (β)) Suppose that Y = [a, b] ⊆ [−∞,+∞] and DY(yi, ŷi) = |yi − ŷi|.

(i) Conditional mean estimation: if `(y, β) = (y − β)2, then ∀i ∈ I

v?i (β) = max
{

(max{ŷi + ρ− DX (x̂pi , x̂i), a} − β)2, (min{ŷi + ρ− DX (x̂pi , x̂i), b} − β)2
}
.

(ii) Conditional quantile estimation: if `(y, β) = max{−τ(y − β), (1− τ)(y − β)}, then ∀i ∈ I

v?i (β)=max
{
− τ(max{ŷi + ρ− DX (x̂pi , x̂i), a} − β), (1− τ)(min{ŷi + ρ− DX (x̂pi , x̂i), b} − β)

}
.

If Y is multidimensional, the structure of `(y, β) and DY might be exploited to identify tractable

optimization reformulations. The next result focuses on the local conditional mean estimation.

Proposition 2 (Multivariate conditional mean estimation) Let Y = Rm and `(y, β) = ‖y − β‖22.

(i) Suppose that DY is a 2-norm on Y, that is, DY(y, ŷ) = ‖y − ŷ‖2. The distributionally robust local

conditional estimation problem (2) is equivalent to the second-order cone program

min λ
s. t. β ∈ Rm, λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2, ti ∈ R+ ∀i ∈ I∑

i∈I ui ≤ 0, ti ≥ ‖yi − β‖2 ∀i ∈ I
‖[ti + ρ− DX (x̂pi , x̂i) ; (1/2)(1− λ− ui)]‖2 ≤ (1/2)(1 + λ+ ui) ∀i ∈ I.

(ii) Suppose that DY is a ∞-norm on Y, that is, DY(y, ŷ) = ‖y− ŷ‖∞. The distributionally robust local

conditional estimation problem (2) is equivalent to the second-order cone program

min λ

s. t. β ∈ Rm, λ ∈ R, T ∈ R|I|×m+ , ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2∑
i∈I ui ≤ 0, ; ‖[Ti1 ; Ti2 ; · · · ; Tim ; 1

2 (1− λ− ui)]‖2 ≤ 1
2 (1 + λ+ ui) ∀i ∈ I

Tij ≤ ŷij − βj − ρ+ DX (x̂pi , x̂i) ≤ Tij
Tij ≤ ŷij − βj + ρ− DX (x̂pi , x̂i) ≤ Tij

}
∀(i, j) ∈ I × [m],

where ŷij and βj are the j-th component of ŷi and β, respectively.

Both optimization problems presented in Proposition 2 can be solved in large scale by commercial

optimization solvers such as MOSEK [28]. For other multivariate conditional estimation problems,

there is also a possibility of employing subgradient methods by leveraging on the next proposition.

Proposition 3 (Subgradient of f) Suppose that DY is coercive and `(y, ·) is convex. Under the con-

ditions of Theorem 1, for any β ∈ Rm, a subgradient of the function f at β is given by ∂f(β) =

(
∑
i∈I αi)

−1∑
i∈I αi∂β`(y

?
i , β), where the value of α is as defined in Theorem 1 and y?i satisfies

y?i ∈ {yi ∈ Y : DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i), `(y
?
i , β) = v?i (β)} for all i ∈ I.

3 Probabilistic theoretical properties

We now study the some statistical properties of our proposed estimator. Under some regularity

conditions, the type-∞ Wasserstein ball can be viewed as a confidence set that contains the true
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distribution P with high probability, provided that the radius ρ is chosen judiciously. The value f(β?)

thus constitutes a generalization bound on the out-of-sample performance of the optimal conditional

estimate β?. This idea can be formalized as follows.

Proposition 4 (Finite sample guarantee) Suppose that X × Y is bounded, open, connected with a

Lipschitz boundary. Suppose that the true probability measure P of (X,Y ) admits a density function ν

satisfying ν̄−1 ≤ ν(x, y) ≤ ν̄ for some constant ν̄ ≥ 1. For any γ > 0, if

ρ ≥

{
CN−

1
2 log(N)

3
4 when n+m = 2,

CN−
1

n+m log(N)
1

n+m otherwise,

where C is a constant dependent on X × Y and ν̄, then for a probability of at least 1−O(N−c), where

c>1 is a constant dependent on C, we have EP[`(Y, β?)|X ∈ Nγ(x0)] ≤ f(β?), where β? is the optimal

conditional estimate that solves problem (2).

We now switch gear to study the properties of our estimator in the asymptotic regime, in particular,

we focus on the consistency of our estimator. The interplay between the neighborhood radius γ and

the ambiguity size ρ often produces tangling effects on the asymptotic convergence of the estimate.

We thus showcase two exemplary setups with either γ or ρ is zero, which interestingly produce two

opposite outcomes on the consistency of the estimator. This underlines the intricacy of the problem.

Example 1 (Non-consistency when γ = 0) Suppose that γ = 0, ρ ∈ R++ be a fixed constant, Y = R,

`(y, β) = (y − β)2, and DY is the absolute distance. Let β?N be the optimal estimate that solves (2)

dependent on {(x̂i, ŷi)}i=1,...,N . If under the true distribution P, X is independent of Y , P(DX (X,x0) ≤
ρ) > 0, P(Y ≥ 0) = 1 and P(Y ≥ y) > 0 ∀y > 0, then with probability 1, we have β̂N → +∞ while

EP[Y |X=x0]<∞.

Example 2 (Consistency when ρ = 0) Suppose that ρ = 0, Y = R, `(y, β) = (y − β)2, DX and

DY are the Euclidean distance, kN is a sequence of integer. Let γ be the kN -th smallest value of

DX (x0, x̂i), then β?N that solves (2) recovers the kN -nearest neighbor regression estimator. If kN
satisfies limN→∞ kN = ∞ and limN→∞ kN/N = 0, and , then limN→∞ β?N = EP[Y |X = x0] by [36,

Corollary 3].

Example 2 suggests that if the radius γ of the neighborhood is chosen adaptively based on the

available training data, then our proposed estimator coincides with the k-nearest neighbor estimator,

and hence consistency is inherited in a straightforward manner. The robust estimator with an ambiguity

size ρ > 0 and an adaptive neighborhood radius γ can thus be considered as a robustification of the

k-nearest neighbor, which is obtained in a systematic way using the DRO framework.

It is desirable to provide a descriptive connection between the distributionally robust estimator

vis-à-vis some popular statistical quantities. For the local conditional mean estimation, our estimate β?

coincides with the conditional mean of the distribution with the highest conditional variance. This

insight culminates in the next proposition and bolsters the explainability of this class of estimators.

Proposition 5 (Conditional mean estimate) Suppose that Y = R, `(y, β) = (y − β)2 and DY(·, ŷ) is

convex, coercive for any ŷ. For any ρ ≥ mini∈[N ] κi,γ , define Q? as

Q? = arg max
Q∈B∞

ρ ,Q(X∈Nγ(x0))>0
VarianceQ(Y |X ∈ Nγ(x0)),

then β? = EQ? [Y |X ∈ Nγ(x0)] is the optimal estimate that solves problem (2).

4 Numerical experiment

In this section we compare the quality of our proposed Distributionally Robust Conditional Mean Esti-

mator (DRCME) to k-nearest neighbour (k-NN), Nadaraya-Watson (N-W), and Nadaraya-Epanechnikov

(N-E) estimators, together with the robust k-NN approach in [5] (BertEtAl) using a synthetic and the

MNIST datasets.
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4.1 Conditional mean estimation with synthetic data

In this section, we conducted 500 independent experiments where the training set contains N = 100

i.i.d. samples of (X,Y ) in each experiment. The marginal distribution of X has piecewise constant

density function p(x), which is chosen as p(x) = 100/72 if x ∈ [0, 0.3] ∪ [0.7, 1] and p(x) = 30/72 if

x ∈ (0.3, 0.7). Given X, the distribution of Y is determined by Y = f(X) + ε, where f = sin(10 · x)

and ε is i.i.d. Gaussian noise independent of X with mean 0 and variance 0.01. The conditional

mean estimation problem is challenging when x0 is close to the jump points of the density function

p(x), that is at x0 = 0.3 or x0 = 0.7, because the data are gathered unequally in the neighborhoods.

Thus, to test the robustness of all the estimators, we employ all the five estimators to estimate the

conditional mean EP[Y |X = x0], for x0 = 0.2, 0.21, . . . , 0.4 around the jump point x0 = 0.3. We select

DX (x, x′) = |x− x′| and DY(y, y′) = |y − y′|. The hyperparameters of all the estimators, whose range

and selection are given in Appendix A, are chosen by leave-one-out cross validation.

Figure 2 displays the average of the mean estimation errors taken over 500 independent runs for

different values x0 ∈ [0.2, 0.4]. One can observe from the figure that DRCME uniformly outperforms

k-NN, BertEtAl for all x0 of interest. When compared with N-W and N-E, we remark that DRCME is

the most accurate estimator around the jump point of p(x). As x0 moves away from the location 0.3,

the performance of DRCME decays and becomes slightly worse than N-W as x0 goes far from the jump

point. Figure 3 presents the cumulative distribution of the estimation errors when x0 ∈ [0.28, 0.32].

The empirical error distribution of DRCME is stochastically smaller than that of other estimators,

which reinforces that DRCME outperforms around the jump point in a strong sense.
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Figure 2: Comparison of the mean absolute errors of
conditional mean estimators for synthetic data. The
gray shade shows the density of X.
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Figure 3: Comparison of the distributions of absolute
estimation errors of conditional mean estimators for syn-
thetic data.

4.2 Digit estimation with MNIST database

In this section, we compare the quality of the estimators on a digit estimation problem using the
MNIST database [24]. While to this date most studies have focused on out-of-sample classification

performances for this dataset, here we shift our attention to the task of estimation of digits as cardinal

quantities and are especially interested in performance at a low-data regime. Treating the labels as

cardinal quantities allows us to assess the distinctive features of DRCME in its most simplistic form (i.e.

univariate conditional mean estimation of a real random variable). Mean estimation might in fact be

more relevant than classification when trying to recognize handwritten measurements where confusing

a 0 with a 6 is more damaging than with a 3.

We executed 100 experiments where training and test sets were randomly drawn without replacement

from the 60,000 training examples of this dataset. Training set sizes were N = 50, 100, or 500 while

test sets’ size remained at 100. Each (x, y) pair is composed of the normalized vector, in R282 of

grayscale intensities normalized so that ‖x‖1 = 1. For simplicity, we let DX (x, x̂) = ‖x − x̂‖2 and

DY(y, ŷ) = α|y − ŷ|. In each experiment, the hyper-parameters of all four methods were chosen based
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on a leave-one-out cross validation process. In the case of DRCME , we adapt the radius of the

neighborhood γ and ρ locally at x0 to account for the non-uniform density of X.1 Table 1 presents the

median choice of hyper parameters for each estimator.

Method H.P. N=50 N=100 N=500

k-NN k 3 4 4
N-W h 0.022 0.019 0.015
N-E h 0.087 0.078 0.068
BertEtAl k 3 4 5

ρ 0.712 1.313 1.313
γ hγ1.3(·) hγ1.3(·) hγ1.6(·)

DRCME ρ 0.13γ 0.13γ 0.06γ
α 0.004 0.002 0.001

Table 1: Median of hyper-parameters (H.P.) obtained with
cross-validation.

Method N=50 N=100 N=500

k-NN 24± 2 35± 2 60± 1
N-W 30± 2 38± 2 65± 1
N-E 26± 1 32± 1 50± 1
BertEtAl 29± 2 41± 2 67± 1
DRCME 36± 2 46± 2 71± 1

Table 2: Comparison of expected out-of-sample classifica-
tion accuracy (in % with 90% confidence intervals) from
rounded estimates.

Figure 4 presents the out-of-sample estimation error distribution of all four conditional estimators.

One can quickly remark that the DRCME outperforms BertEtAl , k-NN, and N-E estimators, especially

for low-data regime. In particular, for all three training set sizes, the distribution of error for DRCME

stochastically dominates the three other distributions. In particular, one even notices in (c) that

DRCME has the largest chance of reaching an exact estimation: 66% compared to 60%, 55%, 30%,

and 8% for the other estimators. This explains why DRCME is also the most accurate estimator when

rounding it to the nearest integer as reported in Table 2: with a margin greater than 4% from all

estimators across all N ’s. It is worth noting that while N-W does not produce high accuracy estimate,

it however has less chances of producing estimation with large errors. This is also apparent when

comparing the expected type-p deviation of the estimation error, i.e. (E[|y− ŷ|p])1/p, for each estimator.

Specifically, N-W slightly outperforms DRCME for deviation metrics of type p ≥ 1, e.g. with a root

mean square error of 1.32 compared to 1.41 when N = 500. On the other hand, DRCME significantly

outperforms N-W when p < 1 where high precision estimators are encouraged. We refer the reader to

Appendix A for further details.
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Figure 4: Comparison of the distributions of out-of-sample absolute estimation errors of conditional mean estimators for
the MNIST database under different training set sizes.

Finally, we report on an experiment that challenges the capacity of both N-W and DRCME

estimators to be resilient to adversarial corruption of the test images. This is done by exposing the two

1 Specifically, we let γ = hγi (x0) := κ[bic],0 + (i− bic)(κ[die],0 − κ[bic],0), where [j] refers to the j-th smallest element
while b·c and d·e refer to the floor and ceil operations, i.e. the radius is set to the linear interpolation between the distance
of the bic-th and bic+ 1-th closest members of the training set to x0. We further let ρ be proportional to γ. This lets
DRCME reduce to k-NN when γ = hγk(x0), ρ = 0, and α = 1.
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estimators to images from the training set (N = 100) that have been corrupted in a way that makes

them resemble the closest differently-labeled image in the set.2 Figure 5 presents several visual examples

of the progressively corrupted images and the resulting N-W and DRCME estimations. Overall, one

quickly notices how the estimation produced by DRCME is less sensitive to such attacks, “sticking” to

the original label until there is substantial evidence of a new label. More examples are in Appendix A.

(0.0, 0.0) (0.2, 0.0) (0.6, 0.0) (1.5, 2.0) (3.0, 3.0)

(1.0, 1.0) (1.2, 1.0) (2.3, 1.9) (3.8, 4.0) (4.0, 4.0)

(2.0, 2.0) (1.7, 2.0) (1.0, 0.0) (0.6, 0.0) (0.2, 0.0)

(2.9, 3.0) (2.7, 3.0) (2.5, 2.7) (2.3, 2.0) (2.1, 2.0)

(4.0, 4.0) (5.0, 4.0) (8.6, 9.0) (8.9, 9.0) (9.0, 9.0)

(5.0, 5.0) (5.3, 5.4) (7.0, 8.0) (7.6, 8.0) (7.9, 8.0)

(6.0, 6.0) (4.3, 6.0) (2.0, 0.0) (0.8, 0.0) (0.1, 0.0)

(7.0, 7.0) (7.4, 7.0) (7.9, 8.1) (8.5, 9.0) (8.9, 9.0)

(8.0, 8.0) (7.6, 8.0) (7.6, 8.6) (8.2, 9.0) (8.9, 9.0)

(9.0, 9.0) (7.7, 9.0) (3.9, 3.0) (3.1, 3.0) (3.0, 3.0)

Figure 5: Comparison of estimations from N-W and DRCME on entropic regularized Wasserstein barycenters of pairs of
images from the training set. Estimations are presented above each image in the format “(N-W, DRCME )”.

A Additional experiment results

A.1 Conditional mean estimation with synthetic data

We report in Figure A.1 the plot of mean estimation errors versus x0 for different training set sizes

N = 50, 100, 200. In Figure A.2 we present the plot of the distribution of absolute estimation errors
for x0 ∈ [0.28, 0.32]. For comparison, we also include the results of training set size N = 100 that are

already reported in Figure 2 and 3. We remark that the estimation error of all the estimators becomes

smaller when training set size is larger, and DRCME has best estimation performance among all the

estimators around the jump point x = 0.3 for all different training set sizes.

We report the hyper-parameters selected by cross-validation in Table A.1.

Table A.1: Median of hyper-parameters (H.P.) for synthetic data experiment obtained with cross-validation.

Method H.P. N=50 N=100 N=200

k-NN k 1 3 5
N-W h 0.026 0.019 0.018
N-E h 0.078 0.055 0.038
BertEtAl k 1 3 5

ρ 0.063 0.016 0.000
γ hγ1 (·) hγ2 (·) hγ3 (·)

DRCME ρ 0.031γ 0.063γ 0.063γ

2Implementation wise, we exploit the Python Optimal Transport toolbox [14] to compute different entropic regularized
Wasserstein barycenters of the two normalized images treated as distributions.
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Figure A.1: Comparison of the mean absolute errors of conditional mean estimators for synthetic data under different
training set sizes. The gray shade shows the density of X.
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Figure A.2: Comparison of the distributions of absolute estimation errors of conditional mean estimators for synthetic
data under different training set sizes.

A.2 Digit estimation with MNIST database

The distinction between N-W and DRCME is also apparent in Figure A.3 which presents the normal-

ized expected type-p deviation of the estimation error for each estimator, i.e.
√

2/p(E[|y − ŷ|p])1/p.
Specifically, N-W slightly outperforms DRCME for deviation metrics of type p ≥ 1, e.g. with a root

mean square error of 1.34 compared to 1.45 when N = 500. On the other hand, DRCME significantly

outperforms N-W when p < 1 where high precision estimators are encouraged.
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Figure A.3: Comparison of normalized expected type-p deviation of the out-of-sample error of four non-parametric condi-
tional mean estimation methods for the MNIST database under different training set sizes. E.g., at p = 2 is presented
the root-mean square error.
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We also include in Figure A.4 some additional examples of labels from DRCME and N-W. On the

other hand, Figure A.5 compares the labels from DRCME and BertEtAl .

(5.0, 5.0) (4.1, 5.0) (3.3, 3.4) (3.0, 3.0) (3.0, 3.0)

(9.0, 9.0) (7.3, 8.6) (7.0, 8.0) (7.2, 8.0) (7.9, 8.0)

(1.0, 1.0) (3.3, 3.4) (5.6, 6.0) (5.9, 6.0) (6.0, 6.0)

(4.0, 4.0) (4.5, 4.0) (6.2, 6.8) (7.6, 9.0) (8.9, 9.0)

(3.0, 3.0) (3.2, 3.0) (4.1, 4.9) (6.0, 8.0) (7.9, 8.0)

(3.0, 3.0) (2.4, 3.0) (1.6, 1.0) (1.4, 0.7) (0.2, 0.0)

(2.0, 2.0) (2.4, 2.5) (2.6, 3.0) (2.7, 3.0) (2.9, 3.0)

(6.0, 6.0) (4.0, 3.9) (1.9, 1.9) (0.6, 0.0) (0.1, 0.0)

(9.0, 9.0) (8.6, 9.0) (8.0, 8.0) (7.9, 8.0) (8.0, 8.0)

(0.0, 0.0) (0.4, 0.0) (1.0, 1.9) (1.9, 3.0) (2.9, 3.0)

(9.0, 9.0) (8.4, 9.0) (7.9, 8.0) (7.9, 8.0) (8.0, 8.0)

(1.0, 1.0) (2.1, 1.0) (4.7, 6.0) (5.6, 6.0) (6.0, 6.0)

(2.0, 2.0) (1.9, 2.0) (2.0, 2.5) (2.2, 3.0) (2.9, 3.0)

(7.0, 7.0) (7.2, 7.0) (7.5, 8.0) (7.1, 8.0) (7.9, 8.0)

(3.0, 3.0) (3.5, 3.3) (4.7, 5.8) (5.2, 6.0) (6.0, 6.0)

(7.9, 8.0) (3.7, 4.8) (3.3, 4.1) (2.5, 2.0) (2.1, 2.0)

(6.0, 6.0) (4.7, 4.6) (2.8, 2.0) (2.1, 2.0) (2.0, 2.0)

(9.0, 9.0) (8.6, 9.0) (7.8, 7.8) (7.2, 7.0) (7.0, 7.0)

(0.2, 0.0) (0.8, 0.0) (1.9, 2.2) (3.6, 6.0) (5.8, 6.0)

(5.0, 5.0) (3.0, 2.7) (2.6, 2.0) (2.2, 2.0) (2.0, 2.0)

(6.0, 6.0) (5.0, 6.0) (3.4, 3.6) (1.6, 0.0) (0.2, 0.0)

(7.0, 7.0) (6.1, 6.1) (4.0, 4.3) (2.6, 2.9) (2.0, 2.0)

(6.0, 6.0) (4.1, 6.0) (2.0, 0.0) (0.7, 0.0) (0.1, 0.0)

(1.0, 1.0) (3.5, 4.0) (6.3, 8.0) (7.1, 8.0) (7.9, 8.0)

(7.9, 8.0) (6.2, 8.0) (4.2, 4.6) (3.2, 3.0) (3.0, 3.0)

(7.0, 7.0) (7.3, 7.0) (8.5, 9.0) (8.9, 9.0) (9.0, 9.0)

Figure A.4: Comparison of estimations from N-W and DRCME on entropic regularized Wasserstein barycenters of pairs
of images from the training set. Estimations are presented above each image in the format “(N-W, DRCME )”.
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(3.5, 5.0) (3.5, 5.0) (3.5, 3.4) (3.5, 3.0) (3.0, 3.0)

(9.0, 9.0) (8.8, 8.6) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(2.2, 1.0) (2.7, 3.4) (3.5, 6.0) (4.8, 6.0) (6.0, 6.0)

(6.5, 4.0) (6.0, 4.0) (6.0, 6.8) (6.0, 9.0) (8.5, 9.0)

(3.0, 3.0) (3.0, 3.0) (4.2, 4.9) (5.5, 8.0) (8.0, 8.0)

(2.3, 3.0) (2.0, 3.0) (1.5, 1.0) (1.5, 0.7) (0.0, 0.0)

(2.2, 2.0) (2.5, 2.5) (2.5, 3.0) (2.8, 3.0) (2.8, 3.0)

(6.0, 6.0) (3.0, 3.9) (3.0, 1.9) (0.0, 0.0) (0.0, 0.0)

(8.8, 9.0) (8.5, 9.0) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(0.0, 0.0) (0.0, 0.0) (0.7, 1.9) (2.3, 3.0) (2.8, 3.0)

(9.0, 9.0) (8.8, 9.0) (8.2, 8.0) (8.0, 8.0) (8.0, 8.0)

(2.5, 1.0) (4.8, 1.0) (4.8, 6.0) (6.0, 6.0) (6.0, 6.0)

(1.2, 2.0) (1.3, 2.0) (1.8, 2.5) (1.8, 3.0) (2.8, 3.0)

(7.2, 7.0) (7.5, 7.0) (8.0, 8.0) (8.0, 8.0) (8.0, 8.0)

(3.7, 3.0) (3.7, 3.3) (3.7, 5.8) (3.7, 6.0) (6.0, 6.0)

(5.2, 8.0) (4.5, 4.8) (4.0, 4.1) (2.0, 2.0) (2.5, 2.0)

(6.0, 6.0) (5.0, 4.6) (3.5, 2.0) (1.0, 2.0) (1.0, 2.0)

(8.0, 9.0) (7.5, 9.0) (7.5, 7.8) (7.5, 7.0) (7.5, 7.0)

(0.0, 0.0) (0.0, 0.0) (1.5, 2.2) (1.5, 6.0) (3.0, 6.0)

(3.7, 5.0) (1.7, 2.7) (2.5, 2.0) (0.5, 2.0) (1.0, 2.0)

(6.0, 6.0) (3.0, 6.0) (3.0, 3.6) (1.5, 0.0) (0.0, 0.0)

(3.8, 7.0) (3.2, 6.1) (3.2, 4.3) (3.2, 2.9) (2.2, 2.0)

(6.0, 6.0) (3.0, 6.0) (1.5, 0.0) (0.0, 0.0) (0.0, 0.0)

(1.0, 1.0) (2.7, 4.0) (6.3, 8.0) (8.0, 8.0) (5.2, 8.0)

(8.0, 8.0) (5.5, 8.0) (4.2, 4.6) (4.2, 3.0) (3.0, 3.0)

(8.0, 7.0) (8.0, 7.0) (8.2, 9.0) (8.5, 9.0) (9.0, 9.0)

Figure A.5: Comparison of estimations from BertEtAl and DRCME on entropic regularized Wasserstein barycenters of
pairs of images from the training set. Estimations are presented above each image in the format “(BertEtAl , DRCME )”.

B Proofs

This section contains the proofs of all technical results presented in the main paper.
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B.1 Proofs of Section 2

Proof of Proposition 1. Using the definition of the type-∞ Wasserstein distance, we can re-express

the ambiguity set B∞ρ as

B∞ρ =

{
Q ∈M(X × Y) :

∃π ∈ Π(Q, P̂) such that
ess sup

π
{DX (x, x′) + DY(y, y′)} ≤ ρ

}

=

Q ∈M(X × Y) :
∃πi ∈M(X × Y) ∀i ∈ [N ] such that Q = 1

N

∑
i∈[N ] πi

ess sup
1
N

∑
i∈[N] πi⊗δ(x̂i,ŷi)

{
DX (x, x′) + DY(y, y′)

}
≤ ρ

 ,

where in the second equality we exploit the fact that P̂ is an empirical measure and thus any joint

probability measure π ∈ Π(Q, P̂) can be written as π = N−1
∑
i∈[N ] πi ⊗ δ(x̂i,ŷi), where each πi is a

probability measure supported on X × Y. The last constraint can now be written as

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ],

where supp(πi) denotes the support of the probability measure πi [1, Page 441]. We thus have

B∞ρ =

{
Q ∈M(X × Y) :

∃πi ∈M(X × Y) ∀i ∈ [N ] such that Q = 1
N

∑
i∈[N ] πi

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]

}
.

Suppose that ρ < mini∈[N ] κi,γ , then this implies by the last constraint of the feasible set that

πi(Nγ(x0)× Y) = 0 for all i ∈ [N ]. As a consequence, any Q ∈ B∞ρ should satisfy

Q(X ∈ Nγ(x0)) =
∑
i∈[N ]

πi(Nγ(x0)× Y) = 0.

Hence B∞ρ ∩ {Q ∈M(X × Y) : Q(X ∈ Nγ(x0)) > 0} = ∅.

Suppose on the contrary that ρ ≥ mini∈[N ] κi,γ . Let i? = arg mini∈[N ] κi,γ , and consider the

following set of probability measures

∀i ∈ [N ] : πi =

{
δ(x̂pi ,ŷi) if i = i?,

δ(x̂i,ŷi) otherwise,

and set Q = 1
N

∑
i∈[N ] πi. It is easy to verify that Q ∈ B∞ρ , and that

Q(X ∈ Nγ(x0)) ≥ 1

N
πi?(X ∈ Nγ(x0)) =

1

N
> 0.

This observation completes the proof.

The proof of Theorem 1 relies on the following result.

Lemma 1 (Optimal solution of a fractional linear program) Let d be an strictly positive integer. The

linear fractional program

min

{
c+

∑K
i=1 viαi

d+
∑K
i=1 αi

: α ∈ [0, 1]K

}
admits the optimal solution

∀i ∈ [K] : α?i =

1 if vi >
c+

∑
j:vj>vi

vj

d+ |{j : vj > vi}|
,

0 otherwise.
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Proof of Lemma 1. Without loss of generality assume that vi are ordered decreasingly. Because the

objective function is pseudolinear, the optimal solution is at some binary vertex [21, Lemma 3.3].

Consider the equivalent problem

max
k,α

{
c+

∑K
i=1 viαi

d+
∑K
i=1 αi

: α ∈ {0, 1}K ,
K∑
i=1

αi = k, k ∈ [K]

}
.

For any value k ∈ [K], the corresponding optimal value of α dependent on k is

α?i (k) =

{
1 if i ≤ k,
0 otherwise,

where we exploit the fact that vi are ordered decreasingly. The above optimization problem can be

simplified to

max
k

{
c+

∑k
i=1 vi

d+ k
: k ∈ [K]

}
. (6)

Now we need to show that the objective function g(k) , (c+
∑k
i=1 vi)/(d+k) becomes non-increasing

once it starts decreasing. Indeed, the incremental improvement in the objective value of (6) at k can

be written as

∆g(k) = g(k + 1)− g(k) =
c+

∑k+1
i=1 vi

d+ k + 1
− g(k)

=
(d+ k)g(k) + vk+1

d+ k + 1
− g(k)

=
vk+1 − g(k)

d+ k + 1
.

If ∆g(k) < 0, this implies that vk+1 < g(k). We also know that vk+2 ≤ vk+1. So we can show that:

∆g(k + 1) = g(k + 2)− g(k + 1) =
vk+2 − g(k + 1)

d+ k + 2

=
(d+ k + 1)vk+2 − (d+ k)g(k)− vk+1

(d+ k + 2)(d+ k + 1)

≤ (d+ k + 1)vk+1 − (d+ k)g(k)− vk+1

(d+ k + 2)(d+ k + 1)

=
(d+ k)(vk+1 − g(k))

(d+ k + 2)(d+ k + 1)
< 0.

Moreover, the above line of arguments also reveals that if vk+2 = vk+1 then both ∆g(k) and ∆g(k + 1)
have the same sign. Thus, the value k? that maximizes (6) is also the solution of

max{k : ∆g(k − 1) ≥ 0}.

Leveraging on the formula of α?i (k), the solution α? of the original fractional linear program has the

form

∀i : α?i =

1 if vi >
c+

∑
j:j<i vi

d+ |{j : j < i}|
,

0 otherwise,

=

1 if vi >
c+

∑
j:vj>vi

vj

d+ |{j : vj > vi}|
,

0 otherwise,

where the second equality comes from the ordering of vi. This observation completes the proof.
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Proof of Theorem 1. A conditional measure µ0 of Y given X ∈ Nγ(x0) induced by a probability

measure Q satisfying Q(X ∈ Nγ(x0)) > 0 can be written as

Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable.

One can rewrite the worst-case conditional expected loss f(β) as

f(β) =


sup

∫
Y
`(y, β) µ0(dy)

s. t. Q ∈ B∞ρ , Q(Nγ(x0)× Y) > 0

Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable.

By decomposing the measure Q using the set of probability measures πi and exploiting the definition

of the type-∞ Wasserstein distance as in the proof of Proposition 1, we have

f(β) =



sup

∫
Y
`(y, β) µ0(dy)

s. t. µ0 ∈M(Y), πi ∈M(X × Y) ∀i ∈ [N ]∑
i∈[N ]

πi(Nγ(x0)× Y) > 0∑
i∈[N ]

πi(Nγ(x0)×A) = µ0(A)
∑
i∈[N ]

πi(Nγ(x0)× Y) ∀A ⊆ Y measurable

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ].

For any set of feasible solutions {πi}i∈[N ], we have
∑
i∈[N ] πi(Nγ(x0)×Y) > 0. We can thus re-express

µ0(A) for any Borel measurable set A ⊆ Y as

µ0(A) =

∑
i∈[N ] πi(Nγ(x0)×A)∑
i∈[N ] πi(Nγ(x0)× Y)

∀A ⊆ Y measurable.

Thus, we can eliminate the variables µ0 from the above optimization problem to obtain the equivalent

representation

f(β) =


sup

1∑
i∈[N ] πi(Nγ(x0)× Y)

∑
i∈[N ]

∫
Y
`(y, β) πi(Nγ(x0)× dy)

s. t. πi ∈M(X × Y) ∀i ∈ [N ]
DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]∑
i∈[N ] πi(Nγ(x0)× Y) > 0.

(7)

We now show that problem (7) now can be written as

f(β) =



sup
1∑

i∈[N ] αi

∑
i∈[N ]

αiv
?
i (β)

s. t. α ∈ [0, 1]N

αi = 1 if DX (x0, x̂i) + ρ ≤ γ
αi = 0 if DX (x0, x̂i) > ρ+ γ∑
i∈[N ] αi > 0,

(8)

where the value v?i (β) is calculated as

v?i (β) = sup {`(yi, β) : yi ∈ Y, DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i)} .

The equivalence between the supremum problems (7) and (8) can be shown in two steps. First,

for (7) ≤ (8), given any feasible solution of (7), one can construct a feasible solution of (8) using

αi = πi(Nγ(x0)× Y). For this candidate we have∑
i∈[N ]

∫
Y `(y, β) πi(Nγ(x0)× dy)∑
i∈[N ] πi(Nγ(x0)× Y)

≤
∑
i∈[N ] αi`(y

?
i , β)∑

i∈[N ] αi
.
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Alternatively, given a feasible solution for (8), one can construct the following feasible solution for (7):

for any ε > 0, let yεi ∈ Y be such that DY(yεi , ŷi) ≤ ρ− DX (x0, x̂i) and `(yεi , β) ≥ v?i (β)− ε, and let

∀i ∈ [N ] : πεi =


δ(x̂pi ,yεi ) if DX (x0, x̂i) + ρ ≤ γ,
αiδ(x̂pi ,yεi ) + (1− αi)δ(xri ,ŷi) if DX (x0, x̂i) > ρ+ γ,

δ(x̂i,ŷi) otherwise,

where xri is any point such that DX (xri , x̂i) ≤ ρ and xri /∈ Nγ(x0). Again, this candidate is feasible

in (7) and we have that

f(β) ≥ sup
ε>0

∑
i∈[N ]

∫
Y `(y, β) πεi (Nγ(x0)× dy)∑
i∈[N ] π

ε
i (Nγ(x0)× Y)

≥ sup
ε>0

∑
i∈[N ] αi(`(y

?
i , β)− ε)∑

i∈[N ] αi

=

∑
i∈[N ] αi`(y

?
i , β)∑

i∈[N ] αi
=

∑
i∈[N ] αiv

?
i (β)∑

i∈[N ] αi
.

Let I and I1 be the index sets defined as in (4a)–(4b), the value f(β) is equal to the optimal value

of a fractional linear program

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}
(9a)

= max

{∑
i∈I1 v

?
i (β) +

∑
i∈I2 v

?
i (β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1, |I1|+
∑
i∈I2

αi > 0

}
.

(9b)

Notice that the objective function and the constraints of (9b) depend only on αi for i ∈ I. Suppose

that I1 6= ∅, Lemma 1 indicates that the optimal solution α? that solves (9b) is

∀i ∈ I : α?i =


1 if i ∈ I1,

1 if v?i (β) >

∑
i∈I1 v

?
i (β) +

∑
j:v?j (β)>v

?
i (β)

v?j (β)

|I1|+ |{j : v?j (β) > v?i (β)}|
,

0 otherwise.

(10)

Suppose that I1 = ∅, then the optimal solution of problem (9b) is

∀i ∈ I : α?i =

{
1 if v?i (β) ≥ maxj∈I2 v

?
j (β),

0 otherwise.

Combining the above two cases, we can rewrite the optimal value of α that solves (9b) as in the

statement of the theorem. This completes the proof.

Proof of Corollary 1. Because DY is an absolute distance, we have

{yi ∈ Y : |yi − ŷi| ≤ ρ− DX (x̂pi , x̂i)}=[max{a, ŷi − ρ+ DX (x̂pi , x̂i)},min{b, ŷi + ρ− DX (x̂pi , x̂i)}],

where the equality follows from Y = [a, b]. Because both the ‖ · ‖22 and the quantile loss functions are

convex, the value v?i (β) is thus attained at the extreme points of the interval. Calculating the value of

`(·, β) at these two endpoints and taking the maximum between them completes the proof.
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Before proving Proposition 2, we need the following two results which asserts the analytical optimal

value of maximizing a convex quadratic functions over a norm ball. These results can be found in the

literature, the proof is included here for completeness.

Lemma 2 (Convex quadratic maximization over a norm ball) For any β ∈ Rm, ŷ ∈ Rm and r ∈ R+,

the following assertions hold.

(i) Over a ‖ · ‖2 ball, we have

sup
{
‖y − β‖22 : ‖y − ŷ‖22 ≤ r2

}
= (r + ‖ŷ − β‖2)2.

(ii) Over a ‖ · ‖∞ ball, we have

sup
{
‖y − β‖22 : ‖y − ŷ‖∞ ≤ r

}
=
∑
j∈[m]

max
{

(ŷj − βj − r)2, (ŷj − βj + r)2
}
,

where βj and ŷj denote the j-th element of the vector β and ŷ, respectively.

Proof of Lemma 2. We first prove Assertion (i). First, the optimal value is upper bounded by

(r + ‖ŷ − β‖2)2 because

‖y − β‖2 ≤ ‖y − ŷ‖2 + ‖ŷ − β‖2 ≤ r + ‖ŷ − β‖2

by triangle inequality. Yet, it is equal to that amount since that amount is attained when y =

ŷ + r(ŷ − β)/‖ŷ − β‖2.

Consider now Assertion (ii). Using a change of variables z ← y − β and a change of parameters

w ← ŷ − β, we find

sup
{
‖y − β‖22 : ‖y − ŷ‖∞ ≤ r

}
= max

{
‖z‖22 : ‖z − w‖∞ ≤ r

}
, (11)

where the maximization operators are justified by Weierstrass’ maximum value theorem [1, Theorem 2.43]

because the feasible set is compact and the objective function is continuous. By extending the norm

constraint into the vector form, we have the equivalence

max
{
‖z‖22 : w − r1m ≤ z ≤ w + r1m

}
,

where the inequalities in the constraints are understood as element-wise inequalities, and 1m is an
m-dimensional vector of ones. This maximization problem is separable in the decision variables and

can be decomposed into m independent univariate subproblems of the form

max
{
z2j : wj − r ≤ zj ≤ wj + r

}
for each j ∈ [m]. It is easy to verify that the optimal value of each univariate subproblem is equal to

max
{

(wj − r)2, (wj + r)2
}
,

and summing up the optimal values over j completes the proof.

We are now ready to prove Proposition 2.

Proof of Proposition 2. Following from equation (9a) in the proof of Theorem 1, we have

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}
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By applying the Charnes-Cooper transformation [10] with

zi =
αi∑
i∈I αi

, and t =
1∑
i∈I αi

to reformulate this fractional linear problem, we have

f(β) =


max

∑
i∈I v

?
i (β)zi

s. t.
∑
i∈I zi = 1, t ≥ 0

zi − t = 0 ∀i ∈ I1
0 ≤ zi ≤ t ∀i ∈ I2.

=


min λ
s. t. λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ v?i (β) ∀i ∈ I∑
i∈I ui ≤ 0,

where the second equality follows from linear programming duality. Using the last minimization
reformulation of f(β), problem (2) is now equivalent to

min
β

f(β) =


min λ
s. t. β ∈ Rm, λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ v?i (β) ∀i ∈ I∑
i∈I ui ≤ 0,

When DY is a 2-norm, each value v?i (β) calculated from (5) becomes

v?i (β) = sup
{
‖y − β‖22 : ‖y − ŷi‖2 ≤ ρ− DX (x̂pi , x̂i)

}
∀i ∈ [N ].

For any i ∈ I, the value v?i (β) is finite and v?i (β) can be re-expressed by exploiting Lemma 2(i) as

v?i (β) = (ρ− DX (x̂pi , x̂i) + ‖ŷi − β‖2)
2
.

Problem (2) is now equivalent to

min λ
s. t. β ∈ Rm, λ ∈ R, ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2

λ+ ui ≥ (ρ− DX (x̂pi , x̂i) + ‖ŷi − β‖2)
2 ∀i ∈ I∑

i∈I ui ≤ 0.

(12)

To obtain a second-order cone program formulation, it now suffices to add the hypergraph formulation

ti ≥ ‖ŷi− β‖2 with ti ≥ 0, and reformulate the quadratic constraint into a second-order cone constraint

using results from [2, Section 2]. This completes the proof for claim (i).

We now proceed to prove claim (ii). When DY is the ∞-norm, each value v?i (β) becomes

v?i (β) = sup
{
‖y − β‖22 : ‖y − ŷi‖∞ ≤ ρ− DX (x̂pi , x̂i)

}
∀i ∈ [N ].

For any i ∈ I, the value v?i (β) is finite and v?i (β) can be re-expressed using Lemma 2(ii) as

v?i (β) =
∑
j∈[m]

max
{

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2, (ŷij − βj + ρ− DX (x̂pi , x̂i))

2
}
.

By adding auxiliary variables Tij with the constraints

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2 ≤ T 2

ij , and (ŷij − βj + ρ− DX (x̂pi , x̂i))
2 ≤ T 2

ij ,
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problem (2) is now equivalent to

min λ

s. t. β ∈ Rm, λ ∈ R, T ∈ R|I|×m+ , ui ∈ R ∀i ∈ I1, ui ∈ R+ ∀i ∈ I2∑
i∈I ui ≤ 0

λ+ ui ≥
∑
j∈[m] T

2
ij ∀i ∈ I

(ŷij − βj − ρ+ DX (x̂pi , x̂i))
2 ≤ T 2

ij ∀(i, j) ∈ I × [m]
(ŷij − βj + ρ− DX (x̂pi , x̂i))

2 ≤ T 2
ij ∀(i, j) ∈ I × [m].

The last two constraints can be re-expressed as linear constraints of the form

−Tij ≤ ŷij − βj − ρ+ DX (x̂pi , x̂i) ≤ Tij ∀(i, j) ∈ I × [m]
−Tij ≤ ŷij − βj + ρ− DX (x̂pi , x̂i) ≤ Tij ∀(i, j) ∈ I × [m].

Formulating the quadratic constraint λ+ ui ≥
∑
j∈[m] T

2
ij using [2, Section 2] completes the proof.

Proof of Proposition 3. For the purpose of this proof, define the following sets

Yi , {yi ∈ Y : DY(yi, ŷi) ≤ ρ− DX (x̂pi , x̂i)} ∀i ∈ I.

Because DY is coercive and continuous, each set Yi is compact. Because the loss function is continuous,

there thus exists y?i satisfying y?i ∈ Yi and `(y?i , β) = v?i (β) for any i ∈ I. Following from Equation (9a)

in the proof of Theorem 1, we have

f(β) = max

{∑
i∈I v

?
i (β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0

}

= max

{∑
i∈I `(yi, β)αi∑

i∈I αi
: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1,

∑
i∈I

αi > 0, yi ∈ Yi ∀i ∈ I

}
.

If I1 = ∅, then we have

f(β) = `(yi? , β) ∀i? ∈ arg max
i∈I2

v?i (β),

and a subgradient of f is ∂f(β) = ∂β`(yi? , β) for any i? ∈ arg maxi∈I2 v
?
i (β). By incorporating the

optimal value of α in the statement of Theorem 1, we have ∂f(β) = αi∂β`(y
?
i , β).

If I1 6= ∅, then we have

f(β) = max

{∑
i∈I1 v

?
i (β) +

∑
i∈I2 v

?
i (β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1

}

= max

{∑
i∈I1 `(yi, β) +

∑
i∈I2 `(yi, β)αi

|I1|+
∑
i∈I2 αi

: α ∈ [0, 1]N , αi = 1 ∀i ∈ I1, yi ∈ Yi ∀i ∈ I

}

Notice that the function

β 7→
∑
i∈I1 `(yi, β) +

∑
i∈I2 `(yi, β)αi

|I1|+
∑
i∈I2 αi

is convex for any feasible value of (α, y) in the above optimization problem. Moreover, by Tychonoff’s

theorem [1, Theorem 2.61], the feasible set of the above optimization problem is a compact set in the

product topology. One can now apply [3, Proposition A.22] to conclude that a subgradient of f in this

case is

∂f(β) =

∑
i∈I1 ∂β`(yi, β) +

∑
i∈I2 ∂β`(yi, β)αi

|I1|+
∑
i∈I2 αi

.

Combining the two cases, we have the postulated result.
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B.2 Proofs of Section 3

Proof of Proposition 4. Under the conditions of the proposition, we have P(X ∈ Nγ(x0)) > 0 because

P admits a density, and that Nγ(x0) ∩ X is a set with non-empty interior for any γ > 0. The proof

now follows trivially from [16, Theorem 1.1]. Indeed, under the conditions of the proposition, with

probability of at least 1−O(N−c), we have P ∈ B∞ρ , and hence the bound follows.

Proof of Example 1. For the purpose of this proof, we let P∞ = P⊗ P⊗ · · · be the joint distribution

of (x̂1, ŷ1), (x̂2, ŷ2), · · · . The selection of parameter γ = 0 implies that I = I2, and for any fixed ρ > 0

we have P∞ (limN→∞ |I| = +∞) = 1 by Borel-Cantelli lemma. In this example, the DRO problem is

feasible if I is nonempty, and we have an explicit optimal solution

β?N =
1

2
min
i∈I
{ŷi − ρ+ DX (x̂i, x0)}+

1

2
max
i∈I
{ŷi + ρ− DX (x̂i, x0)}

Notice that with probability 1 we have

min
i∈I
{ŷi − ρ+ DX (x̂i, x0)} ≥ −ρ and max

i∈I
{ŷi + ρ− DX (x̂i, x0)} ≥ max

i∈I
{ŷi} .

Consequently we have β?N ≥ 1
2 maxi∈I {ŷi} − 1

2ρ. For all y > 0, we have

P∞
(

lim
N→∞

β?N > y
)
≥ P∞

(
lim
N→∞

max
i∈I
{ŷi} > 2y + ρ

)
= lim
N→∞

P∞
(

max
i∈I
{ŷi} > 2y + ρ

)
= lim
N→∞

1− P(Y ≤ 2y + ρ)|I| = 1.

Let y tend to infinity concludes the proof.

Before proving Proposition 5, we first present the following minimax result.

Lemma 3 (Minimax result) Suppose that `(y, ·) is convex and coercive for any y ∈ Y, and that DY(·, ŷ)

is convex and coercive for any ŷ. For any ρ ≥ mini∈[N ] κi,γ , we have

min
β∈Rm

sup
Q∈B∞

ρ ,Q(X∈Nγ(x0))>0

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
= sup

Q∈B∞
ρ ,Q(X∈Nγ(x0))>0

min
β∈Rm

EQ
[
`(Y, β)|X ∈ Nγ(x0)

]
.

To facilitate the proof of Lemma 3, we define the following conditional ambiguity set induced by

B∞ρ as

Bx0,γ(B∞ρ ) ,

{
µ0 ∈M(Y) :

∃Q ∈ B∞ρ , Q(Nγ(x0)× Y) > 0
Q(Nγ(x0)×A) = µ0(A)Q(Nγ(x0)× Y) ∀A ⊆ Y measurable

}
, (13)

where the last constraint defining the set Bx0,γ(B∞ρ ) is from the dis-integration of the joint measure

into a marginal distribution and the corresponding conditional distributions [37, Theorem 9.2.2].

The proof of Lemma 3 relies on the following two results which assert the convexity of the joint

ambiguity set B∞ρ and its induced conditional ambiguity set Bx0,γ(B∞ρ ).

Lemma 4 (Convexity of B∞ρ ) The ambiguity set B∞ρ is convex.

Proof of Lemma 4. Because the nominal probability measure is an empirical measure, the ambiguity

set B∞ρ can be represented as

B∞ρ =

Q ∈M(X × Y) :

∃πi ∈M(X × Y) ∀i ∈ [N ] such that :
Q = N−1

∑
i∈[N ] πi,

∑
i∈[N ] πi(Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πi) ∀i ∈ [N ]

 .
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Pick any arbitrary Q0 and Q1 from B∞ρ . Associated with Qj , j ∈ {0, 1} is a collection of probability

measures {πji } ∈ M(X × Y)N satisfying{
Qj = N−1

∑
i∈[N ] π

j
i ,
∑
i∈[N ] π

j
i (Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πji ) ∀i ∈ [N ].

Consider any convex combination Qλ = λQ1 + (1− λ)Q0 for λ ∈ (0, 1). It is easy to verify that the

joint measure πλi = λπ1
i + (1− λ)π0

i for any i ∈ [N ] satisfies{
Qλ = N−1

∑
i∈[N ] π

λ
i ,
∑
i∈[N ] π

λ
i (Nγ(x0)× Y) > 0

DX (x, x̂i) + DY(y, ŷi) ≤ ρ ∀(x, y) ∈ supp(πλi ) ∀i ∈ [N ],

where the last constraint is satisfied by noticing that supp(πλi ) = supp(π0
i )∪ supp(π1

i ). This observation

implies that Qλ ∈ B∞ρ .

Lemma 5 (Convexity of Bx0,γ(B∞ρ )) The conditional ambiguity set Bx0,γ(B∞ρ ) is convex.

Proof of Lemma 5. Let µ0
0, µ

1
0 ∈ Bx0,γ(B∞ρ ) be two arbitrary probability measures. Associated with

each µj0, j ∈ {0, 1}, is a corresponding joint measure Qj ∈M(X × Y) such that

Qj(Nγ(x0)× Y) > 0 and
Qj(Nγ(x0)×A)

Qj(Nγ(x0)× Y)
= µj0(A) ∀A ⊆ Y measurable.

Select any λ ∈ (0, 1). We proceed to show that µλ0 = λµ1
0 + (1− λ)µ0

0 ∈ Bx0,γ(B∞ρ ). Indeed, consider

the joint measure

Qλ = θQ1 + (1− θ)Q0

with θ being defined as

θ =
λQ0(Nγ(x0)× Y)

λQ0(Nγ(x0)× Y) + (1− λ)Q1(Nγ(x0)× Y)
∈ [0, 1].

By definition, we have Qλ(Nγ(x0)×Y) > 0, and by convexity of B∞ρ from Lemma 4, we have Qλ ∈ B∞ρ .

Moreover, we have for any set A ⊆ Y measurable,

Qλ(Nγ(x0)×A)

Qλ(Nγ(x0)× Y)
=
θQ1(Nγ(x0)×A) + (1− θ)Q0(Nγ(x0)×A)

θQ1(Nγ(x0)× Y) + (1− θ)Q0(Nγ(x0)× Y)

=
λQ0(Nγ(x0)× Y)Q1(Nγ(x0)×A) + (1− λ)Q1(Nγ(x0)× Y)Q0(Nγ(x0)×A)

Q0(Nγ(x0)× Y)Q1(Nγ(x0)× Y)

=
λQ1(Nγ(x0)×A)

Q1(Nγ(x0)× Y)
+

(1− λ)Q0(Nγ(x0)×A)

Q0(Nγ(x0)× Y)

= λµ1
0(A) + (1− λ)µ0

0(A),

where the second equality follows from the definition of θ. This implies that µλ0 ∈ Bx0,γ(B∞ρ ), and

further implies the convexity of Bx0,γ(B∞ρ ).

We are now ready to prove Lemma 3.

Proof of Lemma 3. By the definition of the conditional ambiguity set Bx0,γ(B∞ρ ), it suffices to prove

the equivalence

min
β∈Rm

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0
[`(Y, β)] = sup

µ0∈Bx0,γ(B∞
ρ )

min
β∈Rm

Eµ0
[`(Y, β)].
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First, consider the mapping β 7→ supµ0∈Bx0,γ(B∞
ρ ) Eµ0

[`(Y, β)]. The properties of ` implies that this

mapping is lower semi-continuous and coercive. As a consequence, without loss of optimality, we can

restrict the feasible set β to some convex, compact ball S , {β : ‖β‖2 ≤ R} for some radius R ∈ R++

sufficiently big.

We now consider the mapping µ0 7→ Eµ0 [`(Y, β)] parametrized by β. For any β, it is a linear

function of µ0, and hence it is concave. It is also weakly continuous. To see this, notice that when

D(·, ŷ) is coercive, the set

A ,
⋃
i∈[N ]

{y : DY(y, ŷi) ≤ ρ},

being a finite union of bounded sets, is bounded. Pick any Q ∈ B∞ρ , by the definition of the type-∞
Wasserstein distance, we have Q(A) = 1. Consider the conditional measure µQ

0 induced by Q, then we

have

µQ
0 (A ∩ Y) =

Q(Nγ(x0)× (A ∩ Y))

Q(Nγ(x0)× Y)
≥ Q(Nγ(x0)× (A ∩ Y))

Q(Nγ(x0)× (A ∩ Y))
= 1,

which implies that µQ
0 has a bounded support. This implies that Bx0,γ(B∞ρ ) ⊆ M(A), where M(A)

is the set of all probability measures supported on a bounded set A. Because `(·, β) is continuous,
there exists a bound U ∈ R++ such that |`(y, β)| ≤ U for every y ∈ A. Define now the function

`U (·, β) = max{−U,min{`(·, β), U}}, which is continuous and bounded. Consider any sequence of

conditional measures {µk0} ∈ M(A) that weakly converges to µ∞0 , we have

lim
k↑∞

Eµk0
[`(Y, β)] = lim

k↑∞
Eµk0

[`U (Y, β)] = Eµ∞
0

[`U (Y, β)] = Eµ∞
0

[`(Y, β)],

which implies that the function µ0 7→ Eµ0
[`(Y, β)] is weakly continuous over M(A).

This line of argument suggests that

min
β

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [`(Y, β)] = min
β:‖β‖2≤R

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [`(Y, β)]

= sup
µ0∈Bx0,γ(B∞

ρ )

min
β:‖β‖2≤R

Eµ0 [`(Y, β)] (14a)

= sup
µ0∈Bx0,γ(B∞

ρ )

min
β

Eµ0 [`(Y, β)], (14b)

where equality (14b) follows from the coercivity of the loss function, thus the constraint on β can be

dropped for R sufficiently big. Equality (14a) holds by Sion’s minimax theorem [35]. This finishes the

proof.

Proof of Proposition 5. Because the loss function is coercive and convex in β, we have

min
β∈R

sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0
[(Y − β)2] = sup

µ0∈Bx0,γ(B∞
ρ )

min
β∈R

Eµ0
[(Y − β)2]

= sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0 [(Y − Eµ0 [Y ])2]

= Varianceµ?0 (Y ),

where the first equality follows from Lemma 3, the second equality follows from the fact that for any

µ0 ∈ Bx0,γ(B∞ρ ), the estimate β?(µ0) = Eµ0
[Y ] minimizes the objective Eµ0

[(Y −β)2]. The last equality

follows from the definition of µ?0.

Let β? be the optimal estimate that solves (2), we now have

Varianceµ?0 (Y ) = sup
µ0∈Bx0,γ(B∞

ρ )

Eµ0
[(Y − β?)2]

≥ Eµ?0 [(Y − β?)2] = Varianceµ?0 (Y ) + (β? − Eµ?0 [Y ])2,

where the last equality follows from the bias-variance decomposition. This implies that β? = Eµ?0 [Y ]

and completes the proof.
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C Golden-section search for univariate conditional estimate

We elaborate here on the procedure of applying a golden-section search to solve a one-dimensional

local conditional estimation with a convex loss function `. We suppose that Y = [a, b] for some finite

values −∞ < a < b < ∞, that `(y, ·) is convex for every y and that we have access to an oracle

that solves (5). Given any β, the worst-case conditional expected loss f(β) can be computed using

Theorem 1. Algorithm 1 can be used to find the optimal conditional estimate β? to any arbitrary

precision.

Algorithm 1 Golden-section Search Algorithm

Input: Range [a, b] ∈ R, tolerance ε ∈ R++

Initialization: Set r ← 0.618, β1 ← a, β4 ← b
while |β4 − β1| > ε do

Set β2 ← rβ1 + (1− r)β4, β3 ← (1− r)β1 + rβ4
if f(β2) ≤ f(β3) then Set β4 ← β3 else Set β1 ← β2 endif

end while
Set β? ← (β1 + β4)/2
Output: β?
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[16] N. Garćıa Trillos and D. Slepčev. On the rate of convergence of empirical measures in ∞-transportation
distance. Canadian Journal of Mathematics, 67(6):1358–1383, 2015.

[17] C. Givens and R. Shortt. A class of Wasserstein metrics for probability distributions. The Michigan
Mathematical Journal, 31(2):231–240, 1984.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Proceedings
of the Third International Conference on Learning Representations, 2015.



24 G–2020–55 Les Cahiers du GERAD

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, 2009.

[20] P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages 492–518.
Springer, 1992.

[21] S. Kruk and H. Wolkowicz. Pseudolinear programming. SIAM Review, 41(4):795–805, 1999.

[22] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh. Wasserstein distributionally robust
optimization: Theory and applications in machine learning. INFORMS TutORials in Operations Research,
pages 130–166, 2019.

[23] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In Proceedings of the
Fifth International Conference on Learning Representations, 2017.

[24] Y. LeCun and C. Cortes. The MNIST Database of Handwritten Digits, 1998 (accessed May 28, 2020).

[25] X. Li, Y. Chen, Y. He, and H. Xue. Advknn: Adversarial attacks on k-nearest neighbor classifiers with
approximate gradients. arXiv preprint arXiv:1911.06591, 2019.

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to
adversarial attacks. In Proceedings of the Sixth International Conference on Learning Representations,
2018.

[27] P. Mohajerin Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the Wasserstein
metric: Performance guarantees and tractable reformulations. Mathematical Programming, 171(1–2):115–
166, 2018.

[28] MOSEK ApS. MOSEK Optimizer API for Python 9.2.10, 2019.

[29] E. A. Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):141–142, 1964.

[30] H. Namkoong and J. C. Duchi. Variance-based regularization with convex objectives. In Advances in
Neural Information Processing Systems 30, pages 2971–2980, 2017.

[31] V. A. Nguyen, D. Kuhn, and P. Mohajerin Esfahani. Distributionally robust inverse covariance estimation:
The Wasserstein shrinkage estimator. arXiv preprint arXiv:1805.07194, 2018.

[32] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial examples. In
International Conference on Learning Representations, 2018.

[33] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. Regularization via mass transportation. Journal
of Machine Learning Research, 20(103):1–68, 2019.

[34] A. Sinha, H. Namkoong, and J. Duchi. Certifiable distributional robustness with principled adversarial
training. In International Conference on Learning Representations, 2018.

[35] M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

[36] C. J. Stone. Consistent nonparametric regression. Annals of Statistics, 5(4):595–620, 1977.

[37] D. Stroock. Probability Theory: An Analytic View. Cambridge University Press, 2011.
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359–372, 1964.

[40] W. Xie. Tractable reformulations of distributionally robust two-stage stochastic programs with ∞-
Wasserstein distance. arXiv preprint arXiv:1908.08454, 2019.

[41] G. Zhao and Y. Ma. Robust nonparametric kernel regression estimator. Statistics & Probability Letters,
116:72–79, 2016.


	Introduction
	Local conditional estimate using type- Wasserstein ambiguity set
	Probabilistic theoretical properties
	Numerical experiment
	Conditional mean estimation with synthetic data
	Digit estimation with MNIST database

	Additional experiment results
	Conditional mean estimation with synthetic data
	Digit estimation with MNIST database

	Proofs
	Proofs of Section 2
	Proofs of Section 3

	Golden-section search for univariate conditional estimate

