
Les Cahiers du GERAD ISSN: 0711–2440

Unified branch-and-Benders-cut for two-stage stochastic
mixed-integer programs

A. Mahéo, S. Belieres, Y. Adulyasak, J.-F. Cordeau

G–2020–54

October 2020
Revised: September 2023

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : A. Mahéo, S. Belieres, Y. Adulyasak, J.-
F. Cordeau (Octobre 2020). Unified branch-and-Benders-cut for
two-stage stochastic mixed-integer programs, Rapport technique,
Les Cahiers du GERAD G– 2020–54, GERAD, HEC Montréal,
Canada. Version révisée: Septembre 2023

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2020-54) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: A. Mahéo, S. Belieres, Y. Adulyasak, J.-
F. Cordeau (October 2020). Unified branch-and-Benders-cut for
two-stage stochastic mixed-integer programs, Technical report, Les
Cahiers du GERAD G–2020–54, GERAD, HEC Montréal, Canada.
Revised version: September 2023

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-54) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2020-54
https://www.gerad.ca/en/papers/G-2020-54
https://www.gerad.ca/en/papers/G-2020-54

Unified branch-and-Benders-cut for two-stage stochastic
mixed-integer programs

Arthur Mahéo a

Simon Belieres b

Yossiri Adulyasak c

Jean-François Cordeau c

a Amazon Research, Luxembourg

b TBS Business School, 20 Bd Lascrosses, 31000
Toulouse

c Department of Logistics and Operations Manage-
ment, HEC Montréal & GERAD, Montréal (Qc),
Canada, H3T 2A7

s.belieres@tbs-education.fr

yossiri.adulyasak@hec.ca

jean-francois.cordeau@hec.ca

October 2020
Revised: September 2023
Les Cahiers du GERAD
G–2020–54
Copyright © 2020 GERAD, Mahéo, Belieres, Adulyasak, Cordeau

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2020–54 – Revised ii

Abstract : Two-stage stochastic programs are a class of stochastic problems where uncertainty is
discretized into scenarios, making them amenable to solution approaches such as Benders decom-
position. However, classic Benders decomposition is not applicable to general two-stage stochastic
mixed-integer programs due to the restriction that the second-stage variables should be continuous.
We propose a novel Benders decomposition-based framework that accommodates mixed-integer vari-
ables in both stages as well as uncertainty in all of the recourse parameters. The proposed approach
is a unified branch-and-Benders algorithm, where we use a heuristic to maintain a global upper bound
and a post-processing phase to determine an optimal solution. This new approach is flexible, allow-
ing practitioners to integrate acceleration techniques such as partial decomposition or convexification
schemes. We demonstrate the efficiency of our approach versus classic ones on the stochastic server
location problem; and, its generality on a new, complex stochastic problem where the second stage is
a traveling salesman problem.

Keywords : Two-stage stochastic mixed-integer programs, Benders decomposition, Branch-and-
Benders-Cut

Acknowledgements: Computations were made on the supercomputer “Graham” managed by and
Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for
Innovation (CFI), the Ministère de l’économie, de la science et de l’innovation du Québec (MESI) and
the Fonds de recherche du Québec – Nature et technologies (FRQ-NT).

Les Cahiers du GERAD G–2020–54 – Revised 1

1 Introduction

Stochastic mixed-integer programs (SMIPs) form a class of optimization problems that combine dis-

crete and non-convex aspects of mixed-integer programming (Wolsey 1998) with uncertainty in the

data parameters, as in stochastic programming (Birge and Louveaux 1997). In such problems, the deci-

sion variables are defined in multiple stages that characterize the moments when part of the stochastic

parameter values become known.

In this study, we propose a novel Benders decomposition strategy for solving two-stage scenario-

based SMIP models (Küçükyavuz and Sen 2017), where decision variables decompose into a set of

first-stage decisions to be made before the realization of the random events, and a set of second-stage

decisions (also referred to as recourse decisions) to be made after this information is revealed.

Let ω̃ be a random vector drawn from a discrete finite probability space (Ω,F ,P) where the sample

space Ω defines the set of all possible outcomes, the event space F defines the set of events, an event

being a set of outcomes in the sample space, and function P assigns each event a probability between

0 and 1. Thus, the realization of a particular scenario ω of ω̃ has a non-zero probability pω to occur

and defines a possible outcome for the stochastic parameters. Let E[·] be the usual mathematical

expectation operator with respect to ω̃. A standard formulation for two-stage SMIPs is:

min cTx+ E[h(x, ω̃)] (1st stage)

s.t. Ax ≥ b (1a)

x ∈ X,

where, for a given scenario ω of ω̃, h(x, ω) is defined as:

min h(x, ω) = qTω yω (2nd stage)

s.t. Tωx+Wωyω ≥ hω (2a)

yω ∈ Y.

The sets X ⊆ Rn1
+ and Y ⊆ Rn2

+ define the domains of the first-stage variables, x, and the second-stage

variables, yω, respectively. Input parameters c ∈ Rn1 , A ∈ Rm1×n1 , b ∈ Rm1 are known in advance,

while qω ∈ Rn2 , Tω ∈ Rm2×n1 ,Wω ∈ Rm2×n2 , hω ∈ Rm2 are scenario-dependent. The objective function

aims to minimize the cost of the first-stage decisions and the expected value of the second-stage costs.

Prior to the realization of the random vector ω̃, the decision maker determines values for the first-stage

variables that satisfy constraints (1a). The realization of a particular scenario ω of ω̃ sets the values for

the stochastic parameters – i. e., the recourse cost qω, the technology matrix Tω, the recourse matrix

Wω and the right-hand side hω. Based on this information, the decision maker formulates the recourse

problem and determines values for the second-stage variables that satisfy constraints (2a).

By duplicating second-stage variables according to the scenarios, one can formulate two-stage

SMIPs in an extensive form. The so-called deterministic equivalent formulation (DEF) is:

min cTx+
∑
ω∈Ω

pωq
T
ω yω (DEF)

s.t. Ax ≥ b (3a)

Tωx+Wωyω ≥ hω ∀ω ∈ Ω (3b)

x ∈ X, yω ∈ Y,∀ω ∈ Ω,

where variables yω model the second-stage decisions associated with scenario ω. While this formulation

can be solved by a general-purpose mixed-integer programming solver, it is unlikely to be solved in

reasonable time if the number of scenarios is large. However, the DEF exhibits what is called a

block-angular structure, which can be leveraged by decomposition-based algorithms. Indeed, once the

first-stage variables are fixed, it decomposes into |Ω| independent problems.

Les Cahiers du GERAD G–2020–54 – Revised 2

Two-stage SMIPs can be classified according to the type of the variables involved in the second

stage. When second-stage variables are continuous, h(x, ω) is a convex piece-wise linear function. As

a result, E[h(x, ω̃)] satisfies convexity, and standard decomposition-based approaches, such as Benders

decomposition (Benders 1962), can be applied. On the other hand, E[h(x, ω̃)] is no longer convex

when the second-stage involves discrete variables, breaking down the standard decomposition-based

approaches. Consequently, few methods in the literature are designed to solve two-stage SMIPs with

discrete recourse, and most of them necessitate the first-stage variables to be binary (e. g., Sen and

Higle 2005, Sen and Sherali 2006, Ntaimo 2010, Gade et al. 2014, Atakan and Sen 2018). There also

exist algorithmic strategies that accommodate mixed-integer decisions in both stages. Unfortunately,

it is often difficult to assess their scalability, whether because the corresponding articles do not provide

a computational study (e. g., Carøe and Schultz 1999, Ralphs and Hassanzadeh 2014) or because the

method is tested only on small instances (e. g., Ahmed et al. 2004, Guo et al. 2015).

In this paper, we introduce the Unified Branch-and-Benders-Cut (UB&BC), a new general and

exact Benders decomposition-based approach (Benders 1962) for solving two-stage SMIPs. We say

UB&BC is exact and general because it accommodates uncertainty in all the recourse parameters and

allows for any type of variables in both stages. To maximize performance, note that our approach

should primarily be used for tackling two-stage SMIPs where an efficient heuristic procedure can be

implemented for the scenario subproblems. The main features of the proposed framework are its ease

of implementation, as it only requires a commercial MIP solver that includes callback features, and its

flexibility, as it can be used in conjunction with a wide range of acceleration techniques.

Benders decomposition, also referred to as the L-shaped method (Van Slyke and Wets 1969) in

the context of stochastic programming, is a well-established algorithm that solves large-scale MIPs

by dividing the computational burden into smaller parts. Specifically, the MIP is decomposed into a

master problem and one or several subproblems. The master problem is a relaxation of the original

problem that determines values for a subset of the decision variables and an estimate of the optimal

objective function value of the subproblems. The solution obtained by solving the master problem is

used to formulate the subproblems, which aim to determine values for the remaining variables. The

classic Benders algorithm proceeds as follows: (i) it solves the master problem to optimality, (ii) it

uses the solution found to formulate the subproblems, (iii) it solves the subproblems to determine a

feasible solution to the original MIP, (iv) using LP duality, it derives the so-called Benders cuts to add

to the master problem; finally, (v) it repeats from point (i) until a provably optimal solution to the

original MIP is found. For a recent survey on Benders decomposition, we refer the interested reader

to Rahmaniani et al. (2017). Note that the Benders algorithm can also be integrated inside a branch-

and-cut (B&C) scheme, where the master problem is solved only once. Subproblems act as separation

problems to generate Benders cuts and are solved at each branching node or only when an integer

master problem solution is found in the tree. The resulting branch-and-Benders-cut (B&BC, Fortz

and Poss 2009, De Camargo et al. 2011, Gendron et al. 2016) has become the standard implementation

and is the basis of the UB&BC.

The standard Benders algorithm does not directly apply to two-stage SMIPs with discrete variables

in the second stage. As explained earlier, this is due to the fact that the algorithm’s convergence relies

on Benders cuts obtained by applying standard linear programming duality theory to the subproblems.

Obviously, we cannot rely on the same mechanism to solve two-stage SMIPs with discrete recourse. In

the context of two-stage stochastic programming, the challenge of extending the Benders decomposition

to accommodate discrete variables in the second stage has led to multiple studies. A common strategy is

to solve the subproblems to integer optimality and develop valid cuts without using the dual information

(Laporte and Louveaux 1993). Another approach consists in solving the LP relaxation of the scenario

subproblems to generate standard Benders cuts and using cutting-plane procedures to characterize

convexifications of the second-stage problems (e. g., Sherali and Fraticelli 2002, Sen and Higle 2005).

To accommodate general mixed-integer variables in the second stage, we present an intermediate

approach that uses linear programming duality theory to generate standard Benders cuts and solves

Les Cahiers du GERAD G–2020–54 – Revised 3

to integer optimality subproblems that correspond to promising master solutions. We propose a new

Benders decomposition-based algorithm where a modified B&C is used to solve the master problem.

Whenever a candidate integer solution x̂ is found in a branch-and-bound-tree of the master, (i) we

solve the scenario subproblem LP relaxations to compute a lower bound lb(opt(x̂)) associated with this

integer master problem solution and generate standard Benders cuts, and (ii) we solve the scenario

subproblems heuristically to determine a valid upper bound ub(opt(x̂)). In Figure 1, we show the

progress of the lower bound, lb(opt(x̂)), and the upper bound, ub(opt(x̂)), with successive candidate

solutions. Considering that the B&C finishes at iteration i, there exists a gap between the best lower

bound, lb∗, and the best upper bound, ub∗. Therefore, we retain a set of open solutions: solutions

whose LP relaxation lower bound lb(opt(x̂)) is lower than the best upper bound. This process, which

takes advantage of a single branch-and-bound tree in solving the master problem, successively refines

global upper/lower bounds, and relies on modified node fathoming rules to guarantee that the global

optimal solution is among the open solutions remaining at the end of the branch-and-bound process

of the master problem. Finally, we then need to solve these open solutions to integer optimality to

determine the global optimum (opt).

opt
|

lb(x̂0) lb(x̂1) . . . lb(x̂∗) ub(x̂∗) . . .

lb ub

Figure 1: UB&BC makes use of a heuristic to obtain the upper bound during the branch-and-bound process of the master
problem. There could exist an integrality gap which must be closed through a post-processing procedure applied to the
open solutions at the end of the branch-and-bound process.

Our contribution is threefold. First, we introduce a general exact algorithmic strategy for solving

two-stage stochastic programs with general mixed-integer variables in both stages. Second, we demon-

strate the flexibility of our solution framework by incorporating acceleration techniques such as partial

Benders decomposition (Crainic et al. 2014, 2016) or multi-term disjunctive cuts (Chen et al. 2011,

2012). Third, we provide an extended series of experiments to assess the performance of our framework

and gain insight into how its components impact the speed of convergence. Two problems are under

study: the stochastic server location problem (SSLP, Ntaimo and Sen 2005), which is frequently used

to benchmark algorithms for two-stage stochastic programs with discrete recourse (e. g., Ntaimo and

Sen 2005, Guo et al. 2015, Gade et al. 2014, Atakan and Sen 2018, Qi and Sen 2017), and the two-stage

stochastic traveling salesman problem with outsourcing (2TSP). To the best of our knowledge, this

is the first study to provide an exact and effective method for solving a two-stage SMIP where the

scenario subproblem is a TSP, which is a difficult combinatorial problem in itself.

The remainder of the paper is organized as follows. In Section 2, we review the existing solution

algorithms for two-stage SMIP models with discrete second-stage variables. Section 3 is dedicated

to the description of UB&BC. It also provides a discussion on the scope of problems that can be

efficiently solved by UB&BC, as well as a description of the two acceleration techniques stated above.

Section 4 presents the experimental setup. We provide an extensive computational study in Section 5.

In Section 6, we conclude the paper and discuss future work.

2 Literature review

This section aims to review the existing exact algorithmic strategies for two-stage SMIP models with

discrete recourse. The reviewed methods are summarized in Table 1 in a manner similar to Trapp

et al. (2013) and Ralphs and Hassanzadeh (2014). For each method, we indicate the type of variables

it accommodates in both stages, as well as the assumptions made regarding the potential stochastic

parameters.

Laporte and Louveaux (1993) extend the L-shaped method to accommodate general mixed-integer

variables in the second stage. They propose a branch-and-Benders-cut method where valid Benders

Les Cahiers du GERAD G–2020–54 – Revised 4

optimality cuts are derived from the objective function values of the scenario subproblems. The

resulting algorithm converges in a finite number of iterations, but suffers from two shortcomings: it is

only applicable in the case of pure binary first-stage variables, and, it requires the scenario subproblems

to be solved to integer optimality to compute the L-shaped cuts ensuring convergence.

Angulo et al. (2016) propose an extension of the algorithm where, for each master problem solution,

the linear relaxation of the scenario subproblems are solved, allowing to derive continuous L-shaped

cuts. If these continuous L-shaped cuts are binding, they are added to the master and the branch-

and-bound process proceeds. Otherwise, the scenario subproblems are solved to integer optimality,

and integer L-shaped cuts are added to the master. Computational experiments demonstrate that

this alternating cut strategy significantly increases performance. Nevertheless, this technique does not

allow to bypass the requirements for the application of the integer L-shaped method, i. e., pure binary

first-stage variables.

Carøe and Tind (1998) propose a generalization of the L-shaped method and use the general duality

theory to develop valid Benders optimality cuts. A cutting plane algorithm is used to solve the scenario

subproblems to integer optimality. Based on the obtained solutions, “nonlinear dual variables” that

take the form of Chvátal functions are used to generate valid Benders optimality cuts. The generalized

L-shaped method handles all models that do not involve continuous variables in the second stage.

However, the article does not report numerical results.

To avoid solving scenario subproblems to integer optimality, multiple decomposition-based algo-

rithms proposed in the literature embed a cutting-plane procedure to progressively characterize the con-

vex hulls of the subproblem LP relaxations. Sherali and Fraticelli (2002) present an L-shaped method

where the scenario subproblems are approximated using the Reformulation-Linearization Technique

(RLT, Sherali and Adams 1999) and lift-and-project cutting planes. Cuts are expressed as functions of

the first-stage variables and thus valid for all scenario subproblems. This approach tackles programs

with binary variables in both stages and continuous variables in the second stage. Sherali and Zhu

(2006) present a method that also accommodates continuous variables in the first stage. They pro-

pose a decomposition-based branch-and-bound algorithm that follows a hyperrectangular partitioning

process and uses a RLT cutting-plane algorithm to convexify the scenario subproblems.

Sen and Higle (2005) present the C3 theorem and demonstrate that the valid inequalities associated

with a given scenario subproblem can be used to derive valid inequalities for any other scenario sub-

problem. Based on the C3 theorem, the authors propose the D2 algorithm, where the master and the

subproblems are obtained from the convexification of two disjunctive programs. This approach tackles

problems with binary variables in both stages and continuous variables in the second stage. Ntaimo

and Sen (2005) present an extension of the D2 algorithm that accommodates different stochastic pa-

rameters. Another extension to the D2 algorithm is proposed by Sen and Sherali (2006) and allows

general mixed-integer variables in the second stage. In this approach, scenario subproblems are solved

with a partial branch-and-bound, and dual coefficients derived from the trees are used to develop valid

Benders cuts.

Gade et al. (2014) integrate a convexification procedure based on Gomory cuts into the L-shaped

method and solve programs with binary variables in the first stage and general integer variables in the

second stage. Qi and Sen (2017) develop new convexification schemes based on multi-term disjunctive

cuts and propose the ancestral Benders Cuts (ABC), which allow for general mixed-integer variables in

both stages. Other studies on two-stage SMIP with discrete recourse involve solution methods based

on value function reformulation (Ahmed et al. 2004, Kong et al. 2006, Trapp et al. 2013, Ralphs and

Hassanzadeh 2014), dual decomposition (Carøe and Schultz 1999), progressive hedging (Guo et al.

2015, Atakan and Sen 2018), or Gröbner basis (Schultz et al. 1998). Recent work by Larsen et al.

(2022) leverages the progress in machine learning (ML) and integrates generic approximators into the

L-shaped framework of Angulo et al. (2016) to estimate the scenario subproblem optimal values. The

proposed heuristic is promising and computational experiments indicate that hybridizing ML and OR

techniques is a clear direction for efficiently solving two-stage SMIPs.

Les Cahiers du GERAD G–2020–54 – Revised 5

Table 1: Characteristics of existing exact methods for two-stage SMIP models with discrete recourse

1st Stage 2nd Stage Stochastic parameters

R B Z R B Z Tω Wω hω qω

Laporte and Louveaux (1993) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Carøe and Tind (1998) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Schultz et al. (1998) ⋆ ⋆ ⋆ ⋆
Carøe and Schultz (1999) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Sherali and Fraticelli (2002) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Ahmed et al. (2004) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Sen and Higle (2005) ⋆ ⋆ ⋆ ⋆ ⋆
Kong et al. (2006) ⋆ ⋆ ⋆ ⋆ ⋆
Sen and Sherali (2006) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Sherali and Zhu (2006) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Ntaimo (2010) ⋆ ⋆ ⋆ ⋆ ⋆
Trapp et al. (2013) ⋆ ⋆ ⋆ ⋆ ⋆
Gade et al. (2014) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Ralphs and Hassanzadeh (2014) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Guo et al. (2015) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Angulo et al. (2016) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Qi and Sen (2017) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Atakan and Sen (2018) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Current study
UB&BC ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

3 Unified Branch-and-Benders-Cut

We now describe our Benders decomposition-based strategy for solving two-stage stochastic mixed-

integer programs with general mixed-integer variables in both stages. We first present the Unified

Branch-and-Benders-Cut (UB&BC) which operates a modified branch-and-cut to identify a set of

open solutions and performs a post-processing phase to determine the global optimum. Second, we

discuss the main features of the proposed method, namely, its generality and ease of implementation,

its range of applicability, and its flexibility to be combined and enhanced with other problem-solving

components. We then present two such components. We discuss how using an enhanced Benders

decomposition strategy Crainic et al. (2014, 2016) rather than a standard Benders decomposition can

improve the convergence of UB&BC. Note that this technique relies on specific structural assumptions

as it solely applies in the case of a fixed recourse matrix Wω and a fixed recourse cost qω, which is the

case for many two-stage stochastic problems found in the literature (Ntaimo and Sen 2005, Zheng et al.

2013, Elçi and Hooker 2022). We also evaluate how convexification procedures can be incorporated to

construct polyhedral approximations of the subproblems and further enhance our approach.

3.1 Description of the algorithm

In the context of two-stage stochastic programming, a standard Benders decomposition consists of a

master problem that prescribes decisions for the first-stage variables, and a set of scenario subproblems

that compute optimal values for the second-stage variables given fixed values for x. Let Fω and Oω

denote the sets of extreme rays and extreme points of the dual subproblem polyhedron associated with

scenario ω, respectively. The standard master problem is formulated as follows:

min cTx+
∑
ω∈Ω

pωzω (Standard master problem)

s.t. Ax ≥ b (4a)

fT (hω − Tωx) ≤ 0 ∀f ∈ Fω,∀ω ∈ Ω (4b)

oT (hω − Tωx) ≤ zω ∀o ∈ Oω,∀ω ∈ Ω (4c)

x ∈ X.

Les Cahiers du GERAD G–2020–54 – Revised 6

The master’s objective function computes the cost of the first-stage solution and an expected

recourse cost, with variable zω providing the expected recourse cost for scenario ω ∈ Ω. Constraints (4a)

characterize the feasible region for the first-stage variables. Constraints (4b) and (4c) are the standard

feasibility and optimality cuts added dynamically after solving the scenario subproblems. Given a

first-stage solution x̂ computed by the master problem, the subproblem associated with scenario ω is

formulated as follows:

min qTω yω (Standard scenario subproblem)

s.t. Wωyω ≥ hω − Tωx̂ (5a)

yω ∈ Y.

The scenario objective function reflects the cost associated with the second-stage solution while

constraints (5a) characterize the feasible region for the second-stage variables.

As explained earlier, one cannot employ the classical Benders algorithm when subproblems contain

discrete variables, since these discrete variables prevent us from applying standard linear programming

duality and generating Benders cuts. In practice, there are two main strategies for allowing the Benders

algorithm to deal with discrete scenario subproblems. The first strategy consists in relaxing the

integrality constraints on the second-stage variables to generate standard Benders cuts, and integrate

a convexification procedure to progressively determine the convex hull of the LP relaxations of the

scenario subproblems. The second strategy consists in solving the scenario subproblems to integer

optimality and using a procedure to derive valid cuts. Our approach is intermediate, in the sense that

we relax the integrality constraints on the second-stage variables to generate standard Benders cuts

and we delay solving the subproblems to integer optimality to a post-processing phase, at the end of

which we obtain the global optimum. The UB&BC is described in Algorithm 1.

The UB&BC operates in two phases. In the first phase, it solves the master problem using a

branch-and-Benders-cut (B&BC) that is modified. Specifically, the rules for fathoming a node are

adapted. A B&BC consists of a branch-and-bound algorithm wherein, as the solution to the master

problem LP relaxation is integral, the corresponding subproblems are used as separation problems. As

a result, Benders cuts acting as cutting planes are generated and added to the master problem, and the

current node LP relaxation is solved again. Recall that in a conventional branch-and-bound tree search,

a node is fathomed in three cases, i. e., (i) if its LP relaxation is infeasible, (ii) if its LP relaxation

optimal value is worse than the incumbent value, or (iii) if the solution to its LP relaxation satisfies

all the integrality requirements. On the other hand, one should note that UB&BC uses Benders cuts

obtained from approximated scenario subproblems. This has no impact on nodes fathomed following

the first two cases, but may impede convergence if a node is fathomed according to the third case.

Specifically, because the Benders cuts are approximated, as the cut-generation procedure terminates

with an integer solution, one cannot guarantee that the current node can be fathomed, as using

(stronger) non-approximated Benders cuts could have resulted in a fractional solution, and thus the

branching of a new variable. Consequently, in UB&BC, when the Benders cut-generation terminates

with an integer solution, we force the branching of one of the master problem variables that have not

yet been branched. As such, a node is fathomed if and only if (i) its LP relaxation yields an objective

function value worse than the incumbent, or (ii) it is infeasible.

Assuming that for a given branch-and-bound node, the Benders cut-generation procedure termi-

nates with an integer solution x̂ with estimated recourse costs zω and an objective function value

lower than the best-known bound. We let zMIP
ω represent the objective function value of the optimal

solution of the MIP subproblem associated with scenario ω for master problem solution x̂. Given that,

we let opt(x̂) = cT x̂+
∑

ω∈Ω pωz
MIP
ω denote the best possible objective function value to the original

problem given master problem solution x̂. One can note that computing opt(x̂) requires solving all the

MIP scenario subproblems to integer optimality, which can be very time-consuming and should only

be performed when necessary. Instead, UB&BC derives two bounds on opt(x̂) to carefully maintain a

list of open solutions and to delay to a second phase the solution of MIP scenario subproblems.

Les Cahiers du GERAD G–2020–54 – Revised 7

Algorithm 1: Unified Branch-and-Benders-Cut

Data: An original problem, P , a subproblem heuristic, H, and an optimality tolerance, ϵ
Z = ∅, ub∗ = ∞
Define the master problem, MP , and the scenario subproblems, SPω , from P
begin Solve MP by a B&B and apply the following steps at each node in the search tree:

Solve current node LP relaxation
if LP relaxation ≥ ub∗ OR node is infeasible then

Fathom node

else if An integer solution x̂ of the MP is found then
foreach Scenario ω ∈ Ω do

Solve the LP relaxation of subproblem SPω(x̂)

if Benders cuts are identified then
Add Benders cuts to MP
Go to step 4

Compute the improved lower bound lb(opt(x̂))
if lb(opt(x̂)) > ub∗ then

Prune the current node

else
Add (x̂, lb(opt(x̂))) to Z
foreach Scenario ω ∈ Ω do

Solve subproblem SPω(x̂) with the heuristic H

if A heuristic solution was found for all the scenario subproblems then
Compute the heuristic upper bound ub(opt(x̂))
ub∗ = min(ub∗, ub(opt(x̂)))

Choose a new variable to branch on

else
Choose a new variable to branch on

if The B&B terminated with a gap greater than ϵ then
Rank elements of Z by ascending order according to their lower bound values
while Z ̸= ∅ do

Select (x̂, lb(opt(x̂))) from Z
if lb(opt(x̂)) ≤ ub∗ then

foreach Scenario ω ∈ Ω do
Solve SPω(x̂) as a MIP

if All scenario subproblems are optimal then
Compute opt(x̂)

ub∗ = min(ub∗, opt(x̂))

Result: ub∗, the optimal solution of P

Given solution x̂, for each scenario ω ∈ Ω we let zLP
ω denote the optimal value of the corresponding

scenario subproblem LP relaxation. One can determine a lower bound on opt(x̂), i.e., lb(opt(x̂)) =

cT x̂+
∑

ω∈Ω pω.max
{
zω, z

LP
ω

}
. If the lower bound lb(opt(x̂)) happens to be worse than the incumbent,

the candidate master solution x̂ is discarded, the current node is pruned and the master problem

branch-and-bound process is resumed. Otherwise, x̂ is retained as an open solution and the scenario

subproblems are solved heuristically. Given solution x̂, for each scenario ω ∈ Ω we let zHω denote

the objective function value of the corresponding scenario subproblem heuristic solutions. One can

determine an upper bound on opt(x̂), i.e., ub(opt(x̂)) = cT x̂+
∑

ω∈Ω pωz
H
ω . This heuristic upper bound

can be used to prune nodes in the branch-and-bound tree. Specifically, if ub(opt(x̂)) is better than

the incumbent ub∗, it replaces it, and all fractional/integer master solutions explored with a superior

objective function value are eliminated. Note that the only way to update the incumbent is to discover

a heuristic bound ub(opt(x̂)) with a lower cost. This management of the incumbent, as well as the

adapted fathoming rules, guarantee not to prune master solutions that yield the global optimum – i.e,

x̂ such that opt(x̂) is optimal for P. The B&B terminates if there is no active node remaining or if the

gap between the best-known bounds satisfies a given tolerance.

In the latter case, the algorithm terminates. In the former case, we have a set of open master

solutions which contains the global optimum, i. e., Z contains a master problem solution x̂ such that

Les Cahiers du GERAD G–2020–54 – Revised 8

opt(x̂) is the optimal solution of P . The second step is a post-processing phase where we rank the open

solutions according to their lower bound lb(opt(x̂)), and we solve to integer optimality the associated

subproblems to compute opt(x̂). If opt(x̂) provides a better upper bound than the incumbent, it

becomes the new incumbent. As in the first phase, the incumbent value is used to discard saved master

solutions x̂ such that lb(opt(x̂)) is worse than the incumbent. At the end of the post-processing, the

solution with the best combined objective value is the global optimum.

We illustrate the execution of UB&BC on a small numerical example in Appendix A.

3.2 Discussion

Our approach is an exact algorithm for solving general two-stage SMIPs as it accommodates uncertainty

in all the recourse parameters and it allows for any type of first-stage and second-stage variables.

The main features of UB&BC are its generality and its ease of implementation, as the framework

only requires a commercial MIP solver with callback features. Another strength of our approach is

its flexibility and its ability to easily incorporate acceleration techniques such as advanced Benders

decomposition or convexification procedures. In the following subsection, we describe two solution

techniques that can be used in conjunction with UB&BC.

It is also important to note that UB&BC, in its most elementary form, can efficiently solve mul-

tiple optimization problems. In Section 5, we computationally demonstrate this assertion by solving

instances of the stochastic server location problem (SSLP) and the stochastic traveling salesman prob-

lem with outsourcing (2TSP).

The performance of UB&BC is dependent on the quality of the heuristics used for solving the

scenario subproblems. Indeed, since these heuristics are used to determine valid upper bounds in the

first phase of UB&BC, they influence both the amount of computational effort required to terminate

the branch-and-bound process as well as the number of open solutions to be post-processed in the

second phase. For these reasons, it appears evident that our framework should primarily be used for

solving two-stage SMIPs where the subproblems, which comprises a set of deterministic problems, one

for each scenario, can be solved by effective heuristics procedures. Meanwhile, there exists a wide range

of classical problems for which an effective solution heuristic exists for the deterministic subproblems:

the traveling salesman problem (Lin and Kernighan 1973), the vehicle routing problem (Laporte et al.

2000), the knapsack problem (Wilbaut et al. 2008), the job shop scheduling problem (Gere Jr 1966), the

parallel machine scheduling problem (Mokotoff 2001), and the unit commitment problem (Najafi et al.
2012). Thus, we can leverage efficient heuristics originally developed for a wide range of combinatorial

problems in this framework. Many two-stage SMIPs have a recourse problem which is an extension of

one of these classical problems (e. g., Sen and Higle 2005, Zheng et al. 2013, Angulo et al. 2016). If one

manages to extend existing heuristics to accommodate the specific features of the considered recourse

problem, then one can use our solution framework and expect to achieve good performance. In the case

where no efficient heuristic procedure is available for the recourse problem, one can heuristically solve

the subproblems by truncating the solution process of a general-purpose MIP solver, e. g.stop when

the first feasible solution is found. While this configuration does not maximize the performance of

UB&BC, we computationally demonstrate in Section F.2.5 that our framework can achieve satisfying

results without using a tailored subproblem heuristic. We also demonstrate the uses of simple heuristics

for different SSLP variants and various TSP heuristics for the 2TSP in this work.

3.3 Accelerating UB&BC

Because of its flexibility, our framework can be combined with various acceleration techniques. We next

describe two problem-solving components that can be used in conjunction with UB&BC and further

improve its speed of convergence, namely, partial Benders decomposition and multi-term disjunctive

cuts.

Les Cahiers du GERAD G–2020–54 – Revised 9

3.3.1 Partial Benders reformulation.

It is recognized that standard Benders decomposition often yields a weak computational performance

(Rahmaniani et al. 2017). Indeed, as the subproblems are projected out from the master problem and

replaced with Benders cuts, the algorithm would need to generate a significant number of Benders cuts

to capture the elements present in the subproblems. Recently, multiple studies have focused on the

development of enhanced Benders decomposition strategies to circumvent this effect and reduce the

number of iterations until convergence.

Crainic et al. (2014, 2016) recently proposed the Partial Benders Decomposition (PBD) for solving

two-stage stochastic programs with continuous second-stage variables, fixed recourse matrix, and fixed

recourse cost. As a result, in this section we omit the scenario index from parameters qomega and Tomega.

The idea is to strengthen the master problem with information relative to the scenario subproblems,

which can be done by adding variables and constraints associated with an artificial scenario ω′ derived

from the original scenarios. In partial Benders reformulation, a valid artificial scenario ω′ must define

a convex combination of the original scenarios, where the weight of each original scenario ω ∈ Ω

is characterized as αω′

ω ≥ 0,
∑

ω∈Ω αω′

ω = 1. Specifically, the artificial scenario yields the strongest

possible bound when αω′

ω = pω, ∀ω ∈ Ω (Crainic et al. 2016). The stochastic parameters associated

with the artificial scenario ω′ are: Tω′ =
∑

ω∈Ω αω′

ω Tω and hω′ =
∑

ω∈Ω αω′

ω hω. By including the

second-stage requirement associated with the artificial scenario into the standard master problem, one

can formulate the enhanced master problem as follows:

min cTx+
∑
ω∈Ω

pωzω (Enhanced master problem)

s.t. Ax ≥ b (6a)

Tω′x+ yω′ ≥ hω′ (6b)

qT yω′ =
∑
ω∈Ω

pωzω (6c)

fT (hω − Tx) ≤ 0 ∀f ∈ Fω,∀ω ∈ Ω (6d)

oT (hω − Tx) ≤ zω ∀o ∈ Oω,∀ω ∈ Ω (6e)

x ∈ X, yω′ ≥ 0.

Continuous variables yω′ model the second-stage decisions associated with the artificial scenario.
Constraints (6b) ensure that all master problem solutions are feasible for the artificial scenario, while

constraints (6c) enforce the estimate of the recourse costs to reflect the cost of second-stage decisions

taken for the artificial scenario.

Crainic et al. (2016) demonstrate that the enhanced master problem is a relaxation of the original

problem (DEF) such that, when second-stage variables are continuous, the classical Benders algorithm

based on the enhanced master problem converges to an optimal solution. Consequently, when solving

two-stage SMIPs with discrete recourse, UB&BC based on a partial Benders reformulation also con-

verges to an optimal solution. Thus, we can employ two master problem formulations for UB&BC:

the standard master problem and the enhanced master problem. The latter is preferred as it yields

stronger bounds, but it can only be applied for two-stage SMIPs with fixed recourse matrix and fixed

recourse cost.

3.3.2 Convexification procedure.

As discussed in Section 2, many solution algorithms for two-stage SMIPs with discrete recourse are

based on polyhedral approximations. Such approaches (Sen and Higle 2005, Ntaimo 2010, Gade et al.

2014, Qi and Sen 2017) embed a cutting-plane procedure that progressively characterizes the convex

hulls of each second-stage mixed-integer program, such that integral second-stage solutions can be

Les Cahiers du GERAD G–2020–54 – Revised 10

obtained while solving the LP relaxation of the scenario subproblems. The integration of such a

convexification procedure appears to be suited when tackling two-stage SMIPs where the second-stage

problems have weak LP relaxations. Recall that in Phase I of UB&BC, for each integral master

solution x̂ we compute a lower bound lb(opt(x̂)) by combining first-stage costs with the maximum

value between estimated recourse costs and optimal solutions to the subproblems LP relaxation. This

lower bound is used to discard master solutions as well as to prune nodes in the branch-and-bound

tree, thus reducing the computational burden of both Phases I and II. Therefore, the quality of this

lower bound is crucial and the use of a convexification procedure for tightening the LP relaxation of

the scenario subproblems can be beneficial.

The CPT algorithm (Chen et al. 2011, 2012) is a finite disjunctive programming (Balas 1979)

procedure that characterizes the convex hull of general mixed-integer linear programs with bounded

integer variables. Thus, embedding this procedure in UB&BC does not reduce our scope as the

CPT algorithm does not require structural assumptions on the subproblems. As a pure cutting-plane

procedure, the CPT algorithm iteratively: (i) solves the LP relaxation of the considered problem,

(ii) identifies a fractional variable in the solution, (iii) determines a disjunction on that variable to

construct a cut-generating linear program (CGLP), (iv) solves the CGLP, and (v) adds the resulting

cut to the LP relaxation of the problem. These steps are iterated until an optimal solution satisfying

integrality requirements is obtained. Specifically, the CPT algorithm keeps track of a branching tree

that defines a hierarchy of multi-term disjunctions, which are used to construct an enhanced CGLP.

For more details on the CPT algorithm, we refer the interested reader to Chen et al. (2011, 2012).

In the context of a Benders decomposition-based algorithm, as the CPT algorithm is operated on

the subproblems, it should be noted that the formulation of the CGLP is based on the branching

decisions taken for the master problem (Qi and Sen 2017). As a consequence, the cutting planes

produced by the CGLPs, as well as the Benders cuts obtained from the convexified subproblem, are

not global. They are only valid in the subtree rooted at the node where they were generated in the

first-stage branch-and-bound. Specifically, let x̂ and ˆ̂x be distinct candidate master solutions and let

ω be a scenario. The cutting planes obtained by applying the CPT algorithm to subproblem SPω(x̂)

are valid for subproblem SPω(ˆ̂x) iff ˆ̂x belongs to the subtree of x̂ in the first-stage branch-and-bound.

Thus, to gradually define the convex hull of the scenario subproblems while ensuring the convergence

of the Benders algorithm, scenario subproblems associated with a given master solution x̂ should only

be reinforced with cutting planes inherited from ancestor nodes in the master branch-and-bound tree.

In addition, as scenario subproblems SPω(x̂) are convexified according to the branching decisions that

led to master solution x̂, the resulting Benders cuts are local and valid solely for nodes in the subtree

of x̂ in the first-stage branch-and-bound. We refer the interested reader to Qi and Sen (2017) for more

details on the integration of the CPT algorithm within a Benders decomposition-based algorithm.

Phase I of UB&BC combined with the CPT algorithm is described in Appendix B.

4 Benchmark problems

We consider two different stochastic optimization problems as benchmarks for the UB&BC: the stochas-

tic server location problem (SSLP) and the stochastic traveling salesman problem with outsourcing

(2TSP). For each problem, we present its deterministic equivalent formulation, its standard Benders

reformulation, the heuristic used to solve the Benders subproblem, and the characteristics of the test

instances. Note that both problems involve fixed recourse matrices and fixed recourse costs, which

enables using partial Benders reformulation. These reformulations are presented in Appendix C.

4.1 Stochastic server location problem

The server location problem (Berman and Mandowsky 1986) is a variant of the facility location problem

with a focus on congestion. It aims to locate a number of servers (facilities) with fixed capacity so as

to maximize service quality. Service quality is determined as a measure that each client gives to every

Les Cahiers du GERAD G–2020–54 – Revised 11

server. Unlike in the facility location problem, in the server location problem one can decide to pay a

fee for unmet demand instead of having to open new servers.

The stochastic variant of the server location problem captures uncertainty regarding customer

demands. In this section, we describe the SSLP studied by Ntaimo and Sen (2005), where first-stage

decisions are binary and second-stage decisions can be binary and continuous. Note that two SSLP

variants that allow general integer variables in both stages are also used as benchmarks for the UB&BC.

These variants are described in Appendix E.

4.1.1 Stochastic mixed-integer program.

Let I and J denote the sets for the clients and the potential server locations, respectively. Installing a

server at location j incurs a cost cj . Only one server can be installed per location, and no more than

V servers can be installed in total. Let Z denote a given set of zones and let Jz be the subset of server

locations that belong to zone z ∈ Z. There is a requirement that at least wz servers be located in a

zone z ∈ Z.

All servers have the same resource capacity of D units. For each client i ∈ I and each server

j ∈ J , there is a resource demand of dij units. As a client i ∈ I is assigned to a server j ∈ J , dij
units are used to served the demand and doing so generates qij units of revenue. Each client must

be served by exactly one server. If the total demand assigned to a server j ∈ J exceeds its capacity,

an overflow is necessary, incurring a penalty cost of qj0 per unit. Note that revenues qij and qj0 are

described as scenario-dependent parameters in the model proposed by Ntaimo and Sen (2005), but

they do not vary from one scenario to another in the instances they propose. We thus define revenues

as scenario-independent parameters for the sake of simplicity.

Each scenario ω ∈ Ω has a probability pω to occur. The stochastic aspects of the problem are

represented by binary parameters hω
i that indicate whether or not client i is present in scenario ω.

The decision variables are the following:

• binary variables xj take value 1 if and only if a server is located at site j

• binary variables yωij take value 1 if and only if client i is served by server j in scenario ω

• continuous variables yωj0 represent the overflow associated with server j in scenario ω

The stochastic server location problem is formulated as follows:

min
∑
j∈J

cjxj −
∑
ω∈Ω

pω

∑
i∈I

∑
j∈J

qijy
ω
ij −

∑
j∈J

qj0y
ω
j0

 (SSLP)

s.t.
∑
j∈J

xj ≤ V (7a)

∑
j∈Jz

xj ≥ wz ∀z ∈ Z (7b)

∑
i∈I

dijy
ω
ij − yωj0 ≤ Dxj ∀j ∈ J, ∀ω ∈ Ω (7c)∑
j∈J

yωij = hω
i ∀i ∈ I, ∀ω ∈ Ω (7d)

xj ∈ B, yωij ∈ B, yj0 ≥ 0.

The objective function aims to minimize the total cost, i. e., the difference between the total instal-

lation cost and the total expected revenue. The constraint (7a) ensures that no more than V servers

are installed. Constraints (7b) ensure that the required number of servers are installed in the differ-

ent zones. For each server and each scenario, constraints (7c) ensure that resource capacities are not

Les Cahiers du GERAD G–2020–54 – Revised 12

exceeded and regulate overflows accordingly. The requirement that each client present in a scenario is

served by exactly one server is enforced by constraints (7d).

4.1.2 Benders decomposition.

The deterministic equivalent formulation presented above can be decomposed into a two-stage stochas-

tic mixed-integer program where the first stage consists in locating the servers and the second stage

consists in assigning clients to the servers. This yields a valid Benders decomposition where, once the

first-stage variables are fixed, the subproblem decomposes into |Ω| parts, yielding one subproblem per

scenario.

To generate cuts we use the dual relaxed subproblem associated with the projected y variables.

Let Iω be the set of clients that are present in scenario ω ∈ Ω. For each scenario ω ∈ Ω, we define

the dual variables uω and vω associated with constraints (7c) and (7d), respectively. Let the dual

constraints (8a) and (8b) correspond to the variables of the form yωij and yωj0, respectively. Given a

first-stage solution x̂ computed by the master problem, the cut-generating subproblem associated with

scenario ω ∈ Ω is formulated as follows:

max
∑
i∈I

hω
i v

ω
i −

∑
j∈J

Dx̂ju
ω
j (Sub[ω])

s.t. −diju
ω
j + vωi ≤ −qij ∀i ∈ I, j ∈ J (8a)

uω
j ≤ qj0 ∀j ∈ J (8b)

uω
j ≥ 0, vωi ∈ R.

Then, the master problem is formulated as follows:

min
∑
j∈J

cjxj −
∑
ω∈Ω

pωzω (Standard master)

s.t. (7a)− (7b)∑
i∈I

hω
i v

ω
i −

∑
j∈J

Dxju
ω
j ≤ zω (uω, vω) ∈ Oω,∀ω ∈ Ω (9a)

xj ∈ B, zω ∈ R.

The objective function aims to minimize the total installation cost. Constraints (9a) are the

standard Benders optimality cuts added dynamically after solving the scenario subproblems, with

Oω representing the extreme points of the dual subproblem polyhedron associated with scenario ω.

Note that Benders feasibility cuts are not considered. Indeed, as infinite overflows are allowed, the

subproblem is feasible regardless of the first-stage solution prescribed by the master problem.

4.1.3 Subproblem heuristic.

In Ntaimo and Sen (2005), the authors propose an algorithm to solve the SSLP as a whole. However,

we are only interested in a heuristic to solve a deterministic scenario – once servers have been located

by the master problem. Berman and Drezner (2006) propose a heuristic for the case where demand

points can also be servers. The resulting heuristic is described in Appendix D.1 (see Algorithm 3).

4.1.4 Instances.

We use the instances introduced by Ntaimo and Sen (2005) which are available on the SIP test problem

library: https://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html. (See Appendix D.2 for

a summary.)

https://www2.isye.gatech.edu/~sahmed/siplib/sslp/sslp.html

Les Cahiers du GERAD G–2020–54 – Revised 13

The instances, which are described by the name “SSLP m n S,” vary according to three parameters:

the number of potential server locations (m), the number of client locations (n), and the number of

scenarios (S). Ntaimo and Sen (2005) introduce three instance classes that vary according to the

number of servers and clients considered. These instance classes are summarized in Table 7.

4.2 Stochastic traveling salesman with routing recourse decisions

We now introduce the two-stage stochastic traveling salesman with outsourcing (2TSP) a novel variant

of the Profitable Tour Problem (PTP, Dell’Amico et al. 1995) with stochastic customers (Zhang et al.

2017). In itself, the PTP is a variant of the TSP with profits; for more details on these problems, we

refer the interested reader to Feillet et al. (2005).

The 2TSP aims to construct a vehicle route that minimizes the delivery cost from a depot to a set

of customers. Conversely to the PTP, the aim is not to maximize the profits collected during the tour

but rather to balance travel cost and outsourcing fees. The first stage determines which customers will

be served by the vehicle if they happen to make a request in the second-stage. Customers that are

not selected in the second stage will potentially need to be served by the third-party, which incurs a

first-stage booking fixed cost. In the second stage, some customers request a service and the recourse

decisions consist in determining a route visiting all the selected customers assigned to the vehicle in

the first stage who have requested service. On the other hand, customers with requests that have not

been assigned to the vehicle in the first stage are outsourced to the third-party, which incurs a service

cost. The application of this problem arises in the context of repair and maintenance services where

the provider/technician can choose a set of customers to serve using their vehicle and outsource the

service for the remaining customers to an external provider. The challenge of solving this problem lies

in the fact that the routing decisions are scenario-dependent and are determined in the second stage.

Thus, the Benders subproblem corresponds to a traveling salesman problem associated with a given

set of selected customers that made a request in each scenario.

4.2.1 Stochastic mixed-integer program.

We base our 2TSP formulation on the classic Dantzig-Fulkerson-Johnson (DFJ) model (Dantzig et al.

1954). This formulation has an exponential number of constraints and the model is solved using a

B&C. At the start, the model only contains the degree constraints (10b) and thus allows sub-tours.

At each integer solution, a procedure checks if the solution contains a sub-tour. If so, a constraint

preventing this sub-tour is added. The first solution which does not contain a sub-tour is the optimal

one.

We recall below the model for the symmetric TSP with SECs. We define:

• N , the set of all nodes;

• cij , the cost (distance) between two nodes; and

• E(Y) =
{
(i, j)

∣∣ i < j, (i, j) ∈ Y 2
}
, the set of all edges forming a complete graph given a set of

nodes Y .

We define the TSP with outsourcing as the problem of determining (i) the set of customers to be

served by the vehicle in the first stage, and (ii) the route to serve the selected customers who made

a request in the second stage so as to minimize the total expected routing and outsourcing cost to

serve (stochastic) customer requests. We consider a set of scenarios ω ∈ Ω, each with a probability

pω of occurring. In each scenario, we use parameters hω
i to represent whether customer i ∈ N has a

request. Regarding costs, we refer to bi as the cost paid to book third-party capacity in the first-stage

for customer i ∈ N , and we refer to di as the third-party second-stage service cost for customer i ∈ N .

Finally, cij reflects the travel cost from customer i ∈ N to customer j ∈ N . In addition, we assume,

without loss of generality, that at least C customers must be served by the vehicle.

Les Cahiers du GERAD G–2020–54 – Revised 14

In the deterministic equivalent formulation below (2TSP), we use the following decision variables:

• xi, binary variable taking value 1 iff customer i is visited by the vehicle;

• yωij , binary variable taking value 1 iff edge (i, j) is used in scenario ω.

• βω
i , binary variable taking value 1 iff customer i is not selected in the first stage and happens to

have a request in scenario ω.

This leads to the following formulation:

min
∑
i∈N

bi(1− xi) +
∑
ω∈Ω

pω

 ∑
(i,j)∈E(N)

cijy
ω
ij+

∑
i∈N

diβ
ω
i

 (2TSP)

s.t.
∑
i∈N

xi ≥ C (10a)∑
j∈N

yωij = 2xih
ω
i ∀i ∈ N, ∀ω ∈ Ω (10b)

∑
(i,j)∈E(S)

yωij ≤ |S| − 1 S ⊆ N, |S| ≥ 2,∀ω ∈ Ω (10c)

βω
i = (1− xi)h

ω
i ∀i ∈ N, ∀ω ∈ Ω (10d)

xi ∈ B, yωij ∈ B, βω
i ∈ B.

The objective functions minimizes the sum of the first-stage third-party booking costs and the

second-stage travel costs and third-party service costs. The constraint (10a) ensures that at least C

customers are visited. Constraints (10b) are the degree constraints. Constraints (10c) are the sub-tour

elimination constraints. Constraints (10d) update the value of the auxiliary variables βω
i .

4.2.2 Benders decomposition.

The deterministic equivalent formulation presented above can be decomposed into a first stage, which

consists in selecting the customers to include in the tour while paying outsourcing fees for required

customers that are not selected, and a second stage which aims to construct tours between the selected

customers that have a request. This yields a valid Benders decomposition where each scenario forms

an independent subproblem. Hence, each subproblem is an instance of a TSP based on the nodes

which have a request in this scenario.

To generate cuts, we use the dual subproblem based on said TSP, where for each scenario ω ∈ Ω,

we define uω, vω and wω as the dual variables associated with constraints (10b) to (10d), respectively.

Given a first-stage solution x̂ computed by the master problem, the subproblem associated with scenario

ω ∈ Ω is formulated as follows:

max
∑
i∈N

(2x̂ih
ω
i)u

ω
i +

∑
S⊂N

|S|≥2

(|S| − 1)vωS +
∑
i∈N

((1− x̂i)h
ω
i)w

ω
i (Sub[ω])

s.t. uω
i −

∑
{S⊂N |(i,j)∈S }

vωS ≤ cij ∀(i, j) ∈ E(N) (11a)

wω
i ≤ di ∀i ∈ N (11b)

uω
i ∈ R, vωS ≥ 0.

We solve the subproblem in its primal form, which is an LP relaxation of a TSP, using the standard

cutting-plane technique for the TSP (Dantzig et al. 1954).

Les Cahiers du GERAD G–2020–54 – Revised 15

The master problem is formulated as follows:

min
∑
i∈N

(1− xi)bi +
∑
ω∈Ω

pωzω (Standard master)

s.t. (10a)∑
i∈N

2xih
ω
i u

ω
i +

∑
S⊂N

|S|≥2

(|S| − 1)vωS+
∑
i∈N

((1− xi)h
ω
i)w

ω
i ≤ zω

∀(uω, vω) ∈ Oω,∀ω ∈ Ω (12a)

xi ∈ B, zω ≥ 0.

The objective function aims to minimize the penalties for not including customers in the tour. Con-

straints (12a) are the standard Benders optimality cuts added dynamically after solving the scenario

subproblems, with Oω representing the extreme points of the dual subproblem polyhedron associated

with scenario ω. Again, Benders feasibility cuts are not considered as the subproblem is feasible

regardless of the first-stage solutions prescribed by the master problem.

4.2.3 Subproblem heuristics.

Considering how hard optimal solutions are to obtain, we can make use of well-known TSP heuristics

in the literature to quickly determine solutions of good quality. We decided on four heuristics to

get upper bounds, all of them are local search heuristics, which means they improve a given solution

until no improvement can be found. Obviously, more sophisticated TSP heuristics could be used in

this stage as well. However, we opted to use these heuristics as they are simple to implement and

demonstrate the efficiency and flexibility of our UB&BC approach.

• Nearest neighbor starts at a random customer and, at every step, chooses to visit the closest

unvisited customer. This heuristic gives poor results in the general case as it does not consider

the layout of the tour at all.

• 2-opt looks for two edges which, if swapped, would yield an improvement in the tour and repeats

this process until no further improvement can be found. This heuristic is one of the most

commonly used as it has a simple implementation and fairly low complexity of O(n2).

• 3-opt is similar to 2-opt, but it tries to find three edges leading to an improvement instead of

two. In this case, the search becomes quite expensive with a complexity of O(n3).

• LKH is our implementation of the Lin-Kernighan heuristic (Lin and Kernighan 1973), us-

ing enhancements proposed in Helsgaun (2000) – implementation details can be found in Ap-

pendix F.2.1. This heuristic is considered the state of the art and has a complexity of O(n2.2).

4.2.4 Instances.

We define our instances using the classic TSPLib (Reinelt 1991) instances which can be found at :

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.The scenarios are generated

using the following parameters:

• Number of scenarios Between 50 and 500, with an increment of 50, which result in 10 instances

of 2STP per each original TSP instance.

• Customer requests Customers have a random uniform chance (80%) of appearing in each scenario.

We also make sure not to have duplicate scenarios.

• Unserved requests costs We define the costs incurred by not visiting a customer with a request

as the distance between the customer and the depot: bi = d0,i,∀i ∈ N .

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

Les Cahiers du GERAD G–2020–54 – Revised 16

5 Computational study

In this section, we evaluate the performance of three versions of our UB&BC. The first version, UB&BC

Base, refers to our framework without acceleration techniques. The second version, UB&BC CPT,

refers to our framework with the convexification procedure. The third version, UB&BC Partial, refers

to our framework with partial Benders reformulation. Note that we also implemented a version that

integrates both acceleration techniques, but we do not report the corresponding results as it turned

out that the performance of this version was far worse. This is because this approach suffers from

numerical issues, which is also an issue mentioned in Qi and Sen (2017). More specifically, the extra

constraints considered in the improved master problem yield a CGLP formulation with poor numerical

stability. Performance indicators are obtained by solving different instances of the stochastic server

location problem (SSLP). As these SSLP instances are generally used to benchmark algorithms for

two-stage SMIPs with discrete recourse (e. g., Ntaimo and Sen 2005, Guo et al. 2015, Gade et al. 2014,

Atakan and Sen 2018, Qi and Sen 2017), we report the results found in the corresponding articles.

We also perform an extensive series of experiments on instances of the stochastic traveling salesman

problem with outsourcing (2TSP) to gain insights into how the different components of UB&BC play

a role in its performance.

Our algorithm is coded in Python 3.5 and its implementation is available in the GitLab project:

https://gitlab.com/Soha/brandec and it is executed on the Compute Canada HPC cluster.1 The

experiments are conducted on an Intel E5-2683 processor with a 2.1GHz CPU on a single thread and

with 12 GB of RAM. Linear and integer programs are solved using CPLEX v12.7.

5.1 Performance of UB&BC on the SSLP

Algorithms for two-stage SMIPs with discrete recourse are often benchmarked on instances of the

SSLP, especially because these instances involve a significant number of discrete variables (Ntaimo

and Sen 2005). Three SSLP variants are studied in the literature, with each variant being different

from another regarding the type of variables it involves in the first stage and the second stage. We

sort these SSLP variants by ascending difficulty. In the 1st variant, the first stage involves binary

variables while the second stage involves binary/continuous variables. In the 2nd variant, the first

stage involves binary variables while the second stage involves binary/integer variables. In the 3rd

variant, also referred to as the stochastic server location and sizing (SSLS), both stages solely involve

general integer variables. These SSLP variants are summarized in Table 2.

Table 2: Type of variables involved in the different SSLP variants

1st Stage 2nd Stage

R B Z R B Z
1st variant ⋆ ⋆ ⋆
2nd variant ⋆ ⋆ ⋆
3rd variant ⋆ ⋆

Note that the 3rd variant requires a modified heuristic for solving the subproblem. We present

our modified allocation heuristic in Appendix E.4. As there already exist several efficient algorithms

for solving two-stage stochastic mixed-integer programs with binary first and second stages, we focus

on the last two variants. These variants correspond to a difficult class of problems that remains to

be addressed in the literature. Therefore, we compare UB&BC with the two state-of-the-art solution

approaches:

• the decomposition algorithm with parametric Gomory cuts (Gomory) proposed by Gade et al.

(2014);

1Complete specifications available on calculquebec.ca.

https://gitlab.com/Soha/brandec
https://wiki.calculquebec.ca/w/Table_summarizing_properties_of_Calcul_Qu%25C3%25A9bec_servers

Les Cahiers du GERAD G–2020–54 – Revised 17

• the ancestral Benders’ cutting plane algorithm (ABC) proposed by Qi and Sen (2017).

The first approach is benchmarked on the 2nd SSLP variant, while the second approach is benchmarked

on the 3rd SSLP variant.

Providing a fair comparison between our approach and those of Gade et al. (2014) and Qi and Sen

(2017) would require running experiments in the same computing environment. However, because the

codes for these approaches are not available, we report scaled computation times according to the type

of processor employed in Gade et al. (2014) and Qi and Sen (2017). In a similar way as Glize et al.

(2020), we use the PassMark single thread rating2 as a performance indicator of the processors and

we determine scaling coefficient values accordingly, i. e., for processors A and B we use a relationship

of the form RATA = RBTB , where R is the single thread rating and T is the computation time. In

Table 3, for each article we report the type of processor employed, the associated single thread rating,

and the scaling coefficient. Note that, as Qi and Sen (2017) do not specify the exact model of their Intel

CoreQuad processor, we retained the lowest single thread rating among all Intel CoreQuad processors,

i. e., the most powerful candidate processor.

Even though this method allows us to draw comparisons with other approaches, we want to remark

that this scaled computing time is a rough approximation which can be inaccurate and the information

is provided supplementarily. We thus refrain from drawing strong conclusions with respect to the

superiority of our approaches versus the approaches in the literature and we focus our analyses on

computational insights of the proposed algorithms.

Table 3: CPU characteristics

Method SSLP variant Processor Single thread rating Scaling coefficient

Gomory 2 Intel CoreQuad (2.66GHz) 1,079 0.64
ABC 3 Intel i7-3770K (3.5GHz) 2,066 1.23

UB&BC 2,3 Intel E5-2683 (2.1GHz) 1,677 1.00

5.1.1 Results on the 2nd SSLP variant.

We solve instances of the 2nd SSLP variant and we compare the two versions of UB&BC as well

as scaled times for the decomposition algorithm with parametric Gomory cuts (Gomory). For each

instance, the best computation time at termination is indicated in bold.

Table 4: Performance on the 2nd SSLP variant

UB&BC

Base CPT Partial Gomory

Instance Time (s) Time (s) Time (s) Time o (s) Time s (s)

SSLP 5 25 50 0.88 2.74 0.52 0.18 0.12
SSLP 5 25 100 1.73 7.86 1.14 0.22 0.14
SSLP 5 50 50 0.80 5.38 0.61 0.27 0.17
SSLP 5 50 100 1.81 9.50 0.97 0.48 0.31
SSLP 10 50 50 16.67 65.28 16.82 109.20 69.89
SSLP 10 50 100 42.73 135.87 30.38 218.42 139.79
SSLP 10 50 500 416.22 1013.99 282.38 740.38 473.84
SSLP 10 50 1000 1,135.81 2,488.74 731.04 1,615.42 1,033.87
SSLP 10 50 2000 4,742.90 6996.37 1,783.62 2,729.61 1,746.95

We first observe that using the convexification procedure is not worth it in that case as the extra

computational effort spent does not allow to reduce computation times. In particular, UB&BC Base

outperforms UB&BC CPT on all the instances and converges 3.65 times faster overall. On the other

2Data available at https://www.cpubenchmark.net/singleThread.html

https://www.cpubenchmark.net/singleThread.html

Les Cahiers du GERAD G–2020–54 – Revised 18

hand, using the partial decomposition is beneficial as UB&BC Partial converges 1.60 times faster than

UB&BC Base overall, and outperforms it on all instances but SSLP 10 50 50.

5.1.2 Results on the 3rd SSLP variant.

We solve instances of the 3rd SSLP variant and we compare two versions of UB&BC as well as scaled

times for the ancestral Benders’ cutting plane algorithm (ABC). For each instance, the best com-

putation time at termination is indicated in bold. We indicate timeouts (longer than 3,600s) with

‘t/o’.

Table 5: Performance on the 3rd SSLP variant

UB&BC UB&BC

Base CPT Partial ABC Base CPT Partial ABC

Instance SSLS Time (s) Time (s) Time (s) Time o (s) Time s (s) Instance SSLS Time (s) Time (s) Time (s) Time o (s) Time s (s)

(2×5) (5×5) 50 0,25 0,36 0,48 0,30 0,37 (3×5) (10×5) 500 6,94 12,83 7,50 27,15 33,39
(2×5) (5×5) 100 0,33 0,55 0,71 0,38 0,47 (3×5) (15×5) 50 0,98 1,88 1,18 181,92 223,76
(2×5) (5×5) 500 2,20 3,34 3,77 3,58 4,40 (3×5) (15×5) 100 1,51 4,39 4,05 19,56 24,06
(2×5) (10×5) 50 0,31 1,31 0,46 0,52 0,64 (3×5) (15×5) 500 6,65 60,37 11,75 1069,92 1316,00
(2×5) (10×5) 100 0,93 1,02 1,10 4,84 5,95 (4×5) (5×5) 50 0,40 1,49 0,38 1,59 1,96
(2×5) (10×5) 500 3,01 8,93 3,95 4,43 5,45 (4×5) (5×5) 100 0,58 1,91 1,29 3,36 4,13
(2×5) (15×5) 50 0,97 0,76 1,22 4,26 5,24 (4×5) (5×5) 500 3,92 9,47 5,00 20,99 25,82
(2×5) (15×5) 100 0,73 0,80 0,99 1,64 2,02 (4×5) (10×5) 50 1,28 7,73 2,39 3,60 4,43
(2×5) (15×5) 500 6,33 7,40 8,86 51,28 63,07 (4×5) (10×5) 100 3,45 20,48 5,50 261,89 322,12
(3×5) (5×5) 50 0,17 0,54 0,29 0,59 0,73 (4×5) (10×5) 500 13,31 29,67 31,74 745,61 917,10
(3×5) (5×5) 100 0,52 0,73 0,59 1,23 1,51 (4×5) (15×5) 50 4,23 6,21 7,14 1653,67 2034,01
(3×5) (5×5) 500 3,36 7,45 4,83 7,09 8,72 (4×5) (15×5) 100 3,59 6,39 5,46 t/o t/o
(3×5) (10×5) 50 2,92 3,01 3,86 4,68 5,76 (4×5) (15×5) 500 83,73 34,68 106,42 t/o t/o
(3×5) (10×5) 100 2,25 4,14 2,87 158,61 195,09

Overall, we observe that the acceleration techniques are not beneficial in that case. Indeed, UB&BC

Base outperforms UB&BC CPT on 25 out of the 27 instances, and it outperforms UB&BC Partial on

26 out of the 27 instances. When analyzing the results, we observe that the first phase of UB&BC

(i. e., the B&B) is twice longer as the partial Benders reformulation is applied. This likely comes from

the increase in size of the master problem: the original problem is quite small – four master problem

variables for the largest instances. When using a partial formulation, we add up to 60 additional

variables – one per client, per server. Although we observe that the partial reformulation does find a

better lower bound faster, this does not translate to faster convergence.

In a similar manner, using a CPT to raise the subproblem’s bounds does not offset the extra

computational effort. Indeed, in the Base configuration, solving the subproblems does not exceed 50%

of the total time – see Section G. When we use a subproblem with a CPT, solving the subproblem
represents up to 90% of the total time. We conclude that strengthening the bounds produced by

the master problem is at the cost of an extra computational effort that is too significant to improve

convergence speed in this case. In terms of scaled times, all versions of UB&BC appear more effective

than the ABC algorithm.

5.2 Performance of UB&BC on the 2TSP

We perform an extensive series of experiments on the instances of the stochastic traveling salesman

problem with outsourcing (2TSP). These instances are more combinatorially challenging and allow us

to assess the performance of our framework on a difficult problem. We focus on two versions of our

framework, namely UB&BC Base and UB&BC Partial, as incorporating the convexification procedure

does not increase computational performance. Instances are described in Section 4.2.4. Figure 2 shows

the performance of the two versions of UB&BC on different instances of the TSPLib, based on their

size. The size of the instance is defined as the number of variables in the model, used as a proxy

for difficulty. We plot the results of using the UB&BC with its best performing heuristic (LKH, cf.

Figure 7) against the DEF MIP formulation solved with CPLEX implementation of branch-and-cut.

Note that we use further algorithmic refinements in UB&BC Partial, namely: merging procedure

(Appendix F.2.2) and subproblem warm-up (Appendix F.2.3).

Les Cahiers du GERAD G–2020–54 – Revised 19

5 478 952 1425

variables (x1000)

0

4200

8400

12600

16800

21000
T
o
ta
l
ti
m
e
(s
)

UB&BC Enhanced

UB&BC Base

MIP

Figure 2: Solving time per (estimated) size of 2TSP
instances using a generic MIP solver, UB&BC Base or
UB&BC Partial.

b
u
rm

a
1
4

u
ly
ss
es
1
6

g
r1
7

g
r2
1

g
r2
1

u
ly
ss
es
2
2

g
r2
4

fr
i2
6

b
ay
s2
9

b
ay
g
2
9

b
ay
g
2
9

d
a
n
tz
ig
4
2

sw
is
s4
2

g
r4
8

h
k
4
8

ei
l5
1

ei
l5
1

b
er
li
n
5
2

ei
l7
6

26

50

31

13

17 18

10 10

17

24

22

42

26

10 12

42

23

26

18

3

6

3

1

2 2

1 1

2

3

1

5

3

1
1

5

2

3

2

Master solutions Solved MIPs

Figure 3: Number of master solutions explored and and the
number of MIPs solved in the post-processing phase when
using 100 scenarios.

The results in Figure 2 and Table 6 clearly show the superiority of the UB&BC over CPLEX.

Specifically, Figure 2 demonstrate that, when solving the DEF, the computation time required by

CPLEX increases significantly with the number of variables considered. On the other hand, the

results of Table 6 indicate that 154 instances were solved to optimality by UB&BC Partial whereas

CPLEX could solve the DEF to optimality for only 12 instances.

Table 6: Number of instances of 2TSP solved using a MIP or the UB&BC approach.

UB&BC UB&BC

Instance (/10) MIP Base Partial Instance (/10) MIP Base Partial

att48 0 0 0 gr17 0 10 10
bayg29 1 3 10 gr21 3 10 10
bays29 0 1 10 gr24 8 10 10
berlin52 0 0 10 gr48 0 0 10
brazil58 0 0 0 hk48 0 0 10
burma14 0 10 10 pr76 0 0 0
dantzig42 0 0 10 st70 0 0 0
eil51 0 0 10 swiss42 0 0 10
eil76 0 0 10 ulysses16 0 10 10
fri26 0 8 10 ulysses22 0 0 4

One of the main goals of the UB&BC is to reduce the number of open solutions we have to solve

to integer optimality. Figure 3 shows the number of solutions explored during the master B&C and

the number of MIPs solved in the post-processing phase. Our strategy proves to always be beneficial:

there is not a single instance with as many MIPs solved as solutions explored. We also have a number

of instances where the first solution solved in the post-processing phase allows us to prune all the

others.

Les Cahiers du GERAD G–2020–54 – Revised 20

To further analyze the performance of UB&BC, we study the impact of using a partial Benders

decomposition as well as the impact of the subproblem heuristic in Appendices F.1 and F.2, respec-

tively.

6 Conclusions

In this paper, we presented a new framework for solving two-stage stochastic mixed-integer programs.

Our Unified Branch-and-Benders-Cut (UB&BC) tackles two-stage stochastic mixed-integer programs

with uncertainty in all the recourse parameters, and it accommodates general mixed-integer variables

in both the first and the second stage. The UB&BC relies on both linear programming duality and

on a heuristic global bounding procedure to determine a set of open master solutions. In a post-

processing phase, the scenario subproblems associated with these open solutions are solved to integer

optimality, enabling us to determine the global optimum. We also demonstrated the flexibility of our

approach which can incorporate acceleration techniques such as partial Benders decompositions or

convexification schemes.

Through an extensive series of experiments carried out on instances of the stochastic server location

problem (SSLP), we have computationally demonstrated that the basic version of our framework,

as well as that with partial Benders reformulation, can be quite effective. On the other hand, the

version integrating the convexification scheme appeared to be computationally less effective for the

considered problems. We have also performed a computational study on the two-stage stochastic

traveling salesman with outsourcing (2TSP) to assess the efficiency of each component of UB&BC. In

particular, we have shown that partial decomposition creates a virtuous circle of improvement. With

it, the algorithm explores fewer integer master solutions during the branch-and-Benders-cut and thus

reduces the computational burden of the post-processing phase. We have also highlighted how using

an efficient bounding heuristic can significantly improve the algorithm’s speed of convergence.

Finally, two advantages of our framework are simplicity and flexibility. We believe that this straight-

forward approach is a great candidate for building more advanced algorithms and tackling larger, more

difficult problems. There are computational enhancements that we have not explored. For example,

we only consider single-threaded execution; modern computing relies on multicore infrastructures and

we could solve either the B&C or the post-processing phase in parallel. Another area of interest is

to exploit the structure of scenarios, not only from a computational point of view but also to in-

form the master problem. Other possible avenues include advanced branching schemes, improved cut

generation, or constraint propagation.

Appendix A Toy problem

We use a toy problem with four variables to illustrate how the UB&BC proceeds. For the sake of

simplicity, we consider a problem with a single subproblem. Consider the following integer program:

min 6x1 + 10x2 + y1 + 2y2 (Toy)

s.t. −15x1 − 22x2 + 5y1 + 8y2 ≤ 0 (13a)

y1 + y2 ≥ 1.5 (13b)

x ∈ B, y ∈ {0, 1, 2}.

If we relax integrality and project out variables y, we obtain the following LP relaxation for the

subproblem:

q(x̂) = min y1 + 2y2 (Toy Sub)

s.t. 5y1 + 8y2 ≤ 15x̂1 + 22x̂2 (λ1)

Les Cahiers du GERAD G–2020–54 – Revised 21

y1 + y2 ≥ 1.5 (λ2)

y1 ≤ 2 (λ3)

y2 ≤ 2 (λ4)

y ≥ 0.

We denote by λi the dual variables associated with the constraints of the model above. Let O be

the set of extreme points and F the set of extreme rays associated with the dual of (Toy Sub). If we

denote by q the variable representing the lower estimator of the subproblem, we obtain the following

master problem:

min 6x1 + 10x2 + q (Toy Master)

s.t. −λ1(15x1 + 22x2) + 1.5λ2 − 2(λ3 + λ4) ≤ q ∀λ ∈ O (15a)

−λ1(15x1 + 22x2) + 1.5λ2 − 2(λ3 + λ4) ≤ 0 ∀λ ∈ F (15b)

x ∈ B.

As a heuristic for the subproblem, we will round the value of the variables in a solution to their

next integer: h(y) = ⌈y1⌉+ 2⌈y2⌉.

A.1 Master Branch-and-Cut

At the start, we have ub∗ = ∞ and lb∗ = 0, and all x variables relaxed to their continuous domain.

1. The first integer master solution we find when solving (Toy Master) without any constraints is

x1 = (0, 0) with value 0. Setting x1 in (Toy Sub) results in an infeasible problem. Using a Farkas

certificate (Farkas 1902), we find the extreme ray (1, 5, 0, 0) and thus add the following feasibility

cut to the master problem:

−15x1 − 22x2 + 7.5 ≤ 0 (16)

2. Augmented by the new constraint (16), the next master solution becomes x2 = (0, 1) with

value 10. We pass the new solution to the subproblem, and this results in a feasible solution

Y = {1.5, 0}. Thus we can update the lower bound to lb∗ = 11.5 and the upper bound to

ub∗ = 12.

We add the following optimality cut from the dual values of (Toy Sub):

1.5 ≤ q (17)

3. Now having two Benders cuts, the search of the master’s solution space proceeds to x3 = (1, 0)

with value 6. Again, we find Y = {1.5, 0} as solution to the subproblem. We can add the same

optimality cut again, or just skip it. However, we can update the bounds to lb∗ = 7.5 and

ub∗ = 8.

4. The search continues until the next potential master solution x4 = (1, 1) with value 16. At this

node, we find that the master’s solution value already exceeds our upper bound. We can thus

prune the tree rooted at this node.

0, 0

lb∗ = 0− ub∗ = ∞

X1

0, 1

lb∗ = 11.5− ub∗ = 12

X2

1, 0

lb∗ = 7.5− ub∗ = 8

X3

1, 1

z = 16 > ub∗

X4
Add (16) Add (17)

Figure 4: Example search when using UB&BC with problem (Toy).

Les Cahiers du GERAD G–2020–54 – Revised 22

A.2 Post-processing

After the B&B of the master problem finishes, we have a set of explored solutions with their upper

and lower bounds saved. We reintroduce the integrality constraints and solve the resulting MIPs to

obtain the optimal integer value.

1. We start with the solution found at node 3 as it has the lowest upper bound. Solving the

associated MIP gives us the solution Y 1 = {2, 0} with an objective value of 6 + 2 = 8. We can

either use this value as upper bound or keep the previous value of ub∗.

2. The lower bound of the solution associated with node 2 is already higher than our current best

upper bound, we can thus discard the solution.

Appendix B Hybridizing UB&BC and the CPT algorithm

Algorithm 2: Phase I of UB&BC with CPT algorithm

Data: An original problem, P , and a subproblem heuristic, H
Z = ∅, ub∗ = ∞, D = 2
Define the master problem, MP , and the scenario subproblems, SPω , from P
begin Solve MP by a B&B and apply the following steps at each node in the search tree:

Solve current node LP relaxation
if LP relaxation ≥ ub∗ OR node is infeasible then

Fathom node

else if An integer solution x̂ of the MP is found then
foreach Scenario ω ∈ Ω do

Solve the LP relaxation of subproblem SPω(x̂)

if Global Benders cuts are identified then
Add global Benders cuts to MP
Go to step 5

Compute the improved lower bound lb(opt(x̂))
if lb(opt(x̂)) > ub∗ then

Prune the current node

else
foreach Scenario ω ∈ Ω do

Reinforce SPω(x̂) with inherited cutting planes
Apply D iterations of the CPT algorithm to SPω(x̂)
Add the corresponding local Benders cut to MP
Save the newly generated cutting planes

Compute new lower bound lb+(opt(x̂)) using solutions of the reinforced subproblems
D += 2

if lb+(x̂) > ub∗ then
Prune the current node

else
Add (x̂, lb+(x̂)) to Z
foreach Scenario ω ∈ Ω do

Solve subproblem SPω(x̂) with the heuristic H

if A heuristic solution was found for all the scenario subproblems then
Compute the heuristic upper bound ub(opt(x̂))
ub∗ = min(ub∗, ub(opt(x̂)))

Choose a new variable to branch on

else
Choose a variable to branch on

Result: A set of candidate solutions Z

Les Cahiers du GERAD G–2020–54 – Revised 23

Appendix C Partial Benders reformulations

C.1 SSLP partial Benders reformulation

To improve the solutions produced by the master problem, we include an artificial scenario ω′ defined

as a mean of all the original scenarios. In the SSLP, scenario-dependent parameters are characterized

by the binary parameters hω
i that indicate whether or not client i is present in scenario ω. Therefore,

for each client i, we define hω′

i as
∑

ω∈Ω pωh
ω
i . Given continuous variables yω

′

ij and yω
′

j0 associated with

the artificial scenario ω′, the enhanced master problem is formulated as follows:

min
∑
j∈J

cjxj −
∑
ω∈Ω

pωzω (Enhanced master)

s.t. (7a)− (7b), (9a) and∑
i∈I

dijy
ω′

ij − yω
′

j0 ≤ Dxj ∀j ∈ J (18a)∑
j∈J

yω
′

ij = hω′

i ∀i ∈ I (18b)

∑
i∈I

∑
j∈J

qijy
ω′

ij −
∑
j∈J

qj0y
ω′

j0 =
∑
ω∈Ω

pωzω (18c)

xj ∈ B, zω ≥ 0, 0 ≤ yω
′

ij ≤ 1, yω
′

j0 ≥ 0.

The standard master problem is enhanced with constraints (18a) to (18c). Constraints (18a)

and (18b) ensure that all master problem solutions are feasible for the artificial scenario, while con-

straint (18c) enforces the estimate of the recourse costs to reflect the expected revenue associated with

the artificial scenario.

C.2 2TSP partial Benders reformulation

We improve the solutions produced by the master problem by including an artificial scenario ω′ defined

as the mean of all the original scenarios. Scenario-dependent parameters are characterized by the binary

parameters hω
i that indicate whether or not customer i has a request in scenario ω. Therefore, for each

customer i, we define hω′

i as
∑

ω∈Ω pωh
ω
i . Given continuous variables yω

′

ij associated with the artificial

scenario ω′, the enhanced master problem is formulated as follows:

min
∑
i∈N

(1− xi)bi +
∑
ω∈Ω

pωzω (Enhanced master)

s.t. (10a)− (12a)∑
j∈N

yω
′

ij = 2xih
ω′

i ∀i ∈ N (19a)

zω
′

i = (1− xi)h
ω′

i ∀i ∈ N (19b)∑
(i,j)∈E(N)

cijy
ω′

ij =
∑
ω∈Ω

pωzω (19c)

xi ∈ B, 0 ≤ yω
′

ij ≤ 1, zω ∈ R.

The standard master problem is enhanced with constraints (19a) and constraints (19b) ensuring

that all master problem solutions are feasible for the artificial scenario. Last constraints (19c) enforce

the estimate of the recourse costs to reflect the cost of the tour computed for the artificial scenario.

Les Cahiers du GERAD G–2020–54 – Revised 24

Appendix D Supplement to the experimental design

D.1 SSLP subproblem heuristic

Algorithm 3: Allocation heuristic for the SSLP.

Data: The set of nodes N
Data: The set of opened servers J

Sj = 0, ∀j ∈ J foreach i ∈ N do
Di = { dij | ∀j ∈ J }
Sort each Di in ascending order

δi = D0
i −D1

i

N ′ = sort N by decreasing opportunity δ
foreach i ∈ N ′ do

k = argmink∈J Sk +Dk
i ≤ D

Sk = Sk +Dk
i

Result: An allocation of nodes i to servers j

D.2 SSLP instances

Instances in the SIPLib (Ntaimo and Sen 2005) are generated according to the following rules.

• Problem data are generated from uniform distributions:

– server location cost in [40, 80];

– client demands in [0, 25];

– client-server revenue equal to the demand;

– overflow cost qj0 = 1000,∀j ∈ J ;

– one server location per node.

• The scenario data are generated from a Bernoulli distribution:

– a client is present in a scenario with probability p = 0.5;

– we check that there are no duplicate scenarios.

• The difficulty of an instance is controlled by a ratio (r) of the total server capacity to the

maximum possible demand – the lower the r, the harder the instance as servers cannot fulfill the

demand.

Table 7: Instance class characteristics

Class m n S

1 5 25 {50, 100}
2 10 50 {50, 100, 500, 1000, 2000}
3 15 45 {5, 10, 15}

Les Cahiers du GERAD G–2020–54 – Revised 25

Appendix E SSLP variants

Algorithm 4: Allocation heuristic for the SSLS.

Data: The vector of active clients N ∈ Nn

Data: The vector of opened servers J ∈ Nm

Sj = 0, ∀j ∈ J foreach ni ∈ N do
Di = { dij | ∀mj ∈ J }
Sort each Di in ascending order

δi = D0
i −D1

i

N ′ = sort N by decreasing opportunity δ
foreach ni ∈ N ′ do

for n = 0; n < ni; n+=1 do
k = argminj∈J Sk +Dk

i ≤ D ∗ j

Sk = Sk +Dk
i

Result: An allocation of nodes i to servers j

Two variants of the SSLP are also used to benchmark our solution approach. These problems

are more challenging than the original SSLP in the sense that they allow general integer variables in

both stages. In this section, we describe the deterministic equivalent formulation associated with these

SSLP variants.

E.1 Comparison with D2, PH-DD, and PH-B&B (1st SSLP variant).

We compare the two versions of UB&BC to the disjunctive decomposition algorithm (D2), the in-

tegrated progressive hedging dual decomposition algorithm (PH-DD) and the progressive hedging

branch-and-bound (PH-B&B), which are all benchmarked on the 1st SSLP variant. In Table 8, we

present the computation time required by each version of UB&BC to reach termination. For the state-

of-the-art approaches, we report computation times from the original article in column Time o. When

the single thread performance is available, the scaled computation times, i. e., computation times di-

vided by the corresponding scaling coefficient values, are reported in column Time s. Note that a dash

‘-’ indicates that the considered instance was not tested in the corresponding article.

Table 8: Performance on the 1st SSLP variant

UB&BC

Base Partial CPT D2 PH-DD PH-B&B

Instance Time (s) Time (s) Time (s) Time o (s) Time o (s) Time o (s) Time s (s)

SSLP 5 25 50 0.64 0.45 1.75 0.53 - 0.50 0.76
SSLP 5 25 100 1.43 0.91 3.45 1.06 - 1.10 1.67
SSLP 10 50 50 16.90 15.63 52.83 239.95 74.00 8.70 13.24
SSLP 10 50 100 37.25 23.34 123.22 480.46 175.00 18.60 28.31
SSLP 10 50 500 428.53 270.85 880.26 1,902.20 1,033.00 80.80 122.98
SSLP 10 50 1000 1,193.19 626.87 2,227.68 5,410.10 - 163.60 249.00
SSLP 10 50 2000 5,050.26 1,911.34 6,925.33 9,055.29 - 309.60 471.21
SSLP 15 45 5 0.52 0.27 4,503.85 110.34 - 1.40 2.13
SSLP 15 45 10 12.65 16.98 21.55 1,494.89 45.00 2.40 3.65
SSLP 15 45 15 41.50 64.53 40.90 7,210.63 123.00 3.20 4.87

As expected, using the partial Benders reformulation is beneficial as, overall, UB&BC Partial

converges 1.44 times faster than UB&BC Base. For most instances, the computation times obtained

with the two versions of UB&BC are lower than those reported for the D2 and the PH-DD algorithms.

However, as single thread performances are not available for these state-of-the-art approaches, we

cannot provide a fair comparison.

Both versions of UB&BC are competitive with PH-B&B on the instances that involve 5 servers.

This is not the case as the number of servers increases. Overall, PH-B&B is 1.84 times faster than

Les Cahiers du GERAD G–2020–54 – Revised 26

UB&BC Partial on the instances that involves 10 servers, and 12.63 times faster on the instances that

involves 15 servers. Nevertheless, it should be noted that the PH-B&B algorithm only accommodates

binary variables in the first stage and cannot tackle the 3rd SSLP variant.

E.2 Stochastic server location problem with pure integer second stage

The first SSLP variant is introduced by Gade et al. (2014) and involves pure discrete variables in both

the first and the second stage. Specifically, the SSLP with pure integer second stage is obtained by

changing the declaration of the yj0 variables in (SSLP) to: yj0 ∈ N

E.3 Stochastic server location problem and sizing problem

The second SSLP variant is introduced by Qi and Sen (2017) and involves pure general integer variables

in both the first stage and the second stage. In the stochastic server location and sizing problem (SSLS),

the number of servers that can be installed at a potential server location is limited to u units, and

each client location may consist of up to v clients. Similarly to the first version, the declaration of the

yj0 variables is changed from continuous to integer. Also, the declaration of the xj and yωij variables

is changed from binary to integer, and bounded by u and v, respectively. Note that, in this second

SSLP variant, the stochastic parameters hω
i are integer and indicate the number of clients at location

i in scenario ω.

xj ∈ {0, 1, . . . , u}, yωij ∈ {0, 1, . . . , v}, yj0 ∈ N.

Qi and Sen (2017) introduce SSLS instances that vary according to the following parameters: the

number of potential server locations (m), the maximum number of servers allowed for each location

(u), the number of client locations (n), the maximum number of potential clients for each locations

(v), and the number of scenarios (S). Consequently, these instances are described by the name “SSLS-

(m u)-(n v)-S.” The authors describe 9 instance classes that are summarized in Table 9.

Table 9: Instance class characteristics

Class m u n v S

1 2 5 5 5 {50, 100, 500}
2 2 5 10 5 {50, 100, 500}
3 2 5 15 5 {50, 100, 500}
4 3 5 5 5 {50, 100, 500}
5 3 5 10 5 {50, 100, 500}
6 3 5 15 5 {50, 100, 500}
7 4 5 5 5 {50, 100, 500}
8 4 5 10 5 {50, 100, 500}
9 4 5 15 5 {50, 100, 500}

E.4 Allocation heuristic for the SSLS

The SSLS can be seen as a generalization of the SSLP. We need to adapt our allocation heuristic to

take into account multiple clients and multiple servers per location. The resulting heuristic is shown

in Algorithm 4.

Les Cahiers du GERAD G–2020–54 – Revised 27

Appendix F Analyzing the performance of UB&BC for 2TSP

F.1 Impact of the partial Benders decomposition

We now study the impact of using a partial Benders decomposition. Using the 2TSP as example, we

add an artificial scenario ω′ to the master problem (Section C.2). In Figure 5 we present the results

of using the enhanced master formulation.

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000

T
im

e
(s
)

Base

Enhanced

Instance: fri26

50 200 350 500

Base

Enhanced

Instance: bayg29

Figure 5: Solving time of the Base formulation (Auto heuristic and regular MP) and the partial formulation (warmed LKH
and extended MP).

At virtually no cost, extending the master formulation with subproblem variables provides the best

improvement. We can see that both scatter plots follow a linear progression in the number of scenarios,

but the extended formulation has a much better scaling. This has been the most efficient optimization

we have found to improve the performance of our framework from a modelling point of view.

This is further exemplified in Table 10 where we report the number of solutions explored during

the master’s B&C. Overall, the number of integer solutions explored by the partial reformulation is

more than 7 times smaller than the number of integer solutions explored by the Base formulation. This

number goes down to about 1%, effectively eliminating most of the search. By having fewer master

solutions explored, we have less work remaining in the post-processing phase.

Table 10: Average number of master solutions explored during the B&C. We only report instances where the Base
configuration managed to finish.

Instance Base UB&BC Partial UB&BC Ratio (%)

burma14 57.60 9.70 16.84
ulysses16 156.70 17.80 11.36
gr17 113.70 4.80 4.22
gr21 12.70 3.00 23.62
gr24 7.00 3.00 42.86
fri26 33.50 3.00 8.96
bays29 425.50 4.00 0.94
bayg29 355.40 3.30 0.93

Les Cahiers du GERAD G–2020–54 – Revised 28

F.2 Impact of the subproblem heuristic

We now analyze the performance of the heuristics used in the 2TSP.

F.2.1 LKH heuristic implementation details.

The Lin-Kernighan and Helsgaun heuristic tries to build a tour by identifying promising moves. It

starts with a random tour, identifies one edge to remove and one to add which improve the tour length.

Instead of stopping at this point, like in 2-opt, it tries to find other edges with the same property.

It then restarts from the new, improved tour. The strength of this heuristic comes from combining

simple local search operators with intelligent rules. For example, when searching for a pair of edges,

the resulting configuration must form a tour.

We did not implement all improvements proposed by Helsgaun. Our current implementation uses:

• Solution removal : stop the search if we find a previous solution.

• Allow disjoint tours: early in the search, allow the improving configuration to be a disjoint tour.

• Order neighbors: order the neighbors from closest to furthest for each node.

F.2.2 Merging solutions.

We represent the master solution and the scenario realization as binary strings: a ‘1’ indicates that the

node is selected, a ‘0’ that it is not. As the master problem uses every node available and a scenario

is a realization on this set of nodes, we can extract a merged configuration from the master solution

and the scenario realization by performing a binary and between the two.

Such a configuration can occur given different master solution and/or scenario realization:

Table 11: Merging procedure: different master/scenario combinations can lead to the same configuration.

Master Scenario Configuration
[0, 1, 1, 0] & [1, 0, 1, 0] = [0, 0, 1, 0]
[0, 1, 1, 1] & [1, 0, 1, 0] = [0, 0, 1, 0]
[0, 1, 1, 0] & [1, 0, 1, 1] = [0, 0, 1, 0]

By keeping track of explored configurations, we can reduce the computational effort by simply

recalling previous results. Figure 6 is a graphic representation of the merging procedure applied to the

2TSP in the contiguous U.S. instance, att48.

F.2.3 Warm-up procedure.

One weakness of our UB&BC algorithm is the loss of information with regards to integer solutions of

the subproblem. As a way to retain some of this information we can exploit exact solutions to the TSP.

Because our goal is to avoid solving large MIPs repeatedly, we use the following warm-up procedure:

• Before starting the master B&B, solve every scenario as a MIP to optimality, we thus obtain

optimal tours for each realization.

• Use these tours as starting solutions for the heuristics. Indeed, our heuristics are local search

heuristics which means that they try to improve a starting solution. The quality of the initial

tour may thus have a large influence on the final solution.

• Finally, we can also use the optimal tours as starting basis for the MIPs in the post-processing

phase. Providing a MIP solver with an initial solution is a well-known strategy for speeding-up

the process as it allows the solver to derive strong bounds early on.

Les Cahiers du GERAD G–2020–54 – Revised 29

Master Sub-Problem Combination

Figure 6: The first column contains the master configurations, the second the subproblem realizations, and the last is
the resulting TSP.

F.2.4 Problem-specific heuristics.

Figure 7 presents the results of using the four local search heuristics on fri26 and bayg29 using 25

to 500 scenarios. The results show a clear difference based on the quality of the heuristic: the Greedy

heuristic performs the worst, reaching the time limit before reaching 200 scenarios.

The difference in performance between 2- and 3-opt shows clearly with a larger number of scenarios.

This is because the master B&B for 3-opt takes longer than for 2-opt, but this translates into a shorter

post-processing phase. On a larger number of scenarios 3-opt is therefore a better choice.

Figure 8 shows a detailed execution on fri26 with 100 scenarios. We report the evolution of the

LP relaxation objective function value and the heuristic value per iteration – each integer solution

explored in the master B&B. The black line shows the best upper bound.

The main result is that the better the heuristic, the fewer iterations because the gap is closed

much earlier. This example displays why better heuristics achieve better performances in the post-

processing phase. Indeed, by exploring fewer solutions the algorithm has to solve fewer MIPs after

the B&B finishes. We have two extreme cases between Greedy and LKH: the latter explores ten times

fewer solutions by virtue of providing a solution very close to the optimal.

Overall, LKH dominates the results. It does more work at each integer solution of the master

problem but reduces the number of solution explored to such an extent that it results in a much faster

post-processing and overall solving time.

F.2.5 Zero-knowledge heuristics.

Using problem-specific heuristics still requires the user to develop, or at least implement, an efficient

algorithm. We claim that our framework only requires knowledge of the model. We now present

results using an approach that does not require the use of a tailored algorithm: using the first feasible

solution given by the MIP formulation of the subproblem. This heuristic was implemented using the

Les Cahiers du GERAD G–2020–54 – Revised 30

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000

T
im

e
(s
)

Greedy

LKH

3-Opt
2-Opt

Instance: fri26

50 200 350 500

Greedy

LKH

3-Opt 2-Opt

Instance: bayg29

Figure 7: Comparison of different heuristics as upper-bounding procedures.

1 15 29 42 56 70

O
b
je
ct
iv
e

Greedy

1 5 10 14 19 23

2-opt

LP Relaxation

Heuristic

UB

1 5 9 14 18 22

Master solutions

O
b
je
ct
iv
e

3-opt

1 2 33 4 5

Master solutions

LKH

Figure 8: Upper, lower, and best upper bound values per iteration on fri26 with 100 scenarios.

Les Cahiers du GERAD G–2020–54 – Revised 31

same solver as the framework: CPLEX v12.7. Figure 9 provides the results compared to the best

(LKH) and worst (Greedy) performing heuristics.

50 200 350 500

Scenarios

0

4200

8400

12600

16800

21000

T
im

e
(s
)

Greedy

LKH

CPLEX

Instance: fri26

50 200 350 500

Greedy

LKH

CPLEX

Instance: bayg29

Figure 9: Comparison of the automatic heuristic vs. best performing heuristic, LKH, and worst performing, Greedy.

What is interesting is that although the automatic heuristic performs way worse than the best

TSP heuristic, it is still better than Greedy. This shows that one needs to be careful when designing

a heuristic, but if need be using a commercial solver can be useful. Using an exact heuristic has no

benefit as the extra computational load far outweighs the chance of an early stop – which did not occur

during our testing.

In conclusion, using a strong heuristic is critical in order to increase the convergence of the algo-

rithm. A good heuristic reduces the number of solutions the B&B tree has to explore by providing a

tight bound on the integer value. Also, we have demonstrated that solving the subproblem to opti-

mality at each master solution is actually a computational burden that can be lightened by using a

post-processing phase.

Appendix G Detailed results SSLP

Les Cahiers du GERAD G–2020–54 – Revised 32

Table 12: Time spent in the different parts of UB&BC runs, using different configurations

Time (s)

Servers Customers Scenarios Config Post-proc. SP Heur. B&B

5 25 50 Base 0.077943 0.531158 0.116505 0.799818
CPT 0.077585 1.956821 0.109472 2.206591
Partial 0.076836 0.261214 0.056886 0.441129

100 Base 0.156101 1.054196 0.230608 1.561920
CPT 0.156787 7.159993 0.220886 7.700159
Partial 0.153678 0.608542 0.141440 0.951720

50 50 Base 0.084756 0.511853 0.083647 0.698363
CPT 0.086029 4.985654 0.084826 5.179629
Partial 0.086004 0.261080 0.043448 0.518671

100 Base 0.170217 1.203006 0.202197 1.629878
CPT 0.172479 8.910363 0.192744 9.328162
Partial 0.170916 0.476216 0.076142 0.794671

10 50 50 Base 2.021315 8.005147 1.422345 12.550967
CPT 0.000000 48.976449 1.549209 53.992955
Partial 1.958222 8.546058 1.401625 13.420269

100 Base 3.859151 22.521213 4.138341 38.874840
CPT 0.000000 110.817125 3.315072 123.219645
Partial 3.873439 14.808524 2.690785 24.276417

500 Base 17.484479 126.401408 23.047190 374.476796
CPT 0.000000 664.036933 18.835176 880.262527
Partial 19.973128 92.364577 16.653616 256.777123

1000 Base 34.283313 200.584712 34.465520 1101.529486
CPT 0.000000 1287.790039 35.398000 2318.291747
Partial 37.224851 175.986187 27.577001 658.798723

2000 Base 0.000000 490.562348 89.146689 4605.410268
CPT 0.000000 2533.492528 67.716871 6930.645608
Partial 0.000000 331.985994 56.937112 1783.622511

Table 13: Time spent in the different parts of UB&BC runs, using different configurations

Num. nodes

Servers Customers Scenarios Config Solutions Post-proc.

5 25 50 Base 18 1
CPT 18 1
Partial 9 1

100 Base 18 1
CPT 18 1
Partial 11 1

50 50 Base 14 1
CPT 14 1
Partial 7 1

100 Base 16 1
CPT 16 1
Partial 6 1

10 50 50 Base 174 3
CPT 174 0
Partial 148 3

100 Base 181 2
CPT 181 0
Partial 116 2

500 Base 202 3
CPT 202 0
Partial 143 3

1000 Base 191 3
CPT 191 0
Partial 137 3

2000 Base 186 0
CPT 166 0
Partial 123 0

Les Cahiers du GERAD G–2020–54 – Revised 33

References
Ahmed S, Tawarmalani M, Sahinidis NV (2004) A finite branch-and-bound algorithm for two-stage stochastic

integer programs. Mathematical Programming 100(2):355–377.

Angulo G, Ahmed S, Dey SS (2016) Improving the integer L-shaped method. INFORMS Journal on Computing
28(3):483–499.

Atakan S, Sen S (2018) A progressive hedging based branch-and-bound algorithm for mixed-integer stochastic
programs. Computational Management Science 15(3-4):501–540.

Balas E (1979) Disjunctive programming. Annals of discrete mathematics 5:3–51.

Benders JF (1962) Partitioning procedures for solving mixed variables programming problems. Numerische
Mathematik 4:238–252.

Berman O, Drezner Z (2006) Location of congested capacitated facilities with distance-sensitive demand. IIE
Transactions 38(3):213–221.

Berman O, Mandowsky RR (1986) Location-allocation on congested networks. European Journal of Operational
Research 26(2):238–250.

Birge JR, Louveaux FV (1997) Introduction to stochastic programming (Springer Science & Business Media).

Carøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Operations Research
Letters 24(1–2):37–45.

Carøe CC, Tind J (1998) L-shaped decomposition of two-stage stochastic programs with integer recourse.
Mathematical Programming 83(1-3):451–464.

Chen B, Küçükyavuz S, Sen S (2011) Finite disjunctive programming characterizations for general mixed-
integer linear programs. Operations Research 59(1):202–210.

Chen B, Küçükyavuz S, Sen S (2012) A computational study of the cutting plane tree algorithm for general
mixed-integer linear programs. Operations research letters 40(1):15–19.

Crainic TG, Hewitt M, Rei W (2014) Partial decomposition strategies for two-stage stochastic integer programs.
Publication CIRRELT–2014–13, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la
logistique et le transport, Université de Montréal, Montréal QC, Canada.

Crainic TG, Rei W, Hewitt M, Maggioni F (2016) Partial Benders decomposition strategies for two-stage
stochastic integer programs. Publication CIRRELT–2016–37, Centre interuniversitaire de recherche sur
les réseaux d’entreprise, la logistique et le transport, Université de Montréal, Montréal QC, Canada.

Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Journal of the
Operations Research Society of America 2(4):393–410.

De Camargo RS, de Miranda Jr G, Ferreira RP (2011) A hybrid outer-approximation/Benders decomposition
algorithm for the single allocation hub location problem under congestion. Operations Research Letters
39(5):329–337.

Dell’Amico M, Maffioli F, Varbrand P (1995) On prize-collecting tours and the asymmetric travelling salesman
problem. International Transactions in Operational Research 2(3):297–308, URL http://doi.wiley.

com/10.1111/j.1475-3995.1995.tb00023.x.

Elçi Ö, Hooker J (2022) Stochastic planning and scheduling with logic-based benders decomposition. INFORMS
Journal on Computing.

Farkas J (1902) Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik
124:1–27.

Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transportation Science
39(2):188–205.

Fortz B, Poss M (2009) An improved Benders decomposition applied to a multi-layer network design problem.
Operations Research Letters 37(5):359–364.

Gade D, Küçükyavuz S, Sen S (2014) Decomposition algorithms with parametric Gomory cuts for two-stage
stochastic integer programs. Mathematical Programming 144(1-2):39–64.

Gendron B, Scutellà MG, Garroppo RG, Nencioni G, Tavanti L (2016) A branch-and-Benders-cut method for
nonlinear power design in green wireless local area networks. European Journal of Operational Research
255(1):151–162.

Gere Jr WS (1966) Heuristics in job shop scheduling. Management Science 13(3):167–190.

Glize E, Roberti R, Jozefowiez N, Ngueveu SU (2020) Exact methods for mono-objective and bi-objective
multi-vehicle covering tour problems. European Journal of Operational Research 283(3):812–824.

http://doi.wiley.com/10.1111/j.1475-3995.1995.tb00023.x
http://doi.wiley.com/10.1111/j.1475-3995.1995.tb00023.x

Les Cahiers du GERAD G–2020–54 – Revised 34

Guo G, Hackebeil G, Ryan SM, Watson JP, Woodruff DL (2015) Integration of progressive hedging and dual
decomposition in stochastic integer programs. Operations Research Letters 43(3):311–316.

Helsgaun K (2000) An effective implementation of the Lin–Kernighan traveling salesman heuristic. European
Journal of Operational Research 126(1):106–130.

Kong N, Schaefer AJ, Hunsaker B (2006) Two-stage integer programs with stochastic right-hand sides: A
superadditive dual approach. Mathematical Programming 108(2–3):275–296.

Küçükyavuz S, Sen S (2017) An introduction to two-stage stochastic mixed-integer programming. Leading
Developments from INFORMS Communities, 1–27 (INFORMS).

Laporte G, Gendreau M, Potvin JY, Semet F (2000) Classical and modern heuristics for the vehicle routing
problem. International transactions in operational research 7(4–5):285–300.

Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with complete
recourse. Operations Research Letters 13(3):133–142.

Larsen E, Frejinger E, Gendron B, Lodi A (2022) Fast continuous and integer L-shaped heuristics through
supervised learning. arXiv preprint arXiv:2205.00897.

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Operations
Research 21(2):498–516.

Mokotoff E (2001) Parallel machine scheduling problems: A survey. Asia-Pacific Journal of Operational Re-
search 18(2):193.

Najafi S, et al. (2012) A new heuristic algorithm for unit commitment problem. Energy Procedia 14:2005–2011.

Ntaimo L (2010) Disjunctive decomposition for two-stage stochastic mixed-binary programs with random
recourse. Operations Research 58(1):229–243.

Ntaimo L, Sen S (2005) The million-variable “march” for stochastic combinatorial optimization. Journal of
Global Optimization 32(3):385–400.

Qi Y, Sen S (2017) The ancestral Benders’ cutting plane algorithm with multi-term disjunctions for mixed-
integer recourse decisions in stochastic programming. Mathematical Programming 161(1–2):193–235.

Rahmaniani R, Crainic TG, Gendreau M, Rei W (2017) The Benders decomposition algorithm: A literature
review. European Journal of Operational Research 259(3):801–817.

Ralphs TK, Hassanzadeh A (2014) A generalization of Benders’ algorithm for two-stage stochastic optimization
problems with mixed integer recourse. Technical Report 14T–005, Department of Industrial and Systems
Engineering, Lehigh University.

Reinelt G (1991) Tsplib—A traveling salesman problem library. ORSA Journal on Computing 3(4):376–384.

Schultz R, Stougie L, Van Der Vlerk MH (1998) Solving stochastic programs with integer recourse by enumer-
ation: A framework using Gröbner basis. Mathematical Programming 83(1–3):229–252.

Sen S, Higle JL (2005) The C 3 theorem and a D 2 algorithm for large scale stochastic mixed-integer program-
ming: Set convexification. Mathematical Programming 104(1):1–20.

Sen S, Sherali HD (2006) Decomposition with branch-and-cut approaches for two-stage stochastic mixed-integer
programming. Mathematical Programming 106(2):203–223.

Sherali HD, Adams WP (1999) A Reformulation-Linearization technique for solving discrete and continuous
nnconvex problems. Kluwer Academic Publishers.

Sherali HD, Fraticelli BM (2002) A modification of Benders’ decomposition algorithm for discrete subproblems:
An approach for stochastic programs with integer recourse. Journal of Global Optimization 22(1–4):319–
342.

Sherali HD, Zhu X (2006) On solving discrete two-stage stochastic programs having mixed-integer first-and
second-stage variables. Mathematical Programming 108(2–3):597–616.

Trapp AC, Prokopyev OA, Schaefer AJ (2013) On a level-set characterization of the value function of an integer
program and its application to stochastic programming. Operations Research 61(2):498–511.

Van Slyke RM, Wets R (1969) L-shaped linear programs with applications to optimal control and stochastic
programming. SIAM Journal on Applied Mathematics 17(4):638–663.

Wilbaut C, Hanafi S, Salhi S (2008) A survey of effective heuristics and their application to a variety of
knapsack problems. IMA Journal of Management Mathematics 19(3):227–244.

Wolsey LA (1998) Integer Programming, volume 52 (John Wiley & Sons).

Zhang M, Wang J, Liu H (2017) The probabilistic profitable tour problem. International Journal of Enterprise
Information Systems 13(3):51–64.

Les Cahiers du GERAD G–2020–54 – Revised 35

Zheng QP, Wang J, Pardalos PM, Guan Y (2013) A decomposition approach to the two-stage stochastic unit
commitment problem. Annals of Operations Research 210(1):387–410.

	Introduction
	Literature review
	Unified Branch-and-Benders-Cut
	Description of the algorithm
	Discussion
	Accelerating UB&BC
	Partial Benders reformulation.
	Convexification procedure.

	Benchmark problems
	Stochastic server location problem
	Stochastic mixed-integer program.
	Benders decomposition.
	Subproblem heuristic.
	Instances.

	Stochastic traveling salesman with routing recourse decisions
	Stochastic mixed-integer program.
	Benders decomposition.
	Subproblem heuristics.
	Instances.

	Computational study
	Performance of UB&BC on the SSLP
	Results on the Lg SSLP variant.
	Results on the Lg SSLP variant.

	Performance of UB&BC on the 2TSP

	Conclusions
	Toy problem
	Master Branch-and-Cut
	Post-processing

	Hybridizing UB&BC and the CPT algorithm
	Partial Benders reformulations
	SSLP partial Benders reformulation
	2TSP partial Benders reformulation

	Supplement to the experimental design
	SSLP subproblem heuristic
	SSLP instances

	SSLP variants
	Comparison with D2, PH-DD, and PH-B&B (Lg SSLP variant).
	Stochastic server location problem with pure integer second stage
	Stochastic server location problem and sizing problem
	Allocation heuristic for the SSLS

	Analyzing the performance of UB&BC for 2TSP
	Impact of the partial Benders decomposition
	Impact of the subproblem heuristic
	LKH heuristic implementation details.
	Merging solutions.
	Warm-up procedure.
	Problem-specific heuristics.
	Zero-knowledge heuristics.

	Detailed results SSLP

