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Abstract : A small polygon is a polygon of unit diameter. The maximal area of a small polygon
with n = 2m vertices is not known when m ≥ 7. Finding the largest small n-gon for a given number
n ≥ 3 can be formulated as a nonconvex quadratically constrained quadratic optimization problem.
We propose to solve this problem with a sequential convex optimization approach, which is a ascent
algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons
with up to n = 128 sides suggest that the optimal solutions obtained are near-global. Indeed, for even
6 ≤ n ≤ 12, the algorithm proposed in this work converges to known global optimal solutions found
in the literature.

Keywords: Planar geometry, small polygons, maximal area, quadratically constrained quadratic
optimization, sequential convex optimization, concave-convex procedure
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon is

said to be small if its diameter equals one. For a given integer n ≥ 3, the maximal area problem consists

in finding the small n-gon with the largest area. The problem was first investigated by Reinhardt [1]

in 1922. He proved that

• when n is odd, the regular small n-gon is the unique optimal solution;

• when n = 4, there are infinitely many optimal solutions, including the small square;

• when n ≥ 6 is even, the regular small n-gon is not optimal.

The maximal area is known for even n ≤ 12. In 1961, Bieri [2] found the largest small 6-gon,

assuming the existence of an axis of symmetry. In 1975, Graham [3] independently constructed the

same 6-gon, represented in Figure 2c. In 2002, Audet, Hansen, Messine, and Xiong [4] combined

Graham’s strategy with global optimization methods to find the largest small 8-gon, illustrated in

Figure 3c. In 2013, Henrion and Messine [5] found the largest small 10- and 12-gons by also solving

globally a nonconvex quadratically constrained quadratic optimization problem. They also found the

largest small axially symmetrical 14- and 16-gons. In 2017, Audet [6] showed that the regular small

polygon has the maximal area among all equilateral small polygons. In 2020, Audet, Hansen, and

Svrtan [7] determined analytically the largest small axially symmetrical 8-gon.

The diameter graph of a small polygon is defined as the graph with the vertices of the polygon, and

an edge between two vertices if the distance between these vertices equals one. Graham [3] conjectured

that, for even n ≥ 6, the diameter graph of a small n-gon with maximal area has a cycle of length n−1

and one additional edge from the remaining vertex. The case n = 6 was proven by Graham himself [3]

and the case n = 8 by Audet, Hansen, Messine, and Xiong [4]. In 2007, Foster and Szabo [8] proved

Graham’s conjecture for all even n ≥ 6. Figure 1, Figure 2, and Figure 3 show diameter graphs of

some small polygons. The solid lines illustrate pairs of vertices which are unit distance apart.

In addition to exact results and bounds, uncertified largest small polygons have been obtained both

by metaheurisitics and nonlinear optimization. Assuming Graham’s conjecture and the existence of an

axis of symmetry, Mossinghoff [9] in 2006 constructed large small n-gons for even 6 ≤ n ≤ 20. In 2018,

using a formulation based on polar coordinates, Pinter [10] presented numerical solutions estimates of

the maximal area for even 6 ≤ n ≤ 80. However, the solutions obtained by Pinter are not optimal for

even n ≥ 32.

The maximal area problem can be formulated as a nonconvex quadratically constrained quadratic

optimization problem. In this work, we propose to solve it with a sequential convex optimization

approach, also knows as the concave-convex procedure [11, 12]. This approach is an ascent algorithm

guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons up to

n = 128 sides suggest that the optimal solutions obtained are near-global. Indeed, without assuming

Graham’s conjecture nor the existence of an axis of symmetry in our quadratic formulation, optimal

n-gons obtained with the algorithm proposed in this work verify both conditions within the limit of

numerical computations. Moreover, for even 6 ≤ n ≤ 12, this algorithm converges to known global

optimal solutions. The algorithm is implemented as a MATLAB-based package, OPTIGON, which is

available on GitHub [13]. OPTIGON requires that CVX [14] be installed.

The remainder of this paper is organized as follows. In Section 2, we recall principal results on

largest small polygons. Section 3 presents the quadratic formulation of the maximal area problem and

the sequential convex optimization approach to solve it. We report in Section 4 computational results.

Section 5 concludes the paper.
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(a) (R4, 0.5) (b) (R+3 , 0.5)

Figure 1: Two small 4-gons (P4, A(P4))

(a) (R6, 0.649519) (b) (R+5 , 0.672288) (c) (U6, 0.674981)

Figure 2: Three small 6-gons (P6, A(P6))

(a) (R8, 0.707107) (b) (R+7 , 0.725320) (c) (U8, 0.726868)

Figure 3: Three small 8-gons (P8, A(P8))

2 Largest small polygons

Let A(P) denote the area of a polygon P. Let Rn denote the regular small n-gon. We have

A(Rn) =

{
n
2

(
sin π

n − tan π
2n

)
if n is odd,

n
8 sin 2π

n if n is even.

We remark that A(Rn) < A(Rn−1) for all even n ≥ 6 [15]. This suggests that Rn does not have

maximum area for any even n ≥ 6. Indeed, when n is even, we can construct a small n-gon with a

larger area than Rn by adding a vertex at distance 1 along the mediatrix of an angle in Rn−1. We

denote this n-gon by R+n−1 and we have

A(R+n−1) =
n− 1

2

(
sin

π

n− 1
− tan

π

2n− 2

)
+ sin

π

2n− 2
− 1

2
sin

π

n− 1
.
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Theorem 1 (Reinhardt [1]) For all n ≥ 3, let A∗n denote the maximal area among all small n-gons

and let An := n
2

(
sin π

n − tan π
2n

)
.

• When n is odd, A∗n = An is only achieved by Rn.

• A∗4 = 0.5 < A4 is achieved by infinitely many 4-gons, including R4 and R+3 illustrated in Figure 1.

• When n ≥ 6 is even, A(Rn) < A∗n < An.

When n ≥ 6 is even, the maximal area A∗n is known for n ≤ 12. Using geometric arguments,

Graham [3] determined analytically the largest small 6-gon, represented in Figure 2c. Its area A∗6 ≈
0.674981 is about 3.92% larger than A(R6) ≈ 0.649519. The approach of Graham, combined with

methods of global optimization, has been followed by [4] to determine the largest small 8-gon, repre-

sented in Figure 3c. Its area A∗8 ≈ 0.726868 is about 2.79% larger than A(R8) ≈ 0.707107. Henrion

and Messine [5] found that A∗10 ≈ 0.749137 and A∗12 ≈ 0.760730.

For all even n ≥ 6, let Un denote the largest small n-gon.

Theorem 2 (Graham [3], Foster and Szabo [8]) For even n ≥ 6, the diameter graph of Un has a

cycle of length n− 1 and one additional edge from the remaining vertex.

Conjecture 1 For even n ≥ 6, Un has an axis of symmetry corresponding to the pending edge in its

diameter graph.

From Theorem 2, we note that R+n−1 has the same diameter graph as the largest small n-gon Un.

Conjecture 1 is only proven for n = 6 and this is due to Yuan [16]. However, the largest small polygons

obtained by [4] and [5] are a further evidence that the conjecture may be true.

3 Nonconvex quadratically constrained quadratic optimization

We use cartesian coordinates to describe an n-gon Pn, assuming that a vertex vi, i = 0, 1, . . . , n − 1,

is positioned at abscissa xi and ordinate yi. Placing the vertex v0 at the origin, we set x0 = y0 = 0.

We also assume that the n-gon Pn is in the half-plane y ≥ 0 and the vertices vi, i = 1, 2, . . . , n − 1,

are arranged in a counterclockwise order as illustrated in Figure 4, i.e., yi+1xi ≥ xi+1yi for all i =

1, 2, . . . , n− 2. The maximal area problem can be formulated as follows

max
x,y,u

n−2∑
i=1

ui (1a)

s. t. (xj − xi)2 + (yj − yi)2 ≤ 1 ∀1 ≤ i < j ≤ n− 1, (1b)

x2i + y2i ≤ 1 ∀1 ≤ i ≤ n− 1, (1c)

yi ≥ 0 ∀1 ≤ i ≤ n− 1, (1d)

2ui ≤ yi+1xi − xi+1yi ∀1 ≤ i ≤ n− 2, (1e)

ui ≥ 0 ∀1 ≤ i ≤ n− 2. (1f)

At optimality, for all i = 1, 2, . . . , n− 2, ui = (yi+1xi−xi+1yi)/2, which corresponds to the area of the

triangle v0vivi+1. It is important to note that, unlike what was done in [4, 5], this formulation does

not make the assumption of Graham’s conjecture, nor of the existence of an axis of symmetry.

Problem (1) is a nonconvex quadratically constrained quadratic optimization problem and can be

reformulated as a difference-of-convex optimization (DCO) problem of the form

max
z

g0(z)− h0(z) (2a)

s. t. gi(z)− hi(z) ≥ 0 ∀1 ≤ i ≤ m, (2b)

where g0, . . . , gm and h0, . . . , hm are convex quadratic functions. We note that the feasible set

Ω := {z : gi(z)− hi(z) ≥ 0, i = 1, 2, . . . ,m}
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v0(0, 0)

v1(x1, y1)

v2(x2, y2)
v3(x3, y3)

v4(x4, y4)

v5(x5, y5)

x

y

Figure 4: Definition of variables: Case of n = 6 vertices

is compact with a nonempty interior, which implies that g0(z)− h0(z) <∞ for all z ∈ Ω.

For a fixed c, we have g
i
(z; c) := gi(c) +∇gi(c)T (z − c) ≤ gi(z) for all i = 0, 1, . . . ,m. Then the

following problem

max
z

g
0
(z; c)− h0(z) (3a)

s. t. g
i
(z; c)− hi(z) ≥ 0 ∀1 ≤ i ≤ m (3b)

is a convex restriction of the DCO problem (2) as stated by Proposition 1. Constraint (1e) is equiva-

lent to

(yi+1 − xi)2 + (xi+1 + yi)
2 + 8ui ≤ (yi+1 + xi)

2 + (xi+1 − yi)2

for all i = 1, 2, . . . , n− 2. For a fixed (a, b) ∈ Rn−1 × Rn−1, if we replace (1e) in (1) by

(yi+1−xi)2+(xi+1+yi)
2+8ui ≤ 2(bi+1+ai)(yi+1+xi)−(bi+1+ai)

2+2(ai+1−bi)(xi+1−yi)−(ai+1−bi)2

for all i = 1, 2, . . . , n− 2, we obtain a convex restriction of the maximal area problem.

Proposition 1 If z is a feasible solution of (3) then z is a feasible solution of (2).

Proof. Let z be a feasible solution of (3), i.e., g
i
(z; c) − hi(z) ≥ 0 for all i = 1, 2, . . . ,m. Then

gi(z)− hi(z) ≥ g
i
(z; c)− hi(z) ≥ 0 for all i = 1, 2, . . . ,m. Thus, z is a feasible solution of (2).

Proposition 2 If c is a feasible solution of (2) then (3) is a feasible problem. Moreover, if z∗ is an

optimal solution of (3) then g0(c)− h0(c) ≤ g0(z∗)− h0(z∗).

Proof. Let c be a feasible solution of (3), i.e., gi(c) − hi(c) ≥ 0 for all i = 1, 2, . . . ,m. Then there

exists z = c such that g
i
(c; c)− hi(c) = gi(c)− hi(c) ≥ 0 for all i = 1, 2, . . . ,m. Thus, (3) is a feasible

problem. Moreover, if z∗ is an optimal solution of (3), we have g0(c) − h0(c) = g
0
(c; c) − h0(c) ≤

g
0
(z∗; c)− h0(z∗) ≤ g0(z∗)− h0(z∗).

From Proposition 2, the optimal small n-gon (x,y) obtained by solving a convex restriction of

Problem (1) constructed around a small n-gon (a, b) has a larger area than this one. Proposition 3

states that if (a, b) is the optimal n-gon of the convex restriction constructed around itself, then it is

a local optimal n-gon for the maximal area problem.

Proposition 3 Let c be a feasible solution of (2). We suppose that Ω(c) := {z : g
i
(z; c) − hi(z) ≥

0, i = 1, 2, . . . ,m} satisfies Slater condition. If c is an optimal solution of (3) then c is a critical point

of (2).
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Proof. If c is an optimal solution of (3) then there exist m scalars µ1, µ2, . . . , µm such that

∇g
0
(c; c) +

m∑
i=1

µi∇gi(c; c) = ∇h0(c) +

m∑
i=1

µi∇hi(c),

g
i
(c; c) ≥ hi(c) ∀i = 1, 2, . . . ,m,

µi ≥ 0 ∀i = 1, 2, . . . ,m,

µigi(c; c) = µihi(c) ∀i = 1, 2, . . . ,m.

Since g
i
(c; c) = gi(c) and ∇g

i
(c; c) = ∇gi(c) for all i = 0, 1, . . . ,m, we conclude that c is a critical

point of (2).

We propose to solve the DCO problem (2) with a sequential convex optimization approach given

in Algorithm 1, also known as concave-convex procedure. A proof of showing that a sequence {zk}∞k=0

generated by Algorithm 1 converges to a critical point z∗ of the original DCO problem (2) can be

found in [11, 12].

Algorithm 1: Sequential convex optimization
1: Initialization: choose a feasible solution z0 and a stopping criteria ε > 0.
2: z1 ∈ argmax{g

0
(z;z0)− h0(z) : gi(z;z0)− hi(z) ≥ 0, i = 1, 2, . . . ,m}

3: k := 1
4: while

‖zk−zk−1‖
‖zk‖

> ε do

5: zk+1 ∈ argmax{g
0
(z;zk)− h0(z) : gi(z;zk)− hi(z) ≥ 0, i = 1, 2, . . . ,m}

6: k := k + 1
7: end while

4 Computational results

Problem (1) was solved in MATLAB using CVX 2.2 with MOSEK 9.1.9 and default precision (toler-

ance ε = 1.49×10−8). All the computations were carried out on an Intel(R) Core(TM) i7-3540M CPU

@ 3.00 GHz computing platform. Algorithm 1 was implemented as a MATLAB package: OPTIGON,

which is freely available at https://github.com/cbingane/optigon. OPTIGON requires that CVX

be installed. CVX is a MATLAB-based modeling system for convex optimization, which turns MAT-

LAB into a modeling language, allowing constraints and objectives to be specified using standard
MATLAB expression syntax [14].

We chose the following values as initial solution:

a0 = 0, b0 = 0,

ai =
sin 2iπ

n−1
2 cos π

2n−2
= −an−i, bi =

1− cos 2iπ
n−1

2 cos π
2n−2

= bn−i ∀i = 1, . . . , n/2− 1,

an/2 = 0, bn/2 = 1,

which define the n-gon R+n−1, and the stopping criteria ε = 10−5. Table 1 shows the optimal values

A∗n of the maximal area problem for even numbers n = 6, 8, . . . , 84, 90, 100, 110, 120, 128, along with

the areas of the initial n-gons R+n−1, the best lower bounds An found in the literature, and the upper

bounds An. We also report the number k of iterations in Algotithm 1 for each n. The results support

the following keypoints:

1. For 6 ≤ n ≤ 12, An−A∗n ≤ 10−8, i.e., Algorithm 1 converges to the best known optimal solutions

found in the literature.

2. For 32 ≤ n ≤ 80, An < A(R+n−1) < A∗n, i.e., the solutions obtained by Pinter [10] are suboptimal.

https://github.com/cbingane/optigon
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(a) (U16, 0.771861) (b) (U32, 0.782133) (c) (U64, 0.784596)

Figure 5: Three largest small n-gons (Un, A∗n)

3. For all n, the solutions obtained with Algorithm 1 verify, within the limit of the numerical

computations, Theorem 2 and Conjecture 1, i.e.,

xn/2 = 0, yn/2 = 1,

‖vn/2−1‖ = 1, ‖vn/2+1‖ = 1,

‖vi+n/2 − vi‖ = 1, ‖vi+n/2+1 − vi‖ = 1 ∀i = 1, 2, . . . , n/2− 2,

‖vn−1 − vn/2−1‖ = 1,

xn−i = −xi, yn−i = yi ∀i = 1, 2, . . . , n/2− 1.

We illustrate the largest small 16-, 32- and 64-gons in Figure 5. Furthermore, we remark that

Theorem 2 and Conjecture 1 are verified by each polygon of the sequence generated by Algo-

rithm 1. All 6-gons generated by the algorithm are represented in Figure 6 and the coordinates

of their vertices are given in Table 2.

(a) (R+5 , 0.672288) (b) (P16, 0.674941) (c) (P26, 0.674981)

(d) (P36, 0.674981) (e) (P46, 0.674981) (f) (P56, 0.674981)

Figure 6: All 6-gons (Pk6 , A(Pk6)) generated by Algorithm 1
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Table 1: Maximal area problem

n A(R+n−1) An An A∗n # ite. k

6 0.6722882584 0.6749814429 [2, 3, 9] 0.6961524227 0.6749814387 5
8 0.7253199909 0.7268684828 [4, 9] 0.7350842599 0.7268684802 10

10 0.7482573378 0.7491373459 [5, 9] 0.7531627703 0.7491373454 16
12 0.7601970055 0.7607298734 [5, 9] 0.7629992851 0.7607298710 24
14 0.7671877750 0.7675310111 [9] 0.7689359584 0.7675310093 33
16 0.7716285345 0.7718613220 [9] 0.7727913493 0.7718613187 43
18 0.7746235089 0.7747881651 [9] 0.7754356273 0.7747881619 55
20 0.7767382147 0.7768587560 [9] 0.7773275822 0.7768587517 68
22 0.7782865351 0.7783773308 [10] 0.7787276939 0.7783773228 81
24 0.7794540033 0.7795240461 [10] 0.7797927529 0.7795240330 95
26 0.7803559816 0.7804111201 [10] 0.7806217145 0.7804111058 109
28 0.7810672517 0.7811114192 [10] 0.7812795297 0.7811114002 122
30 0.7816380102 0.7816739255 [10] 0.7818102598 0.7816739044 136
32 0.7821029651 0.7818946320 [10] 0.7822446490 0.7821325276 148
34 0.7824867354 0.7823103007 [10] 0.7826046775 0.7825113660 159
36 0.7828071755 0.7826513767 [10] 0.7829063971 0.7828279054 169
38 0.7830774889 0.7829526627 [10] 0.7831617511 0.7830950955 177
40 0.7833076096 0.7832011589 [10] 0.7833797744 0.7833226804 183
42 0.7835051276 0.7834135187 [10] 0.7835674041 0.7835181187 185
44 0.7836759223 0.7835966860 [10] 0.7837300377 0.7836871900 184
46 0.7838246055 0.7837554636 [10] 0.7838719255 0.7838344336 179
48 0.7839548353 0.7838942710 [10] 0.7839964516 0.7839634510 172
50 0.7840695435 0.7840161496 [10] 0.7841063371 0.7840771278 162
52 0.7841711020 0.7841233641 [10] 0.7842037903 0.7841778072 150
54 0.7842614465 0.7842192995 [10] 0.7842906181 0.7842674010 138
56 0.7843421691 0.7843044654 [10] 0.7843683109 0.7843474779 128
58 0.7844145892 0.7843807534 [10] 0.7844381066 0.7844193386 118
60 0.7844798073 0.7844492943 [10] 0.7845010402 0.7844840717 109
62 0.7845387477 0.7845111362 [10] 0.7845579827 0.7845425886 101
64 0.7845921910 0.7834620877 [10] 0.7846096710 0.7845956631 94
66 0.7846408000 0.7845910589 [10] 0.7846567322 0.7846439473 88
68 0.7846851407 0.7846139029 [10] 0.7846997026 0.7846880001 82
70 0.7847256986 0.7846403575 [10] 0.7847390429 0.7847283036 77
72 0.7847628920 0.7847454020 [10] 0.7847751508 0.7847652718 72
74 0.7847970830 0.7845564840 [10] 0.7848083708 0.7847992622 68
76 0.7848285863 0.7847585719 [10] 0.7848390031 0.7848305850 64
78 0.7848576763 0.7845160579 [10] 0.7848673094 0.7848595143 61
80 0.7848845934 0.7848252941 [10] 0.7848935195 0.7848862871 58
82 0.7849095487 – 0.7849178354 0.7849111119 55
84 0.7849327284 – 0.7849404352 0.7849341725 52
86 0.7849542969 – 0.7849614768 0.7849556352 50
88 0.7849744002 – 0.7849811001 0.7849756425 48
90 0.7849931681 – 0.7849994298 0.7849943223 46
92 0.7850107163 – 0.7850165772 0.7850117894 44
94 0.7850271482 – 0.7850326419 0.7850281477 42
96 0.7850425565 – 0.7850477130 0.7850434878 40
98 0.7850570245 – 0.7850618708 0.7850578951 39

100 0.7850706272 – 0.7850751877 0.7850714422 38
102 0.7850834323 – 0.7850877290 0.7850841941 36
104 0.7850955008 – 0.7850995538 0.7850962152 35
106 0.7851068883 – 0.7851107156 0.7851075587 34
108 0.7851176450 – 0.7851212630 0.7851182747 33
110 0.7851278167 – 0.7851312404 0.7851284086 32
112 0.7851374450 – 0.7851406881 0.7851380017 31
114 0.7851465680 – 0.7851496430 0.7851470916 30
116 0.7851552203 – 0.7851581386 0.7851557129 29
118 0.7851634339 – 0.7851662060 0.7851639010 29
120 0.7851712379 – 0.7851738734 0.7851716781 28
122 0.7851786591 – 0.7851811668 0.7851790741 27
124 0.7851857221 – 0.7851881101 0.7851861129 26
126 0.7851924497 – 0.7851947255 0.7851928211 26
128 0.7851988626 – 0.7852010332 0.7851992126 25
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Table 2: Vertices of 6-gons generated by Algorithm 1

6-gon Coordinates (xi, yi) Area

(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5)

R+5 (0.500000, 0.363271) (0.309017, 0.951057) (0.000000, 1.000000) (−0.309017, 0.951057) (−0.500000, 0.363271) 0.6722882584
P16 (0.500000, 0.397460) (0.339680, 0.940541) (0.000000, 1.000000) (−0.339680, 0.940541) (−0.500000, 0.397460) 0.6749414624
P26 (0.500000, 0.401764) (0.343285, 0.939231) (0.000000, 1.000000) (−0.343285, 0.939231) (−0.500000, 0.401764) 0.6749808685
P36 (0.500000, 0.402283) (0.343715, 0.939074) (0.000000, 1.000000) (−0.343715, 0.939074) (−0.500000, 0.402283) 0.6749814310
P46 (0.500000, 0.402345) (0.343766, 0.939055) (0.000000, 1.000000) (−0.343766, 0.939055) (−0.500000, 0.402345) 0.6749814386
P56 (0.500000, 0.402352) (0.343773, 0.939053) (0.000000, 1.000000) (−0.343773, 0.939053) (−0.500000, 0.402352) 0.6749814387

5 Conclusion

We proposed a sequential convex optimization approach to find the largest small n-gon for a given even

number n ≥ 6, which is formulated as a nonconvex quadratically constrained quadratic optimization

problem. The algorithm, also known as the concave-convex procedure, guarantees convergence to a

locally optimal solution.

Without assuming Graham’s conjecture nor the existence of an axis of symmetry in our quadratic

formulation, numerical experiments on polygons with up to n = 128 sides showed that each optimal

n-gon obtained with the algorithm proposed verifies both conditions within the limitation of the

numerical computations. Futhermore, for even 6 ≤ n ≤ 12, the n-gons obtained correspond to the

known largest small n-gons.
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