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Abstract: We present a modeling of bundle adjustment problems in Julia, as well as a solver for non-
linear least square problems (including bundle adjustment problems). The modeling uses NLPModels
Julia’s library and computes sparse Jacobians analytically. The solver is based on the Levenberg-
Marquardt algorithm and uses QR or LDL factorization, with AMD or Metis permutation algorithm.
The user can choose to use normalization and line search. Our experimental results contain comparison
of the several versions of the solver and comparison with Scipy’s least_square function and Ceres solver
on the test problems given in [26]. We show that our solver is quite competitive with Scipy’s solver
and Ceres solver in terms of convergence, and that it is in average two times faster than Scipy’s solver
and three times slower than Ceres. However, the advantage of our solver is that it is coded is Julia
and thus allows the user to run it in several precisions in a very efficient way, in order to gain time
and energy (in small precisions) or accuracy (in big precisions).

Acknowledgments: This work constitutes the final report of C. Angla’s internship at the G-SCOP
laboratory in collaboration with GERAD. The supervisor at G-SCOP was J. Bigeon and the supervisor
at GERAD was D. Orban.
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Introduction

Given a set of images depicting a number of 3D points from different viewpoints, bundle adjustment
problem consists in refining the 3D coordinates describing the scene geometry together with the pa-
rameters of relative motion and the optical characteristics of the camera(s) [9]. These problems are
widely used in computer vision, as they are often the last step of feature-based 3D reconstruction. For
instance, bundle adjustment is used to reconstruct the scenes taken by the Google Car, and give the
rendering of Google Street View.

The goal of this internship was to model and solve bundle adjustment problems in Julia, to benefit
of Julia’s type system and have a code that can be run in a precision chosen by the user. Most languages
(apart from Fortran and C++) only have simple (Float32) and double (Float64) precision, while in
Julia other precisions, such as half and quadratic, are also available. Furthermore, the advantage of
Julia over other languages is that, if a function is well written, and if you call it with arguments in
a given precision, a version of the function for this given precision is automatically compiled. Thus,
if used on a computer with a simple precision processor, operations will automatically be performed
in simple precision (on standard computers simple precision is just a truncated double precision). So
my solver could be ran in simple precision to obtain less accurate solutions, but faster and cheaper in
terms of heat emissions by processors (which is more ecological). Or, on an architecture where several
precisions are available, one may run my solver in simple precision until the stopping criteria defined
in simple precision are satisfied, and then run again my solver, starting from the solution obtained
before, until double precision stopping criteria are met, once again time and energy will be gained.

The team of my supervisor at GERAD (Polytechnique Montréal) has created several tools for
modeling and solving continuous optimization problems in Julia [11]. Coding in Julia also allowed me
to have access and make use of these tools which are very useful to model problems, perform matrix
factorization, make benchmarks, etc.

Bundle adjustment problems can be modeled as a sum of the squares of the errors between the
projection of the 3D points on the cameras and the observed 2D points. This kind of problem is called
a non-linear least-square problem. The Levenberg-Marquardt algorithm has proven to be one of the
most efficient method to solve this kind of problem, while quite easy to implement. This algorithm
uses a damping factor, which is adjusted at each iteration. If the residuals (in our case, the vector of
errors between the projections and the actual 2D points) decrease fast, a smaller value of the damping
parameter can be used, bringing the algorithm closer to the Gauss—Newton algorithm, whereas if an
iteration gives insufficient reduction in the residuals, the damping parameter can be increased, giving
a step closer to the gradient-descent direction [16].

Because of its efficiency and ease of implementation, the Levenberg-Marquardt algorithm has been
widely used to solve bundle adjustment problems [2, 7, 27]. Bundle adjustment problems can also
be solved using the reduced camera system [4, 10, 27] which consists in rewriting the problem using
the sparse block structure of the matrix J7J (where J is the Jacobian) into two smaller problems.
Although it has proven to be very fast, we did not use this method, as we wanted to have a general solver
for non-linear least square problems. In the Levenberg-Marquardt method, one can use a Cholesky
matrix factorization [7, 22] or a QR factorization to solve what are called the “normal equations” of
Levenberg-Marquardt [7, 22]. Those factorizations avoid to compute the inverse of big matrices, which
is very long. Computing the factorization of those matrices can also be very long, but one can exploit
their sparse structure and use sparse factorization methods such as [3] or [5].

n [27], Google researchers describe the Ceres solver [18], used in Google Street View. This is a
solver for non-linear least-square problems, including bundle adjustment problems, coded in C++. It
provides different methods (which are compared in [27]) to solve these problems. These researchers
have also published datasets for bundle adjustment problems [26]. T will use Ceres solver to compare
my solver with, as it is considered as a reference for solving bundle adjustment problems. I will also
use their datasets to test my solver.
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My objectives for this internship were the following;:

e Understand the datasets given in [26] and create an interface in Julia to read them.

e Model those problems as non-linear least-square problems using Julia’s libraries JuMP or NLP-
Models.

e Code a Julia solver for those problems, and compare it with other solvers (including Ceres-solver).

The sections of my master thesis are articulated around those objectives. In the first section, I
will provide a description of the bundle adjustment problems datasets from [26]. In Section 2, I will
explain how I modeled bundle adjustment problems, and in particular how I computed the Jacobian.
In Section 3, I will describe my solver based on the Levenberg-Marquardt algorithm, and the two
factorizations I used. Finally, in the last section, I will present the results of my solver and compare
them with those of other solvers.

My code can be found on github at: https://github.com/CelestineAngla/BundleAdjustment.j1.

1 Understanding the datasets

The website [26] contains the bundle adjustment problem library, created by the Google researchers.
The first step of my internship was to understand those datasets and then to create an interface to
read them in Julia.

This problem library provides us with five datasets: Ladybug, Trafalgar Square, Dubrovnik, Venice,
Final. And each one of those datasets contains several problems. Those datasets were obtained from
two sources of data. The first source uses images captured at a regular rate using a Ladybug camera
mounted on a moving vehicle. Image matching was done by exploiting the temporal order of the
images and the GPS information captured at the time of image capture. The second source of data
uses images downloaded from Flickr.com and matched to find common points. Those images were
taken in Trafalgar Square and in the cities of Dubrovnik, Venice, and Rome.

Each bundle adjustment problem is given as a bzip2 compressed file. Each file contains the following:

e The first line contains the number of cameras, the number of points and the number of observa-
tions.

e The second block of lines contains, for each observation, the index of the camera used for this
observation, the index of the 3D point observed, and the x and y coordinates of the 2D projection
of this point on the camera.

e The third block of lines contains, for each camera, the vector (14, 7y, 72,15, ty, t2, f, k1, k2), where
(rg,Ty,72) is the Rodrigues vector representing the rotation of the camera, (¢;,%,,t,) are the
coordinates of the translation of the camera, f is the focal length of the camera and (k1, ko) are
radial distortion parameters of the camera. These are initial values.

e The fourth block of lines contains, for each point, its 3D coordinates (z,y, z). These are initial
values.

The structure of those datasets is detailed in Appendix A.

I created a bash script that downloads all the datasets for the user, and separates them into five
folders: Dubrovnik, Final, LadyBug, Trafalgar and Venice. I also coded a Julia function to read the
files and store the data into matrices.

From the datasets, one can extract five matrices:

e O € RMNors*2 the matrix of observations where each line contains the 2D coordinates of the
observed point.

e CI € RMo»s the vector of camera indices: for each observation k, CI[k] gives the index of the
camera used for this observation.
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e X € RNets the vector of point indices: for each observation k, XI[k] gives the index of the 3D
point observed in this observation.

e O € RNeam>9 the camera matrix where each line contains the parameters (7, Ty, Tay bz by, tay f,
k1, ko) of the camera.

e X € RNrointsX3 the point camera where each line contains the 3D coordinates of the point.

2 Modeling bundle adjustment problems

In this part is described my two attempts to model bundle adjustment problems in Julia: with JuMP
and then with NLPModels. To understand my modeling, the first two subsections provide a brief
explanation of the camera projection formula and a mathematical definition of bundle adjustment
problems.

2.1 Camera projection

A camera can be described by a vector C' = (74, 7y, 72, te, by, ts, k1, k2, f) € R?, where:

o R = (ry,ry,7,) is the Rodrigues rotation vector [17],
o T = (tg,t,,t,) is the translation vector,

e k1 and ko are distortion coefficients,

e f is the focal length.

The rotation vector and the translation vector give us the relative position of the camera, while kq,
ko and f are its optical parameters.

Given a 3D point X = (z,y, 2) and a camera C = (R, T, k1, ko, f), the 2D projection P of point X
on camera C is given by [26] P = P3 o Py o Py, with:

P (R, X, T)=rot(R,X)+T

Xz
P2(X):7%z Xy )

Py(X, ki, ko) = f x r(X, k1, k) x X
where rot(R, X) is the point X rotated using the Rodrigues vector R = (ry,ry, ;) [17]:
rot(R, X) = cos(0) X + sin(0)k x X + (1 — cos(0))(k.X)k,
where 6 = ||R|| and k = Z.

And r(X, k1, ko) = 1.0 + k1 || X||* + ko||X||* is a function that computes a scaling factor to undo
the radial distortion.

The first line of the projection formula computes the coordinates of the point in the camera frame.
The second line transforms the 3D coordinates into 2D coordinates (the coordinates on the image of
the camera). Finally, the last step of the projection undoes the radial distortion of the image, and
takes into account the focal length of the camera.

2.2 Optimization problem

A bundle adjustment problem consists in finding the optimal camera parameters and 3D point coor-
dinates that fit the observed 2D points. Thus, it can be written as a non-linear least-square problem
like this [9]:
Npoints ]\/vcam
. bs (|2
min > Y i l|P(X, Cp) — 2|

i=1  j=1
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where

X is the point matrix in which each line X; contains the 3D coordinates of the i-th point
C is the camera matrix in which each line C; contains the parameters of the j-th camera
v;,; = 1 if point ¢ is observed on camera j and 0 otherwise

P is the projection of a point on a camera as descibed in the previous subsection

xf'}s is the 2D observation of point ¢ on camera j.

Using the matrices described in the first section, we can rewrite the problem as:

Nobs

(oin, 2 Ip(X[XI[K]], C[CT[K]]) — O[K]||*

Instead of summing over the cameras and 3D points, we sum over all observations, by getting the
camera index and 3D point index from the matrices of indices.

2.3 Modeling with JuMP

The first way I tried to model these problems in Julia is using Julia’s JuMP library [1]. T tried two
types of modeling:

e min, 1||f(z)|[* (“direct modeling”)

e min, £||r||? under f(z)+r =0 (“residual modeling”)
with f(x) = [[p(X[XI[K]], C[CI[K]]) — O[K]||.

The first problem I encountered when modeling the problems with JuMP is that it is not possible
to use functions with non-scalar arguments or expressions with non-scalar variables. So it was quite
complicated to use, as these problems are very large and thus it is inconvenient to model them without
vectors and matrices. Moreover, functions like the norm function or the square root function are not
easy to manipulate in JuMP. A good way to model these problems is to model the residuals as a
1D vector of size 2 x nobs (one residual for the = coordinate and one for the y coordinate for each
observation). This way of modeling makes more sense and would have avoided the norm function
in f. Unfortunately, I did not manage to implement it this way as I would have needed to manipulate
vectors.

The first way of modeling bundle adjustment problems with JuMP did not work, as JuMP does not
allow to use square roots or norms in the objective function. The second way worked, and I managed
to run an optimization algorithm (Ipopt) on these models. The first value of the objective seemed right
(by comparing with an Python code I found that solves bundle adjustmet problems with Scipy [6]),
and the objective decreased for a few iterations but then it began to rise again (Ipopt might not be a
good algorithm to use on these problems).

Although JuMP does not seem do be adapted to handle bundle adjustment problems, it ensured
me that I had well understood the problems and the datasets.

2.4 Modeling with NLPModels

I chose to use NLPModels [12] (and to abandon JuMP) to have more freedom for modeling and simpler
models to use when building optimization algorithms. I build a new model type BALNLPModel (included
in AbstractNLPModel). The constructor BALNLPModels takes the path of a dataset (from [26]) as input
and models the bundle adjustment problems like this:

min 0
under r(z) =0
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where r € R27°% is the vector of residuals given by, Vk € {1,...,nobs}: r[2k — 1 : 2k] = P(z) —

bs ,0bs
(@292,
andx:[Xl vo Xopnts C1 .. Cncam]€R3><npnts+9><ncam

Where Xk = (l’,y,2> and Ck = (T'alary7rzatxaty7tzaklak27f)'

When running an optimization algorithm on a BALNLPModel, I transform it into an non-linear least
square problem (NLSModel [13]) using a function available in NLPModels called “FeasibilityResidual”.

2.4.1 A new function to read the datasets

In order to create BALNLPModels faster, I rewrote a function to read the datasets to avoid making
useless allocations. This function does not return a matrix for observations, a matrix for the camera
parameters and a matrix for the 3D points coordinates anymore. Instead, it directly returns a 1D vector
pt2d of size 2 x nobs (in which line 2k —1 contains the x coordinate of observation k and line 2k contains
the y coordinate of observation k) and a 1D vector x( containing the initial cameras parameters and 3D
point coordinates as described above (x = [Xl o Xopnts C1 . Cncam] € R3xnpntstxncam)

It still returns the camera indices and points indices vectors.

2.4.2 Computing the Jacobian of the residuals by hand

The main methods associated to my BALNLPModel are methods to compute the vector of residuals
and the Jacobian. The function to compute the residuals is straightforward, as it is based on the
camera projection formula described at the very begining of this section. The methods to compute
the Jacobian are a bit more complex as I decided to compute the Jacobian analytically, that is to say:
by hand. I made that choice as I wanted to have a sparse Jacobian and the only Julia module I found
for sparse automatic differentiation was buggy.

In order to compute a sparse Jacobian for my new type BALNLPModel, I coded the functions
“jac_structure!” (that computes the sparsity structure of the Jacobian) and “jac_coord!” (that computes
the values to store in this structure). The function “jac_structure!” fills two vectors “rows” and “cols”
with the indices of the non-zero values of the Jacobian. That is to say, if row[k] = i and cols[k] = j
then J; ; # 0. The function “jac_coord!” fills a vector “vals” which contains the values of the non-zero
elements of the Jacobian. That is to say: Jyow(k],cols[k] = vals[k].

The residuals of the bundle adjustment problem are defined by, Vk € {1, ..., nobs}:

ror_1(x) = P(x).x — 2* = P(Cy, Xp).x — 2
rok(x) = P(x).y — y2"* = P(C, Xi).y — 42*,
where P(Cy, Xy) is the projection of the 3D point Xj on camera Cj (here k is the number of the

observation and not the actual index of the camera or point, that is to say C} is assimilated to
Ceam_indes[k], and similarly for Xj).

We have P = P3 o P, o P;, with:

x kyz —k.y
Pi(z,y,2,15,7y, 72, te, by, t.) = cos(0) |y | + sin(0) |k.x — kyz
z kyy — kyx

ka‘ th‘

+ (1 —cos(0))(kpx + kyy + k.2) | ky| + |ty

kz tZ

Paoyz) = =1 |7

Palfo ks ko) = F(L4 ba(a? +92) + ka(a? + 42)?) [ﬂ
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ks Ty
with 0 = | /r2 + 72 +rZ and |k, :% Ty
k. T2

The Jacobian of the residuals, J,., is a block matrix like this:

JXi1 J X1 npnts JCi 1 JC1 neam
Je=Jp=1| z z 2
JXnost e JXnobs,npnts JCnobs,l JCnobs,ncam
where:
OP;.x 0Pz 9Pz
L JXi,j = laéﬁjy 8(33?{Jy 8?3’27]3;‘|
Ox Oy, 0z;

oP;.x oP;.x OP;.x OP;.x OP;.x OP;.x OP;.x OP;.x OP;.x
__ | Orzy ory; orz; otx; oty Otz 0k1; 0k2; af;
[ ] JCi_’j =

orP;.y 0Py 0Py 0Py 0Py 0Py 0Py 0Py 0Py
8T1j 8Ty]' B’I‘Zj atillj aty]' 6th c’)li 8]621 6fJ

J; is sparse as JC; ; is non-zero if and only if j = idz_caml[i] and JX; ; is non-zero if and only if
j = idx_pnt[i]. For a given observation k, let Jp[k] be the dense Jacobian of Jp[k], that is to say the
line number k of Jp where all the blocks of zeros have been removed:

Jp [k] = [JXk,idm,pnt[k] Jck,idw,cam[k:]] .

~ As P = P30 Pyo Py, we have Jp[k] = (Jp, o Py o Py) x (Jp, o P1) x Jp,, where Jp[k] € R?*12
Jp, € RGXH, Jp, € 1{5><67 Jp, € R2X5, and:

roP.x OP;.x OP;.x OP;.x OP;.x OP;.x T

ox Jy 0z ory ory or.,
6P1.y 6P1.y 6P1.y 6P1.y 6P1.y 8P1.y I O
ox Jy oz ory ory or, 3 3
~ (9P1.Z (9P1.Z (9P1.Z (9P1.Z 8P1.Z 8P1.z
° JPl = ox Jy 0z Ory ory or, s
0 0 0 0 0 0
0 0 0 0 0 0 03 Iy
.| O 0 0 0 0 0 ]
roPs.x Py .x OPy.x
ox Jy 0z 0 0 0
0Py 0Py OPs.y 00 0
~ ox Jy 0z
*Jp, =1 0 0 0 1 0 0f
0 0 0 01 0
L O 0 0 0 0 1
_BPg,az BPg,az 3P3,I 3P3,$ BPg,z
7. ox 0 ok ok 1o]
hd ‘]Ps — | OPs.y 8P§J.y 8P31.y 8P32.y 8Pg.y .
| Ox oy k1 Oko of

The detailed computations of the elements of these matrices are in Appendix B.

So to compute the sparse Jacobian 0~f the residuals J,., one simply needs to compute, for each
observation k, the small dense Jacobian Jp[k] and to store the JX and JC blocks at the right place.

To check my computations for the Jacobian, I used the function “Jacobian_check” from the NLP-
Models package. This function computes the Jacobian of the constraints of a NLPModel using finite
differences, and returns a dictionary containing the errors of the Jacobian that are greater than a
chosen threshold. T also compared my Jacobian with the one computed with the CUTESst library [15].

2.4.3 Use of multiple threads

I used multi-threading to improve the performance of my model, and thus of the optimization algo-
rithms I use or write for them. Indeed, most of optimization algorithms will need to compute the
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Jacobian (only the values, as the structure does not change) and the residuals of my model at each
iteration. Thus, the faster these functions are, the faster the optimization will get.

The functions cons! (that computes the residuals), jac_structure! and jac_coord! all iterate on the
observations using a for loop. The content of this for loop is independent (as the observations are
independent from one another), so it is quite straightforward to split the loop between the threads.

3 Solving bundle adjustment problems

I created a solver based on Levenberg-Marquardt algorithm that takes as input an AbstractNLSModels
(this a type included in NLPModels that models a non-linear least square problem). Thus, my solver
can solve bundle adjustment problems, by creating a BALNLPModel (the type I have created for bundle
adjustment problems) and using the function FeasibilityResidual which wrapsd it into an NLSModel.

The first subsection explains the standard Levenberg-Marquardt algorithm. My implementation is
described in the next subsections.

3.1 The Levenberg-Marquardt algorithm

Let us consider a least square optimization problem:

m

. ) 2 _ .
PeR" £ ri(@)” = iy [Ir@)
1=

1%,

where r : R” — R™ is the residual function.
The Jacobian of r is J = (g—;) € R™*". Let 6 € R". We have r(x 4+ 0) ~ r(z) + J(z)d, so:
I (z + 0)|* = |Ir(2) + J ()3]|?
=~ (r(z) + J ()8)" (r(x) + J(2)d)
~r(x)Tr(z) + 2r(x)T J(z)d + 6T J(x)T J6.

To find the search direction &, let us take the derivative of ||r(x + §)||? with respect to §:

I|r(z + 9)[*

=2JTr +2J7J6.
95 Jr+2J°J6

Thus, to first order, the minimum of ||r(z + §)||? is reached for § verifying:

JTJs=—J%r.

This is the Gauss-Newton method. When J is rank deficient (not of full rank), this algorithm can
diverge. The idea of Levenberg was to add a damping parameter to avoid this. So in the Levenberg-
Marquardt algorithm, the previous equation is replaced by a “damped” version:

(JTT+AD*)5 = —JTr,

where A > 0 and D? is a diagonal matrix such that J7.J 4+ AD? is non singular. Often D? = I or
D? = Diag(JTJ).

When the damping parameter A is close to 0, the algorithm is close to the Gauss-Newton method,
whereas when A — oo, % — —J7Tr, so the algorithm is close to a gradient descent.
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3.2 Update of the damping parameter )\

The idea of Marquardt was to refine the damping parameter A at each iteration. Indeed, the step §
found at each iteration may not always result in a decrease of the cost function 3|r||2. So the step &
is accepted if and only if the actual reduction is larger than € times the predicted reduction:

el = llresall* = € (llrall* = 11768 + 7el[*), € > 0.

If 0 is not accepted, we update it as: Agyr; = max(Ag, HTlH) X Vp,, Where v, > 1. This way to
update A is a bit more sophisticated than the classic way (Ag+1 = Ap X V). It is inspired from Moré’s
formulation of Levenberg-Marquardt algorithm, which is based on trust-region methods [22]:

1
min §||J5—|—1"||27 under ||d]| < A.

In our formulation, A is similar to %. So the larger A is, the more ||d]| is constrained, and the
lower X is, the more ||0]| is free. So if a step J is rejected, the radius A is decreased. But if the new
A is still larger than ||d]], it is a waste of time, since the same § will be computed. To avoid that, we
need to make sure that the new A is smaller than ||§||. In our formulation, it means that we have to
increase \ at least by a factor ﬁ. That is why we update A this way: A\py1 = maz(\g, ﬁ) X Uy

If 0 is accepted, the classic way to update A is A1 = ’;—:, where vy > 1. That is what I do. But, in
addition, if the actual reduction is bigger than 0.9 time the predicted reduction (which means that &

is a very successful step), I update A this way: A\p11 = Ax  And to avoid very low values of A, I make

va
sure that \ is higher than a lower bound (1.0e~%).

It is also important to find a good initial value for A. One can choose an initial value that works
well for several problems, or one can choose a formula or a heuristic that adapts the initial value of A
to the problem. Once again, I got inspiration from trust region methods, where they initialize A like
this Ag = min(10, W). So I decided to initialize A like this:

)
[T (o)l
where A > 0 and I > 0 are constants left to the choice of the user, and for which I found good default
values.

Ao = maz (N,

Another way to initialize A is presented in [23]. The authors claim it is reasonable to relate the
initial value of A to the size of the eigenvalues of the symmetric positive definite matrix J7.J. The
maximum of the diagonal elements of this matrix has the same order of magnitude than the biggest
eigenvalue, so one can initialize A this way:

Ao = T X max JTJ(a?O)Z-,i,
where 7 > 0 is chosen small if zg is close to z*.
But computing J7J for large problems such as bundle adjustment problems is quite expensive, so

we did not use this method.

3.3 Stopping criteria

The algorithm has several stopping criteria:

e First order criterion (that is to say that the norm of the gradient of the cost function is smaller
than a given bound): ||JZ7|| < atol + rtol||JTr||o (“first order”).

Small objective change criterion: 2||rx_1||* — %||rx||? < oatol + ortol x %||rx_1|/* (“acceptable”).

Small step criterion: ||0]| < satol 4 srtol||z|| (“small step”).

Small residuals criterion: ||r|| < restol (“small residuals”).

Tired criterion: k > ite_maz (“max iter”).
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3.4 Factorization and permutation

In my solver I use two kinds of factorization (QR and LDL) of matrices that are computed from the
Jacobian (they contain blocks that are either multiple of I, J or JT). These matrices are sparse,
thus one needs to be careful as the factorization of a sparse matrix can be dense. That is why, the
standard factorization algorithms use permutations to transform the original matrix in such a way
that its factorization will be as sparse as possible.

As the structure of the Jacobian of a bundle adjustment problem does not change between iterations,
one does not need to compute the permutation each time the factorization is computed. That is
why, when the algorithm that computes the factorization allows it, I compute the permutation at
the beginning and pass it as an argument to the factorization algorithm. Even if the factorization
algorithm does not allow to pass the permutation vector as argument, it is possible to choose the
permutation method the algorithm uses. Thus I added an option to my solver for the user to choose
the permutation he would like to use.

To compute the permutations I used two types of algorithms: AMD and Metis. The Approximate
Minimum Degree ordering algorithm (AMD) [25] pre-orders a symmetric sparse matrix prior to numer-
ical factorization. It uses techniques based on the quotient graph for matrix factorization that allows
to obtain computationally cheap bounds for the minimum degree. These bounds are often equal to the
actual degree. The Julia interface for AMD, takes as input a matrix A and computes a fill-reducing
permutation based on the sparsity pattern of A 4+ AT, so the input matrix can be anything (even
non-symmetric or rectangular matrices). The Metis algorithm [21] finds good partitioning of highly
unstructured graphs. It has several applications, including computing fill-reducing permutations for
sparse matrices. The main drawback of the Julia’s Metis interface is that it only takes symmetric
square matrices as input so one needs to compute A + AT if A is not symmetric and square.

3.5 The QR version

One way to implement the Levenberg-Marquardt algorithm is to notice that the equations (JTJ +
M) = —JTr are just the normal equations for the following linear least-squares problem [24]:

. J T 2
mélnH [\F)\I] J+ [O] )%
Thus, one only need to solve a linear least-square problem at each iteration. The QR version of

my implementation of Levenberg-Marquardt is based on this.

In order to do that efficiently, one can use a QR factorization of the matrix A = [ \é\ I] . That is
to say find @ orthogonal and R upper triangular such that A = QR.

Let us rewrite the QR factorization of A: A = [Ql Qg} {Ig] . Thus:

s+ o] 1=111@r @ ([g] s+ 1@ @ i)

~if5]o+ie e [i]n
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As the QT [6} part does not depend on 4, the best we can do, if R is invertible, is to take

r

7 = —RQF [y o twatt, 145+ 1] 1 = 0% [ I

In addition, as A is a sparse matrix (since J is sparse), one can use a sparse QR factorization which
is even faster. In my implementation, I used the “SuiteSparseQR” library [5] (with a Julia wrapper),
which is a C library that computes the QR factorization of sparse matrices.

The QR version of my solver looks like this:

Algorithm 1 QR version

: Compute residuals 7, obj = %Hr||2 and create b = |:_07"}

: Compute Jacobian J
: Compute ||JTr||

— _lelO
A = maz(A, HJTTH)

J
: Create A = [ﬁ]}

5

6: while none of the stopping criteria is verified do
7 Compute QR factorization of A
8.
9

=N

Find § = argmin(||Ad + b||?)
or2 = %\|J6+r||2

10 p= o
11:  if p> le™* then
12: A = maz(A, ﬁ) X Um
13: Update the v/AI part of A
14: else
15: A= 2

Z
16: if p > 0.9 then
17: A= 2

vd

18: end if
19: A =maz(le 8, )\)
20: Update r, J, A, b
21: end if

22: end while

3.6 Givens rotations

This section briefly explains what Givens rotations are, in order to help the reader understand the
next section.

Givens rotations are used to create zeros in matrices. They are stored in matrix G(i, j, ¢, s), similar
to the identity matrix, except that two rows and two columns are changed:

e there is a ¢ in positions (i,7) and (j, §);

e there is a s in position (7,j) (i < j),

e there is a —s in position (j,1).

Thus, if we have a matrix A in which we want to remove the element A[j,i] = z, by taking
r = +/x? +y? (where v = A[i,i]), c= £ and s = £, we can apply the Givens rotation G(i, j, ¢, s) on A.

For instance:

0.7682 0.6492 0| |6 5 O 7.8102 4.4813  2.5607
Gli=1,j=2,¢,8)A= [—-0.6492 0.7682 0| [5 1 4| = 0 —2.4327 3.0729| ,
0 0 1110 4 3 0 4 3

_ _ _ 6 _ 5
as 7= V/6% 4 52 = 7.8102, ¢ = #5155 and 5 = =355,

A zero has been created at position (2,1). A Givens rotation modifies the whole rows ¢ and j. We
notice that a non-zero element has been created at position (1, 3).
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3.7 Improvements to the QR version

One can avoid to compute the full QR factorization of A at each iteration. Indeed one may compute the
QR factorization of J only when the Jacobian changes (that is to say when the iteration is accepted) and
compute at each iteration the QR factorization of A from the one of J using Givens rotations [22, 24].

R

T
Indeed, if J = Q m then | 0 | = {% ﬂ { \/‘;[}
VAI
R
The matrix | 0 is almost triangular. One can eliminate the elements of v/AI by performing

VI

% Givens rotations. Indeed, one can eliminate the element in position (n,n) in v/AI by

at most
rotating row n of v/AI with row n of R. Then, one can eliminate the element in position (n— 1,7 — 1)
in v/AI by rotating row n — 1 of vAI with row n — 1 of R. If the element in position (n — 1,7n) of R
is a non-zero it will create a non-zero element at position (n — 1,n) in VA, one can eliminate it by
rotating row n — 1 of v/AI with row n of R, and so on.

R Ry
If we store the Givens rotations in a matrix Q% ,then Q1 | 0 | =10

VI 0

R
Let Qi = [%2 ﬂ Q», then [\/Lgl] = Qx 8

Actually, as explained in Section 3.5, permutations of rows and columns are performed during the
L . . . R .
factorization process in order to get sparse matrices. Thus, J is not equal to @ [ 0} . Most of the time,

one actually has:

PP, = Q [ﬂ ,
where P; and P, are permutati