
Les Cahiers du GERAD ISSN: 0711–2440

Parallel surrogate-assisted optimization
using Mesh Adaptive Direct Search

B. Talgorn, S. Alarie,
M. Kokkolaras

G–2020–38

July 2020
Revised: December 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : B. Talgorn, S. Alarie, M. Kokkolaras (Juillet
2020). Parallel surrogate-assisted optimization using Mesh Adaptive
Direct Search, Rapport technique, Les Cahiers du GERAD G–2020–
38, GERAD, HEC Montréal, Canada. Révision: décembre 2020.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2020-38) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: B. Talgorn, S. Alarie, M. Kokkolaras (July
2020). Parallel surrogate-assisted optimization using Mesh Adaptive
Direct Search, Technical report, Les Cahiers du GERAD G–2020–38,
GERAD, HEC Montréal, Canada. Revised version: December 2020.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-38) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2020-38
https://www.gerad.ca/en/papers/G-2020-38
https://www.gerad.ca/en/papers/G-2020-38

Parallel surrogate-assisted optimization using Mesh Adap-
tive Direct Search

Bastien Talgorn a,b

Stéphane Alarie c,b

Michael Kokkolaras d,b

a Intel Corporation, Programmable Solutions
Group, Toronto (Ontario), Canada

b GERAD, Montréal (Québec), Canada

c Institut de recherche d’Hydro-Québec, Varennes
(Québec) Canada

d Département de génie mécanique, Université
McGill, Montréal (Québec), Canada

alarie.stephane@hydroquebec.com

michael.kokkolarase@mcgill.ca

July 2020
Revised: December 2020
Les Cahiers du GERAD
G–2020–38
Copyright c© 2020 GERAD, Talgorn, Alarie, Kokkolaras

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;
• Ne peuvent pas distribuer le matériel ou l’utiliser pour une

activité à but lucratif ou pour un gain commercial;
• Peuvent distribuer gratuitement l’URL identifiant la publica-

tion.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
• June download and print one copy of any publication from

the public portal for the purpose of private study or research;
• June not further distribute the material or use it for any profit-

making activity or commercial gain;
• June freely distribute the URL identifying the publication.

If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2020–38 – Revised Les Cahiers du GERAD

Abstract: We consider computationally expensive blackbox optimization problems and present a
method that employs surrogate models and concurrent computing at the search step of the mesh
adaptive direct search (MADS) algorithm. Specifically, we solve a surrogate optimization problem
using locally weighted scatterplot smoothing (LOWESS) models to find promising candidate points to
be evaluated by the blackboxes. We consider several methods for selecting promising points from a
large number of points. We conduct numerical experiments to assess the performance of the modified
MADS algorithm with respect to available CPU resources by means of five engineering design problems.

Les Cahiers du GERAD G–2020–38 – Revised 1

1 Introduction

We consider the optimization problem

min
x∈X

f(x)

subject to cj(x) ≤ 0, j = 1, 2, . . . ,m,
(P)

where f(x) is the objective function, x ∈ Rn is the vector of decision variables, X is a subset of

Rn, and cj(x) are general nonlinear constraints. We assume that some (at least one) of the func-

tions {f, c1, c2, . . . , cm} are evaluated using simulations or other computational procedures that are

blackboxes. In particular, we consider the case where these blackboxes are computationally expensive,

possibly nonsmooth and/or nonconvex, and that the process used to evaluate them may crash or fail

to return a value. Finally, we assume that function gradients either do not exist theoretically or, if

they do, cannot be computed or approximated with reasonable computational effort.

Metaheuristics and derivative-free search algorithms are commonly used for solving (P). The

former (e.g., genetic algorithms(GAs), particle swarm optimization (PSO), tabu search (TS), etc.) are

commonly used for global exploration while the latter (e.g., generalized pattern search (GPS), mesh

adaptive direct search (MADS), and trust-region methods (DFO, COBYLA, CONDOR)) are local

methods with convergence properties [22]. In this work, we use the NOMAD implementation [8, 23]

of the MADS algorithm [5] to solve (P).

Multiprocessor computers, supercomputers, cloud computing, or just a few connected PCs can

provide parallel (or concurrent) computing opportunities to speed up so-called trajectory-based op-

timization algorithms. According to [1], three ways are commonly used to achieve this: (i) parallel

evaluation of neighborhood solutions (distributed evaluations), (ii) parallel trajectories from the same

(or different) initial guess(es) (independent optimization runs), (iii) the evaluation of a point x is

performed in parallel (i.e., the search is sequential). The implementation of (iii) depends only on the

blackbox, while the other two are related to the optimization algorithm.

NOMAD offers implementations for (i) and (ii) through p-MADS for (i) and Coop-MADS for

(ii) [24]. In both cases, the parallel evaluations are handled by NOMAD by means of MPI calls to

the blackbox [23]. However, if one prefers to take charge of the distribution of evaluations, one can

implement p-MADS with blocks by using NOMAD in batch mode [24]. In that case, instead of using

MPI calls, NOMAD writes all points to be evaluated in an input file, waits for all evaluations to be

completed, and reads the obtained values of f(x) and cj(x) from an output file. Then, NOMAD either

stops if a local optimum is reached or submits a new block of points to evaluate. We use here the

block functionality of NOMAD, adopting option (i) for parallel evaluations, because of its flexibility

and generality.

The MADS algorithm includes two steps at each iteration, the SEARCH and the POLL. The

SEARCH step is flexible (defined by the user) and aims at determining one or more new points x ∈ X
that improves the current best solution. The POLL step is defined according to the convergence

analysis of the algorithm and generates trial points around the current best solution. The number of

poll points at each iteration is either 2n or n + 1 depending on the utilized pattern with n being the

size of x.

The number of points evaluated in the SEARCH step depends on the methods chosen or defined

by the user. Several techniques are already implemented and available in NOMAD, including the

speculative search (SS), the quadratic model search (QUAD), the variable neighborhood search (VNS),

the Latin hypercube search (LHS), and the Nelder Mead search (NMS). One can also implement their

own technique if one so desires, which is called a user search (US).

With the exception of LHS, all provided techniques usually return only one trial point. When

several techniques are used at once, they are called one after the other along the SEARCH step, each

technique providing its own trial point, which is evaluated by the blackbox before proceeding to the

next technique. Assuming that 2n CPUs are available for solving (P), the POLL step can make good

2 G–2020–38 – Revised Les Cahiers du GERAD

use of these CPUs. However, since SEARCH step evaluations are sequential, progress is slowed down

with almost all CPUs being idle. One may argue that we should then only use LHS since it can

generate 2n points. However, since LHS is random, its points will quickly become less promising after

a few iterations.

Considering that the number of available CPUs are now, particularly with the emergence of cloud

computing, relatively inexpensive and unlimited, we should rethink the SEARCH step to be as effective

as the POLL step in terms of CPU use. In this work, we propose a SEARCH step technique that

returns a large number of diverse points for evaluation.

The paper is structured as follows. The general idea behind the proposed technique is described

in Section 2. In Section 3, six different methods are presented for selecting various candidates from

a large set of points. In Section 4, the resulting model search for parallel computing is specified. In

Section 5, we test our SEARCH step technique on five engineering design optimization problems using

up to 64 processors. A discussion concludes the paper.

2 Proposed SEACH step technique

One of the practical challenges of the SEARCH step is that only one candidate is obtained at a

significant computational investment [7, 27, 31, 32]. Specifically, regardless of the number of available

CPUs, only one CPU is used in the SEARCH step for blackbox evaluations, with the exception of LHS.

Before presenting our idea for mitigating this practical challenge, we will assume that computationally

inexpensive surrogate models of the expensive blackboxes are available. We can then consider the

surrogate problem of problem (P)

min
x∈X

f̂(x)

subject to ĉj(x) ≤ 0, j = 1, 2, . . . ,m,
(P̂)

where {f̂, ĉ1, ĉ2, . . . , ĉm} are surrogate models of {f, c1, c2, . . . , cm}, respectively. Note that we only

need to ensure that the minimizers of (P) and (P̂) are close enough, and not that the surrogate models

are good approximations of the blackboxes globally. It then follows that a minimizer of (P̂) will be a

good candidate for the solution of (P).

If both problems have the same minimizers, they may share features in other areas of X as well.

Since the evaluations of f̂(x) and ĉj(x) are rather inexpensive compared to f and cj , one can allow

a very large budget of model evaluations to solve (P̂), extending thus the number of design space

areas that will be visited. This is acceptable as long as the solution of (P̂) is faster than any single

evaluation of the blackboxes. Considering there are q CPUs available for blackbox evaluations, one

may then select q points from the available budget by solving (P̂). The q points can be selected to

consider areas of X that have been neglected until now in the solution of (P).

The above proposition proposes the use of surrogate models {f̂, ĉ1, ĉ2, . . . , ĉm} in a manner that is

not reported in [18], which mentions two ways of exploiting surrogates in the context of parallelization.

The simplest is to fit q different surrogate models at the same points already evaluated by the blackbox

functions. This allows to get q different promising candidates and requires no uncertainty quantification

for the surrogate models. One can also combine the surrogates; distance-based criteria can be added

to ensure diversity between the candidates. The other way is to use a single surrogate model and

consider q points where the blackboxes should be evaluated at to improve its accuracy.

We propose an intermediate approach. We use only one surrogate model for each blackbox. The

q candidates are extracted from that single surrogate, but not with the aim of improving it. Instead,

the q candidates are selected to be the most interesting to advance the optimization process.

Les Cahiers du GERAD G–2020–38 – Revised 3

3 Methods for selecting candidate points

Let X = {x1,x2, . . . ,xk} be the set of all points evaluated by the blackbox. Note that X ⊂ X ⊂ Rn.

We denote X̂ the surrogate cache, i.e., the set of all points for which {f̂, ĉ1, ĉ2, . . . , ĉm} have been

evaluated during the solution of (P̂). Similarly, X̂ ⊂ X ⊂ Rn. Let S be the set of points that are

selected by the SEARCH step to be evaluated with the blackbox. The set S is initially empty and

is built from the points of X̂ (ensuring that S ⊂ X̂) with a greedy algorithm by means of up to six

selection methods, each one having a different goal.

• Method 1 selects the best point of X̂ not in X ∪ S;

• Method 2 selects the most distant point of X̂ from X ∪ S;

• Method 3 selects the best point of X̂ at a certain distance of X ∪ S;

• Method 4 selects the best point of X̂ under additional constraints;

• Method 5 selects a point of X̂ that is a possible local minimum of the surrogate problem;

• Method 6 selects a point of X̂ in a non-explored area.

Note that some selection methods may fail to return a candidate, particularly methods 3 and 4. If this

happens, the next method is used. We repeat and loop through all methods until we obtain enough

points in S matching the available CPUs. Some points x ∈ X̂ can also belong to the set X; this is not

an issue since all methods only select point x ∈ X̂ to be added to S if and only if x /∈ X. The selection

methods are detailed below after some definitions.

3.1 Definitions

Let d(A,B) be the Euclidean distance between two subsets A and B of Rn

d(A,B) = min
a∈A

min
b∈B
‖a− b‖2. (1)

As a convention, the distance to an empty set is infinite: d(A,∅) = d(∅,∅) = +∞. By extension, we

will denote the distance between an element a /∈ B and the subset B simply by d(a,B), which implies

that a also refers to the particular subset containing only a, i.e., {a}.

Regarding feasibility, we consider the aggregate constraint violation function used in [15], i.e.,

h(x) =
∑m

j=1 max{0, cj(x)}2. The same function is used in the progressive barrier mechanism in

NOMAD [6].

We also define the order operators between two points x and x′ ∈ X :

x ≺ x′ ⇔

 h(x) < h(x′)
or
h(x) = h(x′) and f(x) < f(x′)

(2)

x � x′ ⇔ not(x′ ≺ x), (3)

which are transitive. By those definitions, an incumbent solution x′ of the original problem (P) is

such that x′ � x, ∀x ∈ X. Similarly, a global minimizer x∗ is such that x∗ � x, ∀x ∈ X . In the same

manner as we define ≺ and � for f and h, we define ≺̂ and �̂ for f̂ and ĥ.

Finally, to simplify the description of the proposed selection methods, we define s∞ as a virtual point

(in the sense that it does not have coordinates in Rn), which represents the worst possible candidate

in Rn:

ĥ(s∞) = f̂(s∞) = +∞ and d(s∞,X) = 0. (4)

3.2 Detailed description of selection methods

Method 1. The first selection method selects the best point s of X̂ under the constraint that d(s,X∪
S) > 0, which means that s is not in the set X of evaluated points nor already selected (i.e., /∈ S).

This method reflects how surrogate models are typically used for finding new candidate points.

4 G–2020–38 – Revised Les Cahiers du GERAD

Algorithm 1 Selection of the best point (Method 1)

s∗ ← s∞

for all s ∈ X̂, do:∣∣∣∣∣∣
if s ≺̂ s∗ and d(s,X ∪ S) > 0, then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣ S← S ∪ {s∗}
end

Method 2. The second method aims to maximize the diversity of the candidates to be evaluated. It

selects the point s of X̂ that maximizes the distance d(s,X ∪ S), i.e., as far as possible from points

already evaluated.

Algorithm 2 Selection of the most distant point to X ∪ S (Method 2)

s∗ ← s∞

for all s ∈ X̂, do:∣∣∣∣∣∣
if d(s,X ∪ S) > d(s∗,X ∪ S), then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣ S← S ∪ {s∗}
end

Method 3. This method selects the best point s of X̂ under the constraint that d(s,X ∪ S) ≥ dmin,

where dmin is initialized at 0 at the beginning of the selection process and increased progressively as

the method is applied. Method 3 may fail to select a candidate s when dmin becomes too large. Since

the selected points S must be projected on the current mesh M = {x + ∆mDz, z ∈ NnD ,x ∈ X}
as required by MADS, incrementing dmin by the current mesh size ∆M allows to avoid that several

candidates become identical after the projection.

Algorithm 3 Selection of the best point with a constraint on the distance to X ∪ S (Method 3)

s∗ ← s∞

if first use of Method 3, then:∣∣ dmin ← 0
end

for all s ∈ X̂, do:∣∣∣∣∣∣
if s ≺̂ s∗ and d(s,X ∪ S) ≥ dmin, then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣∣∣ S← S ∪ {s∗}
dmin ← dmin + ∆M

end

Method 4. Considering that the surrogate models ĉj may fail to predict correctly if s is feasible,

the present method tries to select points that will be likely to be feasible when evaluated by the

Les Cahiers du GERAD G–2020–38 – Revised 5

blackboxes cj . This is done by selecting the best feasible point s of X̂ under the constraint ĉmax(s) ≤
ĉmargin, where ĉmax(s) is defined as being the most violated constraint of s, i.e.,

ĉmax(s) = max
j=1,2,...,m

ĉj(s), (5)

where ĉmargin is set as

ĉmargin ← max
s∈X̂

ĉmax(s)<0

ĉmax(s) (6)

and quantifies, among all feasible points of X̂, the smallest amount by which these are satisfied.

By definition, ĉmax(s) ≤ 0 if s is predicted to be feasible by the surrogate models. The more

negative ĉmax(s) is, the more likely is s to be feasible when evaluated by the blackboxes. Decreasing

progressively the value of ĉmargin after each call of this selection method will favor candidates that are

increasingly likely to be feasible (but possibly with worse objective function values).

Algorithm 4 Selection of the best point with a constraint on the feasibility (Method 4)

s∗ ← s∞

if first use of Method 4, then:∣∣∣∣∣ ĉmargin ← min{0, max
s∈X̂

ĉmax(s)<0

ĉmax(s)}

end

for all s ∈ X̂, do:∣∣∣∣∣∣
if ĉmax(s) ≤ ĉmargin and f̂(s) < f̂(s∗) and d(s,X ∪ S) > ∆M, then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣∣∣ S← S ∪ {s∗}
ĉmargin ← 2 ĉmax(s∗)

end

Note that this method requires that ĉmargin ≤ 0 is always satisfied. Moreover, we also assume that

there is at least one s ∈ X̂ that is feasible. If it is not the case, which may happen in the first iteration,

we will end up with ĉmargin > 0 and an inappropriate candidate will be selected. To avoid this, we

initialize ĉmargin to 0 so that the method may fail to return a candidate if that is the case.

Method 5. The isolation distance is used here to detect local minima of the surrogate problem. This

concept is inspired from the topographic isolation of a mountain summit, which measures the local

significance of a summit. It is defined as the distance to the closest higher summit.1

Transferred to optimization, the concept of topographic isolation is used to quantify the importance

of a local minimum. Its strict application is however impossible since it will require to prove that no

other point within a certain distance of x is better than x. We can only compute isolation distance

of the already evaluated points. Consequently, we define the isolation distance as being the distance

from s to the closest point of X̂ that is better than s

diso(s) = min
s′∈X̂
s′ ≺̂s

d
(
s, s′). (7)

1 In mountaineering, the topographic isolation of Mount Everest is infinite and the summit with the second highest
isolation is the Aconcagua in Argentina. The Aconcagua is not the second highest summit but there is no higher
mountain in a 16,518 km range, making it the most important summit in the Americas and in the southern hemisphere.

6 G–2020–38 – Revised Les Cahiers du GERAD

Constraints are taken into account by using the order relationship defined in Equation (2). As a

convention, if no point of X̂ is better than s, then diso(s) = +∞. With this definition, the point of X̂

with the highest isolation distance is also the best candidate in X̂. However, we have observed that

the other points with a high isolation distance are often poor points far from any other point of X̂.

To address this problem, we define the isolation number of s ∈ X̂ as the number of points of X̂ within

the ball of centre s and radius diso(s)

niso(s) = card
{
s′ : s′ ∈ X̂, d(s, s′) < diso(s)

}
. (8)

To have a high isolation number, a point must be better than many of its neighbors, which means that

this criterion allows to detect local minima. Note that Equation (4) implies that diso(s∞) = niso(s∞) =

0. Method 5 selects the point of X̂ that has the highest isolation number not yet in X ∪ S.

Algorithm 5 Selection of the most isolated point (Method 5)

s∗ ← s∞

for all s ∈ X̂, do:∣∣∣∣∣∣
if niso(s) > niso(s∗) and d(s,X ∪ S) > 0, then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣ S← S ∪ {s∗}
end

Method 6. The purpose of this method is to select points in neglected areas of the design space. To

do so, it selects points in areas heavily explored while solving (P̂) but overlooked when solving (P).

The density number of s ∈ X̂ is defined as

ndensity(s) = card
{
s′ : s′ ∈ X̂, d(s, s′) < d(s,X ∪ S)

}
. (9)

Method 6 selects the point of X̂ with the highest density number. Note that, as for niso, Equation (4)

implies that ndensity(s∞) = 0.

Algorithm 6 Selection of a point in a populated area (Method 6)

s∗ ← s∞

for all s ∈ X̂, do:∣∣∣∣∣∣
if ndensity(s) > ndensity(s∗), then:∣∣ s∗ ← s
end

end
if s∗ 6= s∞, then:∣∣ S← S ∪ {s∗}
end

4 Parallel computing implementation

We now describe how we implement the proposed SEARCH step. We start with the surrogate models

and follow with the algorithms used for solving (P̂). We conclude with how all of this is integrated

with the MADS algorithm to solve (P).

Les Cahiers du GERAD G–2020–38 – Revised 7

4.1 Surrogate models

Several surrogate models are mentioned in [18] regarding their use in parallel computing approaches,

including Kriging, radial basis functions (RBF), support vector regression (SVR), and polynomial

response surfaces (PRSs). For a more exhaustive description and comparison of surrogate models,

see [2]. Based on our previous work reported in [31], we choose to use the locally weighted scatterplot

smoothing (LOWESS) surrogate modeling approach [10, 11, 12, 13].

LOWESS models generalize PRSs and kernel smoothing (KS) models. PRSs are good for small

problems, but their efficacy decreases for larger, highly nonlinear, or discrete problems. KS models

tend to overestimate low function values and underestimate high ones, but usually predict correctly

which of two points yields the smallest function value [7]. LOWESS models build a linear regression

of kernel functions around the point to estimate. They have been shown to be suitable for surrogate-

based optimization [31]. Their parameters are chosen using an error metric called “aggregate order

error with cross-validation” (AOECV), which favors equivalence between the original problem (P)

and the surrogate problem (P̂) [7]. We use the SGTELIB implementation of the surrogate models,

which is now integrated as a surrogate library in NOMAD version 3.8 [30]. Specifically, the considered

LOWESS model is defined in SGTELIB as follows.

TYPE Lowess DEGREE 1 RIDGE 0 SHAPE COEF OPTIM KERNEL TYPE OPTIM,

which means that the local regression is linear, the ridge (regularization) coefficient is 0, and the kernel

shape and kernel type are optimized to minimize the aggregate order error (see [31]).

The LOWESS model is built as described in Appendix A. Only the Gaussian kernel was considered

in [31]. Six additional kernel functions have meanwhile been implemented in SGTELIB. Accordingly,

not only λ (kernel shape) is chosen to minimize AOECV, but also φ (kernel type).

4.2 Surrogate problem solution

The surrogate problem (P̂) is solved by means of an inner instance of MADS; it is initialized by a

Latin hypercube search (LHS) [25, 29] and uses variable neighborhood search (VNS) [19, 26] as the

SEARCH step and a large budget of function evaluations (10,000). The POLL step is performed using

the ORTHO 2N directions option. This inner MADS is implemented in the SEARCH step of the outer

MADS.

The LHS guarantees that there are surrogate cache points widely spread over the design space. To

ensure this, 30% of all function evaluations (i.e., 3,000) are devoted to the LHS. Four additional points

are considered: The current best feasible point of the original problem, the current best infeasible

point of the original problem, the best feasible point obtained by solving the most recent surrogate

problem instantiation, and the best infeasible point by solving the most recent surrogate problem

instantiation. These points are used as initial guesses of the inner MADS problem, which will be

run until the remaining evaluation budget is exhausted. This budget will be shared between the

POLL step and the VNS in a default proportion where 75% is devoted to VNS, which favors the

exploration of multiple local attraction basins. A large number of evaluations that build the surrogate

cache X̂ favors an accurate solution of the surrogate problem. Using LHS, VNS, and a large number

of function evaluations ensures that X̂ contains highly promising candidates for the solution of the

original problem (P).

4.3 The modified MADS algorithm

Recall that each iteration of MADS includes a SEARCH step (performed first) and a POLL step. Let t

denote the current iteration. Then, Xt, X̂t, and St denote the sets X, X̂, and S considered by MADS

at iteration t. Let q be the number of available CPUs, i.e., the number of blackbox evaluations that

can be performed in parallel. The proposed MADS for exploiting q CPUs is as follows. First, the

SEARCH step proceeds by solving the surrogate problem to populate the set X̂t. From that set, q

8 G–2020–38 – Revised Les Cahiers du GERAD

candidates are selected and returned to be evaluated by the blackbox(es) in parallel. The selection

is made by cycling through a user-defined subset of the six proposed selection methods (Section 3.2)

until a total of q candidates are selected, or until all selection methods consecutively failed to add a

candidate to St. If q is smaller than the number of selection methods retained by the user, we do not

necessarily go through all the methods, but stop as soon as we get q candidates.

If/when the SEARCH step fails to return a better objective function value, the MADS algorithm

proceeds to the POLL step. Let Pt be the set of candidates produced by the polling directions at

the iteration t. The cardinality of Pt is denoted by |Pt|. To be consistent with our need to fulfill

continuously all the available CPUs with evaluations, additional candidates are added so that |Pt| is

at least q or a multiple of q. This is accomplished by means of NOMAD’s intensification mechanism

ORTHO 1. If |Pt| = q, all poll candidates of Pt are evaluated concurrently, eliminating the need to

order them. If |Pt| > q, then the points in Pt are regrouped in several blocks of q candidates. The

blocks are then evaluated sequentially and opportunistically, which means that if a block evaluation

leads to a success, the remaining blocks are not evaluated. To increase the probability of success from

the first block, and hence avoiding to proceed with the remaining ones, the candidates of Pt are sorted

using the surrogate models and distributed in the blocks so that the more promising ones are in the

first block.

Recall that Mt is the current mesh, ∆Mt is the associated mesh size parameter, ∆P
t is the corre-

sponding mesh poll parameter, and x∗t is the best solution found at iteration t. Finally, the set Xt is

updated with all the points x in St−1 and Pt−1 that have been evaluated during the previous iteration.

The process is summarized in Algorithm 7.

Algorithm 7 The proposed MADS optimization algorithm

[1] Initialization
t← 0
Set initial poll and mesh sizes ∆P

0 ≥ ∆M0 > 0
Initialize X0 with starting points
Evaluate {f(x), c1(x), c2(x), . . . , cm(x)} ∀x ∈ X0

[2] Model search

Use Xt to build f̂ and {ĉj}j∈J
Solve surrogate problem (P̂) using the inner MADS instance

X̂t ← Set of points evaluated with surrogate model while solving (P̂)

St ← Cycle through selection steps to select q points of X̂t

St ← Projection of the points of St onto mesh Mt

Parallel evaluation of {f(x), c1(x), c2(x), . . . , cm(x)} ∀x ∈ St
If success, goto [4]

[3] Poll
Build poll set Pt
Sort Pt according to f̂ and {ĉj}j∈J
Parallel evaluation of {f(x), c1(x), c2(x), . . . , cm(x)} ∀x ∈ Pt

[4] Updates
t← t+ 1
Update ∆Mt , ∆P

t , x∗t and Xt

If no stopping condition is met, goto [2]

5 Numerical investigation

The proposed SEARCH step technique is tested using five optimization problems. We first describe

the algorithms considered for benchmarking. Next, numerical results are presented and discussed for

the five engineering design problems.

Les Cahiers du GERAD G–2020–38 – Revised 9

5.1 Compared algorithms

Five solvers are compared in our numerical experiments, all based on the MADS algorithm and imple-

mented using NOMAD 3.8 [23]. This ensures avoiding coding biases since features are identical among

solvers.

• MADS. Refers to the POLL step of MADS, without any SEARCH step, where 2n directions

are generated and evaluated in parallel. If needed, k additional directions are generated such

that 2n+ k is a multiple of q.

• Multi-Start. Consists of q parallel runs of MADS. They are totally independent and each

instance runs on its own CPU. Each instance proceeds to its evaluations sequentially, one after

the other. Only the POLL step is executed and no cache is shared between running instances.

• LH Search. The MADS solver mentioned above using a Latin hypercube search (LHS) at the

SEARCH step, where q candidates are generated and evaluated in parallel.

• Lowess-A. The MADS solver mentioned above with the described surrogate optimization con-

ducted at the SEARCH step. The q candidates are selected by cycling through Methods 1 and 2,

and then evaluated in parallel.

• Lowess-B. The MADS solver mentioned above with the proposed surrogate optimization con-

ducted at the SEARCH step. The q search candidates are selected by cycling through Methods 3,

4, 5, and 6, and then evaluated in parallel.

Both LOWESS solvers are exactly like Algorithm 7, excepted for the used selection methods.

The only difference between them and the LHS solver is that the surrogate optimization approach

is replaced by a LHS at the SEARCH step. This should allow us to determine whether surrogate

optimization has any advantage over a random search. The MADS solver is used as the baseline.

Finally, the Multi-Start solver is considered to ensure that one should not proceed with q independent

narrow trajectories instead of one single trajectory having q wide evaluations.

5.2 Engineering design optimization problems

The above solvers are compared on five engineering design application problems. A short description

follows below for each problem. More details are provided in Appendix B.

• TCSD. The Tension/Compression Spring Design problem consists of minimizing the weight of

a spring under mechanical constraints [3, 9, 16]. This problem has three variables and four
constraints. The design variables define the geometry of the spring. The constraints concern

shear stress, surge frequency, and minimum deflection.

• Vessel. This problem considers the design of a compressed air storage tank and has four design

variables and four constraints [16, 21]. The variables define the geometry of the tank and the

constraints are related to the volume, pressure, and solidity of the tank. The objective is to

minimize the total cost of the tank, including material and labour.

• Welded. The welded beam design problem (Version I) has four variables and six constraints [16,

28]. It aims at minimizing the construction cost of a beam, under shear stress, bending stress,

and deflection constraints. The design variables define the geometry and the characteristics of

the welded joint.

• Solar 1. This optimization problem aims at maximizing the energy received over a period of 24

hours under five constraints related to budget and heliostat field area [17]. It has nine variables,

including an integer one without an upper bound.

• Solar 7. This problem aims at maximizing the efficiency of the receiver over a period of 24

hours for a given heliostats field under six binary constraints [17]. It has seven design variables,

including an integer one without an upper bound.

A progressive barrier is used to deal with the aggregated constraints [6]. The three first problems

are easier relative to the last two ones. However, it is difficult to find a feasible solution for the TCSD

problem. Among all the considered problems, Solar 1 is certainly the most difficult one.

10 G–2020–38 – Revised Les Cahiers du GERAD

5.3 Numerical experiments

We compare the efficiency of each solver for different values of block size q ∈ {1, 2, 4, 8, 16, 32, 64}. As

an example, we will use “Lowess-A 16” to refer to the solver that relies on LOWESS models cycling

over Methods 1 and 2 considering a block size q = 16. For each problem, we generated 50 sets of 64

starting points with Latin hypercube sampling [25]. For all solvers other than “Multi-Start”, only the

first point of each set is used to perform optimizations. Doing so, we get 50 runs from the same starting

points for each solver, each problem, and each value of q. For “Multi-Start”, since q independent and

parallel sequential runs of MADS must be performed, we use the q first points of each set. Doing so,

we still get 50 runs for each problem and each q, while ensuring that all starting points are the same

for all solvers.

To avoid that all “LH Search” runs end up with nearly identical solutions for a given q, we use a

random seed for initializing each LHS.

For the relatively three simpler problems (TCSD, Vessel, and Welded), a budget of 100 block

evaluations is allocated. For the two relatively difficult problems (Solar 1 and Solar 7), the budget

is increased to 200 block evaluations. This means that, for a given problem, all solvers will have the

same “wall-clock” time, but not necessarily the same resources (number of CPUs available for block

evaluations) nor the same total number of blackbox evaluations.

Solution quality

Figures 1 and 2 represent the distribution of the final objective function over the 50 runs for each

problem, each solver, and each block size q. The minimum and maximum objective values that we

obtained from the runs are indicated by circles in the figures. Lower and upper quantiles are delimited

by boxes. Median values are represented by a bar into the boxes. The more a distribution is on the

left side, the better the combination of solver and q is. Since we are mostly interested in the best

combinations, the figures only focus on the smallest values. Otherwise, it would be difficult to discern

the difference among the best combinations. All combinations for which the distribution is cut on the

right side are performing poorly.

For the three simpler problems (TCSD, Vessel, and Welded, Figure 1), the LOWESS solvers (and

in particular “Lowess-B”) are by far superior to the solvers that do not rely on surrogate optimization.

For the TCSD problem, the “MADS” solver often failed to find a feasible design (thus leading to

infinite objective values), even with a large number of evaluations per block. The four other solvers

always managed to find a feasible point for at least 75% of the runs. The “Lowess-B” solver performs

better than any of the other ones. We see that “Lowess-A 64” is outperformed by “Lowess-B 8”. As

the TCSD problem is very constrained, the final objective function value depends on the initial guess.

This is why the “Multi-Start” solver performs quite well on this problem.

The same trend is observed for the Vessel, and Welded problems. “Lowess-B” performs better

than “Lowess-A”, which outperforms “LHS” or “MADS”. In particular, “Lowess-B 8” outperforms the

solvers “Lowess-A 8/16/32”. As expected, increasing the block size improves performance. However,

for the “Lowess-B” solver these three problems are easy to solve, so it is difficult to see an advantage

of using parallel computing because the global optimum is found most of the time within 100 block

evaluations for a block size of 16 or more. The “Multi-Start” solver performs rather poorly on these

two problems.

The numerical results generally follow the same trend for the two Solar problems (Figure 2). For a

block of equal size, the LOWESS solvers outperform the other solvers while “Lowess-B” outperforms

“Lowess-A”.

Les Cahiers du GERAD G–2020–38 – Revised 11

MADS, q = 1
q = 2
q = 4
q = 8
q = 16
q = 32
q = 64

Multi-Start, q = 1
q = 2
q = 4
q = 8
q = 16
q = 32
q = 64

LH Search, q = 1
q = 2
q = 4
q = 8

q = 16
q = 32
q = 64

Lowess-A, q = 1
q = 2
q = 4
q = 8

q = 16
q = 32
q = 64

Lowess-B, q = 1
q = 2
q = 4
q = 8
q = 16
q = 32
q = 64

0.012 0.016 0.02

TCSD

5000 7500 10000

Vessel

2 3 4

Welded

Figure 1: Performance summary for the TCSD, Vessel, and Welded problems over 50 runs

Convergence rate

We now examine the convergence rate of the solvers for the case where q = 64. Figures 3 and 4 depict

the evolution of the median objective function value of 50 runs as a function of the number of block

evaluations. For each problem, the plots on the left compare the convergence of the five solvers with

blocks of size q = 64 while the plots on the right compare the convergence of the best-performing

solver i.e., “Lowess-B”, for block sizes ranging from q = 1 to 64.

We can conclude that “Lowess-B” yields the best solutions faster than any other solver (for q = 64).

The worst-performing solvers are “Multi-Start” for problems TCSD and Solar 1 and “LH Search” for

12 G–2020–38 – Revised Les Cahiers du GERAD

MADS, q = 1
q = 2
q = 4
q = 8

q = 16
q = 32
q = 64

Multi-Start, q = 1
q = 2
q = 4
q = 8

q = 16
q = 32
q = 64

LH Search, q = 1
q = 2
q = 4
q = 8
q = 16
q = 32
q = 64

Lowess-A, q = 1
q = 2
q = 4
q = 8

q = 16
q = 32
q = 64

Lowess-B, q = 1
q = 2
q = 4
q = 8
q = 16
q = 32
q = 64

−10 −7.5 −5 −2.5 0

x 10
5

Solar 1

−4980 −4950 −4920 −4890

Solar 7

Figure 2: Performance summary for the Solar 1 and Solar 7 problems over 50 runs

problems Vessel, Welded, and Solar 7. It is also notable that although “MADS” does not use the

SEARCH step, it performs generally well, except for Solar 1. “Lowess-A” performed well but does not

clearly outperform other solvers.

Considering the performance of “Lowess-B” as a function of q, we observe that, as expected,

convergence improves for larger values of q. Depending on the problem, there may be a saturation

point beyond which an increase of q does not effect an improvement. E.g., a saturation point arises

around q = 8 or 16 for TCSD, Vessel, and Welded. On the contrary, q could be even larger than 64

for Solar 1 as more CPUs can be utilized.

Les Cahiers du GERAD G–2020–38 – Revised 13

TCSD problem

0 25 50 75 100
0

0.02

0.04

0.06

0.08

0.1

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

0 25 50 75 100
0

0.02

0.04

0.06

0.08

0.1

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

Lowess-B 1
Lowess-B 2
Lowess-B 4
Lowess-B 8
Lowess-B 16
Lowess-B 32
Lowess-B 64

Vessel problem

0 25 50 75 100
0.5

1

1.5

2

2.5
x 10

4

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

0 25 50 75 100
0.5

1

1.5

2

2.5
x 10

4

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

Lowess-B 1
Lowess-B 2
Lowess-B 4
Lowess-B 8
Lowess-B 16
Lowess-B 32
Lowess-B 64

Welded problem

0 25 50 75 100
2

3

4

5

6

7

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

0 25 50 75 100
2

3

4

5

6

7

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

Lowess-B 1
Lowess-B 2
Lowess-B 4
Lowess-B 8
Lowess-B 16
Lowess-B 32
Lowess-B 64

Figure 3: Results for the TCSD, Vessel, and Welded problems; median objective value of 50 runs

Performance profiles

We now consider performance profiles, which indicate the percentage of runs where the problem is

solved within a deviation from the best known solution τ under a budget of function evaluations [14].

Specifically, for each solver s, each instance r and problem p, we compute the number of block evalu-

ations bs,p,r(τ) such that
|fs,b,p,r − f∗p |

|f∗p |
≤ τ, (10)

14 G–2020–38 – Revised Les Cahiers du GERAD

Solar 1

0 50 100 150 200
−6

−5

−4

−3

−2

−1

0
x 10

5

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

0 50 100 150 200
−6

−5

−4

−3

−2

−1

0
x 10

5

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

Lowess-B 1
Lowess-B 2
Lowess-B 4
Lowess-B 8
Lowess-B 16
Lowess-B 32
Lowess-B 64

Solar 7

0 50 100 150 200
−5000

−4950

−4900

−4850

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

0 50 100 150 200
−5000

−4950

−4900

−4850

Number of block evaluations

M
ed

ia
n
o
b
je
ct
iv
e

Lowess-B 1
Lowess-B 2
Lowess-B 4
Lowess-B 8
Lowess-B 16
Lowess-B 32
Lowess-B 64

Figure 4: Results for the Solar 1 and Solar 7 problems; median objective value of 50 runs

where f∗p is the best known objective value for problem p and fs,b,p,r is the value obtained with the

solver s after b block evaluations. Let bmin
p,r (τ) be the smallest budget for solving the instance r of

problem p with deviation τ , i.e.,
bmin
p,r (τ) = min

s
bs,p,r(τ).

Then, we can plot the proportion of runs of solver s that satisfy Equation (10) at a multiple α of the

smallest budget, i.e., α bmin
p,r (τ) block evaluations. Figure 5 depicts the performance profiles of the five

considered problems for q = 64 over the 50 runs (instances) for τ values that range from 10−1 to 10−4.

Note that higher curves imply better solver performance. Moreover, a solver that performs well

for small values of α is a solver that can solve, for the considered τ , a large number of problems with

a small evaluation budget. Figure 5 confirms our previous observations: “Lowess-B” outperforms all

solvers, followed by “Lowess-A” and “LH Search” in second and third position. “MADS” and “Multi-

Start” are in the last position. For large tolerances, “MADS” does better than “Multi-Start”, and

better than “LH Search” for small values of α (≤ 4). For small precisions, “MADS” is outperformed

by the other solvers.

The most interesting observation is the significant gap between the performance curves of LOWESS

solvers and the ones from the three other solvers. The gap increases as τ decreases. From moder-

ate to lower τ values (≤ 10−2), “Lowess-B” systematically solves at least twice more problems than

“LH Search”, “Multi-Start” and “MADS”. It is unusual to observe such clear differences on perfor-

mance profiles. “Lowess-A” performs almost as well as “Lowess-B”, particularly when τ is small

(around 10−4), but needs at least four times more block evaluations to achieve this.

Les Cahiers du GERAD G–2020–38 – Revised 15

Performance profiles for τ = 10−1 Performance profiles for τ = 10−2

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

α

%
o
f
so
lv
ed

p
ro
b
le
m
s
(τ

=
1
0
−
1
)

MADS 64
Multi-Start 64
LH Search 64
Lowess-A 64
Lowess-B 64

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

α

%
o
f
so
lv
ed

p
ro
b
le
m
s
(τ

=
1
0
−
2
)

Performance profiles for τ = 10−3 Performance profiles for τ = 10−4

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

α

%
o
f
so
lv
ed

p
ro
b
le
m
s
(τ

=
1
0
−
3
)

1 2 4 8 16
0

10

20

30

40

50

60

70

80

90

100

α

%
o
f
so
lv
ed

p
ro
b
le
m
s
(τ

=
1
0
−
4
)

Figure 5: Performance profiles for q = 64 over the 50 runs of all five problems

Scalability analysis

We wish to establish the reduction of wall-clock time when using additional resources for each solver.

To that end, we follow the methodology proposed in [20]. We define fs,b,p,r,q as the value of the
objective function obtained by solver s after b block evaluations on instance r of problem p when using

q CPUs. We also define the reference objective value as the best value achieved with only one CPU

(q = 1), i.e.,

f refs,p,r = min
b
fs,b,p,r,1, (11)

and brefs,p,r,q the number of block evaluations necessary to reach f refs,p,r when q CPUs are used, i.e.,

brefs,p,r,q = min{b : f refs,p,r ≤ fs,b,p,r,q}. (12)

The speed-up of solver s when solving with q CPUs is defined as

speed-up(s, q) = geomean
p,r

(
brefs,p,r,q

brefs,p,r,1

)
(13)

and its efficiency as

efficiency(s, q) =
speed-up(s, q)

q
. (14)

Figure 6 depicts the speed-up and efficiency values obtained by our numerical experiments.

Perfect scalability is obtained when the speed-up is equal to q and the efficiency is equal to 1. The

speed-up curves show that the power introduced by new CPUs decreases as their number increases.

16 G–2020–38 – Revised Les Cahiers du GERAD

1 2 4 8 16 32 64
1

2

4

8

16

32

64

q (Nb of processors)

S
p
ee
d
-U

p

MADS
Multi-Start
LH Search
Lowess-A
Lowess-B
Linear scalability

1 2 4 8 16 32 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q (Nb of processors)

E
ffi
ci
en

cy

Figure 6: Speed-up and efficiency

This was observed in Figures 3 and 4 where problems exhibited saturation around q = 8 and 16.

“Lowess-B” achieves the best speed-up, followed by “MADS”. “Lowess-A” and “LH Search” come

next, followed by the worst-performing solver, namely “Multi-Start”. We conclude that it is better

and more productive to proceed with one search performing q parallel evalutions instead of conducting

q independent searches consisting of a single evaluation.

The efficiency curves demonstrate rapid decrease except for “Lowess-B”; its rate exhibits a bump

on its efficiency curve at q = 4. For q = 2, only methods 3 and 4 are used to generate candidates. For

q ≥ 4, methods 5 and 6 are also used. The aforementioned bump highlights the important contributions

of these methods to the efficiency of “Lowess-B”.

6 Conclusion

Linear LOWESS models with optimized kernel shapes and coefficients seem to provide high-performing

surrogates of the blackboxes. The use of diverse selection methods (3 to 6) enables an efficient explo-

ration of the design space, accelerates local convergence, and makes optimal use of additional CPU

resources. Methods 5 and 6 are particularly efficient, outperforming the other selection methods.

This means that the way surrogates are used by method 1 is not effective. Similarly, the diversifica-

tion strategy of method 2 is not adequate to select points that lie far enough from the ones already

evaluated.

We cannot draw a definite conclusion about which of the methods 5 or 6 is better than the other.

We believe that the good performance of “Lowess-B” is due to using method 5.

The proposed selection methods are not specific to the LOWESS model considered here; they are

applicable to any surrogates. We believe that they will work well with reduced-fidelity (or variable-

fidelity) physical-based models since high- and low-fidelity models typically have similarly structured

solution domains. The selection methods are also applicable to other algorithms using surrogates to

identify promising points to evaluate.

Les Cahiers du GERAD G–2020–38 – Revised 17

Appendix

A LOWESS predictions

As a convention, we denote with ξ ∈ X ⊆ Rn the point of the design space where we want to predict

the value of the blackbox output. Locally weighted scatterplot smoothing (LOWESS) models build a

local linear regression at the point ξ where the blackbox output [f c1 . . . cm] are to be estimated [4,

10, 11, 12, 13, 31]. This local regression emphasizes data points that are close to ξ. The interested

reader can refer to [31] for details about the method described below. We consider here only local

linear regressions; local quadratic regressions and Tikhonov regularization are considered in [31]. On

the contrary, while only a Gaussian kernel was considered in [31], six others are added here as kernel

functions.

We define the output matrix Y ∈ Rp×(m+1), the design matrix Zξ ∈ Rp×(n+1), and the weight

matrix Wξ ∈ Rp×p:

Y =

 f(x1) c1(x1) . . . cm(x1)
...

...
...

f(xp) c1(xp) . . . cm(xp)

 , Zξ =

 1 (x1 − ξ)>

...
...

1 (xp − ξ)>

 , Wξ =

 w1(ξ)
. . .

wp(ξ)>

 . (15)

The details of the computation of wi(ξ) are described in Section A.1. Then, we define uξ ∈ Rn+1 as the

first column of (Z>ξ WξZξ)−1, which means that uξ is the solution of the linear system Z>ξ WξZξuξ =

e1. The prediction of the blackbox outputs at ξ is then

ŷ(ξ) =
[
f̂(ξ) ĉ1(ξ) . . . ĉm(ξ)

]
= u>ξ Z

>
ξ WξY. (16)

The cross-validation value ˆ̂y(xi) (i.e., the value of the LOWESS model at xi when the data point xi

is not used to build the model) are computed by setting wi to 0. Unfortunately, unlike for radial basis

function (RBF) models or polynomial response surfaces (PRSs), we do not know any computational

shortcut allowing a more efficient computation of the values of ˆ̂y. However, each value ˆ̂y(xi) is computed

at the same computational cost as a prediction ŷ(xi).

A.1 Weights computation in LOWESS models

The weight wi(ξ) quantifies the relative importance of the data point xi in the construction of the

local regression at ξ. Like for kernel smoothing, it relies on a kernel function φ and depends on the

distance between ξ and xi. In our method, we use

wi(ξ) = φ

(
λ
‖ξ − xi‖2
dn+1(ξ)

)
, (17)

where φ(d) is one of the kernel functions described in Table 1 and Figure 7. All kernel functions are

normalized so that φ(0) = 1 and, if applicable,
∫

R φ = 1. As the integral of the inverse multi-quadratic

kernel does not converge, the normalization constant 52.015 is introduced to minimize the L2 distance

between the inverse multi-quadratic and inverse quadratic kernel. The parameter λ > 0 controls the

general shape of the model, and dn+1(ξ) is a local scaling coefficient that estimates the distance of

the n + 1th closest data point to ξ. The kernel function φ and the shape parameter λ are chosen to

minimize the aggregate order error with cross-validation (AOECV) described in Section A.2. The fact

that some of the available kernel function have a compact domain gives to LOWESS models the ability

to ignore outliers or aberrant data points. As an example, if the blackbox fails to compute correctly the

objective function for a given data point, the value returned by the blackbox might be an arbitrarily

high value (e.g., 1.8 10308 for a C++ code returning the standard max double). With non-compact

kernel function, this would perturb the LOWESS model on the entire design space. However, if there

is no such aberrant data points, non-compact kernel functions tend to yield better results.

18 G–2020–38 – Revised Les Cahiers du GERAD

Table 1: Possible values for the kernel function φ

Kernel name φ : R→ R+ Compact domain

1 Tri-cubic φ(d) = (1− | 162
140

d|3)31|d|≤ 140
162

Yes

2 Epanechnikov φ(d) = (1− 16
9
d2)1|d|≤ 3

4
Yes

3 Bi-quadratic φ(d) = (1− | 16
15
d|2)21|d|≤ 15

16
Yes

4 Gaussian φ(d) = exp(−πd2) No
5 Inverse quadratic φ(d) = 1

1+π2d2
No

6 Inverse multi-quadratic φ(d) = 1√
1+52.015d2

No

7 Exp-root φ(d) = exp(−2
√
|d|) No

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

φ
(d
)

Tri-cubic

Epanechnikov

Bi-quadratic

Gaussian

Inverse quadratic

Inverse multiquad.

Exp-root

Figure 7: Representation of the 7 kernels listed in Table 1

To obtain a model ŷ that is differentiable everywhere, [31] defines dn+1(ξ) such that the expected

number of training points in a ball of center ξ and radius dn+1(ξ) is n+ 1:

E
[
card

{
xi : xi ∈ X, ‖ξ − xi‖2 ≤ dn+1(ξ)

}]
= n+ 1. (18)

Moreover, [31] observes that the values
{
‖ξ − xi‖22

}
i=1,...,p

can be fitted well by a Gamma distri-

bution and therefore defines the local scaling parameter as

dn+1(ξ) =

√√√√g(−1)

(
µ2
ξ

σ2
ξ

,
σ2
ξ

µξ
;
n+ 1

p

)
, (19)

where µξ (resp. σ2
ξ) denotes the mean (resp. variance) of ‖ξ − xi‖22 over X and g(−1)(k, θ; .) is the

inverse function of the cumulative density function of a Gamma distribution with shape parameter k

and scale parameter θ.

A.2 Aggregate Order Error with Cross-Validation

The AOECV is an error metric that aims at quantifying the quality of a multi-output surrogate model.

Specifically, it aims at quantifying the discrepancy between problems (P) and (P̂) for a given surrogate

model. We first define the aggregate constraint violation function [15] h(x) =
∑m

j=1 max{0, cj(x)}2.

Note that other definitions of h are possible (notably: number of violated constraints, most violated

constraint, etc.) but as the previous definition of h is used in the main MADS instance to solve (P),

we need to use the same aggregate constraint in our definition of the AOECV.

Les Cahiers du GERAD G–2020–38 – Revised 19

We then define the order operators

x ≺ x′ ⇔

 h(x) < h(x′)
or
h(x) = h(x′) and f(x) < f(x′),

(20)

x � x′ ⇔ not(x′ ≺ x) (21)

which are transitive. In particular, the incumbent solution xt of the original problem (P) is such that

xt � x, ∀x ∈ X. Similarly, a global minimizer x∗ is such that x∗ � x, ∀x ∈ X . By the same principle,

we define the operator ̂̂≺ by using the cross-validation values ˆ̂f and ˆ̂h =
∑m

j=1 max{0, ˆ̂cj(x)}2 instead

of f and h. We then define the aggregated order error with cross-validation (AOECV) metric:

EAOECV =
1

p2

p∑
i=1

p∑
j=1

xor
(
xi ≺ xj ,xi

̂̂≺ xj

)
. (22)

where xor is the exclusive or operator (i.e., xor (A,B) = 1 if the booleans A and B differ and 0

otherwise). The metric allows to quantify how often the model is able to correctly decide which of two

points is better.

The shape parameter λ and the kernel function φ are then chosen to minimize EAOECV (λ, φ). If two

couples (λ, φ) lead to the same metric value (because of the piecewise-constant nature of the metric),

the couple with the smallest value of λ (i.e., the smoother model) is preferred.

B Detailed description of the test problems

The five engineering design application problems considered are listed in Table 2. Problem size is

reflected by n and m, where n denotes the number of design variables and m the number of general

nonlinear inequality constraints. Table 2 also indicates whether any variables are integer or unbounded

and reports the best known value of the objective function.

Table 2: Summary of the five engineering design optimization problems

Problem n m Integer Infinite Best objective
name variables bounds function value

TCSD 3 4 No No 0.0126652
Vessel 4 4 No No 5,885.332
Welded 4 6 No No 2.38096
Solar 1 9 5 Yes Yes –900,417
Solar 7 7 6 Yes Yes –4,976.17

The Tension/Compression Spring Design (TCSD) problem consists of minimizing the weight of

a spring under mechanical constraints [3, 9, 16]. The design variables define the geometry of the

spring. The constraints concern shear stress, surge frequency and minimum deflection. The best

known solution, denoted x∗, and the bounds on the variables, denoted by x and x̄, are given in

Table 3.

Table 3: Variables of the TCSD problem

Variable description x x̄ x∗

Mean coil diameter 0.05 2 0.051686696913218
Wire diameter 0.25 1.3 0.356660815351066
Number of active coil 2 15 11.292312882259289

The Vessel problem considers the optimal design of a compressed air storage tank [16, 21]. The

design variables define the geometry of the tank The constraints are related to the volume, pressure,

and solidity of the tank. The objective is to minimize the total cost of the tank, including material

and labour. Table 4 lists the variable bounds and the best known solution.

20 G–2020–38 – Revised Les Cahiers du GERAD

Table 4: Variables of the Vessel problem

Variable description x x̄ x∗

Thickness of the vessel 0.0625 6.1875 0.778168641330718
Thickness of the head 0.0625 6.1875 0.384649162605973
Inner radius 10 200 40.319618721803231
Length of the vessel without heads 10 200 199.999999998822659

The Welded (or welded beam design) problem (Version I) consists of minimizing the construction

cost of a beam under shear stress, bending stress, load and deflection constraints [16, 28]. The design

variables define the geometry of the beam and the characteristics of the welded joint. Table 5 lists the

variable bounds and the best known solution.

Table 5: Variables of the Welded problem

Variable description x x̄ x∗

Thickness of the weld 0.1 2 0.244368407428265
Length of the welded joint 0.1 10 6.217496713101864
Width of the beam 0.1 10 8.291517255567012
Thickness of the beam 0.1 2 0.244368666449562

The Solar1 and Solar7 problems consider the optimization of a solar farm, including the heliostat

field and/or the receiver [17]. The Solar1 optimization problem aims at maximizing the energy received

over a period of 24 hours under several constraints of budget and heliostat field area. This problem has

one integer variable that has no upper bound. Table 6 lists the variable bounds and the best known

solution.

Table 6: Variables of the Solar1 problem

Variable description x x̄ x∗

Heliostat height 1 40 6.165258994385601
Heliostat width 1 40 10.571794049143792
Tower height 20 250 91.948461670428486
Receiver aperture height 1 30 6.056202026704944
Receiver aperture width 1 30 11.674984434929991
Max number of heliostats (Integer) 1 +∞ 1507
Field maximum angular span 1 89 51.762281627953051
Minimum distance to tower 0.5 20 1.347318830713629
Maximum distance to tower 1 20 14.876940809562798

The Solar7 problem aims at maximizing the efficiency of the receiver over a period of 24 hours, for

a given heliostats field, under 6 binary constraints [17]. This problem has one integer variable that has

no upper bound. The objective function is the energy transferred to the molten salt. Table 7 lists the

variable bounds and the best known solution.

Table 7: Variables of the Solar7 problem

Variable description x x̄ x∗

Aperture height 1 30 11.543687848308958
Aperture width 1 30 15.244236061098078
Outlet temperature 793 995 803.000346734710888
Number of tubes (Integer) 1 +∞ 1292
Insulation thickness 0.01 5 3.399190219909724
Tubes inside diameter 0.005 0.1 0.010657067457678
Tubes outside diameter 0.0055 0.1 0.011167646941518

Les Cahiers du GERAD G–2020–38 – Revised 21

References
[1] E. Alba, G. Luque, and S. Nesmachnow. Parallel metaheuristics: recent advances and new trends.

International Transactions in Operational Research, 20(1):1–48, 2013.

[2] R. Alizadeh, J.K. Allen, and F. Mistree. Managing computational complexity using surrogate models: a
critical review. Research in Engineering Design, 2020.

[3] J. Arora. Introduction to Optimum Design. Elsevier Science, 2004.

[4] C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Review,
pages 11–73, 1997.

[5] C. Audet and J.E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained optimization. SIAM
Journal on Optimization, 17(1):188–217, 2006.

[6] C. Audet and J.E. Dennis, Jr. A progressive barrier for derivative-free nonlinear programming. SIAM
Journal on Optimization, 20(1):445–472, 2009.

[7] C. Audet, M. Kokkolaras, S. Le Digabel, and B. Talgorn. Order-based error for managing ensembles of
surrogates in derivative-free optimization. Journal of Global Optimization, 70(3):645–675, 2018.

[8] C. Audet, S. Le Digabel, C. Tribes, and V. Rochon Montplaisir. The NOMAD project. Software available
at https://www.gerad.ca/nomad.

[9] A.D. Belegundu. A Study of Mathematical Programming Methods for Structural Optimization. University
of Iowa, 1982.

[10] W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
Statistical Association, 74:829–836, 1979.

[11] W.S. Cleveland. LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regres-
sion. The American Statistician, 35(1), 1981.

[12] W.S. Cleveland and S.J. Devlin. Locally weighted regression: An approach to regression analysis by local
fitting. Journal of the American Statistical Association, 83:596–610, 1988.

[13] W.S. Cleveland, S.J. Devlin, and E. Grosse. Regression by local fitting: methods, properties, and com-
putational algorithms. Journal of Econometrics, 37(1):87–114, 1988.

[14] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles. Mathematical
Programming, 91(2):201–213, 2002.

[15] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Mathematical Program-
ming, Series A, 91:239–269, 2002.

[16] H. Garg. Solving structural engineering design optimization problems using an artificial bee colony
algorithm. Journal of Industrial and Management Optimization, 10(3):777–794, 2014.

[17] Mathieu Lemyre Garneau. Modelling of a solar thermal power plant for benchmarking blackbox opti-
mization solvers. Master’s thesis, École Polytechnique de Montréal, 2015.

[18] Raphael T. Haftka, Diane Villanueva, and Anirban Chaudhuri. Parallel surrogate-assisted global opti-
mization with expensive functions – a survey. Structural and Multidisciplinary Optimization, 54(1):3–13,
Jul 2016.

[19] P. Hansen and N. Mladenović. Variable neighborhood search: principles and applications. European
Journal of Operational Research, 130(3):449–467, 2001.

[20] Prasad Jogalekar and Murray Woodside. Evaluating the scalability of distributed systems. IEEE Trans.
Parallel Distrib. Syst., 11(6):589–603, June 2000.

[21] B. K. Kannan and S. N. Kramer. Augmented Lagrange multiplier based method for mixed integer discrete
continuous optimization and its applications to mechanical design. Journal of Mechanical Design, 65:103–
112+, 1993.

https://www.gerad.ca/nomad

22 G–2020–38 – Revised Les Cahiers du GERAD

[22] O. Kramer, D.E. Ciaurri, and S. Koziel. Derivative-free optimization. In S. Koziel and XS. Yang,
editors, Computational Optimization, Methods and Algorithms, volume 356 of Studies in Computational
Intelligence, pages 61–83. Springer, 2011.

[23] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Transactions on Mathematical Software, 37(4):44:1–44:15, 2011.

[24] S. Le Digabel, M.A. Abramson, C. Audet, and J.E. Dennis, Jr. Parallel versions of the MADS algorithm
for black-box optimization. In Optimization days, Montreal, May 2010. GERAD. Slides available at
http://www.gerad.ca/Sebastien.Le.Digabel/talks/2010_JOPT_25mins.pdf.

[25] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting values of
input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245, 1979.

[26] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations Research,
24(11):1097–1100, 1997.

[27] Mahdi Pourbagian, Bastien Talgorn, WagdiG. Habashi, Michael Kokkolaras, and Sébastien Le Digabel.
Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems.
Optimization and Engineering, pages 1–31, 2015.

[28] Singiresu S. Rao. Engineering Optimization: Theory and Practice, 3rd Edition. Wiley-Interscience, 1996.

[29] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of Computer Experiments, chapter
5.2.2, Designs Generated by Latin Hypercube Sampling, pages 127–132. Springer, New York, NY, 2003.

[30] B. Talgorn. SGTELIB: Surrogate model library for derivative-free optimization. https://github.com/

bbopt/sgtelib, 2019.

[31] B. Talgorn, C. Audet, M. Kokkolaras, and S. Le Digabel. Locally weighted regression models for surrogate-
assisted design optimization. Optimization and Engineering, 19(1):213–238, 2018.

[32] B. Talgorn, S. Le Digabel, and M. Kokkolaras. Statistical Surrogate Formulations for Simulation-Based
Design Optimization. Journal of Mechanical Design, 137(2):021405–1–021405–18, 2015.

http://www.gerad.ca/Sebastien.Le.Digabel/talks/2010_JOPT_25mins.pdf
https://github.com/bbopt/sgtelib
https://github.com/bbopt/sgtelib

	Introduction
	Proposed SEACH step technique
	Methods for selecting candidate points
	Definitions
	Detailed description of selection methods

	Parallel computing implementation
	Surrogate models
	Surrogate problem solution
	The modified MADS algorithm

	Numerical investigation
	Compared algorithms
	Engineering design optimization problems
	Numerical experiments

	Conclusion
	LOWESS predictions
	Weights computation in LOWESS models
	Aggregate Order Error with Cross-Validation

	Detailed description of the test problems

