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Abstract: We consider an integrated optimization problem including the production, inventory, and
outbound transportation decisions where a central plant fulfills the demand for several final products
at its customers. More specifically, we investigate cases where the production planning and routing
period lengths are not the same, e.g., days vs. shifts. Thus, we consider the fact that two different
discretizations of the planning horizon exist in the decision-making process. This practical feature is
a major source of complication for supply chain planners. With respect to the production planning
aspect, we consider both big-bucket and small-bucket lot-sizing models. We mathematically formulate
the problem under different practical scenarios for the production and route planning period lengths.
An exact solution method, as well as heuristic algorithms, are proposed to efficiently solve large problem
instances with this feature. To assess the effectiveness of our approach, we generate many test instances
and perform an extensive computational study.
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1 Introduction

A major task in the supply chain planning process is the coordination of the production plan with the

distribution and delivery plans. This entails integrating production scheduling with other important

functions of the supply chain such as inventory management, shipment planning, and vehicle routing.

Many studies in the literature, including Blumenfeld et al. (1987), Chandra and Fisher (1994), Chen

and Vairaktarakis (2005) and Archetti and Speranza (2016), among others, report a significant cost

saving potential by coordinating these activities. The problem that arises from the integration of

the production and route planning processes is referred to in the literature as the production routing

problem (PRP) (Adulyasak et al. 2015).

We investigate in this paper a generalized PRP which takes into account the fact that the produc-

tion planning and the route planning period lengths are not necessarily identical. The overall planning

horizon may, as a consequence, contain a different number of production and route planning periods.

For the lot-sizing part of the formulation, we will consider both big-bucket and small-bucket prob-

lems. Furthermore, we consider several different products. A single plant coordinates the production

scheduling for these multiple products as well as the routing decisions and shipment quantities to the

customers. The customers have a time-varying and predetermined demand for each product. The

aim is to minimize the total costs of production, inventories and distribution routing subject to the

limitations of the problem. The plant has a limited capacity for the production. No backlogging or

stockouts are allowed at the plant or at the customers. Both the plant and the customers can carry

inventory from one period to the next. The plant, as well as the customers, each have a global storage

capacity. The plant manages a limited fleet of capacitated vehicles to handle the shipment of products

to the customers and split deliveries are not allowed.

The mathematical models used to solve real-life cases can be different due to the practical conditions

which vary from one company to another. One such practical issue, in particular, is the difference in

the planning period lengths for the production planning and the distribution routing. In such cases,

the capacity of the production and routing may be expressed in a different time dimension, which

creates the need to have a decoupled discretization of the time horizon. In practice, in some cases,

multiple periods of distribution and transportation exist within one production planning period, e.g.,

the production planning period is one week whereas the routing is done on a daily basis. Conversely,

in some other cases, the distribution planning is done using daily truck dispatches, but the production

planning is performed on a shift-basis, where one day contains multiple shifts. Consequently, an

important aspect of these multi-period problems is to deal with the different period lengths while

properly representing the available capacity.

The current literature on the PRP and its variants only considers identical production planning

and routing period lengths. This is in many cases an abstraction of the problem in the real world.

We investigate the problem of coordinating the production and the routing decisions in a decoupled

planning horizon. To the best of our knowledge, this is the first paper looking at this problem in this

generality. This is the first contribution of this paper. Next, we present mathematical programming

formulations for the problem. Third, we present a unified reformulation for which we develop cutting

planes to improve the linear programming relaxation of the original formulation. Fourth, we show how

to extend and enhance a state-of-the-art heuristic for the single-product PRP (Chitsaz et al. 2019)

to the multi-product PRP (MP-PRP). Based on these advancements, we present an exact solution

algorithm to solve MP-PRP. Finally, we show the significant impact of our cutting planes through

extensive computational experiments.

The remainder of the paper is organized as follows. We present a review of the related literature

in Section 2 in order to position our study with respect to the existing literature. Then, we formally

define the problem and express it mathematically in Section 3. We present a reformulation for the

problem in Section 4, which we use to prove new valid inequalities in Section 5. In Section 6, we

describe the adaptation of a state-of-the-art heuristic to obtain good quality upper bounds for the
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problem, and further, we show how to enhance the method. The generation of the test instances and

computational experiments are presented in Section 7. Finally, Section 8 concludes the paper.

2 Review of the related literature

Adulyasak et al. (2015) provide a comprehensive survey on the PRP including a review of different

formulation schemes, various solution techniques, and algorithmic and computational issues. The

literature reveals that the PRP has received a rapidly growing interest in the operations research and

management community. The majority of the studies focus on the development of heuristic algorithms

for this complex problem. Absi et al. (2014), Solyalı and Süral (2017) and Chitsaz et al. (2019) develop

multi-phase mixed integer linear programming (MILP)-based heuristics for the single-product PRP.

We focus in this literature review on the related issues of the presence of multiple products and the

length of the planning period. In the literature on the lot-sizing problem (LSP) (Pochet and Wolsey

2006), several different assumptions are made with respect to the length of the planning periods for

multi-product problems. Typically, a distinction is made between small- and big-bucket models. In the

basic big-bucket model, it is assumed that several types of products can be made on a shared resource

within one time period, and no sequencing of products is done within a time period. The production

of a product in a given period requires a specific setup. All products made in a specific time period can

be used to satisfy demand at the end of the same time period. Big-bucket models typically have time

periods in the order of a day to a week or even a month. The small-bucket models, on the other hand,

assume that at most one type of product can be produced within one time period. A start-up occurs

when a machine is set up for a new product which was not produced in the previous period. Typically,

the small-bucket models include short production periods of a shift or a day. Within the small-bucket

models, a further distinction is made between the Discrete Lot-sizing and Scheduling Problem and

the Continuous Setup Lot-sizing Problem. In the former, one imposes that if there is production in a

period, it must be at full capacity, whereas in the latter the production quantity can take any value

up to the capacity limit.

In the following, we give examples from the literature on the application of big-bucket models in

production and distribution planning. Glover et al. (1979) develop a computer-based integrated model

for the production, distribution, and inventory planning at Agrico Chemical Company with a 12-month

planning horizon and monthly time periods. Martin et al. (1993) optimize production, inventory, and

distribution in a multi-plant system for the Flat Glass Products group of Libbey-Owens-Ford over 12

one-month planning periods. De Matta and Guignard (1994b) describe a big-bucket model with a

planning horizon consisting of 52 one-week periods. They study the effects of production loss during

setup in dynamic production scheduling for process industries producing several products on non-

identical flexible processors. Hahn et al. (2000) present the coordinated production planning and

scheduling activities among supply chain members of the Hyundai Motor Company at Ulsan, Korea.

The company prepares a master production schedule with monthly time periods on a six-month rolling

horizon basis. Next, they develop daily production and distribution schedules for each month to make

the deliveries possible in one week and not more than 15 days as promised. Brown et al. (2001) study

the cost minimization of integrated production, inventory, and distribution plans for the cereal and

convenience foods business of Kellogg with weekly periods in a 30-week planning horizon. Çetinkaya

et al. (2009) develop a cost-minimization model for integrated production and shipment planning for

the Frito-Lay North American plant in Irving, Texas in a finite planning horizon of 12 weeks each

representing one period. Neves-Moreira et al. (2019) propose an optimization framework to minimize

the total production, inventory and transportation costs in a European meat processing center that

produces and distributes multiple meat products among its store chain within working shifts of 8 hours

and a break of 1 hour between shifts.

Similarly, some studies from the literature employed small-bucket planning periods for the produc-

tion planning and scheduling. De Matta and Guignard (1994a) consider the manufacturing operations
of a tile company with several production lines. The planning horizon spans over six months and up to



Les Cahiers du GERAD G–2020–35 3

the entire year with planning periods of one week for the bottleneck stage. Jans and Degraeve (2004)

study the production planning problem at the Solideal group which is one of the major manufacturers

and distributors of industrial tires worldwide. The authors report that the production start-ups only

take place at the beginning of the morning shifts due to the limited availability of the qualified per-

sonnel and adequate supervision throughout the day. The planning period used is one day within a

planning horizon of up to 30 days. Silva and Magalhaes (2006) study a production planning problem

to minimize the number of tool changeovers while meeting the required due dates at an acrylic fibers

production firm in the textile industry. In this study, the planning horizon is divided into four or

five weeks with days as planning periods. Marinelli et al. (2007) consider a rolling horizon of one

week consisting of five working days (periods) followed by two days off for a capacitated lot-sizing

and scheduling problem with parallel machines and shared buffers in a packaging company producing

yogurt.

Almost all of the literature on the MP-PRP focuses on the big-bucket LSP as the underlying

production model. Chandra and Fisher (1994) were the first to study the effect of the coordination

between the production planning and the vehicle routing to minimize the total costs of production,

inventories, and transportation. Fumero and Vercellis (1999) study an MP-PRP variant in which

split delivery to the customers is allowed. They propose a Lagrangian relaxation approach to solve

the problem. Armentano et al. (2011) propose a tabu search with path relinking approach for the

problem. Belo-Filho et al. (2015) investigate the coordinated production and distribution of perishable

goods. They propose an adaptive large neighborhood search (ALNS) algorithm for the problem.

Brahimi and Aouam (2016) study the problem with the possibility of backordering. They develop a

solution procedure consisting of a relax-and-fix heuristic and a local search algorithm. Motivated by

the industrial gas supply chains, Zhang et al. (2017) introduce an MP-PRP with multiple production

capacity levels (modes) in a continuous production environment. They propose an iterative MILP-

based heuristic that works with a restricted set of candidate routes at each iteration. The method

dynamically updates the set of candidate routes for the next iteration. Miranda et al. (2018) study

a rich MP-PRP arising in the context of a Brazilian furniture manufacturer. They consider many

practical problem limitations such as sequence-dependent setup times, a heterogeneous fleet of vehicles,

and customer time windows and deadlines. They propose a two-phase MILP-based iterative heuristic

for the problem. There is only one recent study by Qiu et al. (2018) on the integration of the small-

bucket LSP and the vehicle routing problem (VRP). They assume that the production period and

routing period have equal lengths. The authors present a MILP to model the problem and provide

valid inequalities to tighten the linear programming (LP) relaxation of the proposed model. They

further use these inequalities in a branch-and-cut (BC) algorithm.

3 Problem definition and mathematical formulation

We first present common problem assumptions and definitions in Section 3.1. Next, we mathematically

define the variables and constraints of the problem in Section 3.2. Finally, we describe specific big-

and small-bucket model constraints in Sections 3.3 and 3.4, respectively.

3.1 Common assumptions and definitions

We consider a one-to-many production system where a central plant, denoted by node 0, provides

several products for different customers, represented by the set N . We let N+ = N ∪ {0} represent

the set of all nodes including the customers and the central plant. Let E = {(i, j) : i, j ∈ N+, i < j}
be the set of all edges connecting the plant and the customers together. We represent by K the set

of all products. In the classical production routing problem, the planning horizon comprises a finite

number of discretized time planning periods with an equal length for the production and routing

periods (Figure 1).

As indicated in the introduction, we will consider integrated planning problems where the produc-

tion and routing periods do not necessarily have the same length. We assume that the production and
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Production planning periods
1 2 3 4 5

Route planning periods
1 2 3 4 5

Figure 1: Planning horizon with equal period lengths

the route planning period lengths can be written as an integer multiple of the micro period length,

which is defined as the smaller planning period length between the production and the route planning

periods. We denote by π ∈ N and ρ ∈ N the integer multiples of the micro period length for the

production and the route planning period lengths, respectively. According to the definition, either the

production or the route planning period length is equal to the micro period length. Consequently, when

the planning period lengths are different, either π or ρ is equal to 1 and the other is strictly greater

than 1. In case both planning period lengths are identical, then π = ρ = 1. Let T = {1, ..., |T |} be

the set of micro periods. We assume that |T | is divisible by π and ρ. We denote the set of production

planning periods by T π = {1, ..., |T |/π}. Likewise, we represent the set of route planning periods

by T ρ = {1, ..., |T |/ρ}. Figure 2 shows the situation where the production planning period length is

larger than the routing period length, whereas Figure 3 represents the inverse situation.

Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 ω = 6 ω = 7 ω = 8 ω = 9 ω = 10

Figure 2: Longer production planning period lengths (|T | = 10, π = 2, ρ = 1, τ ∈ T π , ω ∈ T ρ)

Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

Figure 3: Longer route planning period lengths (|T | = 10, π = 1, ρ = 2, τ ∈ T π , ω ∈ T ρ)

Product availability for shipment. In most production environments and for practical limitations, the

production in each period is typically only available for shipment in the next period. This is because

the shipments in the same period are already fixed, trucks and drivers are determined and planned

to be dispatched. This situation is illustrated in Figure 4 for the case of equal production and route

planning periods each equivalent to one day of operation. We index the route planning periods with

one period shift/lag. Then, we consider the case that the production in each period is available for

shipment in the next routing period which is indexed the same as the current production period.

Figure 5 presents the case with longer production period. In this case, when we ship in period ω = 3

or ω = 4, products made in τ = 1, 2 are available for shipment. Figure 6 presents the case with longer

routing period in which the shipment in period ω = 2 can include products made in production periods

τ = 1, 2, 3, 4.

Actual time
day1 day2 day3 day4 day5 day6

Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

Figure 4: Product availability for shipment with equal period lengths (|T | = 5, π = 1, ρ = 1, τ ∈ T π , ω ∈ T ρ)
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Actual time
day1 day2 day3 day4 day5 day6

Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 ω = 6 ω = 7 ω = 8 ω = 9 ω = 10

Figure 5: Product availability for shipment with longer production planning period lengths (|T | = 10, π = 2, ρ = 1, τ ∈
T π , ω ∈ T ρ)

Actual time
day1 day2 day3 day4 day5 day6

Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

Figure 6: Product availability for shipment with longer route planning period lengths (|T | = 10, π = 1, ρ = 2, τ ∈ T π , ω ∈
T ρ)

A one-period backward graphical shift in the routing period, makes Figures 4 to 6 equivalent to

Figures 1 to 3, respectively. Therefore, without loss of generality, the entire production in any period

is available for distribution in the period with the same index if the period lengths are equal. If the

production period length is larger, the production in any period τ is available for distribution period

ω = πτ − 1. If the routing period length is larger, the production in any period τ is available for

distribution period ω = bτ/ρc+1. This choice of planning period indexing makes it possible to present

formulations similar to those in many studies in the literature of the production routing problem

(Archetti et al. 2011, Absi et al. 2014, Adulyasak et al. 2014).

Demand. We consider that the demand period length is equal to the route planning period length.

Each customer i ∈ N has a predetermined demand dikω for each product k ∈ K in each period ω ∈ T ρ.

Production. The production system has to satisfy the demand for all products at every customer in

each demand period without stockouts while respecting the plant’s production capacity, which is given

by C. We denote by θk the necessary capacity consumption to produce one unit of product k ∈ K.

The production of every product k ∈ K at the plant in a certain period imposes a fixed setup cost fk.

Distribution. We consider bk as the unit size of product k ∈ K. A limited number of homogeneous

vehicles, m, each with a capacity of Q, is available to perform shipments from the plant to the customers

using routes that start and end at the plant. When a vehicle travels from location i ∈ N+ to j ∈ N+

a period-independent routing cost of cij is incurred.

Inventory bookkeeping. We consider the inventory bookkeeping at the plant to be aligned with the

micro periods. When the production planning period length is smaller, this assumption is intuitive

(Figure 3). For the case where the routing period length is smaller (Figure 7), during any production

period, we have multiple route planning periods and thus it is possible to ship products from the plant

within each routing period. Therefore, the level of the products’ inventory at the plant may change

during the production planning periods. Consequently, when the routing periods are smaller, micro

period inventory level tracking enables a precise calculation of the inventory cost at the plant. We let

I0k0 and Iik0 denote the initial inventory of product k at the plant and at the customer i, respectively.

The cost at the plant of carrying one unit of product k over to the next micro period is h0k. The

cost at customer i to keep one unit of product k in the inventory in one route planning period is hik.

Each customer i ∈ N has a global storage capacity Li. The plant provides a shared storage with the

capacity L0 for all products.
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Production planning periods
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

I0k1 I0k2 I0k3 I0k4 I0k5 I0k6 I0k7 I0k8 I0k9 I0k10

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 ω = 6 ω = 7 ω = 8 ω = 9 ω = 10

Figure 7: Inventory bookkeeping periods for the longer production planning period lengths (|T | = 10, π = 2, ρ = 1, τ ∈
T π , ω ∈ T ρ)

3.2 Common variables and constraints

For each period τ ∈ T π, we let the binary variable ykτ take value 1 if and only if product k ∈ K is

produced at the plant and we let pkτ denote the production quantity. Let I0kt and Iikω represent the

inventory of product k ∈ K at the end of period t ∈ T at the plant, and at the end of period ω ∈ T ρ
at the customer i ∈ N , respectively. Let qikω indicate the shipment quantity of product k ∈ K from

the plant to the customer i in period ω ∈ T ρ. The variable xijω represents the number of times a

vehicle traverses the edge (i, j) ∈ E in period ω ∈ T ρ. The binary variable ziω takes value 1 if and

only if a customer i ∈ N is visited in period ω ∈ T ρ. The integer variable z0ω indicates the number

of vehicles dispatched from the plant in period ω ∈ T ρ. The domain of the variables is imposed by

constraints (1)–(6):

pkτ ≥ 0, ykτ ∈ {0, 1} ∀k ∈ K,∀τ ∈ T π, (1)

I0kt ≥ 0 ∀k ∈ K,∀t ∈ T , (2)

Iikω ≥ 0, qikω ≥ 0 ∀i ∈ N ,∀k ∈ K,∀ω ∈ T ρ, (3)

z0ω ∈ Z ∀ω ∈ T ρ, (4)

ziω ∈ {0, 1}, x0iω ∈ {0, 1, 2} ∀i ∈ N ,∀ω ∈ T ρ, (5)

xijω ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀ω ∈ T ρ. (6)

Constraints (7)–(9) provide the inventory flow balance at the plant. The production and the

shipment variables are simultaneously present only during specific micro periods as presented in con-

straints (7). The cases are (i) the first micro period (t mod π = 1) of each large production period

(π > 1 and ρ = 1), and (ii) the last micro period (t mod ρ = 0) of each large routing period (π = 1

and ρ > 1). Note that in case we have equal lengths for the production and routing periods, these

are the only constraints needed. In the rest of the micro periods of the large production periods

(t mod π 6= 1, π > 1 and ρ = 1), it is only necessary to balance the product inventory and the ship-

ments as in constraints (8). Moreover, no shipment will be possible until the last micro period of the

large routing periods (t mod ρ 6= 0, π = 1 and ρ > 1). Thus, constraints (9) keep track of the inventory

at the plant for such cases:

I0k,t−1 + pkτ =
∑
i∈N

qikω + I0kt

∀k ∈ K,∀t ∈ T ,(t mod π = 1, ρ = 1) ∨ (π = 1, t mod ρ = 0), τ = (t− 1)/π + 1, ω = t/ρ (7)

I0k,t−1 =
∑
i∈N

qikω + I0kt ∀k ∈ K,∀t ∈ T , t mod π 6= 1, ρ = 1, ω = t (8)

I0k,t−1 + pkτ = I0kt ∀k ∈ K,∀t ∈ T , π = 1, t mod ρ 6= 0, τ = t. (9)

The inventory balance constraints at the customers can be written as

Iik,ω−1 + qikω = dikω + Iikω ∀i ∈ N ,∀k ∈ K,∀ω ∈ T ρ. (10)

Constraints (11) set the fleet size for each routing period. Constraints (12) enforce a vehicle to visit

a node in case of a shipment to that node. The storage capacity at the plant and at the customers is

imposed by constraints (13) and (14), respectively:

z0ω ≤ m ∀ω ∈ T ρ (11)



Les Cahiers du GERAD G–2020–35 7

∑
k∈K

bkqikω ≤ Qziω ∀i ∈ N ,∀ω ∈ T ρ (12)

∑
k∈K

bkI0kt ≤ L0 ∀t ∈ T (13)

∑
k∈K

bkIikω ≤ Li ∀i ∈ N ,∀ω ∈ T ρ. (14)

Let E(A) be the set of edges (i, j) ∈ E such that i, j ∈ A, where A ⊆ N is a given subset of nodes.

Consider δ(A) as the set of edges incident to a node set A, δ(A) = {(i, j) ∈ E : i ∈ A, j /∈ A or

i /∈ A, j ∈ A}. The routing constraints include the node degree requirements (15) and the generalized

vehicle routing capacity cuts (16) to eliminate the subtours and to impose the vehicle capacity. We refer

to the latter set of constraints as the generalized fractional subtour elimination constraints (GFSEC)

(Adulyasak et al. 2014):∑
(j,j′)∈δ(i)

xjj′ω = 2ziω ∀i ∈ N+,∀ω ∈ T ρ (15)

Q
∑

(i,j)∈E(A)
xijω ≤

∑
i∈A

(Qziω −
∑
k∈K

bkqikω) ∀A ⊆ N , |A| ≥ 2,∀ω ∈ T ρ. (16)

3.3 MP-PRP with big-bucket lot-sizing and scheduling

The big-bucket LSP assumes the possibility of producing several products in the same period on one

shared resource with limited capacity (Trigeiro et al. 1989). Constraints (17) impose the global produc-

tion capacity for each production period. The setup for each product is triggered by constraints (18)

when its production takes place in any production period:∑
k∈K

θkpkτ ≤ C ∀τ ∈ T π (17)

θkpkτ ≤ Cykτ ∀k ∈ K,∀τ ∈ T π. (18)

The objective is to minimize the total cost of setups, inventory (at the plant and at the customers),

and transportation as follows:

min
∑
k∈K

(
∑
τ∈T π

fkykτ +
∑
t∈T

h0kI0kt +
∑
ω∈T ρ

∑
i∈N

hikIikω) +
∑
ω∈T ρ

∑
(i,j)∈E

cijxijω. (19)

The mixed integer linear program for the PRP with a big-bucket lot-sizing structure, MB
MP−PRP , is

to minimize the objective function (19), subject to constraints (1)–(18).

3.4 MP-PRP with small-bucket lot-sizing and scheduling

The small-bucket (continuous) LSP assumes that only one product can be made in every production

period (Loparic et al. 2003). We let the binary variable wkτ be the start-up variable for product k in

period τ with an associated start-up cost, gk. We consider the start-up for product k when it is not

produced in period τ − 1, and the machine is set up to produce it in period τ (Pochet and Wolsey

2006):

wkτ ∈ {0, 1} ∀k ∈ K, ∀τ ∈ T π (20)

The start-up variables are modeled in constraints (21). Constraints (22) enforce the requirement that

we can only produce one product in any production period. Constraints (23) impose the initial values

for the setup variables:

wkτ ≥ ykτ − yk,τ−1 ∀k ∈ K, ∀τ ∈ T π (21)∑
k∈K

ykτ ≤ 1 ∀τ ∈ T π (22)

yk0 = 0 ∀k ∈ K. (23)
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The objective is to minimize the total cost of start-ups, inventory and transportation as follows:

min
∑
k∈K

(
∑
τ∈T π

gkwkτ +
∑
t∈T

h0kI0kt +
∑
ω∈T ρ

∑
i∈N

hikIikω) +
∑
ω∈T ρ

∑
(i,j)∈E

cijxijω. (24)

The MP-PRP with a small-bucket (continuous) lot-sizing structure, MS
MP−PRP , minimizes the ob-

jective function (24), subject to constraints (1)–(16), (18), (20)–(23).

4 A reformulation

Constraints (7)–(9) impose the assumptions on the product flow at the plant level. However, it is not

straightforward to strengthen the formulation and derive valid inequalities based on these constraints.

We employ some modeling techniques to present these sets of constraints in a unified manner. The

general idea is to reformulate the problem using only the micro periods which result in a formulation

with the same number of periods at each level. We define π dummy micro periods for every large

production planning period (π ≥ 1). We consider ρ dummy micro periods for every large routing

period (ρ ≥ 1). First, we redefine the product demand and the holding cost (problem parameters) at

the customers, d and h, respectively, on the micro periods (equations (25)–(26)):

dikt = dikω, hikt = hik ∀i ∈ N ,∀k ∈ K,∀t ∈ T , t mod ρ = 0, ω = t/ρ (25)

dikt = 0, hikt = 0 ∀i ∈ N ,∀k ∈ K,∀t ∈ T , t mod ρ 6= 0. (26)

Figure 8 shows an example of how the redefinition works for T = 10 and ρ = 2. For all i ∈ N and

k ∈ K, we let dikt = 0 for all t ∈ T such that t mod ρ 6= 0, and we let dikt = dik(t/ρ) for all t ∈ T such

that t mod ρ = 0. In addition, we define dikt1t2 as the demand for product k ∈ K at customer i ∈ N
from period t1 to period t2 (inclusive), t1, t2 ∈ T , t1 ≤ t2.

Route planning periods
ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

dik1 = 0

dik2

dik3 = 0

dik4

dik5 = 0

dik6

dik7 = 0

dik8

dik9 = 0

dik10

Figure 8: Dummy micro periods in the case of longer route planning period lengths (|T | = 10, π = 1, ρ = 2, ω ∈ T ρ)

Next, for each micro period t ∈ T , we define variables y, p, q, z and x similar to y, p, q, z and x,

respectively. Furthermore, we define new inventory variables, Iikt on the micro periods t ∈ T only for

the customers i ∈ N and for all k ∈ K. Note that the inventory variables of the original formulation

(Section 3) for the plant, I0kt, are already defined on the micro periods t ∈ T . The reformulation for

the big-bucket MP-PRP can be written as the following RBMP−PRP model:

(RBMP−PRP ) min
∑
t∈T

{∑
k∈K

(
fkykt + h0kI0kt +

∑
i∈N

hiktIikt
)

+
∑

(i,j)∈E
cijxijt

}
(27)

s.t. (2),(13), and

I0k,t−1 + pkt =
∑
i∈N

qikt + I0kt ∀k ∈ K,∀t ∈ T (28)

Iik,t−1 + qikt = dikt + Iikt ∀i ∈ N ,∀k ∈ K,∀t ∈ T (29)∑
k∈K

θkpkt ≤ C ∀t ∈ T (30)

θkpkt ≤ Cykt ∀k ∈ K,∀t ∈ T (31)

z0t ≤ m ∀t ∈ T (32)∑
k∈K

bkqikt ≤ Qzit ∀i ∈ N ,∀t ∈ T (33)
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∑
k∈K

bkIikt ≤ Li ∀i ∈ N ,∀t ∈ T (34)

∑
(j,j′)∈δ(i)

xjj′t = 2zit ∀i ∈ N+,∀t ∈ T (35)

Q
∑

(i,j)∈E(A)
xijt ≤

∑
i∈A

(Qzit −
∑
k∈K

bkqikt) ∀A ⊆ N , |A| ≥ 2,∀t ∈ T (36)

ykt = 0 ∀k ∈ K,∀t ∈ T , t mod π 6= 1, ρ = 1 (37)

zit = 0 ∀i ∈ N ,∀t ∈ T , π = 1, t mod ρ 6= 0 (38)

z0t = 0 ∀t ∈ T , π = 1, t mod ρ 6= 0 (39)

pkt ≥ 0,ykt ∈ {0, 1} ∀k ∈ K,∀t ∈ T (40)

Iikt ≥ 0,qikt ≥ 0 ∀i ∈ N ,∀k ∈ K,∀t ∈ T (41)

z0t ∈ Z ∀t ∈ T (42)

zit ∈ {0, 1},x0it ∈ {0, 1, 2} ∀i ∈ N ,∀t ∈ T (43)

xijt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀t ∈ T . (44)

The objective function (27) minimizes the total production, inventory, and transportation costs

over the micro periods. Constraints (28) and (29) impose the product flow balance at the plant and

at the customers, respectively. Constraints (30) and (31) are production capacity constraints. Con-

straints (32)–(34) enforce the fleet size, shipment capacity, and storage capacity at the customers. Con-

straints (35)–(36) are the node degree and subtour elimination constraints for the micro periods. Con-

straints (37) prevent setups in the micro periods where no production is possible. Constraints (38)–(39)

forbid node visits and vehicle dispatches in the micro periods where no shipment is available. Con-

straints (40)–(44) define the domain for the reformulation variables.

Next, for each micro period t ∈ T , we define variables w similar to w. The reformulation for the

small-bucket MP-PRP, RSMP−PRP , can be written as follows:

(RSMP−PRP ) min
∑
t∈T

{∑
k∈K

(
gkwkt + h0kI0kt +

∑
i∈N

hiktIikt
)

+
∑

(i,j)∈E
cijxijt

}
, (45)

s.t. (2), (13), (28)–(29), (31)–(44), and

wkt ≥ ykt − yk,t−π ∀k ∈ K,∀t ∈ T , t mod π = 1, ρ = 1, (46)∑
k∈K

ykt ≤ 1 ∀t ∈ T , (47)

wkt = 0 ∀k ∈ K,∀t ∈ T , t mod π 6= 1, ρ = 1, (48)

yk0 = 0 ∀k ∈ K, (49)

wkt ≥ 0 ∀k ∈ K,∀t ∈ T . (50)

Constraints (46)–(47) (together with (31)) impose the small-bucket LSP assumptions on the setup

and start-up variables. Note that in constraints (46), the setup variables in each period t depend on the

setup variables in periods t and t−π. Constraints (48) prevent start-ups in the micro periods where no

production is possible. Constraints (49) force the initial values for the setup variables. Constraints (50)

define the domain for the start-up variables.

Theorem 1 RBMP−PRP and RSMP−PRP are valid reformulations for MB
MP−PRP and MS

MP−PRP ,

respectively.

Proof. See Appendix A.
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5 Valid inequalities

We develop several valid inequalities to improve the LP relaxation bound ofRBMP−PRP andRSMP−PRP .

The inequalities in this section are inspired by prior work on similar problems: Archetti et al. (2007) for

the IRP; Archetti et al. (2011) and Adulyasak et al. (2014) for the single product PRP; Chitsaz et al.

(2020) for the assembly routing problem (ARP) which considers an assembly production structure; and

Atamtürk and Küçükyavuz (2005) for the lot-sizing with inventory bounds and fixed costs. First, we

present (l, S)-type and cut-set-type inequalities for the the lot-sizing structures of the models. Then,

we provide inequalities concerning the distribution and routing structure of the models. The proofs of

the propositions are provided in Appendix A.

5.1 Inequalities for the production and inventory flow structures

The (l,S) inequalities were introduced in Barany et al. (1984) where l refers to a period (l ≤ |T |),
and S is a subset of periods {1, ..., l} not necessarily contiguous. Their cardinality is exponential and

they are known to provide the convex hull for the single-item uncapacitated LSP. Pochet and Wolsey

(1994) showed that when the sum of unit production and inventory costs in every period is larger than

or equal to the unit production cost in the next period, it is sufficient to consider only a polynomial

subset of these inequalities to describe the convex hull. These inequalities improve the linear relaxation

bound of the lot-sizing structure (28)–(29) and (31). Because these two sets of constraints are present

in both models, inequalities (51) are valid for RBMP−PRP and RSMP−PRP .

Proposition 1

t2∑
e=t1

pke ≤ I0kt2 +
∑
i∈N

Iikt2 +

t2∑
e=t1

(∑
i∈N

diket2
)
yke ∀k ∈ K,∀t1, t2 ∈ T , t1 ≤ t2 (51)

are valid for RBMP−PRP , RSMP−PRP .

Next, we present lower bounds for the total number of required production setups (ykt) from period

e = 1 to t ∈ T and for each product k ∈ K.

Proposition 2 Inequalities⌈
max

{
0,
∑
i∈N max{0,dik1t − Iik0} − I0k0

}
C/θk

⌉
≤

t∑
e=1

yke ∀k ∈ K,∀t ∈ T (52)

are valid for RBMP−PRP and RSMP−PRP .

5.2 Inequalities for the distribution and inventory flow structures

Constraints (29) and (33) form a structure similar to those of constraints (28) and (31). Therefore, we

present new (l, S)-type inequalities in Proposition 3.

Proposition 3 Inequalities

t2∑
e=t1

qike ≤ Iik,t2 +

t2∑
e=t1

diket2zie ∀i ∈ N ,∀k ∈ K,∀t1, t2 ∈ T , t1 ≤ t2 (53)

are valid for RBMP−PRP , RSMP−PRP .

In Propositions 4 and 5, we present lower bounds for the total number of required vehicle dispatches

(z0t), and node visits (zit), respectively, from period e = 1 to t ∈ T .
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Proposition 4 Inequalities⌈
1

Q

∑
i∈N

∑
k∈K

bk max{0,dik1t − Iik0}
⌉
≤

t∑
e=1

z0e ∀t ∈ T (54)

are valid for RBMP−PRP and RSMP−PRP .

Proposition 5 Inequalities⌈ ∑
k∈K bk max{0,dik1t − Iik0}

min
{
Q,Li + max1≤θ≤t{

∑
k∈K bkdikθ}

}⌉ ≤ t∑
e=1

zie ∀i ∈ N ,∀t ∈ T (55)

are valid for RBMP−PRP and RSMP−PRP .

One observes that the LHS of inequalities (52) and (54)–(55) includes only problem parameters

and hence returns integer values. In addition, we add two more sets of inequalities to improve the

routing structure of both models. Inequalities (56) require a vehicle dispatch in case a node has to

be visited in a certain period. The other set of inequalities, (57), is the adaptation of the Dantzig-

Fulkerson-Johnson (DFJ) constraints to eliminate infeasible paths and maintain connectivity on the

vehicle routes. They were first proposed by Dantzig et al. (1954) for the travelling salesman problem

(TSP). These inequalities require that, in an integral solution, the number of edges in any subset of

visited nodes is smaller than the cardinality of the set:

zit ≤ z0t ∀i ∈ N ,∀t ∈ T (56)∑
(i,j)∈E(A)

xijt ≤
∑
i∈A

zit − zαt ∀A ⊆ N , |A| ≥ 2,∀α ∈ A,∀t ∈ T . (57)

The cardinality of these inequalities is exponential and thus they cannot be added a priori to the model

in practical applications. These inequalities do not impose the vehicle capacity.

6 An upper bound heuristic

To obtain high-quality feasible solutions for the MP-PRP instances, we adapt the unified matheuristic

proposed by Chitsaz et al. (2019). The authors applied this algorithm (CCJ-DH) to an assembly

routing problem (ARP) where each supplier provides a distinct component. In addition, they applied

CCJ-DH on the classic PRP and IRP instances where the plant/depot distributes only one type of

product among many customers. In both studies, the authors report small optimality gaps for the

solutions obtained by this heuristic especially on the large-scale instances of these problems. Therefore,

to obtain high-quality feasible solutions for the MP-PRP instances, we adapt the unified matheuristic

proposed in Chitsaz et al. (2019). We pass the solution obtained by this heuristic as cutoff values to

our branch-and-cut algorithm.

The underlying idea in this algorithm is to heuristically solve the complex routing part and ef-

ficiently communicate the obtained routing costs in the objective function and with the rest of the

model. This matheuristic works by decomposing the model into three independent subproblems and

solving them iteratively. The first subproblem (My) is a special LSP. This subproblem returns a setup

schedule using an approximation of the total transportation cost in the objective function based on

the number of dispatched vehicles. Using this given setup schedule, the second subproblem (Mz) de-

termines node visits and shipment quantities. In this subproblem, another approximation of the total

transportation cost is considered in the objective function: the node visit transportation cost. Finally,

the third subproblem considers a separate VRP for each period t. When the routing subproblems are

solved, the algorithm updates the node visit cost approximation in the Mz model for the next itera-

tion. This procedure is repeated to reach a local optimum. Then, the algorithm adds a diversification
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constraint (Fischetti et al. 2004) to theMy model to change the setup schedule to explore other parts

of the feasible solution space. The algorithm uses similar diversification constraints to generate new

node visit patterns using the Mz model. The method terminates when a stopping condition is met.

Since we consider the multi-product variant of the PRP, we take this extension into account,

compared to CCJ-DH implementation of Chitsaz et al. (2019), in the calculation of product inventories

and inventory costs at the customers as well as the total shipment amount from the plant to each

customer in all subproblems. However, the existence of multiple products as well as longer planning

periods results in much larger subproblems which slow down the solution of theMy andMz models in

this implementation. Efficiently solving these subproblems is a crucial step in the adaptation of CCJ-

DH to obtain quality solutions for the MP-PRP variants. To overcome this challenge and to obtain a

more efficient algorithm, we enhance the performance of CCJ-DH by adding relevant inequalities from

Section 5. We add inequalities (51)–(52) and (54) to the My subproblem. Moreover, we incorporate

inequalities (53) and (55) in the Mz subproblem.

7 Computational experiments

The computational experiments were performed on the Calcul Québec computing infrastructure with

Intel Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The BC procedure is imple-

mented in C++ using the CPLEX 12.7 callable library. All experiments were performed in sequential

form using one thread. We consider the best-bound node selection strategy for the BB search tree.

We do not change any other CPLEX parameter. The algorithm applies the valid inequalities at the

root node and adds GFSECs (36) and DFJ (57) at each node of the search tree as cutting planes

whenever they are violated by more than 0.1 unit. To separate GFSECs, we use algorithm A1 which

is presented in Chitsaz et al. (2020). When a violated GFSEC (36) is found, the BC method also adds

the corresponding DFJ (57). In our experiments, we set a time limit of one hour both for the BC

method and for CCJ-DH.

7.1 MP-PRP test bed

Although some studies were conducted on the MP-PRP, there is no standard data set available for

this problem. Therefore, we have developed the data sets for each of the extensions of the MP-PRP.

The test instances were generated on the basis of the following data:

• micro period planning horizon |T |: 12, 18, 24, 30; number of products |K|: 4, 6, 8;

• number of customers |N | (increasing by steps of 5 for all |T | values): 5 to 35 for |T | = 12, 5 to

30 for |T | = 18, 5 to 25 for |T | = 24, 5 to 20 for |T | = 30;

• demand at customer i for product k in period t: constant over time, and random integer in the

set {0, 1, 2};
• storage capacity L0 at the plant: uniformly distributed random integer (UDRI) in the interval[
|T ||K||N |/4, |T ||K||N |/3

]
• storage capacity Li at customer i: UDRI in the interval

[
|T ||K|/4, |T ||K|/3

]
;

• production capacity C: UDRI in the interval
[
|T ||K||N |/5, |T ||K||N |/4

]
;

• production resource consumption θk for product k: random integer in the set {1, 2};
• unit size bk of product k: random integer in the set {1, 2};
• truck capacity Q:

[
10|K|, 20|K|; number of trucks m: |N |;

• initial inventory I0k0 of product k at the plant: UDRI in the interval [0, 3|K||N |/2], initial

inventory Iik0 of product k at customer i: UDRI in the interval [0, 3|K|/2];

• fixed setup/start-up cost fk and gk for product k: UDRI in the interval [5000, 6000];

• holding cost h0k of product k in each micro period at the plant: random integer in the set {1, 2},
holding cost hik of product k in each micro period at customer i: random integer in the set

{3, 4};
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• longitude and latitude coordinates of the nodes (plant and the customers): UDRI in the interval

[0, 1500], transportation cost cij : Euclidean distance between nodes (rounded up to the nearest

integer).

For each combination of the number of planning periods and customers we randomly generated

5 instances. As a result, the test bed includes medium (|T | = 12, |K| = 4, |N | = 5) to very large

size (|T | = 30, |K| = 8, |N | = 20 or |T | = 12, |K| = 8, |N | = 35) instances. Overall, instances are

generated with 22 combinations of the planning horizons and numbers of customers, three numbers

of product sizes and 5 instances per category. We apply the RBMP−PRP and RSMP−PRP models for

each instance. We consider π = {1, 2, 3}, ρ = 1 for the RBMP−PRP model, and π = 1, ρ = {1, 2, 3} for

the RSMP−PRP model. Note that the case where π = ρ = 1 corresponds to the case with equal period

lengths at the production and routing levels and can be applied for both RBMP−PRP and RSMP−PRP
models. Considering 6 combinations of the π and ρ parameters for both models, our test bed includes

1980 instances (990 instances for each model).

7.2 Performance of the heuristic

We report in Table 1 the performance of CCJ-DH with and without the addition of the valid inequal-

ities. The results are presented for both small- and big-bucket models for ρ = π = 1. Each row in this

table corresponds to a combination of the number of planning periods, number of products, and num-

ber of customers. In these tables, columns 4 to 12 and 13 to 21 include the results for the small-bucket

and big-bucket MP-PRP instances, respectively. Columns four and five show the number of executed

CCJ-DH iterations in the time limit for CCJ-DH without applying valid inequalities (None), and for

the case where CCJ-DH is equipped with the valid inequalities (All), respectively. Column six presents

the percent change in the number of iterations between these two implementations. Columns seven

and eight show the average solution time in seconds for CCJ-DH with and without the inequalities,

respectively. Column nine presents the percent change in the solution times. Columns 10 and 11

show the average solution values obtained by CCJ-DH without and with applying the valid inequal-

ities, respectively. Column 12 presents the percent change in the average solution values. The same

information is provided in columns 13 to 21 for the big-bucket model.

By adding the valid inequalities we were expecting to obtain better solution times. In addition, we

also obtained better solution values due to the fact that on average the algorithm is able to perform

more iterations in the one-hour time limit. On the small-bucket MP-PRP instances, the average

number of iterations is increased by more than 29% and the average computing time is decreased by

34.2%. Moreover, on average, the solution values are improved by 0.4%. On the big-bucket MP-PRP

instances, the improvement in the average solution values is 4.0%. This is obtained by a 26.7% increase

in the number of iterations while the solution time is decreased by more than 38%. This is a significant

improvement in the performance of CCJ-DH which is obtained by incorporating the valid inequalities.

7.3 Performance of valid inequalities

We further compare the effect of the valid inequalities on the performance of the BC method. In

Tables 2–7, we report a summary of the results on the performance of the BC when we apply no

inequality (None) or we employ inequalities (51)–(57) (All). These tables present CPU times, the

average lower bound values as a percentage of the upper bound obtained by the BC without applying

CCJ-DH cutoffs (%UB) and as a percentage of the best upper bound (%BUB) for each BC setting. To

calculate the best upper bound (BUB) for each BC setting, we considered the upper bounds obtained

by either that BC setting or CCJ-DH. When we do not consider the valid inequalities in the BC method

(None), we do not apply them in CCJ-DH either. For the case where we include all inequalities in the

BC method (All), we apply them in the heuristic cutoff procedure as well. In these tables, a zero value

under %UB columns means that no feasible solution (UB) is found by the BC method. The results

indicate that the BC performs better, in terms of the average solution time and optimality gap, when

all inequalities are applied. Furthermore, in all cases for the planning period length scenarios and the
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bucket size models, valid inequalities create a significant improvement in the final results (%BUB).

More specifically, on the big-bucket MP-PRP instances with four products (k = 4), employing the valid

inequalities improves %BUB on average from 74.9% to 91.3%, 82.2% to 92.9%, and 86.5% to 95.0%,

Table 1: Performance of enhanced CCJ-DH with valid inequalities

Small-Bucket LSP (ρ = 1) Big-Bucket LSP (π = 1)

Iterations CPU (s) Avg Solution Value Iterations CPU (s) Avg Solution Value

l k n None All (%) None All (%) None All (%) None All (%) None All (%) None All (%)

12 4 5 200 200 -0.2 248 196 -21.0 34183 34190 0.0 200 200 0.0 80 60 -25.6 34230 34301 0.2
10 200 200 0.0 574 212 -63.1 40150 40011 -0.3 200 200 0.2 331 92 -72.1 39880 39962 0.2
15 200 200 0.0 912 267 -70.7 50775 50810 0.1 201 200 -0.4 494 151 -69.3 50331 50132 -0.4
20 200 200 0.0 1430 294 -79.4 56281 56240 -0.1 200 200 0.0 970 173 -82.1 55796 55658 -0.2
25 200 200 -0.2 2670 429 -83.9 63327 63562 0.4 200 200 0.0 1265 230 -81.8 62888 62911 0.0
30 192 200 4.4 3244 515 -84.1 69228 69054 -0.3 200 200 -0.2 2597 397 -84.7 67852 67820 0.0
35 177 200 13.3 3365 622 -81.5 78314 78079 -0.3 191 200 4.7 3040 653 -78.5 77693 77652 -0.1

6 5 200 200 0.0 365 241 -34.0 43093 43082 0.0 200 200 0.0 202 167 -17.0 42723 42707 0.0
10 200 200 0.2 1478 329 -77.7 48757 48891 0.3 200 200 0.0 631 225 -64.4 48410 48525 0.2
15 200 200 0.0 1718 980 -42.9 56683 56640 -0.1 200 200 0.0 1856 835 -55.0 55924 56452 0.9
20 190 194 1.9 3170 1611 -49.2 61770 61672 -0.2 197 200 1.4 2814 460 -83.6 61090 60595 -0.8
25 188 197 4.5 3211 1679 -47.7 67404 67317 -0.1 186 200 7.5 3302 751 -77.3 66360 66248 -0.2
30 158 188 18.7 3582 2174 -39.3 72819 72740 -0.1 166 200 20.8 3559 1398 -60.7 71737 70892 -1.2
35 133 186 39.6 3597 2221 -38.3 77567 77207 -0.5 170 200 17.6 3579 1085 -69.7 75884 75480 -0.5

8 5 200 200 0.0 1450 240 -83.5 53041 52767 -0.5 200 200 0.2 794 215 -72.9 53173 53073 -0.2
10 184 200 8.9 3562 455 -87.2 63032 62842 -0.3 185 200 7.9 3508 299 -91.5 62413 61482 -1.5
15 167 200 20.1 3526 861 -75.6 68983 68863 -0.2 149 200 34.3 3589 780 -78.3 68040 67274 -1.1
20 140 200 43.1 3584 1600 -55.3 80499 79842 -0.8 143 200 40.1 3583 952 -73.4 80092 76515 -4.5
25 149 200 34.6 3393 1264 -62.7 82656 81318 -1.6 166 200 20.8 3584 662 -81.5 80274 78480 -2.2
30 144 200 38.7 3081 1701 -44.8 90853 89879 -1.1 132 200 51.5 3588 1178 -67.2 89828 85252 -5.1
35 123 200 62.9 3597 2118 -41.1 95675 95265 -0.4 127 200 58.3 3596 1602 -55.5 93896 89776 -4.4

18 4 5 193 200 3.4 1529 1081 -29.3 44005 44193 0.4 195 195 0.0 1381 1163 -15.8 47542 47354 -0.4
10 184 200 8.7 3062 1228 -59.9 50401 50341 -0.1 193 200 3.5 2986 1350 -54.8 50394 50390 0.0
15 165 200 21.1 3581 2304 -35.7 65459 65661 0.3 173 200 16.0 3588 2542 -29.2 67004 66833 -0.3
20 168 200 19.2 3598 3093 -14.0 83147 83209 0.1 175 195 11.8 3367 3219 -4.4 84535 84373 -0.2
25 153 195 27.4 3371 3139 -6.9 91539 90713 -0.9 164 195 18.9 3280 3268 -0.4 91764 91674 -0.1
30 155 187 20.4 3583 3063 -14.5 105551 105052 -0.5 159 179 12.3 3597 3582 -0.4 107328 106134 -1.1

6 5 200 200 0.2 2162 1159 -46.4 48619 48686 0.1 200 200 0.0 1184 360 -69.6 47936 47955 0.0
10 133 189 42.0 3582 1433 -60.0 62216 61944 -0.4 163 188 15.3 3586 1449 -59.6 61406 61210 -0.3
15 133 190 43.0 3589 2054 -42.8 73024 72573 -0.6 171 200 17.2 3021 1071 -64.5 72569 70633 -2.7
20 115 200 74.5 3598 2243 -37.7 84906 84728 -0.2 127 186 46.6 3589 1469 -59.1 85001 82481 -3.0
25 108 182 69.5 3589 2882 -19.7 96786 96242 -0.6 130 200 54.3 3579 1131 -68.4 94421 92337 -2.2
30 109 185 70.0 3597 3050 -15.2 102082 101396 -0.7 110 200 82.1 3578 1561 -56.4 101295 98367 -2.9

8 5 186 200 7.5 2764 754 -72.7 61821 61516 -0.5 200 200 0.0 2508 603 -75.9 60828 60521 -0.5
10 118 200 70.4 3579 927 -74.1 75394 75052 -0.5 129 200 55.0 3594 778 -78.3 74838 73190 -2.2
15 104 200 92.7 3567 1786 -49.9 86876 86392 -0.6 105 200 91.2 3596 1913 -46.8 87568 83270 -4.9
20 99 200 101.2 3581 2668 -25.5 99424 98795 -0.6 100 200 98.8 3588 2519 -29.8 101322 95169 -6.1
25 93 200 114.1 3583 3043 -15.1 111463 110933 -0.5 96 182 89.6 3596 3464 -3.6 114865 105700 -8.0
30 94 200 113.7 3573 3035 -15.1 126134 124048 -1.7 94 188 100.0 3583 3361 -6.2 126910 119132 -6.1

24 4 5 186 200 7.5 2105 1427 -32.2 45357 45304 -0.1 191 187 -2.1 1836 1617 -11.9 48114 48210 0.2
10 163 192 17.4 3586 2572 -28.3 70579 70707 0.2 171 195 14.4 3237 2835 -12.4 77565 77060 -0.7
15 150 178 19.1 3582 3549 -0.9 89644 89110 -0.6 141 170 20.6 3571 3541 -0.8 92714 91905 -0.9
20 153 187 22.5 3394 3402 0.2 104324 104300 0.0 153 186 21.3 3572 3462 -3.1 109874 109908 0.0
25 148 182 22.7 3575 3588 0.4 128542 128189 -0.3 164 182 10.9 3556 3569 0.4 132887 131388 -1.1

6 5 183 200 9.5 3052 1056 -65.4 58642 58960 0.5 200 200 0.0 1368 775 -43.3 58364 58643 0.5
10 107 186 73.8 3592 2053 -42.9 74421 74210 -0.3 130 181 38.9 3590 2318 -35.4 74195 72214 -2.7
15 101 172 70.7 3582 2765 -22.8 98203 96800 -1.4 116 165 42.4 3589 2591 -27.8 102216 97108 -5.0
20 97 164 69.6 3587 3376 -5.9 111720 112166 0.4 109 198 82.0 3579 2355 -34.2 118017 106025 -10.2
25 85 185 118.6 3004 3243 8.0 129831 130443 0.5 125 200 59.5 3305 2228 -32.6 133399 125202 -6.1

8 5 126 194 53.2 3560 1706 -52.1 70954 70295 -0.9 152 200 31.6 3042 1993 -34.5 69948 69255 -1.0
10 101 191 89.9 3589 2012 -43.9 89034 87965 -1.2 107 200 86.6 3589 1683 -53.1 90867 86005 -5.4
15 112 161 44.4 3348 2838 -15.2 108971 109180 0.2 91 198 116.6 3570 2910 -18.5 114113 103271 -9.5
20 90 145 60.3 3588 2895 -19.3 129890 129134 -0.6 92 191 107.6 3576 3303 -7.6 132371 121384 -8.3
25 88 145 63.9 3592 3088 -14.0 149381 149307 0.0 91 187 105.5 3590 3286 -8.5 155235 139698 -10.0

30 4 5 148 169 14.8 3593 3082 -14.2 56334 56214 -0.2 168 172 2.1 3439 3381 -1.7 59314 59069 -0.4
10 146 180 23.0 3588 3314 -7.6 86405 87148 0.9 154 162 5.3 3580 3452 -3.6 96627 94970 -1.7
15 138 181 30.9 3584 3578 -0.2 107240 107804 0.5 147 158 7.2 3576 3594 0.5 113827 112225 -1.4
20 133 168 26.0 3588 3578 -0.3 131404 131804 0.3 141 169 20.1 3585 3585 0.0 139196 137726 -1.1

6 5 113 179 58.5 3578 2537 -29.1 64532 64005 -0.8 147 189 28.2 3508 2074 -40.9 63748 62687 -1.7
10 99 166 67.5 3598 3307 -8.1 97895 96699 -1.2 126 186 48.4 3253 2292 -29.5 99542 94685 -4.9
15 95 176 84.9 3609 2762 -23.5 113507 114587 1.0 95 200 110.1 3583 2200 -38.6 123983 112317 -9.4
20 109 167 52.8 3590 3587 -0.1 150344 146634 -2.5 119 200 67.5 3300 3097 -6.2 154903 145043 -6.4

8 5 106 198 87.9 3599 2772 -23.0 82451 82577 0.2 121 198 63.4 3588 2461 -31.4 85282 80352 -5.8
10 92 169 84.1 3589 3288 -8.4 110313 109752 -0.5 94 181 93.8 3580 2758 -23.0 122004 104552 -14.3
15 89 92 2.7 3588 2219 -38.1 144806 145270 0.3 91 168 83.6 3575 2240 -37.3 154682 134254 -13.2
20 89 94 5.9 3587 2495 -30.5 170344 168063 -1.3 89 161 80.5 3585 2687 -25.1 179248 155739 -13.1

Average 144 187 29.6 3107 2046 -34.2 84833 84521 -0.4 152 192 26.7 2953 1810 -38.7 86641 83164 -4.0
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Table 2: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 4)

π = 1 π = 2 π = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 1059 99.8 99.8 383 100.0 100.0 235 100.0 100.0 184 100.0 100.0 170 100.0 100.0 68 100.0 100.0
10 3584 93.8 94.6 3587 96.2 96.5 3582 95.2 97.3 3587 97.1 97.1 3581 95.5 95.5 2934 98.3 98.3
15 3587 28.3 91.1 3589 15.9 93.4 3585 47.6 93.0 3589 15.6 94.3 3585 67.4 94.9 3588 61.3 95.9
20 3588 25.2 83.1 3589 13.5 92.2 3587 28.8 89.0 3589 10.6 93.3 3586 30.1 89.6 3589 13.7 95.7
25 3588 15.9 72.7 3589 8.5 89.7 3589 18.3 83.1 3590 11.5 91.5 3589 16.0 86.0 3589 8.5 93.3
30 3590 7.9 67.2 3589 6.6 89.6 3590 9.6 82.6 3588 9.5 90.9 3590 10.2 85.3 3590 10.4 94.6
35 3590 3.9 62.1 3590 7.9 88.3 3590 4.8 67.4 3590 8.8 90.4 3591 7.1 72.1 3590 9.3 93.7

18 5 3584 90.2 90.5 2604 98.0 98.0 3212 98.4 98.4 2224 98.9 98.9 2437 98.6 98.6 2187 99.5 99.5
10 3588 30.8 86.8 3588 17.1 92.6 3586 46.1 92.6 3589 16.8 94.3 3587 50.4 94.7 3589 62.6 94.9
15 3590 13.7 76.2 3590 11.9 91.2 3590 18.9 88.7 3590 12.0 93.2 3589 23.1 93.6 3590 28.6 96.5
20 3589 11.7 70.0 3590 5.8 88.7 3589 13.6 78.5 3590 7.8 91.2 3589 15.3 87.9 3590 10.4 93.8
25 3590 5.4 64.1 3590 7.2 88.8 3590 8.7 74.6 3590 10.0 91.0 3590 7.0 85.3 3590 8.5 94.2
30 3590 3.9 58.3 3590 5.1 89.0 3590 5.2 67.5 3590 7.5 91.5 3591 6.0 73.3 3590 8.0 94.8

24 5 3587 90.5 94.2 3216 97.9 97.9 3537 97.4 98.0 3187 98.8 98.8 3584 97.4 97.7 3297 99.1 99.1
10 3589 22.4 81.9 3590 10.0 91.7 3589 27.8 91.7 3590 43.7 93.0 3588 34.1 94.3 3590 15.3 96.4
15 3590 6.7 66.3 3590 8.9 88.3 3590 10.3 74.4 3590 11.4 91.0 3590 13.2 84.0 3590 12.0 93.7
20 3590 5.3 61.0 3590 11.1 88.0 3590 6.8 66.5 3590 11.1 89.9 3590 8.3 75.7 3590 12.2 92.1
25 3590 5.4 53.2 3590 7.6 85.9 3591 7.3 60.7 3590 8.3 88.0 3591 8.9 69.6 3589 9.3 90.6

30 5 3588 60.4 83.8 3590 81.4 96.8 3587 84.6 93.3 3589 96.6 97.7 3588 82.6 94.2 3432 74.3 98.3
10 3590 12.8 74.1 3590 6.8 88.8 3590 21.0 84.9 3590 9.7 90.8 3589 30.7 90.0 3590 8.3 93.3
15 3590 5.6 60.8 3590 9.3 87.4 3590 7.7 65.0 3590 9.3 88.4 3590 9.4 71.5 3590 11.2 90.6
20 3590 5.7 55.8 3589 7.3 86.8 3590 8.1 62.3 3590 7.9 88.5 3590 9.3 69.5 3590 11.5 90.1

Avg 3474 29.3 74.9 3382 28.8 91.3 3417 34.8 82.2 3354 31.9 92.9 3381 37.3 86.5 3316 35.1 95.0

Table 3: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 6)

π = 1 π = 2 π = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 686 100.0 100.0 56 100.0 100.0 99 100.0 100.0 21 100.0 100.0 78 100.0 100.0 25 100.0 100.0
10 3587 96.4 97.2 1315 99.8 99.8 3009 97.3 97.5 1069 99.7 99.7 2733 99.9 99.9 864 99.9 99.9
15 3588 17.8 79.9 3590 65.0 96.1 3588 53.3 92.8 3590 97.1 97.3 3588 56.6 96.9 3050 82.8 98.1
20 3589 10.6 77.5 3590 26.1 95.6 3588 14.0 84.8 3590 30.9 96.2 3590 18.2 95.2 3590 47.1 97.1
25 3590 4.6 52.8 3591 4.4 94.2 3590 7.6 64.8 3590 8.0 94.8 3590 9.4 83.3 3591 8.3 95.3
30 3590 0.8 49.1 3590 1.6 94.0 3591 5.1 60.0 3590 5.6 94.8 3590 3.3 73.4 3590 6.3 94.9
35 3591 0.7 42.4 3590 2.6 92.7 3590 2.9 54.0 3590 8.1 93.9 3590 0.0 58.6 3590 3.9 93.7

18 5 3021 92.8 92.8 297 100.0 100.0 1391 99.8 99.8 145 100.0 100.0 1365 100.0 100.0 49 100.0 100.0
10 3589 24.1 87.0 3590 67.2 97.9 3589 33.8 95.6 3558 97.0 98.4 3588 39.4 95.8 3590 98.7 98.9
15 3589 7.7 70.2 3590 3.2 95.5 3590 11.1 88.6 3590 5.6 96.0 3590 16.3 93.0 3590 12.8 98.6
20 3590 5.1 59.4 3590 1.4 92.1 3590 7.6 71.6 3590 1.9 94.1 3590 10.3 84.8 3590 6.7 98.2
25 3590 3.5 48.8 3590 2.6 91.9 3590 2.1 55.0 3590 4.8 92.3 3590 5.2 61.4 3590 8.0 97.0
30 3590 0.6 43.6 3590 7.4 91.3 3591 0.8 55.1 3590 3.3 92.4 3591 0.0 59.0 3590 7.3 96.7

24 5 3588 86.1 86.7 2948 99.4 99.4 3588 96.4 96.4 1934 99.9 99.9 3588 96.6 97.1 455 100.0 100.0
10 3589 12.8 72.0 3590 66.0 96.9 3589 18.7 91.3 3590 96.5 98.3 3589 23.5 93.1 3590 80.8 98.4
15 3590 3.9 57.3 3590 0.0 91.5 3590 6.7 67.5 3590 2.1 95.3 3590 10.3 77.0 3590 7.5 95.5
20 3590 3.7 48.1 3590 2.5 92.8 3590 5.7 57.5 3590 5.2 93.5 3591 7.0 62.2 3590 3.9 94.4
25 3590 2.8 44.5 3590 3.8 92.0 3591 1.8 50.8 3590 5.9 92.0 3591 1.2 55.0 3590 9.8 97.6

30 5 3589 63.1 76.6 1733 100.0 100.0 3589 67.0 94.0 973 100.0 100.0 3589 85.9 97.3 1191 99.6 99.9
10 3590 6.8 64.3 3590 2.4 93.7 3590 10.6 74.4 3590 7.4 94.5 3590 14.6 81.7 3590 7.1 95.1
15 3590 3.2 47.2 3589 1.3 93.9 3590 6.2 56.8 3589 2.2 94.3 3590 8.9 63.2 3589 4.5 96.8
20 3590 3.6 46.4 3589 3.9 90.8 3590 5.1 51.4 3589 3.3 91.5 3590 6.4 57.0 3589 9.2 94.6

Avg 3432 25.0 65.6 3063 34.6 95.1 3305 29.7 75.4 2961 40.2 95.9 3290 32.4 81.1 2867 41.1 97.3

respectively for π = 1, π = 2 and π = 3 (Table 2). On the same LSP type MP-PRP instances with

six products (k = 6), the addition of the valid inequalities increases %BUB on average from 65.6% to

95.1%, 75.4% to 95.9%, and 81.1% to 97.3%, respectively for π = 1, π = 2 and π = 3 (Table 3). On

the big-bucket MP-PRP instances with eight products (k = 8) which consist of the highest number

of products, the implementation of the valid inequalities increases %BUB on average from 56.6% to

96.8%, 67.2% to 97.3%, and 76.1% to 97.7%, respectively for π = 1, π = 2 and π = 3 (Table 4). This

indicates the substantial impact of applying the valid inequalities.

Similarly, on the small-bucket MP-PRP instances with four products (k = 4), employing the valid

inequalities improves %BUB on average from 63.8% to 84.9%, 77.3% to 89.7%, and 86.5% to 92.1%,

respectively for ρ = 1, ρ = 2 and ρ = 3 (Table 5). On the small-bucket instances with six products

(k = 6), the addition of the valid inequalities increases %BUB on average from 49.7% to 86.4%, 65.8%

to 90.4%, and 76.5% to 94.3%, respectively for ρ = 1, ρ = 2 and ρ = 3 (Table 6). On the big-bucket

instances with eight products (k = 8) with the largest number of products, the addition of the valid

inequalities increases %BUB on average from 44.3% to 86.1%, 59.4% to 90.7%, and 67.7% to 93.8%,

respectively for ρ = 1, ρ = 2 and ρ = 3 (Table 7). This indicates the substantial impact of applying the
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Table 4: Performance of branch-and-cut algorithm on the big-bucket LSP (k = 8)

π = 1 π = 2 π = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 618 100.0 100.0 7 100.0 100.0 1586 96.7 96.8 5 100.0 100.0 87 100.0 100.0 4 100.0 100.0
10 3587 33.0 59.9 170 100.0 100.0 3588 49.7 70.1 139 100.0 100.0 3588 62.4 89.3 123 100.0 100.0
15 3589 34.7 63.0 2365 99.8 99.8 3589 51.1 74.7 947 100.0 100.0 3589 51.6 88.0 1464 100.0 100.0
20 3590 7.9 51.2 3590 97.1 97.2 3587 9.0 63.5 3590 96.6 97.0 3588 11.5 72.7 3589 98.9 99.0
25 3588 3.5 48.4 3590 21.5 95.3 3587 7.3 59.0 3590 38.9 95.6 3588 8.2 65.3 3590 95.2 97.4
30 3588 2.2 42.3 3590 1.4 94.2 3588 4.9 50.3 3590 0.0 94.7 3588 7.1 62.0 3590 18.4 95.4
35 3587 0.0 38.0 3590 0.0 93.0 3588 0.9 48.8 3590 1.5 93.2 3588 2.6 58.2 3590 1.8 93.9

18 5 3585 82.8 89.4 34 100.0 100.0 1968 100.0 100.0 11 100.0 100.0 2268 99.7 99.7 15 100.0 100.0
10 3586 17.4 68.8 2702 99.4 99.4 3587 25.4 85.5 1990 99.7 99.7 3586 30.2 93.9 1364 100.0 100.0
15 3587 5.6 53.5 3589 40.4 97.6 3587 9.0 71.9 3590 48.8 98.3 3587 11.9 84.4 3147 78.5 98.9
20 3587 1.8 53.0 3589 1.3 94.9 3588 5.8 63.8 3590 0.0 95.5 3589 9.9 78.6 3589 2.6 95.4
25 3588 3.6 45.2 3589 2.8 94.9 3588 3.2 51.8 3590 1.9 95.2 3587 7.1 61.1 3589 2.3 95.1
30 3588 0.8 36.8 3590 1.3 93.0 3588 0.0 46.8 3590 3.3 93.8 3587 0.0 57.0 3590 1.8 93.8

24 5 3586 66.5 84.9 383 100.0 100.0 3585 79.2 92.7 158 100.0 100.0 3585 83.8 89.5 142 100.0 100.0
10 3586 9.6 62.4 3576 78.9 97.9 3589 13.9 75.8 3437 83.1 99.0 3587 15.9 90.6 3471 99.6 99.6
15 3589 4.3 50.5 3581 0.0 96.6 3590 5.8 64.0 3586 1.9 96.9 3590 8.5 77.3 3589 7.1 97.9
20 3590 3.9 47.9 3589 0.0 94.9 3589 4.3 54.8 3590 0.0 95.8 3590 6.1 64.5 3590 0.0 98.1
25 3589 3.4 43.5 3590 1.4 94.7 3589 5.0 50.2 3590 5.0 95.9 3589 6.4 55.4 3590 2.3 97.7

30 5 3588 30.1 70.3 763 100.0 100.0 3588 73.5 87.7 434 100.0 100.0 3589 86.4 90.7 553 100.0 100.0
10 3589 5.6 52.3 3590 2.2 96.6 3590 7.8 68.1 3590 3.4 96.8 3589 12.6 77.4 3590 4.8 96.2
15 3589 4.0 44.0 3590 0.0 96.2 3589 5.6 57.1 3590 1.8 97.3 3589 8.1 64.7 3589 8.3 93.7
20 3589 3.1 40.1 3590 0.0 94.4 3589 4.6 46.2 3590 1.8 95.9 3589 6.3 53.6 3590 4.6 97.2

Avg 3453 19.3 56.6 2738 43.1 96.8 3423 25.6 67.2 2608 44.9 97.3 3369 28.9 76.1 2589 51.2 97.7

Table 5: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 4)

ρ = 1 ρ = 2 ρ = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 1540 99.7 99.7 1003 99.8 99.8 380 100.0 100.0 74 100.0 100.0 25 100.0 100.0 14 100.0 100.0
10 3586 85.6 94.0 3588 95.1 95.7 3581 98.2 98.2 3079 98.2 98.2 2418 99.5 99.5 2028 100.0 100.0
15 3589 40.3 70.1 3590 0.0 92.2 3584 51.2 91.3 3587 52.7 93.5 3581 0.0 93.8 3583 38.3 95.3
20 3589 0.0 64.1 3590 12.6 91.4 3587 27.0 85.5 3588 15.1 92.7 3584 13.2 93.6 3585 0.0 94.5
25 3590 0.0 59.5 3591 0.0 88.1 3588 0.0 71.4 3589 0.0 91.1 3586 0.0 91.7 3587 12.5 92.8
30 3591 0.0 56.0 3590 0.0 85.5 3589 0.0 70.2 3590 3.8 91.1 3588 0.0 83.2 3589 0.0 91.9
35 3590 0.0 46.6 3590 0.0 84.3 3590 0.0 68.9 3591 0.0 89.8 3589 0.0 79.0 3590 0.0 91.4

18 5 3587 91.6 92.4 3589 97.6 97.6 2752 98.7 98.7 1788 99.7 99.7 1252 99.8 99.8 1256 100.0 100.0
10 3589 48.5 70.7 3589 16.4 90.9 3585 28.9 88.3 3587 70.1 93.7 3583 73.0 94.1 3584 52.1 94.1
15 3590 8.1 60.6 3590 2.1 88.1 3587 12.0 77.2 3588 31.6 90.6 3586 28.8 90.6 3586 33.4 92.7
20 3590 0.0 59.5 3590 0.0 81.0 3589 0.0 70.1 3590 0.0 89.9 3587 14.2 87.1 3588 0.0 90.5
25 3591 0.0 51.7 3590 0.0 81.5 3590 0.0 68.0 3590 0.0 89.7 3589 0.0 81.2 3589 0.0 91.0
30 3590 0.0 46.5 3590 0.0 78.3 3591 0.0 65.0 3590 0.0 84.8 3590 0.0 71.9 3590 0.0 89.8

24 5 3588 77.0 81.3 3589 96.3 96.3 3368 97.3 98.0 3001 99.1 99.1 1789 100.0 100.0 1356 99.9 99.9
10 3589 28.5 70.9 3590 18.9 89.4 3587 62.5 78.5 3589 41.2 91.7 3585 27.2 89.3 3587 26.6 92.9
15 3590 7.4 57.2 3590 0.0 77.0 3588 21.0 67.4 3590 0.0 86.7 3587 12.7 80.1 3588 28.9 88.2
20 3590 0.0 47.5 3590 0.0 75.0 3590 0.0 64.2 3591 0.0 84.1 3589 0.0 75.2 3590 0.0 88.9
25 3590 0.0 44.1 3590 0.0 69.8 3590 0.0 60.0 3590 0.0 74.0 3590 0.0 74.4 3590 0.0 83.3

30 5 3589 13.6 74.6 3590 54.4 92.5 3586 75.6 87.8 3079 77.3 95.7 3456 91.0 94.6 2940 76.2 96.0
10 3590 7.1 58.9 3591 0.0 73.8 3588 8.9 69.0 3590 4.4 85.6 3587 39.3 82.1 3589 13.0 87.3
15 3591 0.0 50.7 3590 0.0 72.1 3589 0.0 62.9 3590 4.0 80.5 3588 0.0 73.6 3590 0.0 85.4
20 3590 0.0 46.3 3591 0.0 67.7 3590 0.0 60.0 3590 0.0 71.4 3590 0.0 68.7 3590 4.9 81.0

Avg 3496 23.1 63.8 3472 22.4 84.9 3394 31.0 77.3 3275 31.7 89.7 3178 31.8 86.5 3118 31.2 92.1

valid inequalities. In Appendix B, we report the lower bound improvements obtained by incorporating

the valid inequalities in the small- and big-bucket models. Generally, when the instances are harder

to solve (smaller ρ and π), the impact of the inequalities on the lower bound improvement is bigger.

7.4 Analysis of the cost shares

Finally, we analyze the cost component shares on different MP-PRP instances. Tables 8 and 9 present

the different cost component values and proportions for ρ = {1, 2, 3} and π = {1, 2, 3}, respectively

for the small- and big-bucket LSP instances. In Table 8, columns three, 10, and 17 show the total

cost values. Columns four to nine present the production, inventory, and the transportation costs

and shares (in percent), respectively for ρ = 1. Columns 11 to 16 and 18 to 23 do the same for the

cases where ρ = 2 and ρ = 3, respectively. Table 9 reports the same information for big-bucket LSP

instances. In all cases, the share of the production setup cost decreases when for the same number of

periods, the number of customers increases. In most situations, for any number of periods and π (or

ρ) combination, the share of the inventory cost, and the share of the transportation cost increase when
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Table 6: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 6)

ρ = 1 ρ = 2 ρ = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 3095 98.4 98.4 1247 99.9 99.9 986 100.0 100.0 109 100.0 100.0 127 100.0 100.0 14 100.0 100.0
10 3583 65.8 68.2 3581 98.2 98.2 3578 88.5 88.7 2360 99.7 99.7 3570 99.4 99.4 272 100.0 100.0
15 3584 27.2 54.2 3581 50.9 96.5 3580 14.6 77.2 3577 93.2 97.5 3573 68.9 90.0 3577 78.3 98.8
20 3581 0.0 49.9 3583 0.0 94.2 3578 13.3 70.4 3580 38.8 96.6 3579 47.9 88.9 2981 58.3 97.3
25 3587 5.3 40.1 3585 0.0 91.6 3582 0.0 62.2 3585 0.0 95.4 3581 25.0 83.2 3581 19.5 96.2
30 3587 0.0 33.4 3590 0.0 88.3 3580 0.0 60.0 3586 0.0 95.1 3577 0.0 78.5 3588 0.0 97.0
35 3581 0.0 29.3 3590 0.0 84.4 3580 0.0 57.1 3585 0.0 92.5 3578 0.0 72.9 3583 0.0 95.4

18 5 3577 69.7 72.7 3184 99.5 99.5 3573 91.1 91.5 2049 99.8 99.8 3351 97.5 97.5 168 100.0 100.0
10 3579 38.4 60.4 3584 56.9 96.2 3576 37.5 70.8 3581 78.0 97.2 3573 41.6 80.3 3463 97.8 98.2
15 3586 0.0 50.8 3584 0.0 89.2 3583 32.5 71.0 3584 47.0 95.0 3575 49.5 77.1 3579 57.6 96.6
20 3586 0.0 42.5 3584 0.0 83.9 3583 0.0 60.7 3582 14.3 92.8 3582 10.5 71.4 3580 19.5 95.9
25 3586 0.0 39.3 3584 0.0 81.0 3581 0.0 56.6 3584 0.0 88.0 3584 0.0 67.7 3582 0.0 94.3
30 3586 0.0 30.7 3577 0.0 81.5 3591 0.0 52.9 3577 0.0 82.2 3585 0.0 66.3 3576 0.0 93.6

24 5 3580 67.7 71.1 3404 97.3 97.3 3575 84.4 84.4 3193 98.0 98.2 3578 94.3 94.3 1405 99.8 99.8
10 3584 16.5 52.0 3582 0.0 88.0 3581 39.8 61.3 3581 83.4 94.5 3580 38.0 69.7 3571 96.8 98.0
15 3585 0.0 44.5 3576 0.0 79.9 3583 18.9 57.2 3578 0.0 87.4 3581 37.3 63.4 3581 17.4 91.6
20 3584 0.0 42.3 3577 0.0 76.1 3584 0.0 53.9 3577 0.0 79.8 3581 0.0 63.6 3581 13.8 88.3
25 3585 0.0 35.6 3583 0.0 71.0 3584 0.0 47.2 3583 0.0 74.9 3584 0.0 60.5 3578 0.0 85.5

30 5 3582 35.6 55.4 3579 92.1 93.9 3581 64.8 69.1 3585 94.4 96.3 3579 78.6 81.4 2236 97.8 97.8
10 3583 0.0 43.9 3587 11.4 73.6 3586 43.5 55.7 3586 0.0 83.7 3586 27.7 60.7 3581 17.9 87.7
15 3590 0.0 39.3 3582 0.0 71.2 3587 7.3 52.1 3583 0.0 75.6 3580 25.2 58.8 3582 27.8 84.8
20 3583 0.0 38.5 3582 0.0 64.5 3582 0.0 46.7 3582 0.0 67.6 3580 0.0 57.0 3582 0.0 77.9

Avg 3562 19.3 49.7 3450 27.6 86.4 3463 28.9 65.8 3281 38.5 90.4 3412 38.2 76.5 2920 45.6 94.3

Table 7: Performance of branch-and-cut algorithm on the small-bucket LSP (k = 8)

ρ = 1 ρ = 2 ρ = 3

None All None All None All

l n CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB

12 5 3586 80.7 81.2 2276 99.8 99.8 3581 89.5 89.5 1261 100.0 100.0 2823 99.6 99.6 41 100.0 100.0
10 3588 0.0 59.6 3589 99.1 99.1 3585 17.1 78.1 1372 99.9 99.9 3583 63.1 77.2 180 100.0 100.0
15 3589 0.0 47.8 3590 97.7 97.7 3587 56.3 69.8 3588 98.6 98.7 3584 29.1 72.9 1529 100.0 100.0
20 3590 0.0 43.9 3590 37.1 92.2 3588 0.0 65.4 3589 96.6 96.6 3586 0.0 70.5 3375 98.8 98.8
25 3590 0.0 36.7 3590 0.0 90.8 3589 0.0 59.6 3590 71.4 94.9 3587 40.9 69.4 3588 98.1 98.1
30 3590 0.0 37.4 3590 17.5 89.1 3590 0.0 52.4 3590 0.0 90.7 3589 13.3 65.4 3589 72.7 94.7
35 3590 0.0 27.4 3590 0.0 84.9 3590 0.0 52.0 3590 15.2 91.0 3590 0.0 65.6 3589 38.3 95.0

18 5 3588 44.3 61.1 2708 99.9 99.9 3586 73.0 74.1 1208 99.9 99.9 3584 84.7 84.7 305 100.0 100.0
10 3589 0.0 48.6 3590 57.8 95.6 3587 12.8 65.5 3588 98.3 98.3 3586 47.6 69.5 3106 99.6 99.6
15 3590 0.0 43.2 3590 0.0 86.9 3588 15.5 57.2 3589 91.9 94.4 3587 36.8 66.7 3588 98.1 98.1
20 3590 0.0 40.3 3590 0.0 85.5 3589 0.0 60.2 3590 51.3 93.4 3588 11.3 66.5 3588 57.5 96.0
25 3590 0.0 40.1 3590 0.0 83.6 3590 0.0 53.4 3590 0.0 88.0 3589 0.0 65.1 3590 35.8 94.1
30 3590 0.0 27.7 3590 0.0 81.3 3590 0.0 48.4 3590 0.0 83.8 3590 0.0 64.0 3590 0.0 91.8

24 5 3588 30.9 54.5 3590 98.1 98.1 3586 41.3 65.8 3153 99.2 99.2 3585 72.1 72.2 1899 99.9 99.9
10 3590 7.0 44.8 3590 16.1 86.2 3587 9.1 56.1 3590 95.5 95.7 3586 51.7 63.3 3589 97.2 97.2
15 3590 0.0 39.3 3590 0.0 79.8 3589 8.3 52.9 3590 36.0 89.7 3588 37.0 59.4 3589 71.2 90.7
20 3590 0.0 38.6 3590 0.0 79.3 3590 0.0 51.9 3590 0.0 80.2 3589 0.0 60.7 3590 17.9 86.1
25 3590 0.0 39.2 3590 0.0 70.0 3590 0.0 46.5 3590 0.0 77.2 3589 0.0 59.1 3591 0.0 85.0

30 5 3589 34.2 54.1 3590 65.8 92.1 3587 36.4 64.5 3059 99.3 99.3 3587 73.8 73.9 1810 99.6 99.6
10 3590 0.0 40.0 3590 0.0 75.9 3589 16.9 52.4 3590 66.1 83.1 3588 44.2 56.6 3590 83.5 85.7
15 3589 0.0 34.0 3590 0.0 65.9 3588 0.0 47.8 3590 0.0 71.2 3587 7.7 54.2 3590 45.3 79.0
20 3589 0.0 35.5 3590 0.0 60.7 3589 0.0 43.3 3590 0.0 70.1 3588 0.0 53.7 3590 0.0 74.9

Avg 3589 9.0 44.3 3490 31.3 86.1 3588 17.1 59.4 3231 55.4 90.7 3552 32.4 67.7 2841 68.8 93.8

the number of customers increases. Note that the production costs that are taken into account in the

model are the fixed production costs. The variable production costs are not included, since the total

demand for all customers needs to be satisfied and hence the total variable production cost represents

a fixed amount that is left out of the objective function.

Figures (9) and (10) present a comparison of the cost component share (in percentage) for different

numbers of customers and periods l = 12 and 30 when small- and big-bucket LSP instances are

considered, respectively. These figures show that by increasing the number of planning periods it is

possible to schedule the production in such a way that the share of the production setups decreases.

Similar tendencies are observed for instances with periods l = 18 and 24. The challenge for the

practitioners is in designing and developing efficient methods to both obtain feasible solutions and

proving the quality of those solutions.



18 G–2020–35 Les Cahiers du GERAD

Table 8: Cost component values and proportions for small-bucket LSP

ρ = 1 ρ = 2 ρ = 3

l n Total Production Inventory Transport Total Production Inventory Transport Total Production Inventory Transport

12 5 43346 32273 73.5% 3646 8.1% 7428 18.4% 43669 32273 72.9% 3745 8.2% 7652 18.9% 44212 32273 72.2% 3594 7.9% 8345 20.0%
10 50581 32780 63.9% 7555 14.3% 10246 21.8% 50879 32780 63.5% 7925 14.9% 10174 21.6% 52214 32780 62.0% 7216 13.2% 12219 24.7%
15 58771 33160 55.4% 10861 18.1% 14750 26.4% 59427 33160 54.8% 11685 19.2% 14582 25.9% 60249 33160 54.1% 10972 17.9% 16117 28.0%
20 65918 32788 49.0% 14936 22.0% 18194 29.0% 67142 32788 48.2% 15349 22.2% 19005 29.6% 67604 32788 47.9% 15443 21.9% 19374 30.2%
25 70732 33066 46.1% 16897 23.4% 20769 30.5% 72047 33066 45.3% 17580 24.0% 21400 30.8% 72604 33066 44.9% 17753 23.8% 21784 31.3%
30 77224 33166 42.3% 20703 26.4% 23355 31.3% 78886 33166 41.4% 21388 26.7% 24332 31.9% 79423 33166 41.1% 21186 26.0% 25072 32.9%
35 83517 32816 38.9% 24080 28.3% 26621 32.8% 84989 32816 38.2% 24059 27.8% 28114 33.9% 85562 32816 37.9% 24026 27.5% 28720 34.6%

18 5 51465 32888 63.0% 7781 14.7% 10796 22.2% 51956 32936 62.5% 8072 15.1% 10947 22.4% 53110 33261 61.9% 7323 13.4% 12526 24.7%
10 62446 32897 51.8% 14587 22.8% 14962 25.5% 62935 32897 51.4% 14442 22.3% 15595 26.3% 63142 32897 51.2% 14843 22.8% 15401 26.0%
15 74875 32854 43.3% 21881 28.6% 20140 28.1% 75578 32854 42.9% 21930 28.4% 20794 28.7% 75353 32854 43.0% 21110 27.4% 21389 29.6%
20 88911 32689 36.4% 28301 31.4% 27920 32.2% 89445 32689 36.2% 28200 31.1% 28556 32.8% 89075 32689 36.3% 27124 30.0% 29262 33.6%
25 99296 33013 32.8% 34436 34.1% 31847 33.0% 100226 33013 32.5% 35083 34.4% 32130 33.0% 99719 33013 32.7% 33676 33.2% 33029 34.1%
30 110165 32990 29.6% 40596 36.3% 36713 34.1% 111469 33377 29.7% 40757 36.1% 37335 34.3% 111398 33377 29.7% 40129 35.4% 37891 34.9%

24 5 58186 33016 55.8% 11711 19.6% 13460 24.6% 58582 33016 55.4% 12429 20.6% 13137 24.0% 60098 33351 54.4% 11362 18.2% 15586 27.5%
10 77628 33284 42.3% 22990 29.4% 21421 28.3% 78191 33284 42.0% 23174 29.3% 21759 28.7% 78071 33284 42.1% 22939 29.1% 21848 28.8%
15 98363 33036 33.1% 35823 36.0% 29505 30.9% 99483 33375 33.1% 36821 36.5% 29286 30.4% 99498 33728 33.3% 35001 34.6% 30902 32.1%
20 115200 34125 29.1% 44300 37.9% 36909 33.0% 114614 33747 29.0% 43630 37.5% 37237 33.5% 114753 33726 28.9% 42816 36.5% 38544 34.6%
25 135980 34282 25.0% 57031 41.5% 44667 33.5% 135970 34944 25.4% 56176 40.7% 44917 33.8% 135521 33919 24.7% 56620 41.3% 44981 34.0%

30 5 67599 33073 48.3% 18422 26.6% 16170 25.1% 68019 33073 48.0% 18928 27.2% 16085 24.8% 69663 33791 47.2% 19066 26.0% 18272 26.8%
10 97866 34012 34.3% 36414 36.6% 27707 29.2% 98690 35412 35.4% 35474 35.2% 27937 29.4% 97996 35057 35.3% 34994 34.8% 28345 29.9%
15 122554 34973 28.1% 52127 41.4% 36055 30.5% 121843 34349 27.8% 51825 41.7% 35802 30.6% 121253 34638 28.1% 51142 41.1% 35739 30.8%
20 148833 37500 25.0% 64408 42.5% 46993 32.4% 148201 40102 26.6% 62499 41.5% 45866 31.9% 147073 38239 25.7% 62440 41.8% 46527 32.5%

Table 9: Cost component values and proportions for big-bucket LSP

π = 1 π = 2 π = 3

l n Total Production Inventory Transport Total Production Inventory Transport Total Production Inventory Transport

12 5 43360 32273 73.5% 3335 7.4% 7753 19.1% 43294 32273 73.6% 3331 7.4% 7691 19.0% 43167 32273 73.8% 3475 7.9% 7420 18.3%
10 49989 32780 64.5% 6619 12.9% 10657 22.7% 50009 32780 64.5% 6637 12.9% 10658 22.6% 50003 32780 64.5% 6759 13.1% 10531 22.5%
15 57953 33160 56.1% 9727 16.6% 15133 27.3% 57961 33160 56.1% 9728 16.6% 15140 27.3% 57941 33160 56.2% 9823 16.8% 14958 27.0%
20 64256 32788 50.3% 13111 20.0% 18357 29.7% 64336 32788 50.2% 13134 20.1% 18414 29.7% 64231 32788 50.3% 13123 20.1% 18320 29.6%
25 69213 33066 47.2% 15006 21.4% 21141 31.5% 69176 33066 47.2% 15151 21.6% 20959 31.3% 69177 33066 47.2% 15137 21.6% 20973 31.2%
30 74655 33166 43.8% 17920 23.7% 23569 32.5% 74742 33166 43.7% 17837 23.6% 23739 32.7% 74640 33166 43.8% 17768 23.5% 23707 32.7%
35 80969 32816 40.2% 20296 24.9% 27857 35.0% 80893 32816 40.2% 20239 24.8% 27838 35.0% 80913 32816 40.2% 20176 24.7% 27921 35.0%

18 5 51943 34055 64.4% 6903 13.1% 11185 22.5% 51802 34055 64.7% 7016 13.4% 10865 21.9% 52154 34055 64.3% 7229 13.7% 10964 22.0%
10 61597 32897 52.5% 13577 21.6% 15122 25.9% 61414 32897 52.6% 13312 21.3% 15205 26.1% 61548 32897 52.5% 13341 21.2% 15309 26.2%
15 73579 33529 45.1% 19502 26.2% 20547 28.7% 73451 33529 45.2% 19920 26.7% 20003 28.1% 73520 33529 45.1% 19483 26.2% 20508 28.7%
20 87341 33066 37.6% 26673 30.2% 27602 32.1% 86730 33066 37.9% 26528 30.4% 27136 31.7% 86865 33066 37.9% 25938 29.7% 27861 32.5%
25 96570 33013 33.9% 32145 33.0% 31413 33.1% 96471 33013 33.9% 32398 33.3% 31127 32.8% 96495 33013 33.9% 32331 33.2% 31152 32.8%
30 107878 33362 30.7% 38345 35.2% 36171 34.0% 107441 33362 30.9% 38078 35.2% 36001 33.9% 107456 33362 30.9% 37883 35.0% 36211 34.1%

24 5 58703 33752 56.6% 11442 19.2% 13523 24.2% 58601 33752 56.7% 11440 19.2% 13450 24.0% 58655 33752 56.7% 11691 19.6% 13213 23.7%
10 78427 35936 45.6% 21351 27.3% 21140 27.1% 78426 35936 45.6% 21564 27.5% 20926 26.9% 78464 35936 45.5% 20909 26.7% 21619 27.7%
15 97428 34063 34.7% 34803 35.4% 28562 29.9% 96433 33723 34.6% 34286 35.3% 28424 30.0% 96250 33723 34.7% 33975 35.1% 28552 30.2%
20 112439 34923 30.9% 41918 37.1% 35598 32.0% 112490 34923 30.9% 41730 36.9% 35837 32.3% 112607 34923 30.8% 41635 36.8% 36048 32.4%
25 132096 35711 27.0% 53485 40.4% 42900 32.7% 132198 35711 27.0% 53564 40.4% 42923 32.6% 132138 35711 27.0% 53369 40.3% 43058 32.8%

30 5 67369 34090 50.2% 17681 26.0% 15598 23.9% 67339 34090 50.1% 17443 25.6% 15873 24.2% 67323 34090 50.2% 17373 25.6% 15861 24.2%
10 98069 37351 37.9% 33407 33.9% 27311 28.1% 98206 37351 37.9% 33483 34.0% 27371 28.2% 98355 37351 37.8% 33042 33.5% 27962 28.7%
15 119599 36496 30.3% 48146 39.8% 34957 29.8% 120592 36933 30.4% 48075 39.4% 35584 30.1% 119876 36496 30.3% 48332 39.9% 35047 29.8%
20 146169 43719 29.9% 57433 38.9% 45017 31.2% 146122 43719 30.0% 57715 39.1% 44688 31.0% 146593 43719 29.9% 57793 39.0% 45080 31.1%

Figure 9: Cost share (%) comparison for different number of customers and periods in small-bucket LSP with ρ = 1
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Figure 10: Cost share (%) comparison for different number of customers and periods in big-bucket LSP with π = 1

8 Summary

While classical production routing problems have received considerable attention from the research

community, all studies on this problem and its variants consider identical production and route plan-

ning period lengths. In this paper, we have presented formulations for a multi-product production

routing problem with the possibility of incorporating different production and route planning period

lengths. This is the first attempt in the literature to consider such a practical limitation. We model

both big-bucket and small-bucket lot-sizing problems at the production level. Next, we have adapted

a state-of-the-art matheuristic to obtain quality solutions for instances of this problem with different

numbers of products, planning periods, and customers. We have developed many sets of valid in-

equalities that exploit the structure of the problem. The effectiveness of the derived valid inequalities

within our branch-and-cut algorithm was tested through an extensive set of computational experi-

ments. The availability of an exact algorithm has allowed us to measure the quality of the upper

bounding heuristic. We have shown that by including the relevant valid inequalities in the heuristic,

significant improvements in terms of the number of iterations, the solution time and quality can be

achieved. We observe that for the same numbers of micro periods, customers and products, the prob-

lem can be solved more efficiently when the number of production planning periods or routing periods

decreases. One explanation is that in these cases the number of decision variables will quickly decrease

in our proposed reformulation model.

Appendix

A Proofs

Theorem 1 RBMP−PRP and RSMP−PRP are valid reformulations for MB
MP−PRP and MS

MP−PRP ,
respectively.

Proof. First we show that for every feasible solution of the MB
MP−PRP model, there exists a feasible

solution to the RBMP−PRP model with the same solution value. Suppose that ȳ, p̄, Ī, q̄, z̄ and x̄ satisfy
the system of (1)–(18) (feasible in MB

MP−PRP ).

• For every τ ∈ T π and for every k ∈ K, we let ȳkt = ȳkτ and p̄kt = p̄kτ where t = π(τ − 1) + 1.
Constraints (37) fix the rest of the ȳ and p̄ variables to zero.
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• For every ω ∈ T ρ and for every i ∈ N , we let z̄it = z̄iω where t = ωρ. Constraints (38) fix the
rest of the z̄ variables to zero.

• For every ω ∈ T ρ, for every i ∈ N and for every k ∈ K, we let q̄ikt = q̄ikω where t = ωρ.
Constraints (38) fix the rest of the q̄ variables to zero.

• For every ω ∈ T ρ, we let z̄0t = z̄0ω where t = ωρ. Constraints (39) fix the rest of the z̄0t variables
to zero.

• For every ω ∈ T ρ and for every (i, j) ∈ E , we let x̄ijt = x̄ijω where t = ωρ. Constraints (35)
and (38)–(39) force the rest of the x̄ variables to zero.

• For every ω ∈ T ρ, for every i ∈ N and for every k ∈ K, we let Īikt = Īikω where t = ωρ. For the
rest of the micro periods (t ∈ T , t mod ρ 6= 0), we let Īikt = Īik,b tρ c.

• The inventory variables (and hence the solutions) at the plant level, Ī0kt, are defined on the
micro periods and are the same in both formulations.

One observes that the solution ȳ, p̄, Ī, q̄, z̄ satisfies the system of constraints (2), (13), (28)–(44) and
hence is feasible in RBMP−PRP . Similarly, we can show that for every feasible solution in RBMP−PRP
there exists a feasible solution inMB

MP−PRP . Thus,RBMP−PRP is a valid reformulation ofMB
MP−PRP .

In the same way, we can show RSMP−PRP is a valid reformulation of MS
MP−PRP .

Proposition 1

t2∑
e=t1

pke ≤ I0kt2 +
∑
i∈N

Iikt2 +

t2∑
e=t1

(∑
i∈N

diket2
)
yke∀k ∈ K,∀t1, t2 ∈ T , t1 ≤ t2 (51)

are valid for RBMP−PRP , RSMP−PRP .

Proof. If
∑t2
e=t1

yke = 0, then no setup will be done during periods t1 to t2 and hence no production

of product k ∈ K is possible during these periods (
∑t2
e=t1

pke = 0). Then, inequalities (51) are satisfied
because the left-hand-side (LHS) will be equal to zero and the inventory variables in the right-hand-
side (RHS) are nonnegative. Otherwise, let θ be the first period in which the production setup for
product k ∈ K is performed, i.e., θ = mine{t1 ≤ e ≤ t2|yke = 1}. Then,

t2∑
e=t1

pke =

t2∑
e=θ

pke

=

t2∑
e=θ

(I0ke − I0k,e−1 +
∑
i∈N

qike)

=

t2∑
e=θ

(
I0ke − I0k,e−1 +

∑
i∈N

(Iike − Iik,e−1 + dike)
)

= I0kt2 − I0k,θ−1 +
∑
i∈N

(Iikt2 − Iik,θ−1 + dikθt2)

≤ I0kt2 +
∑
i∈N

(Iikt2 + dikθt2)

= I0kt2 +
∑
i∈N

Iikt2 +
∑
i∈N

dikθt2ykθ

≤ I0kt2 +
∑
i∈N

Iikt2 +

t2∑
e=θ

(
∑
i∈N

diket2)yke

= I0kt2 +
∑
i∈N

Iikt2 +

t2∑
e=t1

(
∑
i∈N

diket2)yke.
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The first four equations follow from the definition of θ, constraints (28), constraints (29), and the
definition of dikt1t2 , respectively. The first inequality holds due to the non-negativity of inventory
variables. The next equation is valid because ykθ = 1. The last inequality is valid since the yke
variables are nonnegative. The last equation holds due to the assumption that there is no setup from
period t1 to θ.

Proposition 2 Inequalities⌈
max

{
0,
∑
i∈N max{0,dik1t − Iik0} − I0k0

}
C/θk

⌉
≤

t∑
e=1

yke ∀k ∈ K,∀t ∈ T (52)

are valid for RBMP−PRP and RSMP−PRP .

Proof. First we show:

t∑
e=1

pke =

t∑
e=1

(∑
i∈N

qike + I0ke − I0k,e−1
)

=

t∑
e=1

(∑
i∈N

(dike + Iike − Iik,e−1) + I0ke − I0k,e−1
)

=
∑
i∈N

(dik1t + Iikt − Iik0) + I0kt − I0k0

≥
∑
i∈N

(dik1t − Iik0)− I0k0.

The first two equation are obtained based on constraints (28) and (29), respectively. The third equation
holds due to the definition of dikt1t2 . The first inequality follows from the non-negativity of inventory
variables. We can write∑t

e=1 pke ≥ max
{

0,
∑
i∈N max{0,dik1t − Iik0} − I0k0

}
,

because only a strictly positive product shortage triggers the production at the plant. Finally, the
validity of the proposition comes from the fact that:

max
{

0,
∑
i∈N

max{0,dik1t − Iik0} − I0k0
}
≤

t∑
e=1

pke

≤ C/θk
t∑

e=1

yke.

Proposition 3 Inequalities

t2∑
e=t1

qike ≤ Iik,t2 +

t2∑
e=t1

diket2zie ∀i ∈ N ,∀k ∈ K,∀t1, t2 ∈ T , t1 ≤ t2 (53)

are valid for RBMP−PRP , RSMP−PRP .

Proof. If
∑t2
e=t1

zie = 0, then customer i ∈ N will not be visited during periods t1 to t2. This results in
no shipment of product k ∈ K to that customer during the associated periods. Then, inequalities (53)
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are satisfied because the inventory variables in the RHS are nonnegative. Otherwise, let θ be the first
period in which customer i ∈ N is visited, i.e., θ = mine{t1 ≤ e ≤ t2|zie = 1}. Then,

t2∑
e=t1

qike =

t2∑
e=θ

qike

=

t2∑
e=θ

(Iike − Iik,e−1 + dike)

= Iikt2 − Iik,θ−1 + dikθt2

≤ Iikt2 + dikθt2

= Iikt2 + dikθt2ziθ

≤ Iikt2 +

t2∑
e=θ

diket2zie

= Iikt2 +

t2∑
e=t1

diket2zie.

The first three equations hold because of the definition of θ, constraints (10) for periods θ to t1, and the
definition of dikt1t2 . The first inequality is valid due to the non-negativity of the inventory variables.
The fourth equation follows from ziθ = 1. The last inequality and equation are valid because the yke
variables are nonnegative.

Proposition 4 Inequalities⌈
1

Q

∑
i∈N

∑
k∈K

bk max{0,dik1t − Iik0}
⌉
≤

t∑
e=1

z0e ∀t ∈ T (54)

are valid for RBMP−PRP and RSMP−PRP .

Proof. We have

t∑
e=1

Qz0e ≥
t∑

e=1

∑
i∈N

∑
k∈K

bkqike

=

t∑
e=1

∑
i∈N

∑
k∈K

bk(dike + Iike − Iik,e−1)

=
∑
i∈N

∑
k∈K

bk(dik1e + Iike − Iik0)

≥
∑
i∈N

∑
k∈K

bk(dik1e − Iik0).

The first inequality is valid since the LHS is the total fleet capacity for period e = 1 to t, and the
RHS is the total shipment for the same periods. The first equation follows from constraints (29).
The second equation is valid due to the definition of dikt1t2 . The second inequality holds due to the
non-negativity of inventory variables. The proposition is valid because only strictly positive demand
shortages necessitate vehicles’ dispatch.

Proposition 5 Inequalities⌈ ∑
k∈K bk max{0,dik1t − Iik0}

min
{
Q,Li + max1≤θ≤t{

∑
k∈K bkdikθ}

}⌉ ≤ t∑
e=1

zie ∀i ∈ N ,∀t ∈ T (55)

are valid for RBMP−PRP and RSMP−PRP .
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Proof. Similar to the proof presented in Proposition 4 we have∑
k∈K bk(dik1t − Iik0) ≤

∑t
e=1

∑
k∈K bkqike.

Thus, ∑
k∈K bk max{0,dik1t − Iik0} ≤

∑t
e=1

∑
k∈K bkqike,

is valid for the reason that only strictly positive product shortage volumes force shipments. The vehicle
capacity constraints (33) provide the first upper bound:∑t

e=1

∑
k∈K bkqike ≤ Q

∑t
e=1 zie.

Next, we have ∑
k∈K

bkqikt =
∑
k∈K

bk(dikt + Iikt − Iik,t−1)

≤
∑
k∈K

bk(dikt + Iikt)

≤
∑
k∈K

bkdikt + Li,

which gives ∑
k∈K bkqikt ≤

(∑
k∈K bkdikt + Li

)
zit.

Therefore, we deduce∑
k∈K bk max{0,dik1t−Iik0} ≤

∑t
e=1

∑
k∈K bkqike ≤ min

{
Q,Li+max1≤θ≤t{

∑
k∈K bkdikθ}

}∑t
e=1 zie.

B Impact of inequalities on lower bound improvement

Table 10 reports the improvement of the lower bounds obtained by incorporating the valid inequalities
in the small- and big-bucket models. On the small-bucket instances, applying the valid inequalities
results in an average increase of the lower bounds by 70.5%, 38.7%, and 25.6%, respectively for ρ = 1,
ρ = 2 and ρ = 3. On the big-bucket instances, the lower bound improvements obtained by the addition
of the valid inequalities are 48.8%, 32.8%, and 22.7%, respectively for π = 1, π = 2 and π = 3. Notice
that in this table, for the cases where the inequalities improve the lower bound more than twice, the
percentage increase reported is more than 100%. Overall, the larger (more periods, products, and
nodes) and the harder to solve (smaller ρ and π) the instances are, the bigger the improvement is.
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Table 10: Lower bound improvement with valid inequalities

Small-Bucket LSP Big-Bucket LSP

ρ = 1 ρ = 2 ρ = 3 π = 1 π = 2 π = 3

l k n None All (%) None All (%) None All (%) None All (%) None All (%) None All (%)

12 4 5 32209 32277 0.2 32722 32722 0.0 33124 33124 0.0 32149 32231 0.3 32296 32296 0.0 32796 32797 0.0
10 37338 37826 1.3 38464 38663 0.5 38576 38743 0.4 37270 38021 2.0 38165 38841 1.8 40690 41902 3.0
15 35620 46818 31.4 46793 47836 2.2 47675 47998 0.7 45810 46788 2.1 46775 47339 1.2 47581 48216 1.3
20 36045 51379 42.5 48405 52614 8.7 52233 52553 0.6 46319 51293 10.7 49448 52076 5.3 50711 54006 6.5
25 37750 56009 48.4 45767 58209 27.2 57714 58240 0.9 45843 56432 23.1 52459 57442 9.5 54083 58588 8.3
30 38823 58977 51.9 48663 63216 29.9 56972 63068 10.7 45756 60708 32.7 56186 61856 10.1 58221 64360 10.5
35 36530 65812 80.2 54449 71021 30.4 61081 70838 16.0 48263 68569 42.1 52506 70189 33.7 56035 72779 29.9

6 5 41381 41807 1.0 41868 41869 0.0 42431 42431 0.0 41549 41551 0.0 41725 41726 0.0 41633 41634 0.0
10 33196 47535 43.2 42981 47923 11.5 48248 48491 0.5 46726 47330 1.3 46612 47484 1.9 47389 47435 0.1
15 30768 54604 77.5 43703 55253 26.4 51466 56256 9.3 44733 54216 21.2 51539 54458 5.7 53907 54722 1.5
20 30843 58067 88.3 43318 59456 37.3 55455 60735 9.5 47355 57941 22.4 51515 58387 13.3 57946 58790 1.5
25 27061 61644 127.8 42123 64643 53.5 57162 66127 15.7 35044 62377 78.0 42987 62716 45.9 55226 63144 14.3
30 24347 64207 163.7 43812 69387 58.4 58190 71632 23.1 35242 66655 89.1 42974 67181 56.3 52642 67172 27.6
35 22774 65167 186.1 44497 71968 61.7 57718 75366 30.6 32224 69960 117.1 41089 70541 71.7 44369 70382 58.6

8 5 42840 51861 21.1 47042 52465 11.5 52703 52911 0.4 51640 51646 0.0 50137 51646 3.0 51718 51720 0.0
10 37550 61433 63.6 49309 62554 26.9 49285 62761 27.3 37317 60607 62.4 43597 60667 39.2 55322 60799 9.9
15 33033 65826 99.3 49858 68103 36.6 52410 68933 31.5 42816 65689 53.4 50349 65761 30.6 59367 66560 12.1
20 35314 73324 107.6 54670 77393 41.6 59535 79663 33.8 40900 73662 80.1 49006 74018 51.0 55803 74858 34.1
25 30298 73816 143.6 50749 78962 55.6 59812 81722 36.6 38864 74784 92.4 46606 75041 61.0 51947 76288 46.9
30 33969 80129 135.9 49220 85443 73.6 62520 89341 42.9 37900 80278 111.8 43849 80730 84.1 53250 81233 52.6
35 26186 80766 208.4 51421 89173 73.4 66248 93864 41.7 35488 83457 135.2 44488 83776 88.3 52561 84461 60.7

18 4 5 39762 41065 3.3 41912 42162 0.6 43152 43201 0.1 40764 44644 9.5 44757 45002 0.5 46421 46750 0.7
10 35596 45740 28.5 44683 46895 5.0 46987 47177 0.4 43648 46648 6.9 46533 47592 2.3 48684 49143 0.9
15 39802 57618 44.8 50978 59761 17.2 59067 60456 2.4 51158 60741 18.7 59330 62126 4.7 62987 64340 2.1
20 49660 67317 35.6 58505 74722 27.7 72111 74928 3.9 59455 74832 25.9 66375 76946 15.9 74651 79524 6.5
25 47834 73942 54.6 61869 81651 32.0 73752 82170 11.4 58963 81305 37.9 69300 83406 20.4 79007 86216 9.1
30 49062 82540 68.2 69313 89963 29.8 75892 94457 24.5 62571 94454 51.0 72992 97335 33.4 79337 100585 26.8

6 5 34801 47730 37.2 44269 48296 9.1 47045 48300 2.7 43733 47348 8.3 47474 47534 0.1 48132 48133 0.0
10 37572 59059 57.2 44256 59903 35.4 49879 60562 21.4 53397 58827 10.2 57935 59162 2.1 59077 60428 2.3
15 37114 64768 74.5 52130 69758 33.8 56146 70331 25.3 51033 67416 32.1 63308 67732 7.0 68518 70757 3.3
20 36140 71067 96.6 51488 78906 53.3 59969 80467 34.2 50530 75849 50.1 59250 76265 28.7 71374 79473 11.3
25 38148 77909 104.2 55098 85132 54.5 64799 90294 39.3 46074 84758 84.0 51369 85181 65.8 58356 89193 52.8
30 31380 82567 163.1 54260 83962 54.7 67555 95073 40.7 44227 89723 102.9 54882 90230 64.4 59948 94703 58.0

8 5 37779 60800 60.9 45791 61484 34.3 52629 62055 17.9 53963 59791 10.8 59814 59823 0.0 60239 60329 0.2
10 36584 71601 95.7 49792 74072 48.8 53239 75366 41.6 51253 71851 40.2 63055 71997 14.2 69282 72735 5.0
15 37505 75001 100.0 49870 82299 65.0 58549 85056 45.3 46867 81133 73.1 60809 81250 33.6 70824 81722 15.4
20 40095 84329 110.3 60068 93408 55.5 66786 95822 43.5 53448 90199 68.8 60627 90448 49.2 74627 90514 21.3
25 44748 92675 107.1 60036 99228 65.3 73512 106397 44.7 51905 100244 93.1 55547 100348 80.7 64873 100563 55.0
30 34879 100873 189.2 61152 105629 72.7 81373 116921 43.7 46385 110800 138.9 56943 110893 94.7 67506 111051 64.5

24 4 5 36759 42541 15.7 43126 43587 1.1 43972 43972 0.0 43961 45648 3.8 45847 46200 0.8 48018 48345 0.7
10 50151 62422 24.5 54811 63598 16.0 61985 64155 3.5 63563 70675 11.2 70741 72049 1.8 74116 74980 1.2
15 51188 68504 33.8 61052 78158 28.0 71569 79344 10.9 61418 81087 32.0 69306 83543 20.5 78508 85904 9.4
20 49617 78196 57.6 66930 86937 29.9 77359 91181 17.9 67335 96631 43.5 73930 98913 33.8 83805 101629 21.3
25 56931 89466 57.1 76430 94160 23.2 93332 104852 12.3 70695 112880 59.7 81229 115793 42.6 92936 118924 28.0

6 5 41723 55935 34.1 48982 56743 15.8 54927 57256 4.2 50097 56736 13.3 55861 57344 2.7 56765 58253 2.6
10 38617 65411 69.4 45974 70576 53.5 51752 71797 38.7 53410 69747 30.6 66603 70258 5.5 70141 73279 4.5
15 43692 77271 76.9 56361 85754 52.2 61809 89464 44.7 58591 88695 51.4 65734 89648 36.4 77048 94911 23.2
20 47217 85307 80.7 60577 88328 45.8 70340 97616 38.8 56619 98396 73.8 62872 99074 57.6 71175 104064 46.2
25 46044 92487 100.9 62432 97536 56.2 78391 110354 40.8 59196 115140 94.5 65476 115886 77.0 73358 122441 66.9

8 5 38655 68186 76.4 46545 69136 48.5 51114 70006 37.0 58883 67577 14.8 64180 67725 5.5 62049 68559 10.5
10 39921 75831 90.0 49937 84312 68.8 56734 86259 52.0 56690 83155 46.7 66275 83691 26.3 78877 85354 8.2
15 42789 87070 103.5 57925 98548 70.1 65219 100268 53.7 57544 99720 73.3 68433 100247 46.5 82500 102014 23.7
20 50100 102655 104.9 67126 103666 54.4 78414 113330 44.5 63257 115110 82.0 70139 116232 65.7 82650 119220 44.2
25 58504 104333 78.3 70501 116094 64.7 88498 128494 45.2 67318 132210 96.4 72592 133255 83.6 81444 136383 67.5

30 4 5 41914 51320 22.4 49256 52661 6.9 52745 53506 1.4 49829 55906 12.2 55029 57370 4.3 58277 59437 2.0
10 50881 64490 26.7 59218 73973 24.9 70425 75481 7.2 71829 84310 17.4 81387 86160 5.9 86628 88413 2.1
15 54462 77646 42.6 67796 86645 27.8 78062 91194 16.8 69166 98065 41.8 74267 100129 34.8 81083 102269 26.1
20 60842 89133 46.5 78042 92806 18.9 87915 104617 19.0 76932 119510 55.3 85681 121507 41.8 96420 124022 28.6

6 5 35596 59195 66.3 44430 60855 37.0 51872 62278 20.1 48684 61609 26.5 59139 61885 4.6 62722 63888 1.9
10 42848 71091 65.9 53919 81988 52.1 58050 84645 45.8 63260 88507 39.9 72299 89646 24.0 83197 94600 13.7
15 44575 81966 83.9 59043 86568 46.6 66065 95959 45.2 58460 105409 80.3 65654 106106 61.6 76228 110982 45.6
20 57842 94307 63.0 69322 99637 43.7 82484 113483 37.6 71824 131624 83.3 76242 132635 74.0 86641 137613 58.8

8 5 44742 76233 70.4 52823 80236 51.9 60955 80973 32.8 60149 79002 31.3 72118 79472 10.2 75038 80878 7.8
10 44031 83196 88.9 57220 92055 60.9 62042 95017 53.1 63638 100983 58.7 75878 103136 35.9 87215 106309 21.9
15 49287 96033 94.8 68020 102163 50.2 77332 113785 47.1 67947 129109 90.0 81801 132076 61.5 93833 136203 45.2
20 60258 101687 68.8 72111 116843 62.0 88653 124326 40.2 71759 146924 104.7 75811 149248 96.9 89133 152974 71.6

Average 40781 69512 70.5 53412 74086 38.7 61591 77385 25.6 52131 77562 48.8 59078 78434 32.8 65558 80452 22.7
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