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document est accepté et publié, le pdf original est retiré si c’est
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revue scientifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: D. Mitra, A. Khisti (April 2020). Dis-
tributed stochastic gradient descent with quantized compressive
sensing, In C. Audet, S. Le Digabel, A. Lodi, D. Orban and
V. Partovi Nia, (Eds.). Proceedings of the Edge Intelligence
Workshop 2020, Montreal, Canada, March 2–3, 2020, pages 88–95.
Les Cahiers du GERAD G–2020–23, GERAD, HEC Montréal, Canada.
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract: One of the major challenges in large-scale distributed machine learning involving stochastic gradient meth-

ods is the high cost of gradient communication over multiple nodes. Gradient quantization and sparsification have been

studied to reduce the communication cost. In this work we bridge the gap between gradient sparsity and quantization.

We propose a quantizatized compressive sensing-based approach to address the issue of gradient communication. Our

approach compresses the gradients by a random matrix and apply 1-bit quantization to reduce the communication cost.

We also provide a theoretical analysis on the convergence of our approach, under the gradient bound assumption.

1 Introduction

The advent of internet-of-things (IoT) has changed the way data is collected and processed. Mil-

lions of connected users are generating huge amount of un-processed data, often sensitive. Dis-

tributed processing, exploiting data-parallelism, is often adopted to train a large-scale machine learning

model [13, 18, 22]. Chen et al. proposed Synchronous stochastic gradient descent (Sync-SGD), which

is often used as a preferred distributed optimization technique [5]. Sync-SGD consists of a centralised

parameter server and a number of workers performing the following tasks:

• Parameter server communicates the model parameters with each worker.

• Each worker, in parallel, computes the gradients on a mini-batch of training data. Gradients are

then sent to parameter server.

• Upon receiving gradient updates from all participating workers, parameter server performs a

gradient aggregation. Global model parameters are updated based on the aggregated gradients

and sent to each worker.

The above process is repeated until the model converges.

Although Sync-SGD performs well while the number of participating workers are scaled up, com-

munication of gradients between the workers and the parameter server causes a bottleneck [10, 21].

In other words, the total time required for one complete iteration of Sync-SGD can be categorized

as gradient computation and communication by each worker. Earlier studies have identified gradient

communication cost to be more challenging over the gradient computation cost [25, 26, 27]. Hence

compressing the gradients to reduce the communication overhead is widely studied.

In literature various techniques involving sparsity and quantization of deep neural networks (DNNs)

have been explored [2, 8, 9, 12, 23, 24]. Stich et al. proposed gradient sparsification technique,

where each worker sends top-k gradient parameters to the parameter server [15, 19]. Although such

heuristic technique works well in practice, scaling up the number of workers leads to poor compression

performance and divergence [20]. However, to the best of our knowledge, compressive sensing has not

been used, exploiting sparsity of the gradient updates.

In this paper, we propose a quantized compressive sensing approach to reduce the gradient com-

munication time. We use compressive sensing to acquire compressed measurements from the sparse

gradient updates. Compressed measurements are further quantized using a 1-bit quantizer, for the

ace of hardware implementation. Our work has two major contributions: (1) we propose a quantized

compressive sensing-based approach to reduce the the gradient communication cost in the distributed

learning, (2) we provide a theoretical analysis on the convergence of the proposed approach.

2 Motivation

Our work is motivated by the observation of sparsity, induced by Rectified Linear Unit (ReLU) ac-

tivation layers, in DNNs. ReLU activation function takes the following form: f(x) = max(0, x) and
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forces the gradients to be 0 ∀x < 0 [11]. As a result on average 44% of the operations performed in

most of the modern DNNs, for example AlexNet, GoogLeNet etc., are ineffective [17]. In our work,

compressive sensing is used to exploit this sparsity of DNNs.

3 Background

3.1 Compressive sensing

Compressive sensing is a sampling technique for signals which are sparse or compressible in some

known basis [6]. Let us assume an N dimensional signal x which is K ′-sparse 1, where K ′ << N . The

sensing process can be defined as follows,

yM×1 = ΦM×NxN×1 (1)

= ΦM×NΨN×NsN×1 (2)

where y denotes M dimensional measurement vector, Φ and Ψ denote measurement matrix and the

sparsifying basis respectively. Here s denotes the sparse vector.

Once the compressive measurements are obtained, goal of the reconstruction is to find the sparsest

solution from y. Although the sparsest solution can be obtained by solving `0 optimization problem,

it is computationally complex. Instead, in classical compressive sensing `1 minimization problem is

solved to obtain the sparse solution, which is theoretically proven to be equivalent to minimizing `0
optimization problem [4, 7]. The reconstruction of the compressed measurements can be expressed as

follows,

x̂ = argmin
x
‖x‖1 s.t. y = Φx (3)

where ||.||1 represents `1 norm.

3.2 Quantized Compressive Sensing

Boufounos et al. introduced quantized compressive sensing (QCS) where the quantization is modeled

as an additive measurement noise, shown in equation 4 [3].

y = Q(Φx) = Φx + e (4)

where Q(.) denotes the quantizer. Measurement noise n is bounded by the quantization interval ∆

and the dimension of the compressed measurement (M) as follows [3],

||e||2 ≤
√
M∆2

12
= ε (5)

In QCS reconstructed signal can be obtained by solving,

x̂ = argmin
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ε (6)

A LP-based reconstruction algorithm can be used to obtain x̂ from the compressed measurements

y [3, 4]. In this work, the reconstruction error β is considered to be a factor accounting both the

quantization error (during measurement) and the LP-based reconstruction error. Equation 7 shows

the aforementioned noise, which can be bounded by a positive quantity β.

||x̂− x||2 = ||n||2 ≤ β (7)

In the next section we discuss the proposed QCS-based gradient compression in distributed learning.

1Although in literature sparsity is denoted as K, we use K′ to denote sparsity for avoiding conflict with the total
number of workers (denoted by K).
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4 Proposed approach

4.1 Problem formulation

Let us consider K number of workers participating in a distributed learning process to evaluate param-

eters w on training samples x, drawn (i.i.d.) from a probability distribution dP (x). At t-th iteration,

a mini-batch of training samples are split and evenly distributed among K workers. Each worker com-

putes its local gradients g
(k)
t with respect to its training samples x

(k)
t and communicates the update

with the parameter server to perform aggregation, following: gt = 1
K

∑K
k=1 g

(k)
t . The aggregated

global gradient gt is used to evaluate the updated model parameter wt+1 as,

wt+1 = wt − γgt (8)

where γ denotes learning rate. Updated parameters are sent back to each worker to compute the

gradients for the (t+ 1)-th iteration [14, 23]. The process is repeated untiall convergence is attained.

4.2 Proposed distributed learning approach

Based on the motivation (see Section 2), we use QCS to compress the sparse gradients and obtain the

quantized compressed measurement y
(k)
t as follows,

y
(k)
t = Q(Φ(k)g

(k)
t ) (9)

Each worker sends the compressed measurements or y
(k)
t to the parameter server. As the quantization is

performed on the compressed gradients, our approach requires lower communication cost over standard

gradient quantization approaches (where quantization is performed directly on the gradients).

At the parameter server the quantized compressed measurements are recovered to obtain g̃
(k)
t .

Parameter server performs the gradient aggregation g̃t = 1
K

∑K
k=1 g̃

(k)
t followed by the parameter

update shown as,

wt+1 = wt − γg̃t (10)

where γ denotes the learning rate.

Note: In this work, we focused on providing a convergence analysis for a general setup where each

worker uses different measurement matrix (which is available to the parameter server a priori). As a

result, parameter server needs to perform QCS recovery K times. Whereas, if each user uses same

measurement matrix, parameter server would require to perform QCS recovery only once. Following

measurement vector would be considered in the aforementioned case: yt = Q(Φ[ 1
K

∑K
k=1 g

(k)
t ]). Ag-

gregated gradient g̃t can be obtained by performing recovery only once, as opposed to K times. The

convergence rate can be modified accordingly.

4.3 Convergence analysis

In this section we analyse the convergence of the proposed approach in the non-convex setting, which

is typical in most of the deep learning systems. For this analysis we follow the standard assumptions

of the stochastic optimization summarized by Allen et al. [1].

Assumption 1 ∀w and some constant f∗, global objective function f(w) > f∗.

Above assumption guarantees the convergence of the global objective function to a stationary point.

Assumption 2 Let ḡ(w) denote ∇f(w) evaluated at w = [w1, w2, . . . , wd]
T . Then ∀w, Θ =

[θ1, θ2, . . . , θd]
T and a non-negative constant vector L = [l1, l2, . . . , ld]

T ,

|f(Θ)− [f(w) + ḡ(w)
T

(Θ−w)]| ≤ 1

2

d∑
i=1

li(θi − wi)2
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Above assumption acts as a smoothness criteria. We define l′ = ||L||∞.

Assumption 3 Stochastic gradient g(w) is an unbiased estimate having bounded coordinate variance

E[g(w)] = ḡ(w) and,

E[(g(k)(w)i − ḡ(w)i)
2] ≤ σ2

i

for some non-negative constant vector σ = [σ1, σ2, . . . , σd]
T .

Assumption 4 Let n̄t = E[nt] and there exists a non-negative µ such that (for µ < 1),

||n̄t|| ≤ µ||ḡt||

Under assumptions {1, 2, 3, 4} we have the following convergence rate:

Theorem 1 Let T be the total number of iterations and learning rate γ = 1
l′K
√
T

and f0 be the initial

objective value. Then,

E

[
1

T

T−1∑
t=0

||ḡt||2
]
≤ 1√

T

[
l′K2(f0 − f∗) + ||σ||2 + β

1− µ

]

Proof. From assumption 2 we can write,

ft+1 − ft ≤ ḡTt (wt+1 −wt) +
1

2

d∑
i=1

li(wt+1 −wt)
2
i (11)

where ft denotes the global objective at t-th iteration and the gradient of which is denoted by ḡt.

By taking the expected improvement conditioned on wt we get,

E[ft+1 − ft|wt] ≤

I︷ ︸︸ ︷
E[ḡTt (wt+1 −wt)|wt] +

II︷ ︸︸ ︷
E

[
1

2

d∑
i=1

li(wt+1 −wt)
2
i |wt

]
(12)

Considering part I of equation 12 we can write,

E[ḡTt (wt+1 −wt)|wt] =− E[ḡTt γ
1

K

K∑
k=1

g̃
(k)
t |wt]

=− γḡTt E

[
1

K

K∑
k=1

(g
(k)
t − n

(k)
t )|wt

]

=− γḡTt E

[
1

K

K∑
k=1

g
(k)
t |wt

]
+ γḡTt E

[
1

K

K∑
k=1

n
(k)
t |wt

]
=− γḡTt ḡt + γḡTt n̄t

(13)

Considering Assumptions 3 and 4, Equation 13 can be simplified as below,

E[ḡTt (wt+1 −wt)|wt] ≤ −γ||ḡt||2 + γ||ḡt||||n̄t||
≤ −γ||ḡt||2 + γµ||ḡt||2

(14)
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Considering II of Equation 12,

E

[
1

2

d∑
i=1

li(wt+1 −wt)
2
i |wt

]
≤E

[
1

2
l′||wt+1 −wt||2|wt

]

=E

[
1

2
l′

∣∣∣∣∣
∣∣∣∣∣ γK

K∑
k=1

g̃
(k)
t

∣∣∣∣∣
∣∣∣∣∣
2∣∣∣∣∣wt

]

≤ l
′γ2

2K

K∑
k=1

E[||g̃(k)
t ||2|wt]

=
l′γ2

2K

K∑
k=1

E[||g(k)
t − n

(k)
t ||2|wt]

≤ l
′γ2

2K

[
K∑
k=1

2E
[
||g(k)

t ||2|wt

]
+

K∑
k=1

2E
[
||n(k)

t ||2|wt

]]

(15)

From the variance bound of Assumption 3 we can write,

E
[
||g(k)

t − ḡt||2|wt

]
≤ ||σ||2 (16)

Equation 16 can be re-written as,

||σ||2 ≥E
[
||g(k)

t − ḡt||2
]

=E
[
||g(k)

t ||2 − 2ḡTt g
(k)
t + ||ḡt||2

]
=E
[
||g(k)

t ||2
]
− 2ḡTt E

[
||g(k)

t ||
]

+ ||ḡt||2

=E
[
||g(k)

t ||2
]
− 2ḡTt ḡt + ||ḡt||2

=E
[
||g(k)

t ||2
]
− ||ḡt||2

(17)

From Equation 17 we get,

E
[
||g(k)

t ||2
]
≤ ||σ||2 + ||ḡt||2 (18)

Substituting Equations 7 and 18 into Equation 15 we can write,

E

[
1

2

d∑
i=1

li(wt+1 −wt)
2
i |wt

]
≤ γ2l′

[
||σ||2 + ||ḡt||2 + β

]
(19)

Combining Equation 14 and 19 Equation 12 can be simplified as shown below,

E[ft+1 − ft|wt] ≤ −γ||ḡt||2 + γµ||ḡt||2 + γ2l′

[
||σ||2 + ||ḡt||2 + β

]
(20)

Substituting the value of γ in Equation 20,

E[ft+1 − ft|wt] ≤ ||ḡt||2
( 1

l′TK2
− 1− µ
l′
√
TK

)
+

1

l′TK2
(||σ||2 + β)

≤ − 1− µ
l′
√
TK2

||ḡt||2 +
1

l′TK2
(||σ||2 + β)
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Let us further extend the expectation over randomness in the trajectory and perform a telescoping

sum over all the iterations. We obtain,

f0 − f∗ ≥f0 − E[fT ]

=E
[ T−1∑
t=0

(ft − ft+1)

]

≥ 1

l′
E
T−1∑
t=0

[
(1− µ)||ḡt||2√

TK2
− ||σ||

2 + β

TK2

]

=E

[√
T (1− µ)

l′K2
||ḡt||2 −

||σ||2 + β

l′K2

]

=
1

l′K2

{
√
T (1− µ)E

[
1

T

T−1∑
t=0

||ḡt||2
]
− (||σ||2 + β)

}

By rearranging the above inequality we can write,

E

[
1

T

T−1∑
t=0

||ḡt||2
]
≤ 1√

T

[
l′K2(f0 − f∗) + ||σ||2 + β

1− µ

]

This completes the proof. �

Note that the asymptotic convergence rate of the proposed approach is O

(
β√
T

)
. In comparison,

SGD has the same asymptotic convergence rate of O

(
β√
T

)
. Earlier work on error-compensated

DoubleSqueeze admits the same convergence rate of O

(
β√
T

)
[16].

5 Conclusion

In this work, we introduce a novel quantized compressive sensing-based gradient compression approach.

We exploit the gradient sparsity induced by the activation layers in DNNs to reduce the communication

cost between the workers and the parameter server in a distributed learning framework. We also provide

a theoretical analysis on the convergence of the proposed approach.

Further studies would involve validation with experimental results. Comparison would be made

against the state of the art quantization-based gradient compression technique. Suitability of a low

complexity QCS recovery algorithm would be investigated. The work would further be extended into

de-centralized setting exploiting joint sparsity.
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