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Abstract: Knowledge distillation is a technique that consists in training a student network, usually of a low capac-

ity, to mimic the representation space and the performance of a pre-trained teacher network, often cumbersome, large

and very high capacity. Starting from the observation that a student can learn about the teacher’s ability in providing

predictions, we examine the idea of uncertainty transfer from teacher to student network. We show that through distil-

lation, the distilled network does not only mimic the teacher’s performance but somehow captures the original network’s

uncertainty behavior. We provide experiments validating our hypothesis on the MNIST dataset.

1 Introduction

The complexity of DNNs demands model compression. It is certain that training these very deep

networks can be done with high performance CPUs or even with multiple GPUs. However, these

trained models face a challenging situation during deployment wherein they are supposed to fit in

terms of memory in small sensors, portable devices and are assumed to provide real-time predictions

especially for critical applications such as decision making for autonomous driving. Model compression

is a method of obtaining smaller and lower memory networks, trained to mimic the behaviour of

the original trained large networks. There are different ways to achieve model compression in the

literature. Some approaches concentrated on network pruning such as Weight quantization [9] and

Low-rank approximation [19]. Other methods focused on network distillation [3, 10, 13, 16]. The latter

is a method involving a teacher-student training. The student network, usually a shallow one with

few parameters, is trained to replicate the performance of the teacher network, a very deep network.

Over the past years, there have been many uncertainty estimation methods for Deep Learning models

proposed. Since these deep models are being used for complicated tasks and risk-related applications,

estimating uncertainty in these models has become as important as achieving high performance and

accuracy. There are different types of uncertainty in Deep Learning [11] and there are various ways

of extracting these from models [6, 18]. What all these trends have in common is that they focus

on extracting uncertainty using the original network, which can often be very slow. However, in

applications where execution speed and memory are crucial such in mobile devices, there should be an

alternate way to acquire uncertainty without going through the original large network. In this work,

we investigate whether distillation training results into uncertainty transfer from the teacher to the

student network. The idea is that a student trained through the distillation process could be able

to estimate the teacher network’s capacity in providing prediction. In other words, the student can

measure the teacher’s uncertainty level given an input sample.

2 Related work

2.1 Knowledge Distillation (KD)

The distillation process involves teacher-student training. The student network usually consists of

a smaller and shallower network (i.e. fewer parameters). It is trained to replicate the performance

of the teacher network, which itself consists of a large and deep network. There have been different

variants where different distillation losses were proposed. The work in [2] shows that it is possible

to compress the information from an ensemble of networks into a single one. Some research looked

at the architecture of the fully connected deep networks and distilled their behavior onto shallow but

wider hidden units [1]. Hinton et al. [10] proposed a network that involves the use of parameter called

the temperature factor at the level of logits. This temperature parameter determines how much the

activations of incorrect classes are encouraged. There is also the work of Chen et al. [4] that involved

the learning of a ”function-preserving” transformation to initialize the parameters of a larger student

network. Their goal was to achieve a faster training of deep neural networks.
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2.2 Uncertainties in deep learning

There are different types of uncertainty in Deep Learning [11]: aleatoric, which captures the noise

related to the observations, and epistemic, which captures uncertainty about the model parameters.

Aleatoric uncertainty is the ambiguity about the observation caused by a noisy dataset. An example

of aleatoric uncertainty in images would be due to occlusions. Epistemic uncertainty is associated with

our incapacity to explain which model parameters are responsible for the set of model outputs. This

uncertainty can be explained away if enough data is given to the model [6]. Epistemic uncertainty is

important for critical applications and for models that are trained on very small datasets. There have

been many methods to quantify uncertainty in Deep Learning. We can categorize these uncertainty

measures into three main groups: True Bayesian framework, Bayesian Approximation framework, and

the non-Bayesian framework. The Bayesian formalism naturally incorporates uncertainty modelling

with probability distributions, which shows the degree of belief regarding of the unknown parameters.

Exact Bayesian methods are known to be computationally expensive and complicated especially when

dealing with millions of parameters [7]. Therefore, a variety of methods have been developed to over-

come this problem, such as variational approximations. The most used techniques under the Bayesian

approximation framework are the Monte-Carlo dropout [6] and Monte-Carlo batch normalization[18].

For the non-Bayesian framework for quantifying uncertainty, methods based on ensembles such as

Deep ensembles [12] can be used.

3 Methods

3.1 Distillation

In this paper we use the method of knowledge distillation proposed by [10]. To train the distilled

network, we are in need of both of hard targets, which are the true labels of the dataset, and the soft

targets, which are the class probability produced by the teacher network. This method shows that the

logits, which are the inputs to the final softmax, can be used for training small models. These soft

targets are obtained through the softmax function that uses a temperature value. A higher value of

this temperature parameter produces softer probabilities over classes. The distillation process is then

performed through the minimization of the average of two objective functions: (1) cross entropy with

the soft targets with high temperature for the softmax and (2) cross entropy with the correct labels

using the logits in the softmax.

3.2 Model uncertainty with Monte-Carlo dropout

We used the method of MC dropout to capture model uncertainty. This method, in practice, consists

of having a deep network trained using dropout. At test time, we use dropout to sample N networks

and record their predictions. The variance of these outputs is the model uncertainty. Please refer to

the original work [6] for more details on the mathematical formalism.

4 Experiments and results

4.1 Experimental set up

To investigate our hypothesis that distilled networks can estimate the model uncertainty of the original

deep network, we conducted experiments where we considered a VGG16-like network, trained for

classification with dropout (having a fixed probability of p = 0.5, since this is considered to be the

optimal range [17]) using the MNIST dataset. We performed distillation training onto three different

student networks in which we varied the number of learnable parameters. The teacher network has

16 layers with 14, 913, 226 learnable parameters. The smallest student network (SN1) has four layers
with 4, 265, 066 parameters. The student network (SN2) has seven layers with 4, 721, 610 parameters.

Finally, student network 3 (SN3) has the exact same architecture as the teacher network (i.e. 16 layers



Les Cahiers du GERAD G–2020–23–EIW10 3

and 14, 913, 226 parameters). To evaluate the captured model uncertainty of these different student

networks we use these following measures.

Calibration Curves To see if a model is well calibrated, we often use calibration curves, sometimes

called reliability diagrams [5, 15]. These diagrams are a way to represent model calibration. They

represent expected accuracy as a function of the confidence (i.e. softmax probabilities). A ”perfectly”

calibrated model is represented by the identity function. A deviation above (under-confidence) or

below (over-confident) the diagonal shows a miscalibrated model. To plot this curve, the confidence

level (i.e. probability predictions of the network) are regrouped into M bins of size 10.

Expected Calibration Error In contrast to the calibration curves, which are visual diagrams capturing

the degree of model calibration, the Expected Calibration Error (ECE) [14] is a loss function that

returns a scalar value that can capture the degree of miscalibration of a particular deep learning

model. Similarly to the calibration curves, confidence values are partitioned into M = 10 equal bins

and we take the weighted average of the difference between the accuracy and confidence at each bin.

Full details about this metric can be found at [8].

Mean Uncertainty Prediction Error This measures the mean squared error between the predicted

confidence (uncertainty) of the teacher and student networks over the test dataset.

4.2 Results and discussion

We provide in Table 1 the classification accuracy for each of the teacher and student networks trained

with KD (KD-SN1, KD-SN2, and KD-SN3) and without KD for student network 2 (SN2). We can

observe that each of the distilled student network was able to closely represent and mimic the teacher’s

performance on all sets of the MNIST dataset. In fact, as these student models get deeper and larger,

we can note a decrease in the accuracy. This decrease within the different student networks could

be explained by the fact that the MNIST dataset does not require very deep models to achieve high

performance. Instead, a smaller network can perform better. Through the use of soft targets, we

would expect the larger student network (KD-SN3) to have at least the closest performance to the

teacher network since they share the same architecture and capacity. However, we see that distilling a

large network onto a large student network does not always lead to similar performance. The student

networks SN2 trained without KD and KD-SN2 trained with KD have similar performance on the

dataset.

Table 1: Summary table of Classification Accuracies for all networks, Expected Calibration Error (ECE), and Mean
Uncertainty Prediction Error (MUPE)

TN KD-SN1 KD-SN2 SN2 KD-SN3
Training acc. 99.87% 99.75% 99.52% 99.99% 98.75%
Validation acc. 99.08% 98.93% 98.80% 99.44% 98.08%
Test acc. 99.21% 99.14% 99.04% 99.51% 98.36%
ECE 0.0027 0.0064 0.0019 0.0036 0.0029
MUPE — 0.0037 0.0019 – 0.0016

One question that can be asked here is: If we could train a student network to perform as accurate

as the teacher model (in giving similar class accuracy) can this student exhibit similar uncertainty

behavior as the teacher network?

To attempt to provide an answer to this question, we performed 100 Monte Carlo (MC) dropout

at test time on each of the teacher and student networks then record their predictive mean confidences

and plot their corresponding calibration curves. Figures 1, 2, and 3 show, respectively, the calibration

graphs MC KD-SN1, MC KD-SN2, and MC KD-SN3 overlayed on the MC TN calibration curve. We

chose to plot the MC networks to better apprehend the model uncertainty behavior that underlies

within each of these networks.
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Figure 1: Calibration curve of the MC Student Network 1 (light blue) overlaid on the calibration of MC Teacher Network
(red)

Figure 2: Calibration curve of the MC Student Network 2 (blue) overlaid on the calibration of MC Teacher Network (red)

Figure 3: Calibration curve of the MC Student Network 3 (teal) overlaid on the MC Teacher Network (red)

By comparing these graphs, we could observe that as the student network gets deeper and asymp-

totically closer to the number of parameters of the original network, the calibration curves tend to be

as similar as the teacher network. We observe from the figures that the calibration curve of student

SN3 is visually closer to the teacher network’s calibration graph. This observation can also be analyzed
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using the statistical metric ECE. In Table 1, we provide the ECE for each of the teacher and student

networks. We see that both student networks KD-SN2 and KD-SN3 are closer to the miscalibration

value of the teacher. Specifically, the ECE of KD-SN3 is the closest to the ECE of the teacher network.

It is also noteworthy to mention that the ECE of KD-SN2 can also be considered as a close value to

the ECE of the teacher model even though this has got better model calibration. Furthermore, the

mean uncertainty prediction error can be observed in Table 1 for each of the MC student networks.

We note that student KD-SN3 has the lowest mean uncertainty error, which shows that this network

reflects the best on the uncertainty behavior of the teacher network. Although both student networks

KD-SN2 and KD-SN3 did not provide the closest class accuracy, these distilled networks somehow

reflect the teacher’s uncertainty. At this stage, we could say that there is a partial uncertainty transfer

from teacher to student through the distillation process. However, there are some factors associated

with this uncertainty transfer which are mainly the distilled network architecture configuration and

the network capacity. Moreover, we see in Table 1 that the ECE for KD-SN2 is lower than the ECE

of SN2. This shows that the student network trained with KD is better calibrated. As we have seen, a

large student network can almost capture the teacher’s uncertainty. Nevertheless, a smaller and com-

pressed network can be used as a higher level insight about the teacher model’s uncertainty behavior.

Additionally, KD training can be useful for model calibration.

5 Conclusion

We investigated in this paper the possible uncertainty transfer between teacher and student network

during distillation training. Our key finding is that uncertainty transfer through distillation can not

happen when the student network’s capacity is too low.

References

[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural information
processing systems, pages 2654–2662, 2014.
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