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– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
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Abstract: Min-max formulations have attracted great attention in the ML community due to the rise of deep gen-

erative models and adversarial methods, while understanding the dynamics of gradient algorithms for solving such

formulations has remained a grand challenge. As a first step, we restrict to bilinear zero-sum games and give a system-

atic analysis of popular gradient updates, for both simultaneous and alternating versions. We provide exact conditions

for their convergence and find the optimal parameter setup and convergence rates. In particular, our results offer formal

evidence that alternating updates converge “better” than simultaneous ones.1

1 Introduction

Min-max optimization has received significant attention due to the popularity of generative adversarial

networks (GANs) [14], adversarial training [19] and reinforcement learning [8], just to name some

examples. Formally, given a (bivariate) objective function f(x,y), we aim to find a saddle point

(x∗,y∗) such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗),

∀x ∈ Rn,∀y ∈ Rn. Since the beginning of game theory, various algorithms have been proposed for

finding saddle points [2, 7, 13, 16, 26, 3, 18, 22, 9]. Due to its recent resurgence in ML, new algorithms

designed for training GANs were proposed [5, 15, 11, 20]. However, due to non-convexity in deep

learning formulations, our understanding of the convergence behaviour of new and classic gradient

algorithms is still limited, and existing analysis mostly focused on bilinear games [5, 11] or strongly-

convex-strongly-concave games [17, 21, 29]. Non-zero-sum bilinear games, on the other hand, are

PPAD-complete [4] (for the definition see [24]; for finding approximate Nash equilibria, see e.g. [6]).

In this work, we focus on bilinear zero-sum games as a first step towards understanding general

min-max optimization, although our results apply to some simple GAN settings [10]. It is well-known

that certain gradient algorithms converge at a linear rate on bilinear zero-sum games [17, 21, 26, 16].

These iterative algorithms usually come with two versions: Jacobi style or Gauss–Seidel (GS) style. In

Jacobi style, we update the two sets of parameters (i.e., x and y) simultaneously whereas in GS style we

update them alternatingly (i.e., one after the other). Thus, Jacobi style updates are naturally amenable

to parallelization while GS style updates have to be sequential, although the latter are usually found

to converge faster (and more stable). In numerical linear algebra, the celebrated Stein–Rosenberg

theorem [28] formally proves that in solving certain linear systems, GS updates converge strictly faster

than their Jacobi counterparts, and often with a larger set of convergent instances. However, this

result does not readily apply to bilinear zero-sum games (see Section 3). Our main goal here is to

answer the following questions about solving bilinear zero-sum games:

• When exactly does a gradient-type algorithm converge?

• What is the optimal convergence rate by tuning the step size or other parameters?

• Can we prove similar things for Jacobi and GS updates as the Stein–Rosenberg theorem?

Contributions In Section 2, we review bilinear games and popular gradient algorithms. On bilinear

games, gradient algorithms have a unified formulation. With this new formulation, we give exact

convergence conditions, and show that alternating updates are more stable than their simultaneous

counterparts in Section 3. We give optimal convergence rates for different algorithms in Section 4 with

supporting experiments in Section 5.

1A more thorough version is published at ICLR 2020 [30].
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2 Preliminaries

Mathematically, zero-sum bilinear games can be formulated as the following min-max problem:

minx∈Rn maxy∈Rn x>Ey + b>x + c>y. (1)

(Throughout for simplicity we assume E is invertible.) For bilinear games, it is well-known that

simultaneous gradient descent does not converge [22] and other gradient-based algorithms tailored for

min-max optimization have been proposed [16, 5, 10, 20]. These iterative algorithms all belong to the

class of general linear dynamical systems (LDSs), and they can be described as:

z(t) =
∑k
i=1 Aiz

(t−i) + d, z(t) := (x(t),y(t)).

The following well-known result decides when such a k-step LDS converges for any initialization:

Theorem 1 (e.g. [12]) The LDS z(t) =
∑k
i=1 Aiz

(t−i) + d converges for any initialization

(z(0), . . . , z(k−1)) iff the spectral radius r := max{|λ| : det(λkI−
∑k
i=1 Aiλ

k−i) = 0} < 1, in which case

{z(t)} converges linearly with (asymptotic) exponent r.

Therefore, understanding the bilinear game dynamics reduces to spectral analysis. The (sufficient

and necessary) convergence condition reduces to that all roots of the characteristic polynomial lie in

the unit circle, which can be conveniently analyzed through the celebrated Schur’s theorem [27].

Let us formally define Jacobi and GS updates: Jacobi updates take the form

x(t) = T1(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)),

y(t) = T2(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)),

while Gauss–Seidel updates replace x(t−i) with the more recent x(t−i+1) in operator T2, where T1, T2 :

Rnk×Rnk → Rn can be any update functions. For LDS updates in (2) we find a nice relation between

the characteristic polynomials of Jacobi and GS updates:

Theorem 2 (Jacobi vs. Gauss–Seidel) Let p(λ, γ) = det(
∑k
i=1(γLi + Ui)λ

k−i − λkI), where Ai =

Li + Ui and Li is strictly lower block triangular. Then, the characteristic polynomial of the Jacobi

update is p(λ, 1) while that of the Gauss–Seidel update is p(λ, λ).

Next, we define some popular gradient algorithms for finding saddle points in the min-max problem

minx maxy f(x,y). Unlike their usual presentations, we introduced more “step sizes” for refined analy-

sis, as the enlarged parameter space often contain choices for faster linear convergence (see Section 4).

We only define the Jacobi updates, while the GS counterparts can be easily inferred.

Extra-gradient (EG) We study a generalized version of EG, defined as follows:

x(t+1/2) = x(t) − γ2∇xf(x(t),y(t)), y(t+1/2) = y(t) + γ1∇yf(x(t),y(t)); (2)

x(t+1) = x(t) − α1∇xf(x(t+1/2),y(t+1/2)), y(t+1) = y(t) + α2∇yf(x(t+1/2),y(t+1/2)). (3)

EG was first proposed in [16] with the restriction α1 = α2 = γ1 = γ2, under which linear convergence

was proved for bilinear games. A slightly more generalized version was analyzed in [17] where α1 = α2,

γ1 = γ2, again with linear convergence proved. For later convenience we define βi = αiγi.

Optimistic gradient descent (OGD) We study a generalized version of OGD, defined as follows:

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1∇xf(x(t−1),y(t−1)), (4)

y(t+1) = y(t) + α2∇yf(x(t),y(t))− β2∇yf(x(t−1),y(t−1)). (5)

The original version of OGD was given in [5] with α1 = α2 = 2β1 = 2β2, and its linear convergence

for bilinear games was proved in [17]. A slightly generalized version with α1 = α2 and β1 = β2 was

analyzed in [21], again with linear convergence proved.
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Momentum method Generalized heavy ball method was proposed and analyzed in [11]:

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1(x(t) − x(t−1)), (6)

y(t+1) = y(t) + α2∇yf(x(t),y(t)) + β2(y(t) − y(t−1)), (7)

as a modification of Polyak’s heavy ball (HB) [25], which also motivated Nesterov’s accelerated gradient

algorithm (NAG) [23]. For bilinear games, HB and NAG are the same and hence we call both the

momentum method. For this algorithm our result below improves those obtained in [11].

3 Exact conditions

With tools from Section 2, we give necessary and sufficient conditions under which a gradient-based

algorithm converges for bilinear games. For simplicity, we mostly take the parameters for the two sets

of variables to be the same, i.e., α1 = α2 = α, β1 = β2 = β and γ1 = γ2 = γ (if available). The same

conditions for more general algorithms can be found in our complete paper.

Theorem 3 (EG) For generalized EG with α1 = α2 = α and γ = β/α, linear convergence is achieved

iff for any singular value σ of E, we have α2σ2+(βσ2−1)2 < 1 for the Jacobi update, and 0 < βσ2 < 2

and |ασ| < 2−βσ2 for the GS update. If 2β+α2 < 2/σ2
1, the convergence region of GS updates strictly

include that of Jacobi updates.

Theorem 4 (OGD) For generalized OGD with α1 = α2 = α, linear convergence is achieved iff for

any singular value σ of E, we have: 0 < βσ < 1, β < α < β 3−β2σ2

1+β2σ2 for the Jacobi update, and

|α+β|σ < 2, |1 +αβσ2| > 1 +β2σ2 for the GS update. The convergence region of GS updates strictly
include that of Jacobi updates.

Theorem 5 (momentum) For generalized momentum with α1 = α2 = α, the Jacobi update never

converges, while the GS update with β1 = β2 = β converges iff for any singular value σ of E, we have

−1 < β < 0, |ασ| < 2(1 + β). If β2 = 0, the exact condition is −1 < β1 < 0 and 0 < ασ1 < 2
√

1 + β1.

Prior to our work, only sufficient conditions for linear convergence are given for the usual EG and

OGD; see Section 2 above. For the momentum method, our result improves upon [11] where the

authors only considered specific cases of parameters. For example, they only considered β ≥ −1/16 for

Jacobi momentum, and β1 = −1/2, β2 = 0 for GS momentum. Our Theorem 5 gives a more complete

picture. (For an even more general result please refer to our ICLR paper.)

In the theorems above, we use the term “convergence region” to denote a set of the parameters

(α, β or γ) where the algorithm converges. Our result shares similarity with the Stein–Rosenberg

theorem [28], which only applies to solving linear systems with non-negative matrices. In this sense,

our results extend the Stein–Rosenberg theorem to cover nontrivial bilinear games.

4 Optimal rates

In this section we study the optimal convergence rates of EG and OGD. We define the exponent of

linear convergence as r = limt→∞ ||z(t)||/||z(t−1)||. For ease of presentation we fix α1 = α2 = α > 0

and we use r∗ to denote the optimal rate (w.r.t. the parameters α, β, γ). In Theorem 7, the exact

formula β∗ in Jacobi OGD, as well as more relevant results, can be found in our full paper.

Theorem 6 (EG optimal) Both Jacobi and GS EG achieve the optimal exponent of linear convergence

r∗ = (κ2 − 1)/(κ2 + 1) at α→ 0 and β1 = β2 = 2/(σ2
1 + σ2

n). As κ→∞, r∗ → 1− 2/κ2.

Theorem 7 (OGD optimal) For Jacobi OGD with β1 = β2 = β, to achieve the optimal linear con-

vergence, we must have α ≤ 2β. At β = α/2 = β∗, r∗ ∼ 1 − 1/(6κ2) at large κ. For GS OGD with

β2 = 0, r∗ =
√

(κ2 − 1)/(κ2 + 1) ∼ 1− 1/κ2, at α =
√

2/σ1 and β1 =
√

2σ1/(σ
2
1 + σ2

n).
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5 Experiments

Bilinear game We experiment on a bilinear game and choose the optimal parameters as suggested in

Theorem 6 and 7. The results, shown in Figure 1, agree with our theory.

Figure 1: Linear convergence of optimal EG, Jacobi OGD, Gauss–Seidel OGD in a bilinear game

Wasserstein GAN As in [5], we consider a WGAN [1] that learns the mean of a Gaussian: with s(x)

the sigmoid function. Near the saddle point (θ∗, φ∗) = (0, v) the min-max optimization can be treated

as a bilinear game. Since we are doing stochastic versions of the algorithms, we should not expect they

will converge exactly to a saddle point. Instead, convergence to a neighborhood is good enough.

With GS updates, we find that Adam [15] diverges, SGD goes around a limit cycle, and EG con-

verges, as shown in the left panel of Figure 2. Our next experiment shows that generalized algorithms

may have an advantage over traditional ones. Inspired by Theorem 6, we compare the convergence

of two EGs with the same parameter β = αγ, and find that with scaling (decreasing α), EG con-

verges faster to a neighborhood of the saddle point with less oscillation, as shown in the right panel of

Figure 2. Note that we always use the squared distance as a measure of convergence.

Figure 2: Left: comparison among gradient algorithms; Right: the scaling effect of EG

Finally, we compare Jacobi updates with GS updates. In Figure 3, GS updates converge even when

the corresponding Jacobi updates do not.
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Figure 3: Jacobi vs. GS updates. Left: OGD with α = 0.2, β1 = 0.1, β2 = 0; Right: Momentum with α = 0.08,
β = −0.1. We plot only a few epochs for Jacobi updates if they do not converge

6 Conclusions

In this paper, we study convergence of gradient algorithms on bilinear games. Surprisingly, even

such a simple game could provide us with great insights for practice. The lessons we have learned

are: alternating updates are often more stable than simultaneous updates; by generalizing existing

algorithms we can achieve faster convergence rates. We provide guidance for choosing hyper-parameters

in bilinear games which could potentially generalize to GAN training.
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