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nécessaire et un lien vers l’article publié est ajouté.
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Abstract: We introduce a novel ensemble learning approach which combines random partitions models through

Potts clustering with a non-parametric predictor such as shallow feedforward neural networks (S-SPNNR). Neural net-

work are known as universal approximators, and are very well suited to explore others learning methods. We combine

them with Potts clustering models to create a bagging-like learning framework where several estimates from each ran-

dom partition are aggregated into one prediction. Our approach carries out the balance between overfitting and model

stability in presence of small datasets with high dimensional features. We found that S-SPNNR is really effective in

multivariate multiple regression task and present more predictive power than Multi-layer feedforward neural network and

the Multi-layer Multi-target Regression (MMR) model given some datasets from the Mulan Multi-label learning project.

1 Introduction

The model called Structured Potts Neural Network is an hierarchical Bayesian model where we train

individual neural nets to specialize on sub-groups (latent clusters components) while we still stay

informed about representations of the overall data. Our Potts neural network model differ from those

of [1] and [4], which is a generalization of the Ising neural network. We call it a structured one,

because we integrate the structured correlations among the weights (and offsets) of the network [5]

through Markov Random Fields (MRF) process. Bayesian learning allows the opportunity to quantify

posterior uncertainty on neural networks (NNs) model parameters. We can specify priors to inform

and constrain our models and get structured uncertainty estimation.

The proposal is organized as follows. Section 2 presents the background framework, section 3 ex-

plains and presents the model as well as its three variations: the Shallow- Structured Potts Neural

Network Regression (S-SPNNR) with Sparse Markov Random Fields (ShallowSparse), the S-SPNNR

with fully Connected Markov Random Fields (ShallowFull), and the S-SPNNR with compound symetry

matrix (ShallowSym). Section 4 and 5 show our results and present our concluding remarks respec-

tively.

2 Background

2.1 Potts clustering

We present Potts Clustering based on [3] paper framework. The training data consists of n examples

in the form of inputs vector x = xi ∈ Rq, and corresponding outputs y = yi, where yi ∈ Rl2 (a

vector response) for each i = 1, ..., n. For our model, x = xi is the vector of available covariates for

observation i.

As in [3], we assume a random partition model with a hierarchical form for these data :

y1, ..., yn|ρn, ψ∗1 , ..., ψ∗kn
ind∼ p(yi|xi, ψ∗si) (1)

ψ∗1 , ..., ψ
∗
kn

ind∼ p(ψ) (2)

ρn ∼ p(ρn|x) (3)

where ρn is a partition of [n] into kn subsets, s1, ..., sn are cluster membership indicators such that

si = j if the ith individual belongs to the jth cluster, and ψi = ψ∗si represent the neural network

parameters for all i ∈ [n].

Potts clustering model can be seen as a stochastic version of the label propagation approach [6]. In

following section, we present the feed-forward network function itself, which is of the form y = g(x,w, b),

with w weights matrix, b biases matrix (offsets), and g an activation function.
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2.2 The feed-forward neural network regression framework

The network itself is (in general) a multi-layer network, defined typically by the following equations.

Layer k computes an output vector hk using the output hk−1 of the previous layer, starting with the

input x = h0.

hk = bk ⊕ gk(hk−1)wk (4)

with parameter bk (a vector of offsets/biases), wk a matrix of weights, ⊕ the Kronecker sum, and gk
which is applied element-wise, represents any suitable non-linear function.

The top layer output hl is used for making a prediction and is combined with the supervised target y

into a loss function L(hl, y). The model output y is given by :

E[y|hl−1] = bl ⊕ hl−1wl

In what follows, a 2-layer network means that we build two (2) layer on top of the input layer.

3 The models

3.1 The S-SPNNR model with Sparse Markov Random Fields (ShallowSparse)
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Figure 1: Shallow feedforward neural network

Given a Potts partition ρn = (S1, ..., Skn) with kn subsets, we denote by {ψ1, ψ2, ..., ψn} the set of

unique cluster-specific parameters. y∗j = {yi, i ∈ Sj} and x∗j = {xi, i ∈ Sj} denote respectively the set

of responses and covariates of cluster Sj . Defining h2i = fψj
(xi), h

∗
2j = {h2i , i ∈ Sj}.

p(y∗j |h∗2j , ψj ,Σ) =
∏
i∈Sj

(2π)−l2/2|Σ|−1/2 × exp{−(1/2)(yi − h2i )′Σ−1(yi − h2i )} (5)

with ψ = (w1, w2, b1, b2) for each cluster. Our distribution specification for each yi, i = 1, ..., n is as

follows:

yi|xi, ψ,Σ ∼ Nl2(fψ(xi),Σ) (6)

p(yi|xi, ψ,Σ) = (2π)−l2/2|Σ|−1/2 exp{−(1/2)[yi − fψ(xi)]
′Σ−1[yi − fψ(xi)]}

The architecture in each cluster is a 2-layers network. The model weights uncertainty is similarly

measured as in [5] paper. As [9] and [10] have introduced a deep-structured conditional random field

model which consists of multiple layers of simple Conditional Random Fields (CRFs) where each layer’s

input consists of the previous layer’s input and the resulting marginal probabilities. We use the Markov

Random Fields (MRFs) to set alike structure on the neural network weights and biases.
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The weights MG-MRF is sparse and defined on vector w = (vec(w1)T , vec(w2)T ), with mean

µ=(µT1 , µ
T
2 ) (let’s say µk = E[vec(wk)]), sparse precision matrix J . For sparsity, we set only w1

j and

w2
i as neighbors with i = j, where w1

j denotes the j−th column of w1, and w2
i the i−th line of w2.

w1
j w2

i

Figure 2: Sparse Multivariate Gaussian Markov Random Fields (MG-MRF) on the network weights

3.2 The S-SPNNR model with Fully Connected Markov Random Fields
(ShallowFull)

The Fully Connected Markov Random Fields model is the same as described above with huge difference

in weights connections. We set the whole matrices w1 and w2 as neighbors.

w1 w2

Figure 3: Fully Connected Markov Random Fields (MG-MRF) on the network weights

Fully-connected graphical models address issues of locally-connected models by assuming full con-

nectivity amongst all nodes in the weights graph, thus taking full advantage of long range relationships

to improve inference accuracy[8]. Just as importantly, in contrast to common fully-connected deep net-

works, we have less parameters in our case, thanks to the shallow network that present less connected

layers.

3.3 The S-SPNNR-FCMRF model with compound symmetry matrix block
(ShallowSym)

We have built for the Fully Connected Markov Random Field S-SPNNR model a compound symmetry

version (ShallowSym) using the precision matrix J . The matrix block Jii for (w1, w2) itself can be

express as a Kronecker product between two matrices Ui and Vi.

Jii = Vi ⊗ Ui, Ui ∈Mli−1×li−1
, Vi ∈Mli×li

To reduce the model complexity, we choose Ui and Vi to be a positive-definite matrix with com-

pound symmetry structure (constant diagonal and constant off-diagonal elements). It means for ex-

ample :

Ui = auI + (1− ρu)11T

where au is a strictly positive number, and ρu a real-number. I is an identidy matrix with dimension

li−1, and 1 a vector of ones of size li−1. In a more interpretive manner, au represent the intra-class

correlation accross the weights and au + (1− ρu) their total variance [2] in the case Vi is estimated as

a matrix of ones. This configuration is more likely usefull when all the variances may be nearly equal,

and the covariances may be nearly equal among all the scalar weights at each layer. Those constraints

save a lot of degrees of freedom with little loss of fit, because we only have to estimate one variance

and one covariance for Ui.
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4 Experimental evaluation

4.1 Datasets

The performance of the S-SPNNR in his three versions (ShallowSparse, ShallowFull and ShallowSym)

were experimentally evaluated. The Mulan project [7] was used to evaluate the results. The experi-

ments were performed on 11 multi-output regression datasets (see Table 1 below) that are among the

benchmark data available from the Mulan project website.1

Table 1: Summary of data sets characteristics: name, domain, number of instances, features and targets

Data sets Domain Instances Numb. of attributes Numb. of targets

Andromeda Water 49 30 6
Slump Concrete 103 7 3
EDM Machining 154 16 2
ATP7D Forecast 296 211 6
ATP1D Forecast 337 411 6
Jura Geology 359 15 3
Online sales Forecast 639 401 12
ENB Buildings 768 8 2
Water quality Biology 1 060 14 16
SCPF Forecast 1 137 23 3
River flow 1 Forecast 9 125 64 8

We have also compared the performance of our models against the Multi-layer Multi-target Regres-

sion (MMR) model [11] that haved already substantially outperformed the best results from state-of-

the-art algorithms on most of those 11 datasets and a 5-layer feedforward regression network (5-layer

FFRNN).

To directly benchmark with state-of-the-art algorithms, we measure the performance by the

commonly-used Relative Root Mean Squared Error (RRMSE) defined as :√√√√∑
(xi,yi)∈Dtest(ŷi − yi)2∑
(xi,yi)∈Dtest(Ŷ − yi)2

where (xi, yi) is the i-th sample xi with ground truth target yi, ŷi is the prediction of yi and Ŷ is the

average of the targets over the training set Dtrain. We take the average RRMSE (aRRMSE) across all

the target variables within the test set Dtest as a single measurement. It measures the root squared

error relative to what it would have been if a simple predictor had been used. A lower aRRMSE

indicates better performance.

5 The results

Compare to a simple predictor, the proposed S-SPNNR model and its three versions have achieved

great results against the MMR model. This large improvement of the proposed S-SPNNR over the

MMR with significant margins on all the 11 datasets shows its effectiveness modeling multi-target

regression task. Andromeda, and SCPF show that the 5-layer FFRNN is still beatable in terms of

predictive power for these datasets. ShallowSparse was really effective on EDM, ATP7D, Jura, online

sales and water quality against the ShallowFull and ShallowSym. ShallowSim was better against

ShallowFull only on slump, ENB and water quality.

1http://mulan.sourceforge.net/datasets-mtr.html
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Table 2: Summary of aRRMSE (%) obtained with S-SPNNR and MMR models

Data sets ‘ MMR ShallowFull ShallowSym

Andromeda 52.7 31.63 32.35
Slump 58.7 21.90 18.47
EDM 71.6 28.01 35.96
ATP7D* 44.3 22.69 24.56
ATP1D* 33.2 13.50 14.63
Jura 58.2 28.98 25.81
Online sales* 70.9 18.90 21.59
ENB* 11.1 39.05 45.79
Water quality 88.9 10.01 8.26
SCPF 81.2 12.30 13.86
River flow 1* 8.9 10.97 11.45

* We reduce the input features to the first 6 PCA components.

Table 3: Summary of aRRMSE (%) obtained with S-SPNNR and the 5-layer FFRNN model

Data sets ‘ ShallowSparse 5-layer FFRNN

Andromeda 30.91 37.44
Slump 20.02 19.83
EDM 17.23 15.71
ATP7D* 19.73 13.67
ATP1D* 29.54 9.89
Jura 13.46 8.15
Online sales* 14.79 8.78
ENB* 23.92 4.36
Water quality 6.48 6.15
SCPF 10.78 18.49
River flow 1* 5.16 0.91

* We reduce the input features to the first 6 PCA components.
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