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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2020-18) afin de mettre à
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract: This work presents the convergence rate analysis of stochastic variants of the broad class of
direct-search methods of directional type. It introduces an algorithm designed to optimize differentiable
objective functions f whose values can only be computed through a stochastically noisy blackbox.
The proposed stochastic directional direct-search (SDDS) algorithm accepts new iterates by imposing
a sufficient decrease condition on so called probabilistic estimates of the corresponding unavailable
objective function values. The accuracy of such estimates is required to hold with a sufficiently large but
fixed probability β. The analysis of this method utilizes an existing supermartingale-based framework
proposed for the convergence rates analysis of stochastic optimization methods that use adaptive step
sizes. It aims to show that the expected number of iterations required to drive the norm of the

gradient of f below a given threshold ε is bounded in O
(
ε

−p
min(p−1,1) /(2β − 1)

)
with p > 1. Unlike prior

analysis using the same aforementioned framework such as those of stochastic trust-region methods and
stochastic line search methods, SDDS does not use any gradient information to find descent directions.
However, its convergence rate is similar to those of both latter methods with a dependence on ε that
also matches that of the broad class of deterministic directional direct-search methods which accept
new iterates by imposing a sufficient decrease condition.

Acknowledgments: The author is grateful to Sébastien Le Digabel and Charles Audet from Polytech-
nique Montréal and Michael Kokkolaras from McGill university for valuable discussions and construc-
tive suggestions that improved the quality of the presentation. This work is supported by the NSERC
CRD RDCPJ 490744–15 grant and by an InnovÉÉ grant, both in collaboration with Hydro-Québec
and Rio Tinto.
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1 Introduction

Direct-search methods constitute a broad class of derivative-free optimization (DFO) methods where

at each iteration, the DFO algorithm evaluates the objective function at a collection of points and acts

solely based on those function values without any model building or derivative approximation [5, 10].

Such methods include as well those based on simplices like the classical Nelder-Mead method and its

numerous variants, as those of directional type where an improvement in the objective function is

guaranteed by moving along a direction defined by a better point [15].

This work focuses on the convergence rate analysis of stochastic variants of the broad class of

directional direct-search methods analyzed in [15], using a supermartingale-based framework proposed

in [8] and elements from [12]. It introduces a stochastic directional direct-search (SDDS) algorithm

designed for stochastic blackbox optimization (BBO) and aims to solve the following unconstrained

stochastic blackbox optimization problem which often arises in modern statistical machine learning:

min
x∈Rn

f(x) with f(x) = EΘ[fΘ(x)] (1)

where Θ is a real-valued random variable following some unknown distribution, fΘ denotes the black-

box, the stochastically noisy computable version of the objective function f : Rn → R which is

numerically unavailable, and EΘ denotes the expectation with respect to Θ. Note that Θ is considered

as a data point for many machine learning problems [14].

Significant theoretical and algorithmic advances have been made in the field of stochastic DFO

in the recent years with the aim of solving Problem (1). Thus, numerous algorithms have been

developed, most of which carry out either an estimation of the gradient of f using a single simulation,

or a processing of the simulation model as a blackbox. However, since the simulation model can be

inaccessible in many real applications, or the gradient can be too expensive to estimate computationally,

direct-search optimization methods “appear to be the most promising option” [4].

Several recent works have proposed directional direct-search algorithms with full supported con-

vergence rates analysis. Vicente [15] proved that to drive the gradient of an objective function below

a threshold ε ∈ (0, 1), the number of iterations required by the broad class of directional direct-

search methods that use a sufficient decrease condition when accepting new iterates, is bounded

in O
(
ε

−p
min(p−1,1)

)
, with p > 1. Directional direct-search methods based on probabilistic descent, that

incorporate random gradient, was recently proposed and analyzed by Gratton et al. [11] with worst-

case complexity, and global rates results. However, both aforementioned previous works assume that

the objective function is deterministic, i.e, function values are exactly computed.

Audet et al. [4] recently proposed StoMADS, a stochastic variant of the mesh adaptive direct-

search (MADS) algorithm [3], with full-supported convergence analysis based on Clarke calculus and

martingale theory. Using an algorithmic framework similar to that of MADS, Alarie et al. [1] also

proposed another variant of MADS capable to optimize noisy blackboxes corrupted with Gaussian

noise, and proved convergence results of the proposed method using statistical inference techniques.

Nevertheless, no convergence rates analysis have been carried out for both methods.

The main novelty of the present work is that unlike many prior research on convergence rate analysis

of stochastic DFO methods (see for example [6, 8, 14, 16] and references therein), especially those on

stochastic trust-region [8] and line search [14] methods, SDDS does not use any first-order information

to find descent directions. Instead, such directions are provided by a positive spanning set and are

chosen in such a way to ensure that they never become close to loosing the positive spanning property.

However, as emphasized in [15], “it is not unreasonable” to expect that SDDS shares a similar worst

case complexity bound of the latter methods in term of the expected number of iterations. Indeed,

one of the directions of any positive spanning set makes an acute angle with the negative gradient,

provided that the objective function is continuously differentiable [12, 15]. This latter remark is

in fact the cornerstone of the analysis in the present manuscript. Moreover, unlike the deterministic

framework of [15], the proposed method accepts new iterates by imposing a sufficient decrease condition
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on so called probabilistic estimates of the corresponding unavailable objective function values, which

accuracy is required to hold with a sufficiently large but fixed probability β > 1/2. However, even

though such probability β of encountering sufficiently accurate estimates is not required to equal one,

SDDS is shown to have desirable convergence properties. Specifically, as main theoretical result of

the present work, the expected number of iterations required by SDDS to drive the gradient of f

below a threshold ε is shown to be bounded in O
(
ε

−p
min(p−1,1) /(2β − 1)

)
, using a supermartingale-based

framework proposed in [8]. Moreover, a subsequence of random iterates generated by SDDS is shown

to drive the norm of the gradient of f to zero with probability one. Note also that the analysis is made

very general in the present manuscript in the sense that it is not limited to p = 2, compared to several

similar works, but instead, extends to p > 1. To the best of our knowledge, this research is the first to

propose a convergence rate analysis of a stochastic direct-search algorithm of directional type.

This manuscript is organized as follows. Section 2 introduces an outline of the proposed stochastic

algorithm and requirements on so-called probabilistic estimates that guarantee convergence at an

appropriate rate. It is followed by Section 3 which presents a general framework of a stochastic

process that is required to carry out the convergence rate analysis in Section 4. Section 4 also presents

a lim inf-type first-order convergence result for SDDS, followed by a discussion and suggestions for

future work.

2 The SDDS method and probabilistic estimates

SDDS, the stochastic algorithm analyzed in the present manuscript, is a direct-search method that uses

inexact or noisy information about the objective f , specifically making use of so called probabilistic

estimates. This section introduces the general framework of SDDS and discusses the requirements on

the probabilistic estimates that guarantee the convergence of the algorithm.

2.1 The stochastic directional direct-search algorithm

The stochastic directional direct-search methods under study in the present manuscript use an algo-

rithmic framework similar to that of the broad class of methods analyzed in [15], i.e., a framework

that can describe the main features of generating set search (GSS) [12], pattern search and generalized

pattern search (GPS) [2].

Each iteration of a directional direct-search method is composed of two main steps: the SEARCH

step which is optional and the POLL step on which relies the convergence analysis. For simplicity

of presentation, Algorithm 1 does not show any SEARCH step. During the POLL, trial points are

generated in a subset Pk = {xk + δkd : d ∈ Dk} of the space of variables, where xk denotes the

incumbent solution, δk the step size and Dk is a positive spanning set [5, 10]. Thus, the POLL step

which follows stricter rules, consists of a local exploration of the variables space, unlike the SEARCH

step which consists of a global exploration.

In Algorithm 1, since objective function values f(x) are unavailable, fk0 and fks denote respectively

the estimates of f(xk) and f(xk + sk), with sk = δkd, constructed making use of evaluations of the

noisy objective fΘ. In order for the information provided by fk0 and fks to determine the iteration type,

i.e., successful or unsuccessful, both estimates are required to be εf -accurate, with εf > 0, according

to the following definition similar to those in [4, 8, 9, 14].

Definition 1 Let ρ : (0,+∞) → (0,+∞) be a continuous and non-decreasing function satisfying

ρ(t)/t→ 0 when t↘ 0. fk is called εf -accurate estimate of f(xk) for a given δk if∣∣fk − f(xk)
∣∣ ≤ εfρ(δk).

Following the terminology in [12], the function ρ in Definition 1 represents the “forcing function”.

Sufficient information to determine the iteration type is provided next.
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Proposition 1 Let fk0 and fks be εf -accurate estimates of f(xk) and f(xk + sk) respectively, and let

γ > 2 be a fixed constant. Then the followings hold:

if fks − fk0 ≤ −γεfρ(δk), then f(xk + sk)− f(xk) ≤ −(γ − 2)εfρ(δk) := uksto (2)

if fks − fk0 > −γεfρ(δk), then f(xk + sk)− f(xk) > −(γ + 2)εfρ(δk) := `ksto (3)

Proof. The proof straightforwardly follows from Definition 1 and the equality

f(xk + sk)− f(xk) = f(xk + sk)− fks + (fks − fk0 ) + fk0 − f(xk).

In addition to the results in Proposition 1, the definition of the iteration type in Algorithm 1 is

motivated by the following remarks. First, notice that in the stochastic framework of StoMADS where

ρ(t) = t2, since as in (3) the inequality fks − fk0 > −γεfρ(δkp ) (δkp denoting the so-called frame size

parameter) does not necessarily lead to an increase in the unavailable objective function f , two types

of unsuccessful iterations have been distinguished. Unsuccessful iterations which are called certain,

are characterized by fks − fk0 ≥ −γεfρ(δkp ) and lead to an increase in f whenever both estimates fk0
and fks are accurate, while those such that −γεfρ(δkp ) < fks − fk0 < γεfρ(δkp ) are called uncertain since

they lead to −(γ + 2)εfρ(δk) < f(xk + sk)− f(xk) < (γ + 2)εfρ(δk). Then, even though updating the

frame size parameter according to δk+1
p = τδkp on uncertain unsuccessful iterations, and δk+1

p = τ2δkp
whenever the unsuccessful iteration is certain (τ ∈ (0, 1) being a rational number), the corresponding

sequence {δkp}k∈N was shown in [4] to converge to zero. Note also that this kind of update is the only

one that differentiates certain iterations from those that are uncertain. In the present work, the step

size parameter δk is therefore updated on unsuccessful iterations according to δk+1 = τδk, where τ

is a real number in (0, 1). As a consequence, certain unsuccessful iterations will not be differentiated

from uncertain ones. In other words, every iteration such that fks − fk0 > −γεfρ(δk) will be called

unsuccessful.

However, let put an emphasis on the specific choice of τ by means of the following additional

remarks. Note that in the general deterministic framework described in [15], the amount of decrease in

the objective function on successful iterations is such that f(xk + sk)− f(xk) ≤ −ρ(δk) := ukdet while

unsuccessful iterations are characterized by f(xk + sk) − f(xk) > −ρ(δk) := `kdet. Thus, the equality

`kdet = ukdet always holds, which is not the case in stochastic settings where `ksto < uksto. Moreover, since

δk+1 < δk whenever the iteration k is unsuccessful, then `k+1
det > ukdet. Likewise, since δk+1 > δk on

successful iterations, then uk+1
det < `kdet. Given that the equality `ksto = uksto can not hold in the present

stochastic settings, then τ must be chosen in such a way that at least, both inequalities `k+1
sto > uksto and

uk+1
sto < `ksto hold respectively on unsuccessful and successful iterations, analogously to the deterministic

framework. This means using (2) and (3), that τ must be chosen according to

ρ(τδk) <
γ − 2

γ + 2
ρ(δk) and ρ(τ−1δk) >

γ + 2

γ − 2
ρ(δk). (4)

It follows from (4) that depending on the expression of the forcing function ρ, the choice of τ could

depend on δk and hence should be made at each iteration. Thus, in order to make the present analysis

simpler, the following assumption is made.

Assumption 1 The forcing function ρ : (0,+∞) → (0,+∞) is such that ρ(t) = ctp, where c > 0 and

p > 1 are fixed constants.

Under Assumption 1, the choice of τ does not depend on δk. More precisely, it follows from (4)

that τ must be chosen according to 0 < τp < γ−2
γ+2 , for all k ∈ N, as specified in Algorithm 1.
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Algorithm 1 SDDS

[0] Initialisation

Choose x0 ∈ Rn, δ0 > 0, εf > 0, γ > 2, c > 0, p > 1, 0 < τ <
(
γ−2
γ+2

)1/p
, jmax ∈ N and δmax = τ−jmaxδ0.

Set the iteration counter k ← 0.
[1] Poll

Select a positive spanning set Dk.
Generate a set Pk of Poll points such that Pk = {xk + δkd : d ∈ Dk}.
Obtain estimates fk0 and fks of f(xk) and f(xk + sk), respectively, using objective function evaluations.
Success
If fks − fk0 ≤ −γcεf (δk)p for some sk = δkdk ∈ {δkd : d ∈ Dk},
Set xk+1 ← xk + sk, and δk+1 ← min{τ−1δk, δmax}.
Failure
Otherwise set xk+1 ← xk and δk+1 ← τδk.

[2] Termination
no termination criterion is met,
Set k ← k + 1 and go to [1].
Otherwise stop.

Pseudo code of the Stochastic Directional Direct-Search (SDDS) algorithm. Success or failure is determined during the
Poll at iteration k, using information provided by both estimates fk0 and fks in order to update the step size parameter
δk and the current iterate xk. As long as no stopping criterion is met, a new iteration is initiated with a new step size
parameter δk+1.

2.2 Probabilistic estimates

Following the notation in [7], all stochastic quantities in the present manuscript live on the same

probability space (Ω,F ,P), where Ω is a nonempty set referred to as the sample space, F is a collection

of events (subsets of Ω) called a σ-field and P is a finite measure on the measurable space (Ω,F)

satisfying P (Ω) = 1 and referred to as probability measure. The elements ω ∈ Ω are referred to as

possible outcomes or sample points. When Rn is given its Borel σ-field, i.e., the one generated by the

open sets, a random variable or random map X is a measurable map on the probability space (Ω,F ,P)

into the measurable space (Rn,B(Rn)). Measurability meaning that each event {X ∈ I} := X−1(I)

belongs to F for all I ∈ B(Rn) [7].

The estimates fks and fk0 constructed at iteration k of Algorithm 1, based on random information

provided by the noisy objective fΘ, can be considered as realizations of random estimates F ks and F k0
respectively. Thus, because of the randomness stemming from such random estimates whose behavior

influences each iteration k, Algorithm 1 results in a stochastic process {Xk, Sk,∆k, F ks , F
k
0 }. In general,

uppercase letters will be used to denote random variables while lowercase letters will be used for their

realizations. For example, xk = Xk(ω), sk = Sk(ω) and δk = ∆k(ω) denote respectively realizations

of the random variables Xk, Sk and ∆k. Similarly, following the notations in [4, 8, 9, 14], fk0 = F k0 (ω)

and fks = F ks (ω) with F k0 and F ks denoting respectively estimates of f(Xk) and f(Xk + Sk).

The goal of this work is to show that the stochastic process resulting from Algorithm 1 converges at

an appropriate rate with probability one, provided that the sequence {(F k0 , F ks )} is sufficiently accurate

with sufficiently high but fixed probability, conditioned on the past.

As proposed in [9, 14], the notion of conditioning on the past is formalized in the following definition

similar to those in [4, 8, 9, 14, 16], where FFk−1 denotes the σ-field generated by F 0
0 , F

0
s , F

1
0 , F

1
s ,

. . . , F k−1
0 and F k−1

s , with FF−1 being set to equal σ(x0) for completeness. Thus, on can notice that

E
(
∆k|FFk−1

)
= ∆k and E

(
Xk|FFk−1

)
= Xk for all k ≥ 0, by construction of the random variables ∆k

and Xk in Algorithm 1.

Definition 2 A sequence of random estimates {(F k0 , F ks )} is said to be β-probabilistically εf -accurate

with respect to the corresponding sequence {Xk, Sk,∆k} if the events

Jk = {F k0 , F ks , are εf -accurate estimates of f(xk) and f(xk + sk), respectively}

satisfy the following submartingale-like condition

P
(
Jk | FFk−1

)
= E

(
1Jk | FFk−1

)
≥ β,
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where 1Jk denotes the indicator function of the event Jk, that is 1Jk = 1 if ω ∈ Jk and 0 otherwise.

An estimate is called “good” if 1Jk = 1. Otherwise it is called “bad”[4].

Global convergence properties of deterministic directional direct-search methods strongly rely on

having the step size parameters approaching zero [15] and the fact that the function value f(x) never

increases after an iteration. The main challenge of the analysis in the present stochastic framework

lies in the fact that this monotonicity is not always guaranteed. The key to the analysis of Algorithm 1

thus relies on the assumption that accuracy in function estimates “improves in coordination with the

perceived progress of the algorithm” [8]. The analysis is based on properties of supermartingales whose

increments have a decreasing tendency and depend on the change in objective function values between

iterations.

In order to show that the sequence {∆k}k∈N of random step size parameters converges to zero with

probability one, let make the following key assumption similar to those in [4, 14].

Assumption 2 For some fixed β ∈ (0, 1), and εf > 0, the followings hold for the random quantities

derived from Algorithm 1.

(i) The sequence {(F k0 , F ks )} of estimates is β-probabilistically εf -accurate.

(ii) The sequence {(F k0 , F ks )} satisfies the following variance condition

E
(∣∣F k0 − f(Xk)

∣∣2 | FFk−1

)
≤ ε2

f (1− β)[ρ(∆k)]2

and E
(∣∣F ks − f(Xk + Sk)

∣∣2 | FFk−1

)
≤ ε2

f (1− β)[ρ(∆k)]2 (5)

By means of Assumption 2(ii), the variance in function estimates is adaptively controlled. Showing

therefore that the sequence of random step size parameters converges to zero with probability one,

ensures that this variance is driven to zero even though the probability β of encountering good estimates

remains fixed, thus allowing Algorithm 1 to behave like an exact deterministic method asymptotically.

Moreover, since the estimates satisfying Assumption 2 can easily be constructed using techniques

proposed in [8, 9, 14], then thorough details about their computations are not provided here again.

Note however that if Θ0 and Θs are two independent random variables following the same distribution

as Θ defined in (1), and if Θ0
i , i = 1, 2, . . . , pk and Θs

j , j = 1, 2, . . . , pk are independent random samples

of Θ0 and Θs respectively, then the estimates

F k0 =
1

pk

pk∑
i=1

fΘ0
i
(xk) and F ks =

1

pk

pk∑
j=1

fΘsj
(xk + sk)

satisfy Assumption 2 provided that the sample size pk satisfies

pk ≥ V

ε2
f (1−

√
β)[ρ(δk)]2

,

where the constant V > 0 is such that the variance of fΘ(x) satisfies V [fΘ(x)] ≤ V < +∞, for all

x ∈ Rn.

Next is stated a useful lemma similar to those in [4, 14], linking the probability of obtaining bad

estimates to the variance assumption on function values.

Lemma 1 Let Assumption 2 holds. Then for all k ≥ 0, the followings hold for the random process

{Xk, F k0 , F
k
s ,∆

k} generated by Algorithm 1

E
(
1J̄k

∣∣F k0 − f(Xk)
∣∣ | FFk−1

)
≤ εf (1− β)[ρ(∆k)]

and E
(
1J̄k

∣∣F ks − f(Xk + Sk)
∣∣2 | FFk−1

)
≤ εf (1− β)[ρ(∆k)] (6)
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Proof. The result is proved using ideas derived from [4, 14]. The proof follows straightforwardly from

the conditional Cauchy-Schwarz inequality [7] as follows

E
(
1J̄k

∣∣F ks − f(Xk + Sk)
∣∣ | FFk−1

)
≤ [E

(
1J̄k | F

F
k−1

)
]1/2[E

(∣∣F ks − f(Xk + Sk)
∣∣2 | FFk−1

)
]1/2

≤ (1− β)1/2εf (1− β)1/2[ρ(∆k)],

where the last inequality follows from (5) and the fact that E
(
1J̄k | F

F
k−1

)
= P

(
1J̄k | F

F
k−1

)
≤ 1 − β

thanks to Assumption 2(i). The proof for F k0 − f(Xk) is the same.

3 A renewal-reward martingale process

This section presents a general stochastic process and its associated stopping time T introduced in [8]

for the convergence rate analysis of a stochastic trust-region method. It introduces some relevant

definition, assumptions and theorem derived in the analysis of a renewal-reward process in [8], that

will be useful for the convergence rate analysis presented in Section 4. Specifically, by considering the

stopping time consisting of the time required by SDDS to reach a desired accuracy, Section 4 will aim

to show how the properties of this general stochastic process are satisfied for Algorithm 1. Note that

some results derived in analyzing this stochastic process in [8] are also used in [14] for the convergence

rate analysis of a stochastic line search method.

Definition 3 A random variable T is said to be a stopping time with respect to a given discrete time

stochastic process {Xk}k∈N if, for each k ∈ N, the event {T = k} belongs to the σ-field σ(X1, X2, . . . , Xk)

generated by X1, X2, . . . , Xk.

Consider a stochastic process {(Φk,∆k)}k∈N satisfying Φk ∈ [0,+∞) and ∆k ∈ [0,+∞) for all

k ∈ N. Define on the same probability space as {(Φk,∆k)}k∈N, a sequence of biased random walk

process {Wk}k∈N such that W0 = 1,

P (Wk+1 = 1 | Fk) = q and P (Wk+1 = −1 | Fk) = 1− q, (7)

where q ∈ (1/2, 1) and Fk denotes the σ-field generated by {(Φ0,∆
0,W0), (Φ1,∆

1,W1), . . . ,

(Φk,∆
k,Wk)}.

Define the following family {Tε′}ε′>0 of stopping times parameterized by ε′ > 0, with respect to

{Fk}k∈N. The following assumptions are made in [8, 14] in order to derive a bound on E (Tε′).

Assumption 3 The following hold for the stochastic process {(Φk,∆k,Wk)}k∈N.

(i) There exist constant λ ∈ (0,+∞) and δmax = δ0eλjmax , for some integer jmax ∈ Z, such that

∆k ≤ δmax for all k ∈ N.

(ii) There exists a constant δε′ = δ0eλjε′ , for some jε′ ∈ Z, jε′ ≤ 0, such that the following holds for

all k ∈ N,

1{Tε′>k}∆
k+1 ≥ 1{Tε′>k}min

(
∆keλWk+1 , δε′

)
, (8)

where Wk+1 satisfies (7) with q > 1
2 .

(iii) There exists a nondecreasing function h : [0,+∞)→ (0,+∞) and a constant η > 0 such that

E (Φk+1 − Φk | Fk)1{Tε′>k} ≤ −ηh(∆k)1{Tε′>k}. (9)

Note that as highlighted in [8, 14], Assumption 3 states that conditioned on the past, the nonnegative

random sequence {Φk}k∈N decreases by at least ηh(∆k) at each iteration provided that Tε′ > k

and moreover, the sequence {∆k}k∈N has a tendency to increase whenever it is below some fixed

threshold δε′ .

The following theorem providing a bound on E (Tε′) is proved in [8] by observing that the upward

drift in the random walk {Wk}k∈N makes the event {∆k ≥ δε′} occur sufficiently frequently on aver-

age [8, 14]. Hence, E (Φk+1 − Φk) can frequently be bounded by some negative fixed constant, thus

leading to a bound on the expected stopping time E (Tε′).
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Theorem 1 Let Assumption 3 hold. Then,

E (Tε′) ≤
q

2q − 1
× Φ0

ηh(δε′)
+ 1

4 Convergence rate analysis

It follows from Section 3 that Theorem 1 holds for any stopping time Tε′ defined with respect to the

filtration {Fk}k∈N, provided that Assumption 3 hold for the stochastic process {(Φk,∆k,Wk)}k∈N.

Thus, the goal of the present section is to show how such a stochastic process satisfying Assumption 3

can be constructed in order to bound the expected number of iterations required by Algorithm 1 to

achieve
∥∥∇f(Xk)

∥∥ ≤ ε, for some arbitrary fixed ε ∈ (0, 1), where ‖·‖ denotes the Euclidean norm of

Rn as in the remainder of the manuscript.

4.1 Analysis of the stochastic process generated by SDDS

In order to show that Assumption 3 holds, let impose the following standard assumption on the

objective function f .

Assumption 4 The function f is bounded from below, i.e., there exists fmin ∈ R such that −∞ <

fmin ≤ f(x), for all x ∈ Rn.

The following result generalizing that in [4] provides a bound on the expected decrease in the

random function

Φk :=
ν

cεf
(f(Xk)− fmin) + (1− ν)(∆k)p. (10)

Theorem 2 Let Assumptions 1, 2 and 4 hold. Let γ > 2, p > 1 and τ ∈ (0, 1). Let ν ∈ (0, 1) and

β ∈ (1/2, 1) be chosen such that

ν

1− ν
≥ 2(τ−p − 1)

γ − 2
and

β

1− β
≥ ν

1− ν
× 4

(1− τp)
, (11)

Then the expected decrease in the random function Φk defined in (10) satisfies

E
(
Φk+1 − Φk | FFk−1

)
≤ −1

2
β(1− ν)(1− τp)(∆k)p. (12)

Proof. The proof is almost identical to that in [4], using ideas derived in [9, 13, 14] and making use of

properties of the random function Φk defined in (10). It considers two separate cases: good estimates

and bad estimates, each of which are broken into whether an iteration is successful or unsuccessful.

Define the event S by

S := {The iteration is successful},

and let S̄ denote the complement of S.

Case 1 (Good estimates, 1Jk = 1) The overall goal is to show that Φk decreases no matter what

type of iteration occurs thus yielding the following bound

E
(
1Jk(Φk+1 − Φk) | FFk−1

)
≤ −β(1− ν)(1− τp)(∆k)p. (13)

(i) Successful iteration (1S = 1). A decrease occurs in f according to (2) since estimates are good

and the iteration is successful, thus implying that

1Jk1S
ν

cεf
(f(Xk+1)− f(Xk)) ≤ −1Jk1Sν(γ − 2)(∆k)p. (14)

The step size parameter is updated according to ∆k+1 = min{τ−1∆k, δmax}. Hence,

1Jk1S(1− ν)
[
(∆k+1)p − (∆k)p

]
≤1Jk1S(1− ν)(τ−p − 1)(∆k)p. (15)
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Then, choosing ν according to (11) ensures that the right-hand side term of (14) dominates that

of (15), i.e.,

− ν(γ − 2)(∆k)p + (1− ν)(τ−p − 1)(∆k)p ≤ −1

2
ν(γ − 2)(∆k)p. (16)

Thus, combining (14), (15) and (16) yields

1Jk1S(Φk+1 − Φk) ≤ −1Jk1S
1

2
ν(γ − 2)(∆k)p. (17)

(ii) Unsuccessful iteration (1S̄ = 1). The step size parameter is decreased while there is a change of

zero in function values since the iteration is unsuccessful. Thus,

1Jk1S̄(Φk+1 − Φk) = −1Jk1S̄(1− ν)(1− τp)(∆k)p. (18)

Then, choosing ν according to (11) and noticing that 1− τp < τ−p− 1, ensure that unsuccessful

iterations, specifically (18), provide the worst case decrease when compared to (17), i.e., the

following holds

− 1

2
ν(γ − 2)(∆k)p ≤ −(1− ν)(1− τp)(∆k)p. (19)

Thus, combining (17), (18), and (19), leads to the following bound on the change in Φk

1Jk(Φk+1 − Φk) = 1Jk(1S + 1S̄)(Φk+1 − Φk) ≤ −1Jk(1− ν)(1− τp)(∆k)p. (20)

Since Assumption 2 holds, then taking conditional expectations with respect to FFk−1 in both

sides of (20) leads to (13).

Case 2 (Bad estimates, 1J̄k = 1). Since the estimates are bad, an iterate leading to an increase

in f and ∆k, and hence in Φk, can be accepted by Algorithm 1. Such an increase in Φk is controlled

by bounding the variance in function estimates, using (5). Then, in order to guarantee that Φk is

sufficiently reduced in expectation, the probability of outcome is adjusted to be sufficiently small. The

overall goal is to show that

E
(
1J̄k(Φk+1 − Φk) | FFk−1

)
≤ 2ν(1− β)(∆k)p. (21)

(i) Successful iteration (1S = 1). The change in f is bounded as follows

1J̄k1S
ν

cεf
(f(Xk+1)− f(Xk))

≤ 1J̄k1S
ν

cεf

[
(F ks − F k0 ) +

∣∣f(Xk+1)− F ks
∣∣+
∣∣F k0 − f(Xk)

∣∣]
≤ 1J̄k1Sν

[
−γ(∆k)p +

1

cεf

(∣∣f(Xk+1)− F ks
∣∣+
∣∣F k0 − f(Xk)

∣∣)] (22)

where the last inequality in (22) follows from the fact that F ks −F k0 ≤ −γcεf (∆k)p for successful

iterations. Moreover, as in Case 1, ∆k+1 = min{τ−1∆k, δmax} since the iteration is successful.

Thus,

1J̄k1S(1− ν)
[
(∆k+1)p − (∆k)p

]
≤1J̄k1S(1− ν)(τ−p − 1)(∆k)p. (23)

Then, choosing ν according to (11) yields

− νγ(∆k)p + (1− ν)(τ−p − 1)(∆k)p ≤ 0. (24)

Thus, combining (22), (23) and (24) leads to

1J̄k1S(Φk+1 − Φk) ≤ 1J̄k1S
ν

cεf
(
∣∣f(Xk+1)− F ks

∣∣+
∣∣F k0 − f(Xk)

∣∣) (25)
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(ii) Unsuccessful iteration (1S̄ = 1). ∆k is decreased and the change in function values is zero. Thus,

the bound in the change of Φk follows straightforwardly from (18) by replacing 1Jk by 1J̄k . More

precisely, the following holds,

1J̄k1S̄(Φk+1 − Φk) = −1J̄k1S̄(1− ν)(1− τp)(∆k)p.

≤ 1J̄k1S̄
ν

cεf
(
∣∣f(Xk+1)− F ks

∣∣+
∣∣F k0 − f(Xk)

∣∣) (26)

Then, combining (25) and (26), yields

1J̄k(Φk+1 − Φk) ≤ 1J̄k
ν

cεf
(
∣∣f(Xk+1)− F ks

∣∣+
∣∣F k0 − f(Xk)

∣∣). (27)

Taking conditional expectations with respect to FFk−1 in both sides of (27) and applying Lemma 1

leads to (21).

Now, combining expectations (13) and (21) leads to

E
(
Φk+1 − Φk | FFk−1

)
= E

(
(1Jk + 1J̄k)(Φk+1 − Φk) | FFk−1

)
≤ [−β(1− ν)(1− τp) + 2ν(1− β)] (∆k)p. (28)

Then, choosing β according to (11) ensures that

− β(1− ν)(1− τp) + 2ν(1− β) ≤ −1

2
β(1− ν)(1− τp). (29)

Hence, (12) follows from (28) and (29), which achieves the proof.

Summing both sides of (12) over k ∈ N and taking expectations with respect to FFk−1 lead to the

following result generalizing that in [4], which shows in particular that the sequence {∆k}k∈N of step

size parameters converges to zero with probability one.

Theorem 3 Let all assumptions that were made in Theorem 2 hold. Then, the sequence {∆k}k∈N of

step size parameters generated by Algorithm 1 satisfies for p > 1,

+∞∑
k=0

(∆k)p < +∞ almost surely.

Consider the stochastic process {(Φk,∆k,Wk)}k∈N, where Φk is the same random function in

Theorem 2, ∆k is the random step size parameter and Wk = 2(1Jk − 1
2 ). Define p̂ = min(p − 1, 1)

for some fixed p > 1. For some arbitrary fixed ε′ ∈ (0, 1), consider the following random time Tε′

defined by

Tε′ = inf
{
k ∈ N :

∥∥∇f(Xk)
∥∥1/p̂ ≤ ε′

}
(30)

Then, Tε′ is a stopping time for the stochastic process generated by Algorithm 1 and is consequently

a stopping time for {(Φk,∆k,Wk)}k∈N [8, 14]. Moreover, Tε1/p̂ is the number of iterations required by

Algorithm 1 to drive the norm of the gradient of f below ε ∈ (0, 1). This latter remark will help to

derive the main result of the present work in Theorem 4.

In order to apply Theorem 1 to Tε′ , the remainder of this section is devoted to showing that

Assumption 3 holds for the previous stochastic process. First, notice that since Theorem 2 holds

without using any information about the existence of the gradient of f , then by multiplying both sides

of (12) by 1{Tε′>k}, Assumption 3(iii), trivially holds with η = 1
2β(1− ν)(1− τp) and h(x) = xp. By

choosing λ such that eλ = τ−1 and noticing that ∆k ≤ δmax = δ0eλjmax in Algorithm 1 for all k ∈ N,

then Assumption 3(i) holds.

Then, before showing that Assumption 3(ii) also holds, let emphasize that as in the deterministic

framework, polling directions in Algorithm 1 are chosen in such a way that their significant deterioration
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can be avoided asymptotically, i.e., in such a way to ensure that they never become close to loosing

the positive spanning property [15]. For this purpose, let recall the following definition of the cosine

measure [10, 12] of a positive spanning set Dk with non-zero vectors

κ(Dk) := min
v∈Rn

max
d∈Dk

v>d

‖v‖‖d‖

In order to avoid the aforementioned deterioration of polling directions, the positive spanning sets are

required to satisfy the following assumption [12, 15] where the size of the directions does not tend to

infinite or approach zero, and the cosine measure always stays positive.

Assumption 5 The followings hold for all positive spanning sets Dk used for polling in Algorithm 1.

There exists a constant κmin > 0 such that κ(Dk) > κmin for all k. There exist constants dmin > 0

and dmax > 0 such that dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk.

The following result from [12] will be useful for the remaining of the analysis, and specifically the proof

of the key result in Lemma 2. It shows by means of the cosine measure κ(Dk), how far can be in the

worst case, the steepest descent direction, from the vector in Dk which makes the smallest angle with

v = −∇f(xk). This means in term of descent that, there exists dk∗ ∈ Dk such that

κ(Dk)
∥∥∇f(xk)

∥∥∥∥dk∗∥∥ ≤ −∇f(xk)>dk∗. (31)

For the remaining of the analysis, the following standard assumption is also imposed on the gradient

of f .

Assumption 6 The gradient ∇f of the objective function f is L-Lipschitz continuous everywhere.

Then, define the constant δε′ as follows

δε′ =
ε′

ζ
with ζ >

[
κ−1

min

(
Ldmax + (γ + 2)cεfd

−1
min

)]1/p̂
, (32)

where without loss of generality, Ldmax > κmin so that δε′ < 1 for the needs of the analysis and

specifically, the proof of Lemma 2. Then following [8], it can be assumed without any loss of generality

that δε′ = τ−iδ0, for some integer i ≤ 0. Hence, for any k, ∆k = τ ikδε′ , for some integer ik. Thus, what

remains to be proved in Assumption 3 in order to apply Theorem 1 is the dynamics (8). Note however

that the proof of the dynamics (8) which will be achieved in Lemma 3, need the following intermediate

key result. Indeed, in the stochastic trust region framework of [8], the proof of a similar dynamics

strongly relies on the fact that any iteration k, where ‖∇f(xk)‖ > ε and for which “good” model

and estimates occur, is successful provided that the trust region radius δk is bellow a threshold ∆ε.

Nevertheless, unlike the trust region framework where informations can possibly easily be derived on

the true gradient ∇f(xk) using those provided by the gradient estimate gk, the algorithmic framework

of the present work does not use any gradient information. Thus, the main challenge in proving

that Assumption 3(ii) holds, lies in linking the event
{∥∥∇f(Xk)

∥∥1/p̂
> ε′

}
to a successful iteration of

Algorithm 1, which is done next.

Lemma 2 Assume that Assumption 6 and 5 hold and that δk ≤ δε′ . Let fk0 and fks be εf -accurate

estimates of f(xk) and f(xk + sk) respectively. If
∥∥∇f(xk)

∥∥1/p̂
> ε′, then

fks − fk0 ≤ −γcεf (δk)p.

In particular, this means that the iteration k of Algorithm 1 is successful.

Proof. The proof uses elements derived in [12]. Suppose that δk ≤ δε′ and assume in contradiction

that fks − fk0 > −γcεf (δk)p. Since the estimates fk0 and fks are εf -accurate, then it follows from the

following equality

f(xk + sk)− f(xk) = f(xk + sk)− fks + (fks − fk0 ) + fk0 − f(xk)
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that

f(xk + sk)− f(xk) + (γ + 2)cεf (δk)p ≥ 0. (33)

Recall that sk = δkd where d ∈ Dk denotes any direction used by Algorithm 1 at iteration k. It follows

from the mean value theorem, combined with (33), that there exists a constant µk ∈ [0, 1] such that

0 ≤ δk∇f(xk + µkδ
kdk∗)

>dk∗ + (γ + 2)cεf (δk)p, (34)

where dk∗ is the direction satisfying (31). Dividing both sides of (34) by δk and subtracting ∇f(xk)>dk∗,

yields

−∇f(xk)>dk∗ ≤
[
∇f(xk + µkδ

kdk∗)−∇f(xk)
]>
dk∗ + (γ + 2)cεf (δk)p−1. (35)

Putting (31) and (35) together, yields

κ(Dk)
∥∥∇f(xk)

∥∥∥∥dk∗∥∥ ≤ [∇f(xk + µkδ
kdk∗)−∇f(xk)

]>
dk∗ + (γ + 2)cεf (δk)p−1. (36)

Then, dividing both sides of (36) by κ(Dk)
∥∥dk∗∥∥ and using Assumption 6 and 5, lead to∥∥∇f(xk)

∥∥ ≤ κ−1
min

[
Ldmaxδ

k + (γ + 2)cεfd
−1
min(δk)p−1

]
≤ κ−1

min

(
Ldmax + (γ + 2)cεfd

−1
min

)
(δk)min(p−1,1), (37)

where the inequality (37) follows from the fact that δk ≤ δε′ < 1. Now, recall that p̂ = min(p − 1, 1)

and let L1 := κ−1
min

(
Ldmax + (γ + 2)cεfd

−1
min

)
. Then, it follows from (37) that

∥∥∇f(xk)
∥∥1/p̂ ≤ L1/p̂

1 δk ≤ L1/p̂
1 δε′ = L

1/p̂
1

ε′

ζ
≤ ε′, (38)

where the last inequality in (38) follows from (32), which achieves the proof.

Finally, the following result shows that the dynamics (8) of Assumption 3(ii) holds.

Lemma 3 Let Assumption 6 and all assumptions that were made in Theorem 2 hold. Then Assump-

tion 3(ii) is satisfied for the random variable Wk = 2(1Jk − 1
2 ), λ = − ln(τ) and q = β.

Proof. The result is proved by adapting the proof of a similar Lemma from [8]. First, notice that (8)

trivially holds when 1{Tε′>k} = 0. Thus, the remaining of the proof is devoted to showing that

conditioned on the event {Tε′ > k}, i.e., when 1{Tε′>k} = 1, then the following holds

∆k+1 ≥ min
{
δε′ ,min

{
τ−1∆k, δmax

}
1Jk + τ∆k1J̄k

}
. (39)

Notice that every realization such that δk > δε′ also satisfies δk ≥ τ−1δε′ whence δk+1 ≥ τδk ≥ δε′ .

Now, assume that δk ≤ δε′ . Since Tε′ > k, then it is the case that
∥∥∇f(xk)

∥∥1/p̂
> ε′. If 1Jk = 1,

then the estimates are good and are specifically εf -accurate. Hence, it follows from Lemma 2 that the

kth iteration is successful. Thus, xk+1 = xk + sk and δk+1 = min
{
τ−1δk, δmax

}
. But if 1Jk = 0, i.e.,

1J̄k = 1, then the inequality δk+1 ≥ τδk always holds by the dynamics of Algorithm 1. The proof is

complete by noticing finally that P
(
Jk|FFk−1

)
≥ q = β.

4.2 Complexity result and first-order optimality conditions

The following result provides a bound on the expected number of iterations taken by Algorithm 1

before
{∥∥∇f(Xk)

∥∥ ≤ ε} occurs and is the main result of the present work.

Theorem 4 Let Assumption 6 and all assumptions that were made in Theorem 2 hold with β ∈ (1/2, 1)

and ν ∈ (0, 1) satisfying (11). Consider Algorithm 1 and the corresponding stochastic process. For

some arbitrary fixed ε ∈ (0, 1), consider the random time T ?ε defined by

T ?ε = inf
{
k ∈ N :

∥∥∇f(Xk)
∥∥ ≤ ε} . (40)



12 G–2020–18 Les Cahiers du GERAD

Then,

E (T ?ε ) ≤ 2Φ0L2

(2β − 1)(1− ν)(1− τp)
ε

−p
min(p−1,1) + 1, (41)

where L2 :=
[
1 + κ−1

min

(
Ldmax + (γ + 2)cεfd

−1
min

)] p
min(p−1,1) . i.e., the expected number of iterations

taken by Algorithm 1 to reduce the gradient below ε ∈ (0, 1) is bounded in O
(
ε

−p
min(p−1,1) /(2β − 1)

)
.

Proof. As shown previously, since Assumption 3 holds for the stochastic process {(Φk,∆k,Wk)}k∈N
generated by Algorithm 1, with q = β, h(x) = xp, η = 1

2β(1−ν)(1−τp) and δε′ = ε′/ζ, then Theorem 1

applies for the stopping time Tε′ defined in (30). Thus, the following inequality holds for all ε′ ∈ (0, 1)

E (Tε′) ≤
β

2β − 1
× Φ0ζ

p

ηε′p
+ 1, (42)

where ζp >
[
κ−1

min

(
Ldmax + (γ + 2)cεfd

−1
min

)]p/p̂
thanks to (32), with p̂ = min(p − 1, 1). Now, let

ε ∈ (0, 1) be arbitrary fixed. Then, ε1/p̂ ∈ (0, 1), which means that (42) holds in particular for

ε′ = ε1/p̂. By noticing moreover that Tε1/p̂ = T ?ε , then it follows from (42) that

E (T ?ε ) ≤ β

2β − 1
× 2Φ0ζ

p

β(1− ν)(1− τp)
ε−p/p̂ + 1. (43)

Since p/p̂ = p/min(p− 1, 1) ≥ 2 for all p > 1, then (41) results from (43) by choosing ζp according to

ζp =
[
1 + κ−1

min

(
Ldmax + (γ + 2)cεfd

−1
min

)]p/p̂
, which achieves the proof.

The following lim inf-type first-order necessary optimality condition is a simple consequence of the

complexity result of Theorem 4. It shows the existence of a subsequence of random iterates generated

by Algorithm 1 which drives the norm of the gradient of f to zero with probability one. Note that a

similar corollary has been derived in [14].

Theorem 5 Let Assumption 6 and all assumptions that were made in Theorem 2 hold. Then the

sequence {Xk}k∈N of random iterates generated by Algorithm 1 satisfies

lim inf
k→+∞

∥∥∇f (Xk
)∥∥ = 0 almost surely. (44)

Discussion

This manuscript presents the first convergence rate analysis of a broad class of stochastic directional

direct-search (SDDS) algorithms, designed for the unconstrained optimization of noisy blackboxes,

and based on imposing a sufficient decrease condition when accepting new iterates. Using an existing

supermartingale-based framework for the analysis, the methodology for deriving the worst case com-

plexity of SDDS algorithms heavily relies on bounding an expected stopping time associated to the

stochastic process generated by the algorithms. The analysis showed that SDDS algorithms have the

same worst case complexity as any other first-order optimization method in a nonconvex setting. In

particular, this complexity bound matches in some sense its deterministic counterparts despite the fact

that function estimates are sometimes allowed to be arbitrarily inaccurate. The main novelty of the

present research compared to many others on the worst case complexity analysis of stochastic DFO

methods, lies in the fact that the proposed method does not need any gradient information to find

descent directions.

The analysis in the present manuscript strongly relies on the assumption that function estimates

are unbiased. Thus, obtaining worst case complexity results when such estimates are possibly biased

is a topic for future research.
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