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Abstract: In this paper we study the spectral properties of the threshold graphs. In particular, we
give lower and upper bounds for the largest and smallest eigenvalues of a threshold graph. Moreover,
we study the spectral properties of the threshold graphs with a few positive eigenvalues.

Keywords: Threshold graphs, spectral radius, smallest eigenvalue, inertia
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1 Introduction

Let G = (V,E) denote a graph with vertex set V and edge set E. The order n = |V | of G is the

number of its vertices, while the size m = |E| of G is the number of its edges. The complement G of

G = (V,E) is the graph defined on the vertex set V of G, where an edge uv belongs to G if and only

if it does not belong to G.

The adjacency matrix A = (ai,j) of G is defined by ai,j = 1 if vertices vi and vj of the graph G are

adjacent and 0 otherwise. The eigenvalues of a graph G, denoted by λ1 ≥ λ2 ≥ . . . λn are defined to

be the eigenvalues of its adjacency matrix. The largest eigenvalue of G is usually called the spectral

radius of G and sometimes the index of G. The spectral spread of a graph is defined as λ1 − λn.

The positive (negative) inertia of G, denoted by n+(G) (n−(G)), is the number of positive (negative)

eigenvalues of G. The nullity n0(G) of the graph G is the multiplicity of the eigenvalue zero of G.

The clique number ω(G) of a graph G is the size of a maximum clique in G, that is, the size

of largest complete subgraph in G. The independence number α(G) of a graph G is the size of the

maximum independent vertex set in G.

A complete split graph with parameters n, q (q ≤ n), denoted by CS(n, q), is a graph on n vertices

consisting of a clique on q vertices and an independent set on the remaining n − q vertices in which

each vertex of the clique is adjacent to each vertex of the independent set. Obviously if q = n, then

the complete split graph is isomorphic to the complete graph Kn.

A threshold graph is obtained through an iterative process which starts with an isolated vertex, and

where, at each step, either a new isolated vertex is added, or a vertex adjacent to all previous vertices

(dominating vertex) is added.

For any threshold graph G, we consider a binary sequence b = b1b2 . . . bn such that bi = 0 if the

corresponding vertex vi is isolated and otherwise bi = 1. We called b the creation sequence of G.

The trace T of a threshold graph G is the number of dominating vertices in G. Then the number

of the isolated vertices is n− T .

From the definition of threshold graphs, we have that the set of all isolated vertices of the threshold

graph G is an independent set, that is, the independence number α(G) ≥ n − T and the set of all

dominating vertices with the first (isolated) vertex of G is a clique in G, that is, the clique number

ω(G) ≥ T + 1. Then for the threshold graph G, we have

α(G) + ω(G) ≥ (n− T ) + (T + 1) = n+ 1. (1)

On the other hand, from [7] we have that for any graph G, α(G)+α(G) ≤ n+1, i.e., α(G)+ω(G) ≤
n+ 1. This with (1) leads to the following result on threshold graphs:

Lemma 1 Let G be a threshold graph of order n with the independence number α(G) and the clique

number ω(G). Then

α(G) + ω(G) = n+ 1.

Our motivation for considering threshold graphs comes from the spectral graph theory. These

graphs arise (within the graphs with fixed order and/or size) as graphs with the largest eigenvalue

of the adjacency matrix. Brualdi and Hoffman [3] observed that they admit the stepwise form of

the adjacency matrix, while later Hansen (see, for example, [1]) observed that they are split graphs

distinguished by a nesting property imposed on vertices in the maximal co-clique, and hence called

them the nested split graphs. As far as we know, it was first observed in [13], they are {2K2, P4, C4}-
free graphs, and thus the threshold graphs. In [5, 6] it was observed that they appear in the same role

with respect to the signless Laplacian spectrum.
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In this paper, we obtain spectral properties of the threshold graphs by giving bounds on its spectral

invariants such as the spectral radius, smallest eigenvalue, and spectral spread. Moreover, we compare

the energy and Laplacian energy of a threshold graph with only one positive eigenvalue.

The rest of the paper is organized as follows. In Section 2, we give lower bounds and upper bounds

respectively for the spectral radius and the smallest eigenvalue of a threshold graph. In Section 3 we

obtain some upper bounds on the spectral radius of a threshold graph. In Section 4 we study other

spectral properties of a threshold graph with small positive inertia.

2 A lower bound for the spectral radius of a threshold graph

In this section we give lower bounds and upper bounds respectively for the spectral radius and the

smallest eigenvalue of a threshold graph. Before this, we need the following lemma which gives a

relation between the eigenvalues of a real symmetric matrix and the eigenvalues of its partitioned

matrix.

Lemma 2 [4] Let A be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Given a partition

{1, 2, . . . , n} = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk with |Vi| = ni > 0, consider the corresponding blocking A = (Ai,j),

where Ai,j is an ni × nj block and 1 ≤ i, j ≤ k. Let ei,j be the sum of the entries in Ai,j and set

the matrix B := (ei,j/ni) for 1 ≤ i, j ≤ k. Then the eigenvalues of B interlace those of A, i.e.

λi ≥ ρi ≥ λn−k−i for 1 ≤ i ≤ k, where ρi is the ith largest eigenvalue of B. Moreover, if the block Ai,j

has constant row sums bi,j, then the spectrum of B is contained in the spectrum of A.

The following results give bounds for the largest and smallest eigenvalues of a graph having a vertex

set partitioned in two sets: an independent set and a clique.

Theorem 1 Let G = (V,E) be a graph on n vertices with the spectral radius λ1, the smallest eigenvalue

λn, and the independence number α(G) and let I and V \I be respectively a maximum independent set

and a clique in G. If b is the number of edges between I and V \I, then

λ1 ≥
1

2

(
n− α− 1 +

√
(n− α− 1)2 +

4b2

(n− α)α

)
, (2)

and

λn ≤
1

2

(
n− α− 1−

√
(n− α− 1)2 +

4b2

(n− α)α

)
. (3)

The quality holds in (2) and (3) if G is a bi-degree graph with the same vertex degrees for the vertices

in each partition I and V \I.

Proof. Let V1 = I be a maximum independent set of size α. Then considering the partitions V1 and

V2 = V \V1 on the vertex set of G with Lemma 2, we arrive at the matrix

B =

[
0 b/α

b/(n− α) n− α− 1

]
.

The eigenvalues of B are as follows:

λ1(B) =
1

2

(
n− α− 1 +

√
(n− α− 1)2 +

4b2

(n− α)α

)
,

and

λ2(B) =
1

2

(
n− α− 1−

√
(n− α− 1)2 +

4b2

(n− α)α

)
.
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By Lemma 2 we have λ1(G) ≥ λ1(B), and λn(G) ≤ λ2(B), which gives the desired result in (2) and (3).

The second part of the proof is directly achieved by Lemma 2.

Let G = (V,E) be a graph with the clique X = {v1, v2, . . . , vk} and the independent set V \X =

{vk+1, . . . , vn}. Considering a as the number of edges going between X and V \X.

In a threshold graph G, the degree of the common vertex of the maximum clique and the maximum

independent set is k− 1, and then b = k− 1 +a. This fact with Theorem 1, gives the following bounds

on the spectral radius and the smallest eigenvalue of a threshold graph.

Corollary 1 Let G be a threshold graph on n vertices with the spectral radius λ1, the smallest eigenvalue

λn, and the clique number k. Let a be the number of edges between the maximum clique C and

V \C, then

λ1 ≥
1

2

(
k − 2 +

√
(k − 2)2 +

4(a+ k − 1)2

(k − 1)(n− k + 1)

)
,

and

λn ≤
1

2

(
k − 2−

√
(k − 2)2 +

4(a+ k − 1)2

(k − 1)(n− k + 1)

)
.

For connected threshold graphs, the equality holds in both inequalities if G is the complete split graph

CS(n, k − 1).

Proof. In a threshold graph G with the clique number k, |I| = α = n− k + 1 by Lemma 1. Then the

first part of the proof is directly achieved by Theorem 1.

By Theorem 1, if the connected threshold graph G is bi-degree with two degrees one on the vertices

in the maximum independent set I and other on the vertex set V \I, then equality holds in both

inequalities. Since the degree of the common vertex of I and the maximum clique in G is k − 1, then

all vertex degrees in I must be k − 1. Thus G is the complete split graph with a clique of size k − 1,

i.e. G ∼= CS(n, k − 1). This completes the second part of the proof.

In the following we give other bounds for λ1 and λn of a threshold graph.

Theorem 2 Let G = (V,E) be a threshold graph on n vertices with the spectral radius λ1, the smallest

eigenvalue λn, and the clique number ω(G) = k and let C = {v1, v2, . . . , vk} and V \C be respectively

the maximum clique and an independent set in G. If a is the number of edges between C and V \ C,

then

λ1 ≥
1

2

(
k − 1 +

√
(k − 1)2 +

4a2

k(n− k)

)
,

and

λn ≤
1

2

(
k − 1−

√
(k − 1)2 +

4a2

k(n− k)

)
.

Proof. Let V1 = C be the clique of maximum size k. Then considering the partitions V1 and V2 = V \V1
on the vertex set of G, with Lemma 2, we arrive at the matrix

B =

[
k − 1 a/k

a/(n− k) 0

]
.
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The eigenvalues of B are as follows:

λ1(B) =
1

2

(
k − 1 +

√
(k − 1)2 +

4a2

k(n− k)

)
, and λ2(B) =

1

2

(
k − 1−

√
(k − 1)2 +

4a2

k(n− k)

)
.

By Lemma 2 we obtain λ1 ≥ λ1(B), and λn ≤ λ2(B), which gives the desired result.

3 Upper bounds for the spectral radius of a threshold graph

In this section, we give upper bounds for the spectral radius of a threshold graph.

Theorem 3 Let G = (V,E) be a graph on n vertices with spectral radius λ1, maximum clique number

ω(G) = k and independence number α, such that ω(G) + α(G) = n+ 1. Let C = {v1, v2, . . . , vk} be a

maximum clique in G and a be the number of edges between C and V \ C. Then

λ1 ≤
k − 2 +

√
k2 + 4a

2
. (4)

The quality holding if and only if G ∼= CS(n, k − 1), or G ∼= Kk ∪ (n− k)K1.

Proof. Since α = n − k + 1, any maximum independent set in G must contain {vk+1, vk+2, . . . , vn}
and one vertex from C. Assume without loss of generality that v1 is the common vertex.

Let X be the Perron vector of G (a unit non-negative eigenvector belonging to λ1). The eigenvalue-

eigenvector equation corresponding to v1 is

λ1x1 = x2 + x3 + · · ·+ xk.

Therefore

λ1 =
x2 + x3 + · · ·+ xk

x1
. (5)

The eigenvalue-eigenvector equation corresponding to vj , 2 ≤ j ≤ k is

λ1xj = x1 + x2 + · · ·+ xj−1 + xj+1 + · · ·+ xk +
∑

vp∈Nj∩(V \C)

xp,

where Nj denotes the set of neighbors of vj in G.

Adding the k first eigenvalue-eigenvector equations, we get

λ1

k∑
j=1

xj = (k − 1)

k∑
j=1

xj +

n∑
j=k+1

djxj , (6)

where dj denote the degree of the vertex j in G.

If xj = 0 for all k + 1 ≤ j ≤ n (i.e., all vertices vj are isolated vertices with degree zero) then

we have λ1 = k − 1. Otherwise, we consider the eigenvalue-eigenvector equation corresponding to vj ,

k + 1 ≤ j ≤ n as follows:

λ1xj =
∑

vp∈Nj

xp ≤
k∑

p=2

xp =

k∑
p=1

xp − x1.

Thus, for k + 1 ≤ j ≤ n

xj ≤
1

λ1

(
k∑

p=1

xp − x1

)
. (7)
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Combining (6) and (7) and using the fact that dk+1 + dk+2 + · · · + dn = a, the number of edges

between C and V \ C, we get

λ1

k∑
j=1

xj ≤ (k − 1)

k∑
j=1

xj +
1

λ1

 k∑
j=1

xj − x1

 n∑
j=k+1

dj

= (k − 1)

k∑
j=1

xj +
a

λ1

k∑
j=1

xj −
ax1
λ1

.

Therefore

λ1 ≤ (k − 1) +
a

λ1
− a

λ1
· x1∑k

j=1 xj

= (k − 1) +
a

λ1
·
∑k

j=2 xj∑k
j=1 xj

= (k − 1) +
a

λ1
·

(
x1 +

∑k
j=2 xj∑k

j=2 xj

)−1
.

Using (5), we get

λ1 ≤ k − 1 +
a

λ1

(
λ−11 + 1

)−1
= k − 1 +

a

λ1 + 1
, (8)

from which the inequality follows.

To characterize the extremal graphs, we assume that we have equality in (9). This gives all

inequalities in the above must be equalities. Then from the proof we have G ∼= Kk ∪ (n − k)K1, or

Nj = {2, . . . , k} for k + 1 ≤ j ≤ n, i.e., G ∼= CS(n, k − 1) (notice that N1 = {2, . . . , k}).

This completes the second part of the proof.

Terpai in [16] gave the following Nordhaus–Gaddum type result on the spectral radius of a simple

graph G.

Lemma 3 Let G be a simple graph of order n with the complement G. Then

λ1(G) + λ1(G) ≤ 4

3
n− 1.

Lemma 3 with Theorem 2 leads to the following result:

Theorem 4 Let G = (V,E) be a graph on n vertices with spectral radius λ1, maximum clique number

ω(G) = k and independence number α, such that ω(G) + α(G) = n+ 1. Let C = {v1, v2, . . . , vk} be a

maximum clique in G and a be the number of edges between C and V \ C. Then

λ1 ≤
4

3
n− 1− 1

2

(
n− k +

√
(n− k)2 +

4a

(n− k + 1)(k − 1)

)
, (9)

where a = (k − 1)(n− k)− a.

Proof. By Lemma 3 we have λ1(G)+λ1(G) ≤ 4
3n−1, that is, λ1(G) ≤ 4

3n−1−λ1(G). The maximum

independence number of G is n− k + 1, that is, the clique number of G. This with Theorem 2 gives

λ1(G) ≤ 4

3
n− 1−λ1(G) ≤ 4

3
n− 1−λ1(G) ≤ 4

3
n− 1− 1

2

(
n− k +

√
(n− k)2 +

4a

(n− k + 1)(k − 1)

)
,

where a is number of edges between the maximum clique C(G) of G and V \C(G), that is, a =

(k − 1)(n− k)− a.
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4 Spectral properties of threshold graphs with small positive inertia

In this section, we study more spectral properties of the threshold graphs, in particular, those with

positive inertia n+(G) = 1, 2. But before it, we need the following lemmas.

The following result gives the nullity n0(G), the positive inertia n+(G) and the negative iner-

tia n0(G) of a threshold graph G by its creation sequence.

Lemma 4 [2] In a connected threshold graph G represented with the creation sequence b, n−(G), n0(G),

and n+(G) are respectively the number of 1’s, the number of strings 00, and the number of strings 01

in b.

The following result is related to the multiplicity mG(−1) of the eigenvalue −1 in the spectrum of

the threshold graph G.

Lemma 5 [12] Let G be a connected threshold graph having the creation sequence b = 0x11y1 . . . 0xs1ys ,

where the xi and yi are positive integers. Then

mG(−1) =

{ ∑k
i=1(yi − 1) if x1 > 1

1 +
∑k

i=1(yi − 1) if x1 = 1.

For a connected graph G, it is well-known that n+(G) = 1 if and only if G is a complete k-partite

graph. In the following we characterize all connected threshold graphs with a single positive eigenvalue.

Theorem 5 Let G be a connected threshold graph. Then n+(G) = 1 if and only if G is a complete split

graph.

Proof. Any complete split graph G is a complete partite graph and thus n+(G) = 1. Inversely, let

n+(G) = 1. By Lemma 4 we have the number of strings 01 is only one, that is, the creation sequence

of G is b = 0x11y1 , which implies G is a complete split graph.

Theorem 6 The spectrum of a complete split graph G is as follows:

Spec(G) =
{
λ1, 0

n−k,−1k−2, λn

}
,

where λ1 = k−2+
√
4nk−3k2+4k−4n

2 , and λn = k−2−
√
4nk−3k2+4k−4n

2 . Moreover, λ1 is an increasing

function on the variable k and then has its maximum value at k = n, i.e. G ∼= Kn.

Proof. In the graph G, let V1 and V2 be the sets of vertices in G corresponding to zeros and 1’s in the

creation sequence b, respectively. By Lemma 2 we arrive at

B =

[
0 k − 1

n− k + 1 k − 2

]
,

which has two eigenvalues λ1 and λn. By Lemma 2, these eigenvalues are exact eigenvalues of G. The

eigenvalues 0 and −1 and their multiplicities are obtained by Lemma 4.

To prove the second part of the theorem, we consider f(x) = x− 2 +
√

4nx− 3x2 + 4x− 4n, where

1 ≤ x ≤ n. One can easily see that f ′(x) is positive on the set D = {1, 2, . . . , n} and then f(x) is an

increasing function on the domain D. This also implies λ1(G) = f(k) ≤ f(n) = n = λ1(Kn) for the

complete split graph G.

The energy of a graph G with the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn is defined as [9] E(G) =
∑n

i=1 |λi|.
The Laplacian matrix of G is L(G) = D(G) − A(G), where D(G) is the degree diagonal matrix of
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G. This matrix has nonnegative eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0. The Laplacian energy of the

graph G is defined as [11]

LE = LE(G) =

n∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ . (10)

Let S1
n be the graph obtained from the star graph K1,n−1 by adding an edge between two pendant

vertices in K1,n−1.

Lemma 6 [8] Among all connected threshold graph of order n (> 4), the star graph K1,n−1 has the first

minimum Laplacian energy. Moreover two graphs Kn and S1
n have commonly the second minimum

Laplacian enery.

In [10], it was conjectured that the Laplacian energy is always greater than or equal to the graph

energy, The validity of the conjecture was eventually disproved by means of counterexamples [15].

In [14], the authors showed that the conjecture is true for bipartite graphs G, that is, LE(G) ≥ E(G).

In the following we give a comparision between these two energies on the complete split graphs.

Theorem 7 For any complete split graph G, LE(G) ≥ E(G).

Proof. For the star graph K1,n−1, we have E(K1,n−1) = 2
√
n− 1 ≤ LE(K1,n−1) = 2n − 4 + 4/n for

n ≥ 1. Now we consider G � K1,n−1. By Lemmas 6 and Theorem 6,

LE(G) ≥ LE(Kn) = E(Kn) ≥ E(G) = k − 2 +
√

4nk − 3k2 + 4k − 4n,

which completes the proof of the theorem.

Theorem 8 Let G be a threshold graph of order n and the clique number k. Then n+(G) = 2 if and

only if G has the creation sequence b = 0x11y10x21y2 , where x1 + x2 = n− k + 1 and y1 + y2 = k − 1.

Moreover, the spectrum of G is as follows:

{λ1, λ2, 0n−k−1,−1k−3, λn−1, λn},

where λi for i ∈ {1, 2, n− 1, n} are roots of the ploynomial

p(x) = x4 + (3− k)x3 + (−x1k − x2y2 + x1 − k + 2)x2 + (x1 − x1k − x2y2 + x2y1y2)x+ x1x2y1y2.

Proof. Suppose that X1 (Y1) , and X2 (Y2) be the vertex sets in G corresponding to x1 (y1) and x2 (y2)

zeros (ones) in the creation sequence b, respectively. Applying Lemma 2, the matrix B corresponding

to the block matrix on partitions X1, Y1, X2and Y2 is as follows: B =


0 y1 0 y2
x1 y1 − 1 0 y2
0 0 0 y2
x1 y1 x2 y2 − 1

.

The characteristic polynomial of the matrix B is

P (x) = x4 + (−y1 − y2 + 2)x3 + (−x1y1 − x1y2 − x2y2 − y1 − y2 + 1)x2

+ (x2y1y2 − x1y1 − x1y2 − x2y2)x+ x1x2y1y2. (11)

This with the facts x1 +x2 = n−k+ 1 and y1 + y2 = k− 1 gives the desired result of the theorem.

The following corollary is obtained directly by Lemma 2.

Corollary 2 Let G be a threshold graph. Then n+(G) = s if and only if G has a creation sequence in

the form b = 0x11y1 . . . 0xs1ys .
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In [12] Section 4, the authors proved that a threshold graph has no eigenvalues in (−1, 0). In the

following we give a shorter proof for this.

Theorem 9 A threshold graph has no eigenvalues in (−1, 0).

Proof. The Kk is a clique in G and then by interlacing theorem we have −1 = λ2(Kk) ≥ λn−k+2,

that is, at least k − 1 eigenvalues of G is located in (−∞, −1]. On the other hand, by Lemma 4, the

number of the negative eigenvalues of G is equal to the number of ones in b, that is k − 1. Then G

has no eigenvalues in (−1, 0).

The following gives a lower bound for the spectral spread s = λ1 − λn of a threshold graph.

Theorem 10 Let G Let G be a threshold graph on n vertices with the spectral spread s, and the clique

number k. Let a be the number of edges between the maximum clique C and V \C, then

s ≥ max

{√
(k − 2)2 +

4(a+ k − 1)2

(k − 1)(n− k + 1)
,

√
(k − 1)2 +

4a2

k(n− k)

}
.

For connected threshold graphs, the equality holds if G is the complete split graph CS(n, k − 1).

Proof. The proof is directly achieved by Corollary 1 and Theorem 2 .
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[13] S.K. Simić, E.M. Li Marzi, F. Belardo, Connected graphs of fixed order and size with maximal index:
structural considerations, Matematiche (Catania) 59(1–2) (2004) 349–365.

[14] W. So, M. Robbianob, N. M. M. de Abreu, I. Gutman, Applications of a theorem by Ky Fan in the theory
of graph energy, Linear Algebra and its Applications 432 (2010) 2163–2169.
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