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F. Rüdel, G. Walther

G–2020–03

January 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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recherche du Québec – Nature et technologies.
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Abstract: Free-Floating Carsharing (FFCS) systems are a promising concept to reduce the traffic
volume in cities. However, spatial and temporal mismatches of supply and demand require a relocation
of rental cars in order to avoid low degrees of utilization. Here, especially user-based relocation
strategies seem to be promising to increase utilization in a cost-efficient manner. However, a thorough
optimization-based assessment of user-based relocation strategies for FFCS systems is still missing. In
this paper, we introduce an integer program that optimizes the assignment of user-based relocation
strategies in FFCS fleets. We develop a graph representation that allows to reformulate the problem
as a k-disjoint shortest paths problem and propose an exact algorithm to solve large-size instances.
Furthermore, we present a case study based on real-world data and derive managerial insights on user-
based relocation strategies. Our results reveal an upper bound on the benefit of user-based relocation
strategies and demonstrate that the employment of such strategies can increase the number of fulfilled
rental requests by 40 %, while increasing the operator’s profit by 10 %.

Keywords: free-floating car sharing, user-based relocation, polynomial time algorithm
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1 Introduction

In recent years, car sharing services have been hyped as a sustainable complement to public transport

to realize sustainable individual (urban) mobility and thus to mitigate its negative externalities. In

this context, the concept of Free-Floating Carsharing (FFCS) systems has been vividly discussed and

FFCS fleets have been deployed in most large cities all around the world, e.g., by BMW (DriveNow)

and Daimler (car2go). In a FFCS system, users pay a usage fee to pick up a car to move from an origin

to a destination, where they drop the car such that the next user can pick it up. Such systems offer

flexible mobility services that increase a vehicle’s utilization, lower the number of required parking

spaces (Grazi and van den Bergh (2008)), and reduce traffic congestion (Button (2002)).

However, the operative effect of currently deployed FFCSs as well as their viability for operators fell

short of expectations for the following reasons: although being designed as a flexible mobility service,

the perceived flexibility for customers is limited due to spatial or temporal demand mismatches, i.e.,

a preceding customer does not necessarily drop a vehicle close to the succeeding customer’s origin. To

resolve this problem without increasing the vehicle fleet size, carsharing operators relocate vehicles to

decrease the imbalance between vehicle availability and customer demand. Nowadays, these relocations

are mostly performed operator-based, i.e., staff members relocate vehicles during low demand times

or during the night. Still, applying such a relocation concept remains expensive and (time) inefficient

because additional staff must be paid to relocate vehicles. Further, a vehicle cannot be used by a

customer while it is being relocated.

Our recent discussions with major players in the FFCS business revealed that they consider user-

based relocation strategies as a viable alternative to operator-based relocation strategies. In a user-

based relocation strategy, the car sharing operator provides incentives to the customer to relocate the

car, e.g., by offering a discounted fare in exchange for an adjustment of the origin (destination) or

the start (arrival) time of a trip. However, it remains an open question if the potential of user-based

relocation strategies is sufficient to remedy a significant share of the total demand mismatch such that

the need for operator-based relocation becomes superfluous or is at least significantly reduced.

So far, only simulation-based approaches that focus on customer acceptance exist to answer this

question. With this work, we close a remaining gap in this field by providing an optimization-based

approach that allows to exploit the maximum potential a user-based relocation strategy can offer under

perfect conditions. These results are beneficial for practitioners to get an upper bound on potential

benefits and for researchers to benchmark heuristic principles used in simulation studies.

1.1 Aims and scope

The contribution of this paper is threefold. First, we develop a mathematical model that formalizes

the operator’s planning problem in order to exploit the benefit of user-based relocation strategies. We

introduce the Car Sharing Relocation Problem with Flexible Drop-Offs (CSRP-FDO) which relocates

vehicles by slightly modifying a customer’s origin or destination, or start or arrival time in exchange

for a monetary discount. Second, we develop a graph reformulation that reduces the complexity of

the underlying optimization problem significantly. Based on this reformulation, we present an exact

algorithm that allows to solve the CSRP-FDO in polynomial time. We present this algorithm in a

generic way such that it can also be used for related problems, e.g., dispatching vehicles in a ride-

hailing system. Third, we apply this algorithm to a case study for car2go in Vancouver, Canada, and

derive managerial insights on the maximum improvement potential that can be leveraged with different

user-based relocation strategies.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 gives an overview of recent research

on relocation strategies in car sharing systems. Section 3 details our methodology by introducing



2 G–2020–03 Les Cahiers du GERAD

an integer problem formulation as well as a graph reformulation, which allows for a polynomial time

algorithm. Section 4 describes the design of our case study. Finally, Section 5 presents the results

of our experiments before Section 6 concludes the paper with a summary and an outlook on future

research.

2 Literature review

In this section, we review related work. We first give a concise overview on work related to operator-

based relocation strategies, before we discuss work on user-based relocation strategies. Finally, we

summarize our discussion.

Operator-based relocation
Most papers published so far focus on operator-based relocation strategies. While early papers present

different simulation models (Barth and Todd, 1999; Kek et al., 2006), later works allow to identify

optimal relocation strategies using mathematical optimization with different extensions, e.g., allowing

to integrate demand uncertainty (Fan et al., 2008; Nair and Miller-Hooks, 2010). Some papers consider

constraints for electric vehicles (Bruglieri et al., 2014; Gambella et al., 2018), or aggregate relocation

on a more strategic level (Boyacı et al., 2015). Most papers that analyze operator-based strategies

focus on Station-Based Carsharing (SBCS). Only Paschke et al. (2017) study operator-based relocation

strategies for FFCS based on an agent-based simulation within the MATSim framework.

Concluding, simulation and optimization models are well studied for operator-based relocation

strategies. Herein, the more advanced optimization models allow to solve the problem optimally and

account for complex side constraints, e.g., uncertainties. However, most of these studies focus on

SBCS. For FFCS systems only few simulation-based models exist so far.

User-based relocation
Research on user-based relocation strategies is still scarce. Early papers analyzed trip-joining and trip-

splitting strategies to balance demand and supply (Barth et al., 2004; Uesugi et al., 2007). While such

concepts seem amenable for ride-hailing services, for car-sharing services barriers exist due to safety

and security reasons as well as privacy and convenience preferences (Correia and Viegas, 2011; Chan

and Shaheen, 2012; Jorge and Correia, 2013). Accordingly, more recent work focused on user-based

relocation strategies for individual FFCS, exploiting the benefits of modifying temporal or spatial char-

acteristics of individual trips via incentives. In this course, Cepolina and Farina (2012), Di Febbraro

et al. (2012), Clemente et al. (2013) and Di Febbraro et al. (2018) focused on the adjustment of drop-

off locations. Other approaches analyzed combined strategies, e.g., modifying drop-off location and

arrival times (Clemente et al., 2013), or combined temporal and spatial adjustments of trips with trip-

joining strategies and paid relocation (Schulte and Voß, 2015). First approaches focused on combined

user-based and operator-based relocation strategies (Weikl and Bogenberger, 2013; Clemente et al.,

2017)).

All of these approaches base on simulation models that utilize different methodologies, e.g., discrete

event simulation (Di Febbraro et al., 2012; Clemente et al., 2017), timed Petri Nets (Clemente et al.,

2013), or discrete-event simulation (Schulte and Voß, 2015). So far, these approaches do not consider

optimization techniques at all or integrate them only as a reactive, heuristic controler within a sim-

ulation. A pure optimization-based approach that allows to identify the maximum savings potential

under perfect conditions is missing so far.

Summary
Table 1 summarizes the key characteristics of related publications on user-based relocation concepts.

To the best of the authors’ knowledge, only few other papers focus on this concept so far. All of these

publications use a simulation-based methodology and only three focus on FFCS. Furthermore, none
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of the recent papers exploits the full range of relocation strategies, i.e., adjusting the start time, the

arrival time, the origin, and the destination of a trip.

Table 1: Overview of user-based relocation models.

I II III IV V VI VII VIII IX

Station-Based Carsharing X X X X X
Free-Floating Carsharing X X X X

adjusted start time X
adjusted arrival time X X

adjusted origin X X
adjusted destination X X X X X X X

simulation-based methodology X X X X X X X X
optimization-based methodology X

Indices I - IX signify publications as follows: (I) Barth et al. (2004); (II)
Uesugi et al. (2007); (III) Cepolina and Farina (2012); (IV) Clemente et al.
(2013); (V) Clemente et al. (2017); (VI) Di Febbraro et al. (2012); (VII)
Di Febbraro et al. (2018). (VIII) Schulte and Voß (2015); (IX) this paper.

To close this gap, we introduce an optimization-based approach for user-based relocation strategies

in FFCS systems that allows to adjust spatial and temporal characteristics of customer requests.

We then use this approach to analyze the impact of user-based relocation strategies under perfect

conditions in order to determine their maximum improvement potential.

3 Methodology

In this section, we introduce the CSRP-FDO in order to maximize an FFCS operator’s profit through

user-based relocation strategies. First, we present an integer program for the CSRP-FDO in Sec-

tion 3.1. Then, we show how this problem can be reformulated using a compact graph representation

in Section 3.2. Based on this representation, we introduce a polynomial time algorithm to solve the

CSRP-FDO in Section 3.3.

3.1 Problem formulation

The CSRP-FDO maximizes the profit of a car sharing fleet with homogeneous vehicles for a given time

horizon by scheduling a (feasible) sequence of trips to each car. In a sequence, consecutive trips must

be feasible, i.e., a preceding car’s destination must match a succeeding car’s origin in both space and

time dimension. Note that a spatial match does not require two trips to start and end at the very same

position. Instead, we require that the preceding trip’s destination and the succeeding trip’s origin are

within a walking distance below a certain threshold δ. On a similar note, a temporal match is given if

the preceding trip ends before the next trip starts.

If two trips do not match, the fleet operator can apply a user-based relocation strategy to (slightly)

adjust a trip’s start time (S), arrival time (A), origin (O), or destination (D). In return, the customer

receives a discounted fare for the trip she requested in order to compensate the caused inconvenience.

In personal communications with fleet operators, we found that the customer is not expected to accept

more than one modification to her trip at a time. Accordingly, the operator can only apply one of the

mentioned adjustments to each customer request, i.e., the corresponding trip. In this basic model, we

consider a deterministic setting in which a customer always accepts the proposed trip modification.

We use the following notation as summarized in Table 2 to formalize this setting. Let J be the set

of all trips. For each trip j ∈ J , a quintuple Lj = (oj , dj , sj , aj , pj) states its origin oj , its destination

dj , its start time sj , its arrival time aj , and its profit pj . Furthermore, we separate trips into original

trips out of subset Jo and modified trips out of subset Jm. A modified trip i ∈ Jm results from

changing an original trip j ∈ Jo according to a specific relocation strategy. We refer to the original
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Table 2: Notation used for the CSRP-FDO.

K set of all cars
J set of all trips
Jo set of all original trips
Ij set of all modifications of trip j including j itself
Bj set of all predecessors of trip j
Rj set of all rivals of trip j
Sj set of all trips that overlap in time with trip j
xjk binary variable - 1 if car k covers trip j
pj profit earned when fulfilling trip j

oj , dj , sj , aj origin, destination, start time, arrival time of trip j

trip j of the modified trip i as its father fi = j, and indicate the father of a modified trip with a

superscript on the corresponding quintuple Lfi
i . Note that Jo and Jm are disjunct but collectively

exhaustive, i.e., Jo ∪ Jm = J . Set Ij = {j} ∪ {i ∈ Jm | Lfi
i = Lj

i} contains the original trip j and

its possible modifications. Finally, we associate each trip j with a specific profit pj . If j ∈ Jm is a

modified trip, we consider the profit to be already decreased by the related discount.

With Bj = {i ∈ J | di = oj ∧ ai ≤ sj}, we keep track of predecessors of trip j. Multiple trips can

arise at the same time such that a car cannot serve more than one trip out of a subset R ⊆ J . We refer

to such trips as rivals and denote the corresponding set by Rj = {i ∈ J | oi = oj ∧ si ≤ sj , i 6= j}.
Furthermore, Sj = {i ∈ J | sj ≤ si < aj ∨ sj < ai ≤ aj , i 6= j} contains all trips i ∈ J that show

a temporal overlap with trip j. Let K be the set of cars for a given fleet size |K|. For each car k ∈ K,

ok denotes its initial location. We use the binary variable xjk to state if car k ∈ K covers trip j ∈ J
(xjk = 1) or not (xjk = 0).

With this notation, the CSRP-FDO results as follows.

max Z =
∑

j∈J ,k∈K

pjxjk (1)

∑
i∈Ij ,k∈K

xik ≤ 1 ∀j ∈ Jo (2)

xjk ≤ 1ok=oj +
∑
i∈Bj

xik −
∑
l∈Rj

xlk ∀j ∈ J , ∀k ∈ K (3)

∑
i∈Sj

xik ≤M(1− xjk) ∀j ∈ J ,∀k ∈ K (4)

xjk ∈ {0, 1} ∀j ∈ J , ∀k ∈ K (5)

The Objective (1) maximizes the total profit of all served customer requests. Constraints (2) secure

single assignment of demands. Constraints (3) ensure the feasibility of a sequence of scheduled trips

for each car as it enforces each assigned demand to succeed one of its predecessors or to be the first

trip. Constraints (4) secure the single assignment of vehicles to trips over time. Constraints (5) state

the domain of xjk.

A few comments on this modeling approach are in order. First, we consider a deterministic planning

problem that assumes perfect information about future demands over the considered planning horizon.

Although limiting, this assumption is in line with the scope of our studies which is to identify an upper

bound on the improvement potential that can be reached with user-based relocation strategies. Further,

recent works on forecasting mobility demand reveal a high accuracy (Tsao et al., 2018) such that our

approach can still form the basis for a real-time receding horizon algorithm, which uses additional

information from elaborate forecasts, in practice. Second, we do not consider that customers may

reject an operator’s offer to modify her trip. Again, this is in line with our objective of analyzing the

theoretical maximum improvement potential. For further research, one could apply our algorithm in a

simulation environment in a receding horizon fashion to see how customer acceptance rates influence

the improvement potential.
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3.2 Graph representation

In general, the CSRP-FDO resembles a vehicle dispatching problem which assigns trips to vehicles,

similar to vehicle dispatching for ride-hailing and taxi fleets. Naturally, such problems contain an

inherent combinatorial complexity such that even concise integer programs as presented in Section 3.1

stay hardly computationally tractable for large-scale instances. In the following, we develop a graph

representation that resembles parts of this complexity as it allows to capture all information about

precedence constraints and rivalry between trips in the graph itself.

We consider a directed graph G = (V,A) with a set of vertices V and a set of arcs A. Figure 1
shows an example of such a dispatching graph, which captures information about each car’s initial

location and precedence constraints between trips. The vertex set consists of different subsets V =

Vk ∪ Vo ∪ {o, n}, where Vk denotes a set of vertices representing each car’s initial location at the

beginning of the planning horizon, and each vertex in Vo represents an unmodified trip. Further,

we add an artificial source vertex o and an artificial sink vertex n to V. We use the arc set A to

model precedence constraints between trips and to provide profit information. Accordingly, each arc

(u, v) ∈ A connects two vertices u and v only if i) a car can reach a trip from its initial location in

t = 0 or if ii) two trips are feasible, i.e., can be covered by the same car as they match in time and

space. Moreover, we connect the artificial source to all initial car locations and all trips and all initial

car locations to the artificial sink. Each arc (u, v) is associated with a weight wuv, which reflects the

profit of covering the trip denoted by vertex v such that wuv = pv. Then, considering all original trips

in Vo yields a basic graph representation to model precedence constraints without using user-based

relocation strategies.

To consider user-based relocations, we modify this basic graph by adding artificial vertices to

increase the graph’s connectivity: Figure 2 shows such a modification for all potential relocation

strategies. For each relocation strategy (S, A, O, D), we add nodes Sj , Aj , Oj , Dj ⊆ V ′o to trips

j ∈ Jo that we want to modify. To model the discount that the operator offers to the customer, the

weight of the incoming arcs of these nodes is negative (wuv = dv < 0). Then, we add all additional

arcs to A that allow for an additional connection between another trip and a synthetic vertex (i.e.,

a user-based relocation). We only add vertices that create at minimum one additional arc. Clearly,

we can afterwards remove the artificial vertices and merge the remaining arcs to sparsen the graph

by shrinking |V| and |A|. Figure 3 shows an example of such an extension. Here, the dashed arc

represents a connection results from modifying the origin of v7 and adapting the profit po7 accordingly.

Using this technique, we allow to model different combinations of user-based relocation strategies via

subpaths in G. between v4 and v7 that

{o, n}

Vk

Vo

v1

v2

v3

v4

v6

v5

v7

no

0

0

0

0
0

0

0

p3

p4

p5

p6

p7

Figure 1: Dispatching graph representation of a CSRP-FDO instance with two vehicles and five trips.

3.3 Polynomial time algorithm

Using the graph representation introduced in Section 3.2, we note that maximizing the profit in the

CSRP-FDO equals solving a k-disjoint Shortest Paths Problem on G′ with V ′ = V, A′ = A, and

w′uv = −wuv, ∀(u, v) ∈ A′. By negating the arc weights and identifying k disjoint shortest paths, we

consider the additive inverse of the original objective. To consider the FFCS system’s fleet size, we
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Sj

Oj

vj

Aj

Dj

pj

dSj

dOj

dAj

dDj

pj

pj

Figure 2: All possible modification vertices for a trip vj .

{o, n}

Vk

Vo

v1

v2

v3

v4

v6

v5

v7

no

0

0

0

0
0

0

0

p3

p4

p5

p6

p7
po7

Figure 3: Graph representation of a CSRP-FDO instance with two cars and five trips.

limit the number of disjoint paths to k = |K|. Based on the proof of Suurballe (1974) that shows that

it is possible to increase the number of shortest disjoint paths on a graph G from i to i+1 by finding a

shortest interlacing on a modified graph G′, we present a polynomial time algorithm with a complexity

of O(k(|A|+ |V|log|V|)) in the following.

Figure 4 shows the pseudo-code of this algorithm. The presented algorithm consists of two steps.

First, we initialize the algorithm by finding a shortest path with the Bellman-Ford Algorithm. After-

wards, we iterate i = 1, . . . , k − 1 times to find the remaining disjoint shortest paths. Every iteration

consists of three steps: i) modifying the graph, ii) computing the shortest path on the modified graph

with a non-negative shortest path algorithm and iii) deriving the i+1 shortest disjoint paths.

In the following, we explain this algorithm, and illustrate it with a simple example (see Figure 5a)

in which we solve the problem for two cars and two trips. Figure 5b shows the graph with the marked

first shortest path. From this shortest path, we obtain the distance label of each vertex (e ∈ E1) and

its predecessor on the path (o ∈ Op1
).

With this information, we start iterating by updating the Graph G to a modified Graph Gi+1 (Fig-

ure 5c). Herein, we first modify all path arcs and path nodes by calling the function UpdatePathArcs().

Afterwards, we complete the modification by modifying the non-path arcs with UpdateNonPathArcs().

The modification performed by these two functions consists of the following three steps. We revert

all arcs that belong to existing paths, split the vertices into an incoming and an outgoing part, and

update the arc weights with the reweighting function of the Johnson Algorithm (see Johnson, 1977).

After modifying the graph, we use a modification of a non-negative shortest path algorithm, e.g.,

the Dijkstra Algorithm, to find the next shortest path. Additionally, we calculate in this step the new

Figure 4: Algorithm for the CSRP-FDO.

1: G1 ←− (V,A, C)
2: p1, Op1 , E1 ←− bellman ford*(G1, 0, n)
3: P1 ←− {p1}
4: for i = 1, . . . , k − 1 do
5: Gi+1 ←− UpdatePathArcs(G1, Pi, E i)
6: Gi+1 ←− UpdateNonPathArcs(Gi+1, Pi, E i)
7: p̂i+1, Op̂i+1 , E i+1 ←− dijkstra*(Gi+1, 0, n)
8: Pi+1, OPi+1 ←− construct paths(Pi, OPi , p̂i+1, Op̂i+1)
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0
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−1
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(a) Initial graph G.

0
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−1
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(b) Shortest path in G.

0
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0

0.8

0.8

0
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0
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(c) Transformed graph Gi+1.

0
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0

0

0.8

0.8

0
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v3
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0

0

0

v′4
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(d) Shortest path in Gi+1.

0
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0

−1

−0.8

−1

0
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v3

v4

(e) Arcs used in G and Gi+1.

0
o n

0

−1

−0.8

−1

0

0

v1

v2

v3

v4

(f) Disjoint shortest paths in G.

Figure 5: Example with |Vk| = 2 and |Vo| = 2 for Algorithm 4.

distance labels and update the predecessor information. Figure 5d shows the shortest path on Gi+1.

With function construct path(), we conduct the last step of the iteration and derive the i+ 1 disjoint

shortest paths of graph G. We first mark all arcs that are on a shortest path of either graph G or

graph Gi+1. If there exists an arc from vertex i to vertex j in Gi+1 that is the reversed arc of an arc in

G (Figure 5e), we unmark both arcs. Afterwards, we derive the i+ 1 disjoint shortest paths by using

the predecessors to trace all marked arcs that reach the sink vertex n back to the source vertex 0.

Figure 5f shows the solution of the example.

With this algorithm, we are able to solve all instances of the CSRP-FDO to optimality in polynomial

time, while it is not possible to solve realistic instances with a standard desktop computer using a

commercial solver due to the memory requirements of the corresponding IP-formulation.

4 Experimental design

We base our experiments on real-world data for car2go Vancouver, which was the largest fleet that

car2go operated in terms of number of cars and members during the time the data was collected. Our

data set covers a time span of 63 days during March 2015 and May 2015. Figure 6 shows the catchment

area of this data set, which covers the fleet’s main service and operations area in central Vancouver.

The data set bases on idle times of cars, i.e., each data point contains information on the car’s id, its

position, and the time span when it idled there. Based on this data, we reconstructed a representative

set of 164,445 trips for the analyzed time period.

Although the trip number appears to be sufficiently large for a statistically significant computational

analysis, this is not the case if one looks at a daily resolution. Within the analyzed time period, the

available data splits across 45 working days and 18 weekend days. Both, the imbalance between

working and weekend days as well as the small number of days does not allow to base our study

on a sufficient number of scenarios. To resolve this problem, we use conditional mass probability

distributions (CMPDs) to sample a sufficiently large, yet realistic, set of scenarios for our studies.
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Figure 6: Catchment area of our case study data1.

In the following, we first formalize the concept of CMPDs (Section 4.1), before we detail our scenario

generation (Section 4.2) and discuss our sensitivity analyses (Section 4.3).

4.1 Conditional Mass Probability Distributions

In general, a CMPD is used in the field of statistics to describe a dependency between two jointly

distributed random variables. Such a conditional probability depicts the contrary of the commonly

known marginal probability, where a random variable is independent of other random variables. For-

mally, we consider two random variables X and Y . Then, the conditional probability that Y takes

realization y when X takes realization x is

P(Y = y | X = x) =
P({X = x} ∩ {Y = y})

P(X = x)
. (6)

Further, we can express this relationship more generally by using a conditional probability mass func-

tion (CPMF) without specifying x such that

pY |X(y | x) =̂ P(Y = y | X = x) =
P({X = x} ∩ {Y = y})

P(X = x)
. (7)

Using the chain rule of probabilities, we can extend the CPMF definition to an arbitrary number of

jointly distributed random variables X1, ..., Xn such that

pXn,...,X1
(xn, ..., x1) =̂ P(Xn, ..., X1) = P(Xn)P(Xn−1, ..., X1), (8)

which recursively yields

pXn,...,X1
(xn, ..., x1) =̂ P(Xn, ..., X1) =

n∏
i=1

P(Xi |
n−1⋂
j=1

Xj). (9)

1The figure bases on OpenStreetMap, which is data licensed under the Open Data Commons Open Database License
(ODbL) by the OpenStreetMap Foundation (OSMF). For more information see www.openstreetmap.org/copyright.
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In our specific application case, we use this theory to fit a dedicated CPMF pS,L,O,D,T (s, l, o, d, t),

which characterizes the probability of a specific car-sharing trip, dependent on five random variables

(S,L,O,D,T), determining the start time s, the duration l, the origin o, the destination d of a trip,

and the type of day t. We then use this CPMF to generate customer requests within our scenario

generation.

4.2 Scenario generation

To create sufficiently dense data points, we discretize the spatial and the time dimension of our data

before we generate our scenarios. Spatially, we discretize the catchment area into a board of 18x36

equally sized squares. This yields a resolution for which any pair of points located in two neighboring

squares can be reached within less than 500 meters, which is the maximum distance a customer is

willing to walk to a car sharing vehicle (cf. Herrmann et al., 2014). Temporally, we divide a day into

10-minute intervals, starting at 5:00am and ending at 12:00pm. We do not consider the time interval

between 0:00am and 5:00am for our studies, because car2go conducted operator-based relocations

during this period, which would bias the data set.

Based on this discretized data, we fitted a CPMF as discussed in Section 4.1, which allows us to

generate trips for the whole time horizon. Then, we created scenarios in two steps. First, we picked an

initial location for each vehicle based on a marginal probability distribution for the initial location of

vehicles in the original data set at 5:00am. Second, we generated customer requests using the respective

CPMF.

We set the number of vehicles to the average number of vehicles deployed during the days the data

set was collected. Similarly, we generate n customer requests, with n being the average daily number

of requests from the original data. To calculate the revenue of the car sharing operator, we assumed a

revenue of 0.32 Canadian Dollars (CAD) per minute. Consumer studies showed that a vast majority

of carsharing customers is willing to accept a more distant car for a price discount of about one third

(Herrmann et al., 2014). Accordingly, we consider a discount of 33% in case a user-based relocation

strategy is applied.

We limit the distance between origin and destination by the distance that a driver can travel within

the time of his or her car rental ((aj − sj) periods). The speed limit within Vancouver is 50 km/h

( 50
6 km/period). Therefore, a driver driving at the speed limit ( 50

6 km/period) for the whole trip

duration ((aj − sj) periods) can travel at most 50
6 (aj − sj) km.

4.3 Sensitivity analyses

In our studies, we distinguish between working day and weekend day scenarios. For both we used an

individual CPMF and created 20 scenarios each as a base case. Here, we set the number of vehicles

to 626 and 623, which is the corresponding average number of vehicles from the real data for working

and weekend days. Analogously, we accounted for 2,787 and 3,023 daily trips.

Besides, we create two additional sets of scenarios, one in which we vary the number of available

vehicles and one in which we vary the number of daily customer requests. We vary the number of cars

in between [300; 630] with a step width of 10 and the number of daily customer requests in between

[2, 500; 3, 400] with a step width of 100. By so doing, we create in total 880 working day and 880

weekend day scenarios.

We analyze only pure user-based relocation strategies, i.e., strategies where the operator can change

a single characteristic of a trip, since our discussions with practitioners indicated that a customer is

expected to react much more reluctant to accept changes of multiple characteristics of her trip. Table 3
summarizes all possible relocation strategies, which consists of modifying either the start time (S), the

arrival time (A), the origin (O) or the destination (D) of a customer request.
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Table 3: Overview of relocation strategies.

name modified property extend of modification discount

S start time 1 period later 33%
A arrival time 1 period earlier 33%
O origin shift into a neighboring zone 33%
D destination shift into a neighboring zone 33%

5 Results

In this section, we discuss our results. First, we discuss the results for our base case, before we detail

the findings of our sensitivity analysis. For all discussions, we assume that the system is operated

under perfect conditions, i.e., complete (temporal) information and full customer cooperation in terms

of accepting a user-based relocation. This assumption is in line with the goal of our studies, which is

to analyze the maximum savings potential of different user-based relocation strategies.

5.1 Base case

Figure 7 shows a Box-Whisker-Plot that details the total profit for the base case working day scenarios

and each strategy. As can be seen, a temporal user-based relocation strategy that modifies either

the start time (S) or the arrival time (A) of a trip does not significantly increase the operator’s

profit compared to a fleet operation without user-based relocation (None). On average, both temporal

strategies increase the profit by only 0.3%. Contrary, spatial user-based relocation strategies can

increase the profit substantially by on average 10.9% (modifying the origin) or 11.1% (modifying the

destination). Notably, the profit distribution when applying a destination modification shows a slightly

more narrow distribution, yielding a higher minimum value, but also a lower maximum value.

None S A O D
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Max 89,1 89,4 89,4 99,0 98,7
3. quartile 80,4 80,6 80,5 88,7 88,9

Median 77,9 78,1 78,1 86,2 86,6
1. quartile 75,3 75,5 75,5 83,9 83,8

Min 71,9 72,5 72,4 80,5 80,8

Figure 7: Profit generated during a working day.

Figure 8 details a distribution of the number of fulfilled trip requests for each working day scenario

and strategy. As can be seen, the results for the temporal relocation strategies resemble the profit

analysis of Figure 7 and show only minor improvements of on average 1.2%. Interestingly, the results for

spatial relocation strategies do not resemble the profit discussion. As can be seen, a spatial relocation

strategy that modifies a trip’s origin yields more fulfilled customer requests compared to a strategy

that modifies a trip’s destination. On average, modifying trip origins yields an increase in fulfilled trips

of 40.5% (752 trips) compared to a solution without relocation, whereas modifying trip destinations

yields an average increase of 35% (643 trips).

These results allow for the following additional insights. Apparently, one may yield similar results

by applying either of the temporal relocation strategies, because both modifying a trip’s start time
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Min 1,798 1,827 1,831 2,573 2,454

Figure 8: Fulfilled customer requests during a weekday.

or modifying a trip’s arrival time can be used to shift a trip in time analogously. Focusing on spatial

relocation strategies, modifying trip origins yields a higher impact than modifying trip destinations,

because modifying a trips origin yields an additional degree of freedom for each trip sequence when

modifying the first trip. However, this additional degree of freedom only helps to increase the number

of served customer requests, which does not necessarily corellate with an increase in the operator’s

profit. Both, the origin-modification and the destination-modification strategy yield an average profit

increase of about 11% but the destination-modification strategy shows a 5% lower increase in terms of

fulfilled customer requests.

Figures 9&10 complement our analysis by showing the average number of occupied cars for each

time step (Figure 9) and the average number of modified trips for each time step (Figure 10), aggre-

gated over all working day scenarios. As can be seen in Figure 9, the number of occupied cars remains

always 30% below the fleet size, even during peak times when applying the most successful relocation

strategies. Figure 10 shows that only few modifications during the evening peak are possible with

temporal relocation strategies, which resembles our previous findings on a more granular time resolu-

tion. Focusing on spatial relocation strategies, one can see that modifications occur during the whole

day. Although, the largest share of modifications occurs during the morning and evening peaks, both

strategies keep a constant level of relocations during off-peak hours. Especially, the origin-modification

strategy preserves a higher constant level of relocations during off-peak hours, which finally enables

more relocations during peak hours.
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Figure 9: Average number of occupied cars for each time step on a working day.
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Figure 10: Average number of modified trips for each time step on a working day.

Figure 11 shows the average number of unfulfilled rental requests for working day scenarios for each

time step. As can be seen, with spatial relocation strategies, the number of unsatisfied rental requests

can be kept (well) below 10 requests per time step; especially when modifying the trips’ origins. This

clarifies that the higher effectiveness of the spatial relocation strategies results from its capability of

mitigating the number of unfulfilled rental requests during peak times.
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Figure 11: Average number of unfulfilled rental request on a working day.

We observe similar effects as discussed above for the weekend day scenarios. Differences result

solely in the magnitude of the solution values. Table 4 summarizes the discussed effects for different

key performance indicators (KPIs). It shows for each relocation strategy including the non-relocated

Table 4: Average KPIs for different relocation strategies.

no modification start time arrival time origin destination

wo we ∆ wo we ∆ wo we ∆ wo we ∆ wo we ∆

P 78224 84073 7.5 78447 84073 7.2 78447 84321 7.5 86753 92196 6.3 86885 92370 6.3
ft 1862 2033 9.2 1885 2054 9.0 1884 2052 8.9 2615 2845 8.8 2505 2757 10.1
R - - - 24 26 8.3 23 26 13.0 733 805 9.8 676 760 12.4
U 6.57 7.09 7.9 6.59 7.12 8.0 6.59 7.13 8.2 7.57 8.06 6.5 7.45 7.95 6.7

UI 7.23 7.54 4.3 7.05 7.54 7.0 7.01 7.41 5.7 7.63 8.09 6.0 7.91 8.28 4.7
I 57.65 7.54 -86.9 39.5 35.65 -9.7 37.35 24.3 -34.9 3.85 2.65 -31.2 36.05 23.8 -34.0

All reported values are average values for the respective scenario set. Abbreviations hold as follows: P–profit;
T–fulfilled trips per day; R–number of relocations per day; U–average utilization per car [h]; UI–average utilization
per car [h] excluding idling cars; I–idling cars per day; wo–set of working day scenarios; we–set of weekend day
scenarios; ∆–increase from wo to we [%].
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scenario, the average profit (P), the number of fulfilled trips per day (T), the number of relocations

per day (R), the average utilization (U), the average utilization excluding idling cars (UI), and the

number of idling cars, i.e., the number of cars that are not used during a whole planning period (I),

for both the set of working day scenarios (wo) and the set of weekend day scenarios (we). As can

be seen, the order of the strategies in terms of their impact remains the same for all KPIs for both

working day and weekend day scenarios. In general, all KPIs but the number of idling cars increase on

a weekend day compared to a working day, because the weekend day scenarios show a larger number

of total requests. Intuitively, the number of idling cars decreases accordingly. Interestingly, the origin-

modification strategy shows a significantly lower number of idling cars compared to all other strategies

for both scenario sets. This highlights that the origin-modification strategy exploits the relocation

potential most exhaustively, which allows for the best overall performance.

5.2 Sensitivity analysis

Table 4 suggests that the different relocation strategies show a robust behavior for different scenarios

with increasing rental requests. However, such a conclusion cannot be generalized solely based on

Table 4. To verify this hypothesis, we conduct additional sensitivity analyses, analyzing i) the impact

of a varying fleet size for stable demand scenarios, and ii) the impact of varying demands for a stable

fleet size.

Figure 12 shows the impact of a varying fleet size for both the working day and the weekend

day scenario set by comparing the mean profit for each relocation strategy to the scenario without

relocations. We vary the fleet size from 300 to 630 cars with a step width of 10. As can be seen,

all relocation strategies show a robust behavior and an amplitude offset between the working day and

weekend day scenarios, as already suggested in Table 4. Remarkably, when utilizing a spatial relocation

strategy, one can decrease the original fleet size from 630 to 350 vehicles without lowering the resulting

profit.
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(a) working day scenario set.
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Figure 12: Mean profit for each relocation strategy depending on the fleet size.



14 G–2020–03 Les Cahiers du GERAD

Figure 13 and Figure 14 detail the volatility of the KPIs as discussed in Table 4 for the original

fleet size of 630 cars and a varying number of requests for both the working day and the weekend day

scenarios. To this end, we vary the number of requests in between 2,500 and 3,400 requests, using

a step width of 100. Again, we report the average values over all scenarios. As can be seen, the

increase of a KPI correlates with an increase in rental requests in all cases. Moreover, the figures vali-

date the hierarchy between spatial and temporal relocation strategies, the spatial relocation strategies

outperform the temporal strategies for all KPIs.
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(c) Average number of fulfilled rental requests.
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(d) Average number of strategy applications.

Figure 13: Working day scenario set KPIs depending on the number of trips.
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(c) Average number of fulfilled rental requests.
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Figure 14: Weekend day scenario set KPIs depending on the number of trips.

6 Conclusion and outlook

In this paper, we studied the impact of user-based relocation strategies for FFCSs. We formalized the

underlying planning problem as an integer program. We then developed a graph reformulation, which

allows to solve this planning problem optimally as a k-disjoint shortest path problem in polynomial

time. This algorithm provides a good algorithmic performance for large-scale problems. Moreover, we

derived a case study based on real-world data from car2go Vancouver. We applied our algorithm to

this case study, assuming perfect information. By so doing, we determined an upper bound on the

improvement potential of user-based relocation strategies and derived the following two main insights:

first, user-based relocation strategies may improve the utilization of a car sharing fleet significantly,

yielding an up to 40% increase in covered trips, accompanied with a 10% increase in the operators profit.

Second, spatial relocation strategies, i.e., modifying a customer’s origin or destination, significantly

outperform temporal relocation strategies. These findings are robust across working day and weekend

day scenarios, for varying vehicle fleet sizes, and for a varying number of customer demands.
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This work assumed a perfect information setting, thus focusing on the maximum improvement

potential that user-based relocation strategies can create. This assumption opens the field for fur-

ther research. Based on the analyzed results, it appears promising to lift the proposed algorithmic

framework from its deterministic offline setting to its (stochastic) online counterpart, which makes the

algorithm applicable in practice. Here, (stochastic) receding horizon approaches or model predictive

control algorithms provide a good starting point to develop new algorithms. In addition, one may

consider to incorporate the user acceptance behavior into such an online algorithm, e.g., by additional

stochastic modeling or via reinforcement learning. Apart from these methodological avenues, applying

our algorithm to additional case studies may reveal further managerial insights.
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