
Les Cahiers du GERAD ISSN: 0711–2440

Improving classification performance on
sparse data: Augmenting a convolutional
neural net with generalized angular
orientations of edges

A. A. Haji Abolhassani,
R. Dimitrakopoulos,
F. P. Ferrie, P. Lala

G–2019–98

December 2019

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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3000, chemin de la Côte-Sainte-Catherine
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract: With sufficient layers, enough training data, enough time, and often a custom tailored ar-
chitecture, modern deep learning methods can be extremely successful in classification tasks. However,
with real-world practical applications, a lack of training data can impede the success of such techniques,
which often over-fit the sparse data. A particular task hindered by sparse data, may take advantage of
an existing pre-trained network of a separate but related task trained on sufficient data, to achieve high
accuracy with minimal additional training. However, such transfer-learning does not generalize well to
new tasks that have little relation between their data and the pre-trained network’s data. To overcome
this hurdle, we introduce a novel feature (AngOri) kernel that leverages the generalized inherent rich-
ness of curvature and gradient in image edges, and that can augment any type of convolutional neural
network with any arbitrary number of channels to quickly achieve accurate classification with minimal
training on sparse data. The AngOri kernels can be pre-computed and thus directly implemented in a
convolutional layer of a network, which is not possible with other gradient based features. Testing on
the MNIST, CIFAR-10, and a satellite image database, we consistently found AngOri to aid a network
to achieve more accurate classification on a small dataset when compared to the same network without
the AngOri layers. Such a generalizable, lightweight kernel holds promise for using neural networks to
tackle real-world problems with limited resources, such as embedded systems examining sparse data.

Keywords: Texture flow, image gradient, angular orientation, classification, neural network, convo-
lution
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1 Introduction

A deep neural network is the most commonly used method for solving classification problems in

computer vision, e.g. Object detection, Face recognition, etc. (Szegedy and Vanhoucke, 2016) because

of its strength in learning the specific features that characterize the part of the underlying structure

of data that is important for the target task. Deeper and wider networks result in higher classification

accuracy but depend on large training datasets and longer training times. However, real-world practical

applications often present sparse datasets (and limited resources) for learning the relevant features,

thus causing traditional deep learning methods to perform inadequately. Transfer-learning (West

and Ventura, 2007; Torrey and Shavlik, 2010, Kaboli, 2017) tackles the limitations of sparse data by

leveraging the learned features from a pre-trained large-scale neural network e.g. VGG16/19 (Simonyan

and Zisserman, 2014), INCEPTION (Szegedy and Liu, 2015), etc. These pre-trained, convolutional

networks (ConvNets) are trained over large, accessible, labeled datasets for thousands of classes. In

transfer-learning we keep (and freeze) all ConvNet layers, but substitute the Softmax layer, which is

then fine-tuned by training on the new sparse dataset.

Transfer-learning is applicable only if the target training task is related to the source tasks trained

in the pre-trained model, and if the target sparse training data is similar to the training data used for

the pre-trained model. Thus, transfer-learning from one pre-trained network is not easily generalized

to all kinds of tasks with sparse data.

One way to process data in a more generalized way is to use a more primal feature such as the

Histogram of oriented gradients (HOG) (Dalal and Triggs, 2005) for computer vision tasks such as

classification or detection. When looking at an environment with limited resources such as an embedded

system, a HOG based system can be more efficient, but a ConvNet will still prove more accurate with

enough data (Suleiman and Chen, 2017). Ideally when dealing with sparse data and limited resources,

one would strive to combine the generalized and efficient traits of a feature like HOG with the potential

accuracy of a ConvNet, as some have tried to do (Lipetski and Sidla, 2017). Unfortunately, one cannot

directly augment a ConvNet with a feature like HOG as it cannot be added to a convolution layer;

rather one must preprocess the data with the HOG feature in a separate step. The work in this

paper aims to show how we can combine these benefits, but first we must outline how to measure

performance, using transfer-learning as an example.

Transfer-learning is judged to improve the training process of a new task only if, at least, one

out of three common measures are satisfied: first, the initial performance of the target task improves

using the pre-trained model in early training steps compared to the randomly initialized network;

second, the performance improves faster in transfer-learning compared to training from the randomly

initialized network; and third, a higher maximum performance is achieved after many training steps

in the transfer-learning case compared to the randomly initialized network. Otherwise, if transfer-

learning decreases the performance, negative-transfer occurs (Olivas and Guerrero, 2010). (Figure 1)

represents these three measures on a typical training plot. A simple example that has a potential for

negative-transfer is training a classifier for the make of a car (training target task) given a pre-trained

model that is trained only to detect general labels such as a car, a truck, a human, etc. The pre-

trained model is never exposed to data pertaining to car makes; hence, the extracted features from

the pre-trained model are more likely to suppress the useful information that discriminates one make

from another.

Taking these measures and the above-stated goals into account, we propose a novel analytic method

for generating a generalized kernel-based convolutional layer, that can be stacked as a building block

of a neural network. Three set of experiments are provided that each validate all three measures of

transfer-learning (Figure 1) (Olivas and Guerrero, 2010).
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Figure 1: Three measures that indicate, the transfer-learning could improve the training process of a target task, e.g.
classification task

2 Generalized angular orientations of edges to augment convolu-
tional neural networks

We extend previous work (Ben-Shahar and Zucker, 2003; Abolhassani, Haji and Dimitrakopoulos,

2016) to propose a new method that uses Stochastic Angular Orientation (AngOri) of texture flows

of intensity images, to initialize convolutional layers with an arbitrary number of nodes and channels.

However, unlike a simple initialization step, we want to preserve the useful features in these layers,

and so use a technique from transfer-learning, namely to freeze these layers during the first part of the

learning. Texture flows comprise “locally parallel dense patterns” that define perceptual coherence for

perceptual grouping in a manner useful for many feature-based computer vision tasks (Ben-Shahar and

Zucker, 2003). (Figure 2) shows an 8-layered AngOri kernel of size 20x20 at two scales, each of which

could be used for initializing the weights of any convolutional layer with size 20x20 and 8 channels.

(a) (b)

Figure 2: 8-layered AngOri kernel with size 20x20: (a) Scale-1 with 50% coverage of pixels the convolution window, (b)
Scale-2 with 75% coverage of pixels the convolution window.

At each orientation θl, only the influence of ns number of points is considered by the kernel. These

ns points are the closest points to the orientation line and are selected by the selection tensor Sθ with

the shape nk × nk × ns, (Figure 4).

The AngOri kernel calculates the strength of the edges along different directions, 0 to π, at every

pixel of the intensity images. (Figure 3b) shows the normalized results of convolving an 8-directional

AngOri kernel of size 16x16 with the image shown at left in (Figure 3a). At each pixel the intensities

of the overlaid line along each direction encode the strength of the edge in that direction. A similar

type of output is produced by the HOG method (Dalal and Triggs, 2005). The key advantage of

AngOri when compared to HOG is that AngOri is implemented as a kernel that can be pre-computed

and applied as a single convolution that produces the directional edge likelihood for the whole image.

By comparison, HOG calculates the edge likelihood of each block by binning the local gradients and

calculating the histogram of the orientations. The HOG process cannot be pre-computed and also

needs to be calculated for each image separately. This computational advantage makes the AngOri

kernel suitable for the initialization of ConvNets within the training process, while HOG cannot be

similarly adapted.
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(a) (b)

Figure 3: (a) is convolved with an 8-directional AngOri kernel of size 16x16 to produce (b). In (b), 8 orientations are
presented by directional lines with gray-scale intensities representing the likelihood of an edge along that orientation.

(a) (b)

Figure 4: (a) The blue dots are the image pixels within the kernel window. Red dots are the first ns number closest
points to the orientation line at angle θ. The green dots in the fine grid are where the angular edge likelihoods are
calculated. In this example, the size of the kernel, number of selected nodes and the size of the up-sampling fine grid are
kn = 6, sn = 16, nup = 3 respectively. (b) The selected points are rotated −θ to align with the x axis.

3 Calculating the AngOri kernel

The shape of the desired AngOri kernel K̂ is nk × nk × cin × cout with equal height and width, nk,

and input and output channels cin and cout, respectively. This AngOri kernel consists of one lower-

dimensional kernel, K, per input channel of shape nk×nk×cout.

K{i,j,k,l} = K{i,j,l} for all i, j ∈ [0, . . . , nk − 1] , k ∈ [0, . . . , cin − 1] , and l ∈ [0, . . . , cout − 1] .

We consider cout to be the number of discrete orientations cout = nθ. Hence, l ∈ [0, . . . , nθ] indexes

the orientation parameter θl ∈ 0, . . . , 2π.
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Each oriented kernel Kθ is multi-part and constructed by inner product of three θ oriented tensors.

Knk×nk

θ = Snk×nk×ns

θ · Ens × (nup×nup)

θ
·D

(nup×nup)

θ
(1)

where S is the indicator tensor for selecting ns number of points on the image grid closest to the

orientation line with angle θ with x axis. E is a tensor for calculating the edge likelihood at the fine

grid points, green points in (Figure 4), along direction θ. D is the anti-aliasing down-sampling tensor.

Note, (·) indicates a matrix or vector dot product. Each tensor is defined in the following subsections.

Indicator tensor, Sθ:

Consider Z ∈ input image, to be a part of the image overlapping with the kernel, where X and Y

indicate the 2D position of the points relative to the kernel, all with shape nk×nk. At each orientation θ,

only a set of closest points to the orientation line is considered for calculating the likelihood of an edge

in that direction, this selection is done by the indicator tensor Sθ. The points are first sorted based

on the distance to the orientation line and then ns number of closest points are selected:

X
T

θ = X
⊗

Sθ = [x0, . . . , xns−1]

Y
T

θ = Y
⊗

Sθ = [y0, . . . , yns−1] (2)

Z
T

θ = Z
⊗

Sθ = [z0, . . . , zns−1]

where
⊗

denotes the 2D covolution operator.

Xθ and Y θ are then rotated −θ to align with axis x, denoted by X
′

θ and Y
′

θ and shown in Figure 4b.

An example of rotation −θ applied to a point (x, y) is:[
x′

y′

]
=

[
cosθ
−sinθ

sinθ
cosθ

] [
x
y

]
(3)

The indicator tensor is sparse with only 1 element equal to 1 at each section k, Sθ;i,j,k = 1 at

i = ik, j = jk and Sθ;i,j,k = 0 otherwise.

Edge likelihood tensor, Eθ:

This is the main part of the kernel for calculating the likelihood of an edge to be along direction at

the center of an overlapping part of the image with a sliding window of the kernel. (Figure 5a) shows

a sample of the image exposed to the kernel in a 3D view. The red dots are the selected image points

closest to the orientation line θ. (b) A red Quadratic-linear surface is fit to the red points. (c) The

green plane is parallel to the xy plane and has a value z = mean(Z). (d) The side view shows the

plane curves at the intersection of the vertical plane, passing through the orientation line θ, the fitted

surface (yellow) and the mean plane (blue). d is the distance between the fitted surface and the mean

plane. The curvature of the fitted surface at (x = 0, y = 0) is used for calculating the edge likelihood

along θ and at the center of the patch. The likelihood of the edge increases proportional to the absolute

value of |d| and inversely proportional to the absolute value of the curvature κ at (x = 0, y = 0).

Likelihood of edge along θ = d(0, 0)− α κ(0, 0) (4)

with α > 0. Qualitatively, d represents the edginess and κ represents the non-linearity of the edge.

Next, we calculate both d and κ at the origin to re-factor the edge likelihood kernel.

Edginess, d:

d, as stated in (Section3), is actually the difference between value of the fitted surface at the origin

and the mean value of the patch.

d(0, 0) = Zfit(0, 0)−mean(Z) (5)
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(a) (b) (c) (d)

Figure 5: (a) part of image windowed by the kernel in 3D view. (b) Fitted surface to the selected points along orientation
line at θ. (c) A plane parallel to the xy plane at z = mean(Z). (d) side view of the image patch and the cross-section
plane curves used for calculating the edge likelihood.

The mean term is trivial to re-factor:

mean(Z) = Z
⊗

Ink×nk

(
1

n2k

)
(6)

where I is the identity matrix and
⊗

is the 2D convolution operator.

Zfit is a quadratic-linear surface P to a set of rotated selected points
(
X ′

θ, Y
′
θ, Zθ

)
, (2) and (3).

P : Zfit = aT · Φ

ΦT =
[
X
′2
θ Y

′

θ X
′2
θ X

′

θ Y
′

θ Y
′

θ 1

]
(7)

aT =
[
a0 a1 a2 a3 a4

]
P is quadratic in x and linear in y direction. X ′n

θY
′m

θ are all piece-wise vector operations. a is the

vector of parameters of P , fitted to the set of selected points. The result of multi-linear least-square

fit to the
(
X ′

θ, Y
′
θ, Zθ

)
:

aT = Z
T

θ · Pinv (Φ) (8)

where Pinv(.) is the pseudo inverse operator of a matrix. The Zfit is now is calculated by multiply-

ing (8) by φ =
[
x2y, x2, x y, y, 1

]T
and substituting Zθ from (2):

Zfit(x, y) = aT · φ = Z
⊗

Sθ · Pinv (Φ) · φ (9)

Furthermore,

Zfit(0, 0) = a4 = Z
⊗

Sθ · Pinv (Φ) · [0, 0, 0, 0, 1]
T

(10)

We now substitute (10) and (6) into (5), Z could be re-factored, leaving the edginess part of the kernel:

d(0, 0) = Z
⊗(

Ink×nk

(
1

n2k

)
+ Sθ · Pinv (Φ) · [0, 0, 0, 0, 1]

T

)
(11)

Non-linearity of the edge, κ:

The non-linearity of the edge introduced in (4) is the curvature of the yellow plane curve in (Figure 5d),

the cross-section of the fitted surface at (0, 0) along the orientation line θ. By rotating the selected

points by the axis z for −θ, (Figure 5b), this cross-sectioning plane curve will be along axis x. Hence

by substituting φ(x, y = 0) =
[
0, x2, 0, 0, 1

]T
in (9) we obtain:

Zfit (x, 0) = a1x
2 + 1 = Z

⊗
S\theta · Pinv (Φ) ·

[
0, x2, 0, 0, 1

]T
(12)
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The Curvature of the graph (12) is calculated by:

κ(x, y = 0) =

∣∣∣∂2Zfit(x, y=0)

∂x2

∣∣∣{(
1 +

(
∂2Zfit(x, y=0)

∂ x2

)2) 3
2

}

=
2a1(

1 + (2 a1x)
2
) 3

2

→ (13)

κ(x = 0, y = 0) = 2a1 = Z
⊗

Sθ · Pinv (Φ) · [0, 2, 0, 0, 0]
T

while a1 > 0.

Eventually, plugging (11) and (13) into (4), we arrive at the edge likelihood tensor in convolutional

kernel format, the first two terms of the (1):

Sθ · Eθ = Z
⊗

( Ink×nk

(
1

n2k

)
+ Sθ · Pinv (Φ) · [0, −2α, 0, 0, 1]

T
) (14)

We have set α = 8
(nk− 1)2

for the experiments by matching the maximum of κ and d. For each

Convolutional window, the edge likelihood Eθ is calculated at the sub-pixel nup × nup fine shape grid,

the green dots in (Figure 5), for a smoother and more accurate result.

Anti-aliasing down-sampling tensor, Dθ:

The last part of the kernel in (1) is the anti-aliasing down-sampling tensor, Dθ to up-sample Eθ to

the image pixel grid resolution. A 2D discretized double Sinc kernel is produced by the vector outer

product of two double Sinc 1D kernels.

Dθ = GSinc
2

(fs, fa)×GSinc
2

(fs, fa) (15)

where fs = 2
nup

and fa = 1
nup

$ are the down-sampling and anti-aliasing frequencies, respectively. The

double Sinc 1D kernel is defined by,

GSinc
2

(fs, fa) = (Sinc(fs x) Sinc(fa x) |{
x =

[
−
(

3nup
2 − 1

)
, ..., (3nup

2 − 1)
]} (16)

4 Experiments

We have run three sets of experiments. The first two are, CIFAR-10 (Krizhevsky and Hinton, 2009)

and MNIST (LeCun, Bottou and Bengio, 1998), to confirm the advantage of initialization of the

ConvNets with AngOri kernels. The third one shows the AngOri kernels in action from building and

initializing to training a ConvNet for classification. It is subsequently, evaluated on sparse ships images

in satellite imagery dataset (Ships in satellite imagery dataset, 2018). We have used the ALL-CNN

network configuration and added dropout between layers, and made it fully connected at the last layers,

(Figure 6). We have chosen this neural network configuration because first, it reaches a respectable

top 10 validation accuracy among all methods both in CIFAR-10 and MNIST datasets. Second, the

size of ALL-CNN architecture seems reasonable and tractable based on our available hardware and

time resources for testing the AngOri kernel. The only differences in the models used for the three

experiments are the shape and size of the input layer and number of outputs of the Softmax layer,

CIFAR-10 32x32x3 input and 10 output, MNIST 28x28x1 input and 10 output, ship satellite imagery

80x80x3 input and 2 output.
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Figure 6: All-CNN-B model is used herein for all three set of experiments. Softmax layer has 10 outputs for CIFAR-10
and MNIST dataset, for ship satellite imagery it has 2 output.

CIFAR-10 and MNIST datasets:

The CIFAR dataset contains 60000 32× 32 sized colored images of 10 different classes, 6000 per class,

containing images of animals, cars, etc. The dataset is divided into mutually exclusive training set and

test set of sizes 50000 and 10000, respectively. MNIST is a set of 70000 28x28 sized gray-scale images

of single digit handwritten numbers, 0-9. 60000 samples are used for training and 10000 for testing.

We build two identical neural network models with ALL-CNN structures, (Figure 6). Hereafter,

the first model is referred as AngOri-CNN and the second model is referred as CNN. The first two

ConvNet layers of the AngOri-CNN are initialized by AngOri kernel but the remaining ConvNet layers

in both models are initialized with the random uniform method. We use random uniform initialization

method since it marginally outperforms other available initialization methods in our experiments.

The first experiment is on the CIFAR-10 dataset. We first randomly choose a subset of the original

training set with different sizes, referred as reduced size training sets, ranging from 10 (1 image per

class) to the full set of size 50000. The same form of reduced size training sets are produced for

the second experiment on MNIST with the maximum size 60000 images per training set. In each

experiment, for each reduced training set we initialize and train both models using identical batches

of size 128 at each step randomly selected from the reduced training set. The training is continued

for 50 epochs for CIFAR-10 and total of 40 epochs for MNIST. We freeze all the weights of two

AngOri layers of the first model during the first half of training (mimicking the use-case of the pre-

trained models in transfer-learning) and unfreeze them for the remaining epochs for fine tuning of

the unfrozen weights. In contrast, the weights of the second model are unfrozen from beginning to

end. We evaluate the trained models after every epoch by calculating the validation accuracy of each

model over the whole test set, i.e. the mutually exclusive set of 10000 images for both CIFAR-10 and

MNIST. (Figure 7a,b,d,e) represent the validation accuracy of both models for three examples of the

reduced size training sets per experiment. A common feature in the results is the “head start” rise

in the validation accuracy that the AngOri-CNN provides, thus satisfying the first described measure

to validate the success of transfer-learning, (Figure 1) (Olivas and Guerrero, 2010). Another feature

that is seen in most of the results, (Figure 7a,b,d,e), is the larger slope in the validation accuracy

of the AngOri-CNN in first ∼20 epochs, thus satisfying the second described validation measure of

transfer-learning, (Figure 1) (Olivas and Guerrero, 2010). Another common feature in the results is

the short drop in validation accuracy of the AngOri-CNN quickly after unfreezing the weights. This

stress is caused by the change in the back-propagation routine due to adding the new set of weights

to be trained. Normally if the unfrozen weights are different from the optimum values, it disrupts

the training process especially when the weights are in the lower layers and when we have dropout.

This again supports the validity of our assumptions in the calculation of the AngOri kernels. Another

interesting observation seen in almost all of the validation accuracy plots of the MNIST is the higher

steady state validation accuracies achieved by AngOri-CNN especially in small size training sets, the

third validation measure of the transfer-learning, (Figure 1) (Olivas and Guerrero, 2010).

Here the prior information afforded by the AngOri kernel makes up for the sparsity of the training

data. This prior is rooted in the deep interpretation of the primal features, orientation of the edges in

particular. (Figure 7c,f) represents all individual training sessions on every reduced size training set in

two single graphs. These are semi-log plots of the validation accuracy of both models after 50 epochs

(40 in MNIST case) as a discrete function of log of the size of reduced size training set. This shows
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that a model with the same structure could achieve better validation accuracy after a fixed number

of epochs if the weight of the ConvNet layers are initialized by AngOri kernel and frozen for some

training epochs.

(a) (b) (c)

(d) (e) (f)

Figure 7: Experiment 1 and 2 on CIFAR-10 and MNIST dataset: (a), (b), (d) and (e) are the validation accuracy of
AngOri-CNN and CNN models at every epoch. (c) and (f) represent maximum validation accuracy scores achieved after
100 training epochs plotted as a function of size of the training set.

Ships in satellite imagery:

This is a sparse set of 2800 colored images with size of 80x80, 2100 of which are non-ship and only

700 are ship images captured from satellite imagery, all of which are used for training. The model is

validated visually by running the training classifier over a set of four test satellite images providing a

full view of the San Francisco bay area. We adopted an ALL-CNN model, (Figure 6), for training a

ship detector/classifier. Similar to previous experiments, the weights of two first ConvNet layers are
initialized by AngOri kernel and the rest are initialized by the random uniform method. The training

is continued for 40 epochs with a batch size of 32. The weights of the first two layers are frozen for

20 epochs. The trained model is then evaluated by four full satellite images, (Figure 8a,b,c,d). For

evaluation we slide a search window of size 80x80 over the image with the stride of 10x10 and all

generated 80x80 images are classified by the trained AngOri-CNN as ship/non-ship; the ship classified

windows are then labeled by a green rectangle overlaid on the original full image. This is a challenging

problem first because of the sparsity of the labeled training data. Second, this is an unbalanced

classification problem both in the training dataset (700 ship vs. 2100 non-ship images) and evaluation

(10 ship vs. 5M non-ship images). On the positive side of the problem, the shape of the ships are

not very complex considering the background sea which is almost similar for all of the cases. Despite

these conditions the AngOri-CNN detected all of the ships in the images with at most 3 false positives

(non-ship images detected as ship).

5 Conclusions

Sparse and novel datasets should not impede the use of ConvNets to achieve quick and accurate

classification training. The AngOri kernel characterizes curvature and gradient in image edges and can

be pre-computed and directly implemented in a convolutional layer of a network (which is not possible

with other gradient features).
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(a) (b)

(c) (d)

Figure 8: Experiment 3 on ships in satellite imagery: The trained AngOri-CNN is evaluated by classifying every 80x80
window of the image, the window slides with the stride of 10x10 pixel.

This method could lead to quick and computationally efficient ConvNets being implemented on

systems lacking traditional computational resources e.g. embedded systems. Our results show that this

new feature and methodology can lead to quick and accurate classification on small, diverse datasets.

The methodology satisfies the three measures indicating the success of transfer-learning, while avoiding

some pitfalls of transfer-learning e.g. inability to be easily generalized in particular sparse-data cases

by replacing it with the AngOri kernel. In the future we plan to explore what training benefits the

AngOri kernel can bring to large-scale networks. We also plan to extend the AngOri feature itself to

capture even more complex edge shapes and explore the feature’s use in other computer vision and

general machine learning domains.
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