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Abstract: Clustering algorithms help identify homogeneous subgroups from data. In some cases,
additional information about the relationship among some subsets of the data exists. When using a
semi-supervised clustering algorithm, an expert may provide additional information to constrain the
solution based on that knowledge and guide the algorithm to a more useful and meaningful solution. For
instance, he may specify that two points cannot be part of the same cluster (i.e., cannot-link constraint)
or two points must be part of the same clusters (i.e., must-link constraint). A key challenge for
users of semi-supervised learning algorithms, however, is that the addition of inaccurate or conflicting
constraints can decrease accuracy and little is known about how to detect whether expert-imposed
constraints are likely wrong. In the present work, we propose a method to score each must-link
and cannot-link pairwise constraint and help users identify which constraints should be amended or
removed. Using synthetic experimental examples and real data, we show that the scoring method can
successfully identify constraints that should be removed.

Keywords: Clustering, semi-supervised, pairwise constraints, Lagrangian duality

Résumé : Les algorithmes de partitionnement de données aident à identifier des sous-groupes ho-
mogènes en ce sens que les données de chaque groupe partagent des caractéristiques communes. Dans
certains cas, on dispose d’information supplémentaire sur la relation entre certains sous-ensembles de
données. Par exemple, lors de l’utilisation d’un algorithme de partitionnement semi-supervisé, un ex-
pert peut fournir des informations supplémentaires pour contraindre la solution recherchée en fonction
de ses connaissances et guider ainsi l’algorithme vers une solution plus significative. L’expert peut
ainsi spécifier des contraintes par paires en ce sens qu’il peut imposer que deux points ne fassent pas
partie d’un même groupe ou, qu’au contraire, ces deux points doivent impérativement faire partie d’un
même groupe. Un défi majeur pour les utilisateurs d’algorithmes d’apprentissage semi-supervisés,
cependant, est que l’ajout de contraintes inexactes ou conflictuelles peut diminuer la précision du par-
titionnement généré et on sait peu de choses sur la façon de détecter si les contraintes imposées par des
experts sont éventuellement erronées. Dans le présent travail, nous proposons une méthode permettant
d’évaluer individuellement chacune des contraintes par paires et aider ainsi les utilisateurs à identifier
celles qui doivent être modifiées ou supprimées. À l’aide d’exemples expérimentaux synthétiques et de
données réelles, nous montrons que la méthode d’évaluation proposée permet d’identifier avec succès
les contraintes erronées.
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1 Introduction

A common typology is to allocate machine learning algorithms as being of one of two paradigms: (i)

unsupervised learning, when the objective is to provide the best underlying description of the data when

no label information is available; (ii) supervised learning, when the objective is to use labeled training

data to create an input-output function to map inputs to those labels.1 Thus, in both cases, the

objective is to identify a classification function but the paradigms differ in whether labels are available

for all the training data points (supervised learning) or none of the training data points (unsupervised

learning). Both learning paradigms face challenges. Although supervised learning techniques can

obtain minimal error measures and are successfully applied in many data analysis tasks, the labels are

usually scarce and very time-consuming/expensive to generate, since this requires, in most cases, a

human expert acting as the annotator. As for unsupervised learning, it suffers from assumptions on

the underlying structure of the dataset that are imposed when selecting a specific algorithm to work

with it.

In a third paradigm, it is possible that there is limited information about how training data points

should be related to one another. For instance, one may not know precisely all the labels of all the

data points as in supervised learning, but one may know that some subsets of points belong (or do

not belong) to the same classes. In semi-supervised learning, one can generate a classification function

using both labeled and unlabeled data. Typically, this is done by incorporating knowledge from domain

experts who provide a set of constraints that the classification function must satisfy (Zhu et al., 2009;

Anil et al., 2015). Performing the supervision in this fashion aims to combine the advantages of

unsupervised and supervised learning into a powerful and inexpensive technique.

To illustrate how semi-supervised learning incorporates such external knowledge, we do so by build-

ing on the most popular unsupervised learning model: clustering. Given a set O = {o1, . . . , on} of

n unlabeled data points in a s-dimensional space, clustering methods identify subsets of data points,

called clusters, which are homogeneous or well separated (Hansen and Jaumard, 1997). Among clus-

tering methods, partitioning focuses on partitioning O into k clusters (Pk = {C1, C2, . . . , Ck}) such

that:

(i) Cj 6= ∅ for all j = 1, . . . , k,

(ii) Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ k, and

(iii)
k⋃
j=1

Cj = O,

and where the set of all k-partitions of O is denoted P(O, k). If the number of clusters k is known,

and thus fixed, clustering can be formulated as a mathematical optimization problem whose objective

function f : P(O, k) → R, usually called clustering criterion, defines the optimal solution for the

problem given by the following (e.g. Christou, 2011):

min{f(P ) : P ∈ P(O, k)}. (1)

The choice of function f is critical to how homogeneity and separation will be expressed in clusters.

For example, homogeneity of a cluster can be measured by its diameter (i.e., the maximum dissimilarity

between two data points part of the same cluster) and separation can be measured by the split (i.e.,

the minimum dissimilarity between two points part of different clusters). Such clustering criteria can

be expressed in the form of threshold min-sum or max-sum functions. For example, the minimum

sum-of-squares clustering technique (MSSC), which is based on the popular k -means algorithm, seeks

to minimize the sum of squared distances from each data point to the representative of the cluster

to which it belongs. In minimizing the sum of squared distances, the criterion indirectly imposes a

1We focus on discrete labels (e.g., classes) for simplicity of exposition, although there are numerous unsupervised
(e.g., latent trait models) and supervised models (e.g., regression) which focus on continuous outcomes.



2 G–2019–96 Les Cahiers du GERAD

constraint on the output that all clusters have a spherical shape. The user of the algorithm rarely has

evidence or external data to support that choice.

In Semi-Supervised Clustering, the domain expert’s information is used to circumvent the potential

shortcomings associated with the choice of a particular clustering model. It has been suggested (Anil

et al., 2015) that a domain expert could provide, whenever possible, auxiliary information regarding the

data distribution, thus leading to better clustering solutions that are more in line with their knowledge,

beliefs, and expectations. In this context, a different kind of assumption about the data distribution

is made. Specifically, it is often assumed that a non-zero subset of objects have cluster labels that

are known due to external knowledge. This type of supervision is called pointwise information and

is usually easy to incorporate in existing unsupervised clustering algorithms (Aggarwal, 2015), for

instance, by using pre-determined labels for the initialization of an existing unsupervised clustering

algorithm like k-means (Basu et al., 2002). As an expert may not have knowledge of precise label

assignments but rather the pairwise similarity between data points, a form of supervision that is more

likely to be used by experts is to provide information regarding whether two points can (or cannot)

belong to the same clusters (i.e., must-link and cannot-link constraints, respectively). Formally, a

must-link constraint for data points oi and oj requires that oi and oj must be assigned to the same

cluster, and a cannot-link constraint on the same data points requires that oi and oj must be assigned

to different clusters. Such information that experts have to provide is common to many types of

applications. Basu et al. (2006) discuss an example in the context of clustering protein sequences in

which it is easy to identify proteins that co-occur in other proteins (i.e., must-link constraints) even

if the class label is unknown or uncertain for these proteins. In image segmentation applications,

cannot-link constraints are added for pixels that are in very distant regions of an image or when there

is a frontier visible to the expert’s eye. Kim et al. (2013) provide an example of how managers may

have prior knowledge to impose constraints into Bayesian mixture models to render solutions that are

eventually actionable by businesses. Nonetheless, working with pairwise constraints is typically more

complex than incorporating pointwise information, and the problem of whether it is possible to satisfy

a given set of cannot-link constraints with k clusters is NP-complete (Davidson and Ravi, 2005).

It would be sensible to assume that if input data is augmented by that of an expert, it should

improve clustering performance. However, the presence of inaccurate or conflicting pairwise constraints

has been shown to degrade the clustering performance (Davidson et al., 2006; Davidson and Ravi,

2006). This can be because it is generally assumed that when an expert provides information, the

expert must be correct. However, in many cases, the labels provided by experts is subject to errors of

human judgments (e.g., a single human judge determines whether two proteins must co-occur). Such

human judgment errors are especially likely when multiple experts are used to arrive at a consensus

judgment. As the accuracy of constraints imposed to the algorithm ultimately impacts clustering

accuracy (Ares et al., 2012), and that inaccuracy of constraints can occur due to human judgment

errors and is an important problem, methods that can help users identify which constraints are likely

to be subject to errors should be helpful in improving accuracy (Anil et al., 2015).

In order to reduce the possible negative effects of constraints sets in constrained clustering, Zhang

et al. (2019) recently proposed a deep learning framework. Assuming that all constraints are correct,

which was indeed the case in their experiment (the constraints are generated randomly from the

ground-truth partition), good clustering results are obtained. However, it is important to note that

in the presence of erroneous constraints, since no mechanism is proposed to identify such constraints,

their algorithm can suffer from contradictory and inaccurate information, degrading the quality of

the solutions, because their method aims to learn a representation of the data which respects all the

constraints, making no distinction between correct and incorrect.

To illustrate the consequences of having inaccurate constraint, we show in Figure 1 clustering

solutions from the two principal components of an application to the Iris dataset (Fisher, 1936).

Figure 1(a) illustrates the ground-truth partition, whereas Figure 1(b) shows the optimal partition

obtained with MSSC. Whereas MSSC recovers perfectly the cluster depicted in light blue, it does not



Les Cahiers du GERAD G–2019–96 3

(c)(a) (b) (d)

Solution produced by COP-k-means 
with 60 correct pairwise constraints 

Solution produced by COP-k-means 
with 60 correct and 10 erroneous 
pairwise constraints
Ground-truth solution Solution produced by MSSC 

Figure 1: Partitions obtained with and without correct or erroneous pairwise constraints.

well separate the two other clusters. Figure 1(c) illustrates the partition obtained by using the popular

COP-k-means algorithm (Wagstaff et al., 2001) executed with a random set of 60 correct pairwise

constraints extracted from the ground-truth partition. We observe that it is more consistent with

the ground-truth partition. However, we also show in Figure 1(d) that a solution with 10 erroneous

constraints can significantly deteriorate the performance of a clustering algorithm to a point that is

worse than when no constraint was imposed.

The objective of this paper is to provide a method for quantifying the likely accuracy of pairwise

constraints. Specifically, we define an impact score for each pairwise constraint based on the solution of

the dual of a integer program. In doing so, we provide a quantitative measure (i.e., Lagrangian-based

impact score) that can help a user identify which must-link or cannot-link constraints degrade the

clustering solution and should be removed or revised.

The rest of the paper is organized as follows. Section 2 provides an overview of prior research

regarding the difficulty of substantiating whether a constraint set is informative. Then, Section 3

presents the proposed impact score, and Section 4 reports our experiments regarding the effectiveness

of the score.

2 Constraint inclusions in learning models

When using semi-supervised learning clustering (SSC), a big challenge is to identify useful constraints

as relying on domain experts can be difficult on large data (Wagstaff, 2007). One approach taken is

the use of active learning methods which automatically generate constraints to reduce the amount of

information that a domain expert needs to provide. Still, active learning methods usually require some

a-priori domain knowledge provided by an expert to identify the additional (or redundant) constraints.

For example, the widely used PCKmeans (Basu et al., 2004) identifies the pairs of data points which

are farthest from each other and queries an oracle to determine whether a cannot-link constraint

should be added. This oracle is a function that analyzes the known pairwise constraints to investigate

if the dissimilarity between the queried pair of data points is sufficient to impose a new cannot-link

constraint. In the work conducted by Mallapragada et al. (2008), this idea is enhanced to use the

similarity between a pair of data points as the confidence level to create a must-link constraint. The

work of Xiong et al. (2014) uses pairwise constraints to build neighborhoods of data points in the

same cluster (must-link constraints) and neighborhoods of points in different clusters (cannot-link
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constraints). Then, an active learning method expands these neighborhoods by selecting informative

points and querying the oracle about their relationship with their neighbors. In both cases, the active

learning algorithms must begin with a small set of pairwise information that will serve as the foundation

to increase the supervision and direct the algorithm in the correct course (Xiong et al., 2017).

The requirement of background information, regardless of whether it originated from the domain

expert or was generated by an active learning method, can lead to less desirable clustering solutions.

As such, one must have a way to identify whether the added constraints are helpful. Davidson et al.

(2006) propose two measures that evaluate the informativeness and coherence of a constraint set.

Informativeness is a measure of the incremental information provided by adding a pairwise constraint

to the clustering model. Coherence is a measure of the agreement of a constraint set based on the

adopted dissimilarity metric. Specifically, it aims to identify pairs of constraints, one must-link and

one cannot-link constraint, with an overlapping segment when the constraint vectors (i.e., vectors

connecting their associated points) are projected onto the other. Figure 2 illustrates two constraints

with an overlapping segment when the cannot-link vector is projected onto the must-link vector. The

constraint set with the highest proportion of null projections (when there is no overlapping segment)

is considered as the most coherent set. For both measures, the idea is that constraint sets with the

higher informativeness and coherence should improve the clustering solution. Wagstaff (2007) has found

support for this hypothesis, but only for some dataset, suggesting that more properties related with

the utility of pairwise constraints should be developed.

Must-link constraint

Cannot-link constraint

Projection

Overlapping segment

Figure 2: Illustration of Coherence from Davidson et al. (2006): Projection of must-link and cannot-link constraint vectors
onto each other.

Informativeness and coherence are not the only measures available to evaluate the helpfulness of

constraints. For instance, Davidson (2012) proposes two other approaches. For the first, he suggests

counting the number of feasible clustering solutions using Markov Chain Monte Carlo samplers - the

idea being to eliminate constraints which are difficult to satisfy and whose inclusions often leads to

few feasible clustering solutions across the samplers. For the second, he suggests to use the fractional

chromatic number of the constraint graph to identify constraints to eliminate. The constraint graph

contains one vertex for each data point and an edge for each cannot-link constraint. Data points

involved in one or more must-link constraints are merged into a single vertex. As determining the

chromatic number of this graph is equivalent to determining the minimum number of clusters required

to make the problem feasible, and since finding the chromatic number of a graph is a NP-hard problem,

the author suggests to solve a linear relaxation of the problem in which every vertex can be associated

with more than one color (i.e., more than one cluster). This problem is known as the fractional

chromatic number since each vertex can have a fractional assignment of colors. As a last step, the

second approach proceeds to pruning constraints by the following: if a vertex has many fractional

colors, i.e., it is part of many independent sets, the constraints associated with the vertex are not hard

to satisfy and can remain. However, if a vertex is part of only one independent set (i.e., its assignment

is not fractional), the associated constraints are hard to satisfy and should be removed.
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All three approaches (informativeness, coherence and fractional chromatic number) focus on iden-

tifying good constraint sets based on the ability to satisfy them, and are build to quantity constraint

sets and not individual pairwise constraints. A consequence is that such techniques for extracting local

information on how the constraints interact, as well as techniques for assessing the global impact and

effectiveness of each constraint for the target clustering model are not explored in the literature.

3 A Lagrangian-based scoring of the effect of individual pairwise
constraints

Consider the following general integer programming formulation of a semi-supervised clustering prob-

lem:

Z = min
X

f(x) (2)

subject to

xci + xcj ≤ 1 ∀(oi, oj) ∈ CL, ∀c = 1, . . . , k (3)

xci − xcj = 0 ∀(oi, oj) ∈ML, ∀c = 1, . . . , k (4)

xci ∈ {0, 1} ∀i = 1, ..., n; ∀c = 1, . . . , k (5)

where f is the clustering criterion to be minimized, and where every binary decision variables xci of the

solution space X indicates whether data point oi is assigned to cluster Cc. Typically, X is composed

of the set P(O, k) of all k-partitions of O for a given k predetermined number of clusters. In such a

model, pairwise constraints are included via (3) and (4) where CL andML represent the sets of pairs

of data objects involved in cannot-link and must-link constraints, respectively.

To avoid situations where constraints (3) and (4) are satisfied with equality, we can replace them

by the following equivalent constraints where ε is any real number in ]0, 1[:

xci + xcj ≤ 1 + ε ∀(oi, oj) ∈ CL, ∀c = 1, . . . , k (3’)

xci − xcj ≤ ε ∀(oi, oj) ∈ML, ∀c = 1, . . . , k (4’)

xcj − xci ≤ ε ∀(oi, oj) ∈ML, ∀c = 1, . . . , k (4”)

The choice of function f has a significant impact on the computational complexity of any clustering

problem. Whereas, for example, split maximization is polynomially solvable in time O(n2) (Delattre

and Hansen, 1980), diameter minimization is NP-hard for more than two clusters (Brucker, 1978).

Classical Lagrangian duality theory associates penalty terms, named Lagrangian multipliers, to

the problem constraints. Applied to clustering, regardless of the choice of clustering criterion f , the

Lagrangian function L(η, λ, γ) associated with the above integer programming problem is obtained by

introducing penalty terms ηcij , λ
c
ij and γcij for the violation of constraints (3), (4’), and (4”). Specifically,

the Lagrangian function is defined as follows:

L(η, λ, γ) = min
X

f(x) +
∑

(oi,oj)∈CL

k∑
c=1

ηcij(1 + ε− xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

λcij(ε+ xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

γcij(ε+ xcj − xci )

(6)

and the dual of the integer program (2)-(5) can be expressed as follows:

LD = max
η,λ,γ≤0

L(η, λ, γ) (7)
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for which the weak duality theorem (see e.g. Bertsimas and Tsitsiklis (1997)) asserts that LD is the

best lower bound for the optimal value Z of the integer program (2)–(5).

To illustrate how the dual Lagrangian function penalizes constraint violations, consider a cannot-

link constraint (oi, oj) ∈ CL and a cluster c ∈ {1, . . . , k}. Given that ηcij ≤ 0, we penalize situations

where xci + xcj > 1 (i.e., the corresponding constraint (3) is violated). If xci + xcj ≤ 1, we have

1 + ε − xci − xcj > 0 and the optimal value LD is therefore obtained by setting ηcij = 0. Analogously,

for a must-link constraint (oi, oj) ∈ML, both λcij and γcij are equal to 0 in an optimal solution of the

dual problem when xci = xcj , while exactly one of λcij and γcij is strictly negative (and the other one is

equal to 0) when xci 6= xcj .

3.1 Scoring constraints from the dual’s information

The difference between Z and LD is the duality gap. The values of the dual variables in an optimal

solution of the dual problem provide information about the difficulty to satisfy a constraint and are

of particular usefulness when the duality gap is small which is often the case in clustering models

(Kochetov and Ivanenko, 2005; Aloise et al., 2010).

To illustrate, consider any cannot-link constraint (ou, ov) ∈ CL. Assume that the constraints (3’)

imposing xcu + xcv ≤ 1 + ε for all c ∈ {1 . . . k} are replaced by the following constraints:

xcu + xcv ≤ 1 + ε+ b ∀c = 1, . . . , k (8)

In doing so, we added a positive value b to the right-hand side of the cannot-link constraints which

involve objects ou and ov. When b ≥ 1 − ε, the original cannot-link constraint is deactivated (i.e.,

completely relaxed) as any value for xcu and xcv, for all c ∈ {1 . . . k}, satisfies the new constraints.

However, if b < 1 − ε, ou and ov cannot belong to the same cluster according to both the old and

new constraints. This replacement of constraints leads to the following new Lagrangian function

LCLuv (η, λ, γ, b):

LCLuv (η, λ, γ, b) = L(η, λ, γ) +

k∑
c=1

bηcuv (9)

for which

∂LCLuv (η, λ, γ, b)

∂b
=

k∑
c=1

ηcuv. (10)

The value calculated in (10) provides an approximation of the effect on Z of deactivating the cannot-

link constraint for data objects ou and ov. Likewise, given a must-link constraint (ou, ov) ∈ ML, we

add a positive value b to the right-hand side of the must-link constraints (4’) and (4”) for objects ou
and ov and the resulting constraints are deactivated if and only if b ≥ 1− ε. The Lagrangian function

LMLuv (η, λ, γ, b) becomes:

LMLuv (η, λ, γ, b) = L(η, λ, γ) +

k∑
c=1

b(λcuv + γcuv) (11)

and the approximated effect on Z of deactivating the must-link constraint between data points ou and

ov is given by:

∂LMLuv (η, λ, γ, b)

∂b
=

k∑
c=1

(λcuv + γcuv). (12)

Negative values for the partial derivatives (10) and (12) suggest that a user can likely improve Z

if the constraints are removed from the semi-supervised clustering model. Zero values for the partial

derivatives suggest that the corresponding constraint is intrinsic to the underlying structure of the

data or is redundant due to the inclusion of other constraints.
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Based on these observation, We therefore propose the following impact score Iuv for a pairwise

constraint associated with objects ou and ov:

Iuv =


k∑
c=1

ηcuv if (ou, ov) ∈ CL

k∑
c=1

(λcuv + γcuv) if (ou, ov) ∈ML.
(13)

In the next section, we discuss how to solve the dual problem (7) to calculate the impact score (13).

3.2 Solving the dual problem

The sub-gradient optimization algorithm (Shor et al., 1985; Held et al., 1974) is a widely used technique

for optimizing non-differentiable optimization problems such as (7). To minimize a function g : U ⊂
R→ R, the domain variables are iteratively updated by setting

w ← w + α`s(w), (14)

where w ∈ U and s(w) is any subgradient of g(w), i.e., any vector that satisfies the inequality g(y) ≥
g(w) + sT (y − w) for all y ∈ U . The step size for the `-th iteration is defined by α`.

Algorithm 1 Subgradient method for optimizing the dual problem (7).

Choose initial values for every variable ηcuv , λ
c
uv , and γcuv (for example, all these values can be set equal to 0), and set

Z̄∗ ← −∞ (best upper bound).
for all ` = 1 to m do

Lower bounding step.
Use current values of the dual variables and equation (6) to determine a lower bound solution x

¯
of cost Z

¯
.

if Z
¯

is the largest lower bound ever found then
Save the dual variables in vectors ηbest, λbest and γbest.

end if

Upper bounding step.
Let R be a routine able to transform any solution x ∈ X into a feasible solution to (3)-(5). Run R(x

¯
) to obtain an

upper bound solution of cost Z̄. If Z̄ > Z̄∗ then set Z̄∗ ← Z̄.

Updating step.
α` = 1√

`

for all (ou, ov) ∈ CL and all c ∈ {1, . . . , k} do
ηcuv ← ηcuv + α`

(Z̄∗−Z
¯

)∑
(i,j)∈CL

∑k
c′=1

(1+ε−x
¯
c′
i −x¯

c′
j )2

(1 + ε− x
¯
c
u − x¯

c
v).

end for
for all (ou, ov) ∈ML and all c ∈ {1, . . . , k} do
λcuv ← λcuv + α`

(Z̄∗−Z
¯

)∑
(i,j)∈ML

∑k
c′=1

(ε+x
¯
c′
i −x¯

c′
j )2

(ε+ x
¯
c
u − x¯

c
v)

γcuv ← γcuv + α`
(Z̄∗−Z

¯
)∑

(i,j)∈ML
∑k

c′=1
(ε+x

¯
c′
j −x¯

c′
i )2

(ε+ x
¯
c
v − x¯

c
u).

end for
end for

Algorithm 1 describes the steps of the sub-gradient method for solving (7). It begins by defining

initial values for the Lagrangian multipliers ηcuv, λ
c
uv and γcuv. Then, the algorithm begins its main

loop wherein three steps take place for a predefined number m of iterations. In the first step, a lower

bound for (2)–(5) is obtained by solving model (6) with fixed values of the Lagrangian multipliers.

In other words, this step aims to solve the unsupervised clustering problem with predefined penalty

terms for violating pairwise constraints. If the lower bound obtained is the best obtained so far, values

of the Lagrangian multipliers are stored in vectors ηbest, λbest, and γbest. The second step uses the

lower bound solution to recover a feasible solution to (3)–(5). This solution is an upper bound for the

original SSC problem. The last step updates the dual variables with respect to their subgradient for

a step size α` which is updated at each iteration with a decreasing rule.
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An execution of this algorithm produces optimal values for the variables of the dual problem, and

these values are used to compute the impact score Iuv for each pairwise constraint. Unfortunately,

solving (6) to optimality might be NP-hard for a wide variety of clustering criteria. Thus, for the lower

bounding step of Algorithm 1, one likely must resort to heuristics to find good approximations.

4 Computational experiments

To evaluate the usefulness of the impact score defined in (13), we first report experiments conducted

with synthetic data. Second, we compare our method with naive approaches. Third, we demonstrate

the ability of the proposed methodology to identify the best constraint sets when a collection of

constraint sets is available using real data. For reproducibility purposes, all datasets are available on

a public repository: https://github.com/rodrigorandel/ssc_lagrangian_score.

4.1 Experiments with synthetic data

The first experiment follows the fractional factorial experimental design used in Blanchard et al. (2012).

The process involves generating 500 two-dimensional datasets with known clustering solutions (i.e.,

ground-truth labels). Having a set of known ground-truth labels allows the generation of constraint

sets with correct and erroneous pairwise information. The parameters used to generate these datasets

are given in Table 1: for every dataset, we first randomly choose its size n and its number k of clusters

in {100, 200, 300, 400, 500} and {2, 5, 10, 15}. Second, we generate p correct pairwise constraints, with

p randomly chosen in { 5n
100 ,

10n
100 ,

15n
100 ,

20n
100 } Third, we generate q erroneous constraints, with q randomly

chosen in {d 5p
100e, d

10p
100e, d

15p
100e, d

20p
100e}. The results was 17415 pairwise constraints, among which 2219

(12.7%) are erroneous. Although on a real application the amount of erroneous constraints is expected

to be smaller (i.e. less than 10%), this experiment also aimed to investigate more complex configuration,

and thus, the ratio q of of erroneous constraints was allowed up to 20%.

The data generation mechanism is as follows. For each cluster k of each dataset, we first draw

coordintes xk and yk from a normal distribution N (0, 5). Then, the x and y coordinates of each

data point associated with cluster k are obtained by sampling N (xk, 0.5) and N (yk, 0.5) respectively.

The pairwise constraints (correct and erroneous) are randomly generated with an equal number of

cannot-link and must-link constraints.

Table 1: Experimental Design.

Characteristics Values

Size n of the dataset {100, 200, 300, 400, 500}
Number k of clusters {2, 5, 10, 15}
Number p of pairwise constraints (as a percentage of n) {5%, 10%, 15%, 20%}
Number q of erroneous constraints (as a percentage of p) {5%, 10%, 15%, 20%}

For each one of these 500 two-dimensional datasets, we use the sub-gradient optimization method in

Algorithm 1 with m = 1000 (number of iterations) and ε = 0.5. The Euclidean distance is considered

as dissimilarity metric between data points. For clustering algorithm, we use the k -medoids clustering

model (Randel et al., 2019). To accelerate the lower bounding step, we opt for relaxing the integrality

constraints (5) by xci ∈ [0, 1] for all i = 1, . . . , n and c = 1, . . . , k, and Equation (6) is then solved using

CPLEX 12.8. The routine suggested in Randel et al. (2019) is used to restore feasibility at the upper

bounding step of our algorithm. Upon completion of the optimization, we consider every pair of data

points ou and ov associated with a pairwise constraint and compute the impact score Iuv according

to (13), using ηbest, λbest and γbest. If Iuv < 0, the constraint associated with the pair (ou, ov) is

predicted as erroneous, whereas if Iuv = 0, the constraint is predicted as correct.

To assess the accuracy of the proposed impact score, we begin by computing the true positive,

true negative, false positive and false negative counts across all the constraints: a correct constraint

https://github.com/rodrigorandel/ssc_lagrangian_score
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predicted as correct is a true positive (TP ), an erroneous constraint predicted as erroneous is a true

negative (TN), an erroneous constraint predicted as correct is a false positive (FP ), and a correct

constraint predicted as erroneous is a false negative (FN). Using these numbers, we can evaluate the

accuracy of the proposed impact score via the three following standard measures:

• Precision = TN
TN+FN ;

• Recall = TN
TN+FP ;

• F1-score = 2Precision×Recall
Precision+Recall .

The results are summarized in Figure 3. Across all datasets, we counted TN = 2205, TP =

15130, FN = 66, and FT = 14 which provide a Precision of 0.97, a Recall of 0.99 and a F1-score

of 0.98. These numbers clearly demonstrate that the proposed Lagrangian-based impact score is able to

assess the informativeness of pairwise constraints, as only 0.63% of erroneous constraints and 0.43% of

correct constraints were misclassified. We also investigated why some correct pairwise constraints were

mistakenly predicted as erroneous. We found that the majority of these false negatives are attributable

to an overlapping of two or more clusters in the ground-truth data. In such situations, the clustering

model prefers to merge data objects belonging to different classes, which presumably yields cannot-link

constraints to be predicted as wrong.

Before

After

Erroneous constraints

Correct constraints 99.6%

0.6%

0.4%

99.4%

Erroneous  
constraints 99.4% 0.6%

Correct 
constraints 0.4% 99.6%

Predicted as 
erroneous

Predicted as 
correct

Predicted as erroneous Predicted as correct

Figure 3: Predictions made with the Lagrangian-based score.

In these experiments, we assumed that the number of clusters k was known to the user. It is

interesting to note that the proposed Lagrangian-based impact score can also offer a mechanism to

provide information about the number of clusters. Indeed, one can consider the proportion of pairwise

constraints predicted as erroneous as a tool to predict the right number of clusters, following the idea

that a high number of erroneous constraints is an indication that a wrong number of clusters was

adopted by the model. To illustrate, Figure 4 shows the ratio of constraints predicted as erroneous for

the experimental datasets with five clusters. The proposed algorithm was executed for each of these

instances by varying the number k of clusters from 2 to 10. We observe that the lowest ratio is reached

with k = 5. We can also observe that the F1-score is maximized with k = 5, which provides support

for the suggestion of the proportion of constraints predicted as erroneous by the impact score as an

additional tool for selecting the right number of clusters.

4.2 Comparison to optimistic and pessimistic naive approaches

Whereas we believe that the proposed approach is easy to implement, it may be that some naive

approaches that do not require solving the dual can achieve the same level of accuracy on individual

pairwise constraint predictions. We detail here two such (baseline) approaches, and evaluate their

performance on the same synthetic datasets.

The optimistic approach. Let C = CL ∪ ML denote the constraint set. Assuming that the semi-

supervision provided by the expert is correct, the optimistic approach first solves the integer pro-

gram (2)–(5) for the whole set C and considers its optimal value ZB as the base cost of the objec-

tive function. Then, for each constraint (ou, ov) ∈ C, the integer program is solved again, but with

C ′ = C \ {(ou, ov)} as constraint set which allows an updated optimal value denoted Zuv. The impact
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Figure 4: Estimating the number of clusters by counting the number of constraints predicted as erroneous.

score of the optimistic approach is defined as Iouv = Zuv − ZB , and we use it as follows. If Iouv < 0,

the constraint associated with the pair (ou, ov) is predicted as erroneous. If if Iouv > 0, the constraint

is predicted as correct.

One can easily see the challenge faced with this approach. Even if a constraint is erroneous, remov-

ing it from the constraint set may have no impact on the solution cost because the clustering solution

may be tied up by other constraints (i.e., the assignments will not change). To illustrate, Figure 5(a)

shows one erroneous must-link constraint and one erroneous cannot-link constraint. The optimal par-

tition obtained with MSSC is shown in Figure 5(b). If one adopts the popular k-means clustering

criterion, the data point that contains both cannot-link and must-link constraints is misclassified. The

problem with the optimistic approach is that if the erroneous must-link constraint is discarded, the

solution obtained remains unchanged (i.e., Zuv − ZB) due to the erroneous cannot-link constraint,

and the opposite also holds. Consequently, the optimistic approach would yield two false positives by

predicting both erroneous constraints as correct (Figure 5(c)). For comparison, the execution of the

proposed Lagrangian-based method correctly predicts both constraints as erroneous (Figure 5(d)), and

the optimal clustering solution produced by MSSC can thus be retrieved.

The pessimistic approach. The pessimistic approach begins by assuming that all constraints are erro-

neous. It begins by defining the base cost ZB by solving the integer program without any pairwise
constraint. Then, for every (ou, ov) ∈ C, the integer program is solved again with only (ou, ov) as pair-

wise constraint and the updated score is denoted Zuv. The impact score of the pessimistic approach

is defined as Ipuv = ZB − Zuv, and we use it as follows. If Ipuv < 0, the constraint associated with the

pair (ou, ov) is predicted as erroneous. If Ipuv > 0, it is predicted as correct.

One can also easily see the challenge faced with this approach. When only one constraint is consid-

ered at a time, it is possible that every constraint is predicted as erroneous whereas the combination of

several constraints would show that they are all correct. To illustrate, consider the data points in Fig-

ure 6(a) for which all pairwise constraints are correct. Still adopting the k-means clustering criterion,

all constraints would be predicted as erroneous given that the optimal unsupervised clustering solution

groups the eight data points on the right into a unique cluster. Doing so leaves a single data point

alone, as illustrated in Figure 6(b). Separating the single point produces a low cost for ZB , which leads

to Zuv > ZB for all (ou, ov) ∈ C. As shown in Figure 6(c), the pessimistic approach yields five false

negatives given that the five correct constraints are predicted as erroneous. However, as shown in Fig-

ure 6(d), the Lagrangian-based method only predicts the must-link constraint as erroneous. It is able

to do so because when the blue data point associated to the cannot-link constraints is grouped with

the top-bottom blue data point in the left, the cannot-link constraints are no longer necessary. The

fact that the Lagrangian-based impact score is computed considering all constraints together allows

correct identification in this case.
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Erroneous cannot-link constraint

Erroneous must-link constraint

(a) Example where the optimistic approach fails.

Cluster 1
Cluster 2

(b) Optimal clustering using the MSSC model.

Erroneous cannot-link constraint

Erroneous must-link constraint

Erroneous cannot-link constraint predicted as erroneous

Erroneous must-link constraint predicted as erroneous

(c) Predictions using the optimistic approach.

Erroneous cannot-link constraint

Erroneous must-link constraint

Erroneous cannot-link constraint predicted as erroneous

Erroneous must-link constraint predicted as erroneous

(d) Predictions using the Lagrangian-based score.

Figure 5: Illustration of a case where the optimistic approach fails to identify erroneous constraints.

Correct cannot-link constraint

Correct must-link constraint

(a) Configuration where the pessimistic approach fails.

Cluster 1
Cluster 2

(b) Optimal clustering using the MSSC model.

Correct cannot-link constraint

Correct must-link constraint

Correct cannot-link constraint predicted as erroneous

Correct must-link constraint predicted as erroneous

(c) Predictions using the pessimistic approach.

Correct cannot-link constraint

Correct must-link constraint

Correct cannot-link constraint predicted as erroneous

Correct must-link constraint predicted as erroneous

(d) Predictions using the Lagrangian-based score.

Figure 6: Illustration of a case where the pessimistic approach fails to identify correct constraints.

In a way, the proposed Lagrangian-based impact score Iuv can be seen as a combination of both the

pessimistic and optimistic approaches. By considering the whole constraint set, the Lagrangian-based
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impact score can identify redundant constraints that would be predicted as incorrect in situations like

the one shown in Figure 6(a). Besides, it does not experience tied solutions as the one illustrated in

Figure 5(a), where erroneous constraints are predicted as correct by the optimist approach. In some

scenarios, the optimist and pessimistic approaches may behave in a complimentary fashion as the

false positives predicted by the optimistic approach would be correctly predicted as erroneous by the

pessimistic approach, whereas the false negatives predicted by the latter would be correctly predicted

as correct by the optimistic approach.

It is important to note that the use of heuristics to compute ZB and Zuv could lead to situations

where the impact scores Iouv and Ipuv are slightly smaller than 0, whereas optimal values would have

given non-negative scores and thus opposite predictions. To mitigate such a risk, we can adapt the

prediction process as follows. Let sCL and sML be the smallest scores reached by a constraint in CL and

ML respectively. The impact scores Iouv and Ipuv are normalized by dividing by sCL if (ou, ov) ∈ CL,

and by sML if (ou, ov) ∈ ML. All normalized impact scores are now at most equal to 1, and a

constraint is predicted as erroneous if and only if its normalized impact score is larger than a given

threshold τ . We tested this modification of the algorithm via 1000 different values for τ and we report

in Figure 7 the F1-scores obtained when using the normalized impact scores. The optimistic approach

reaches its maximum F1-score with τ = 0.15, whereas the best F1-score of the pessimistic approach

is reached with τ = 0. We have also determined the best threshold value τ for the Lagrangian-based

approach based on normalized impact scores, with

sCL = min
(ou,ov)∈CL

Iuv and sML = min
(ou,ov)∈ML

Iuv.

As was the case for the pessimistic approach, the best results are obtained with τ = 0.

F1
-s

co
re

 (%
)

50

75

100

Threshold

0.0 0.5 0.99

Pessimistic

Optimistic

87.6%

97.7%

Figure 7: Identifying a good threshold to filter slightly negative scores for the baseline approaches.

In Figure 8, we compare the pessimistic and optimistic (with τ = 0.15) approaches with the

Lagrangian-based method, for the same 500 experimental datasets. The values of ZB and Zuv for the

two baseline approaches were obtained with the Variable Neighborhood Search designed in Randel

et al. (2019) for the k-medoids clustering model. For each method, we give the Precision, Recall and

F1-score measures. We find that both the optimistic and pessimistic approaches produce results that

are inferior to that of the proposed Lagrangian-based method. As expected, we see from the Precision

values that the optimistic approach yields more false positives than the other methods (i.e., erroneous

constraints predicted as correct). The pessimistic approach obtains fair results, but with slightly worse

classification scores than the Lagrangian-based approach.
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Precision Recall F1-Score

98.3%99.4%97.1% 97.7%99.2%96.2%
87.6%90.6%

84.9%

Optimistic Pessimistic Lagrangian-based score

Figure 8: Comparison of the two baseline approaches with the Lagrangian-based method.

4.3 Evaluating entire constraint sets at once

As last experiment, we show how to use our Lagrangian-based impact score to evaluate the quality

of a proposed constraint set on real data. For this purpose, we consider the four following classical

benchmark datasets available at the UCI Machine Learning Repository (Dua and Graff, 2017): Iris

(n = 150, k = 3, dimension = 4), Wine (n = 178, k = 3, dimension = 13), Glass (n = 214, k = 3,

dimension = 10) and Ionosphere (n = 351, k = 2, dimension = 34). For each dataset, a collection

of 100 constraint sets was generated, each one containing 25 randomly generated erroneous pairwise

constraints.

The quality score q(C) of a constraint set C is defined as the sum over all constraints of the impact

scores, that is

q(C) =
∑

(ou,ov)∈C

Iuv.

Given that all values Iuv are non-positive, the above quality score has smaller values for constraint

sets with higher total negative impact on the clustering solution. We therefore claim that the best

constraint sets are those that provide the highest quality score q(C).

To evaluate whether the highest quality score is helpful, we have to measure the impact of imposing

a constraint set to a clustering problem. For this purpose, we use the standard Adjusted Rand Index

(ARI) (Hubert and Arabie, 1985) which is defined as follows. Let X1, . . . , Xk be the ground-truth

partition of a dataset of n points into k clusters, and let Y1, . . . , Yk be the partition obtained by

solving (2)–(5) with constraint set C. Also, let ai = |Xi| and bi = |Yi| for all i = 1, . . . , k, and let

cij = |Xi ∩ Yj | for all i and j in {1, . . . , k}. The ARI is computed as follows :

ARI =

∑
ij

(
nij

2

)
− (
∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

)
1
2 (
∑
i

(
ai
2

)
+
∑
j

(
bj
2

)
)− (

∑
i

(
ai
2

)∑
j

(
bj
2

)
)/
(
n
2

) .
Figure 9 shows the ARI with standard box-and-whisker plots, for each dataset, when the whole col-

lection of 100 constraint sets is used, and when only the 50 constraint sets with highest quality score

are used.

As mentioned in Section 2, Davidson et al. (2006) propose to evaluate the quality of a constraint

set by using a coherence measure. We show in Figure 9 the ARI for each data set when using the 50

constraint sets with highest coherence measure.

We observe that the use of the Lagrangian-based score for selecting less impactful erroneous con-

straint sets is effective. For all datasets, we obtained a better average ARI than that obtained when

using the coherence measure of Davidson et al. (2006). Moreover, our method always selects within

its top 50 constraint sets the one with highest average ARI. Additionally, the worst constraint set in-

cluded by our technique within its top 50 is always better than the worst set selected by the coherence
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measure. It is also worth noting that our method never selects within its top 50 constraint sets the

worst possible set regarding the average ARI metric.

ARI
0.33 0.42 0.51 0.60

Reduced constraint 
set with Lagrangian-
based score

Whole collection

Reduced constraint 
set with coherence 
measure

Iris

ARI
0.19 0.24 0.29 0.34

Reduced constraint 
set with Lagrangian-
based score

Whole collection

Reduced constraint 
set with coherence 
measure

Wine

ARI
0.14 0.19 0.23 0.28

Reduced constraint 
set with Lagrangian-
based score

Whole collection

Reduced constraint 
set with coherence 
measure

Glass

ARI
0.09 0.12 0.15 0.19

Reduced constraint 
set with Lagrangian-
based score

Whole collection

Reduced constraint 
set with coherence 
measure

Ionosphere

Figure 9: Comparison of the Adjusted Rand Index for several data sets and different constraint sets.

5 Concluding remarks

We proposed a Lagrangian-based procedure for assessing the quality of semi-supervision in clustering.

The procedure addresses an important issue in semi-supervised clustering applications: the incorpo-

ration by experts of constraints which degrade the clustering solution. To help experts identify which

pairwise constraints from a set should be removed, the technique estimates the quality of pairwise

constraints by exploiting the dual variables of the Lagrangian relaxation of a constrained integer pro-

gramming formulation of the clustering problem. The impact of each pairwise constraint is computed

using a sub-gradient algorithm that optimizes the Lagrangian relaxation. To demonstrate the effec-

tiveness of our approach, we conducted several experiments on synthetic data. We also compared our

approach to that of prior methods, which do not enable the evaluation of individual pairwise con-

straints of a set but rather evaluate the set as a whole. We find across these experiments that the

method is robust.
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