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Abstract: This paper presents the application of adaptive simultaneous stochastic optimization with
a representative branching framework to generate the strategic plan of the Escondida mining complex,
the world’s largest copper-production operation. This adaptive, two-stage stochastic optimization con-
siders geological uncertainty and integrates investment and operational alternatives in the production
schedule. Mining complexes are comprised of interconnected components affected by multiple sources
of uncertainty. Thus, they must be optimized simultaneously in order to maximize their value and
manage risk. Additionally, due to the extensive lives of assets, it is not possible to assume that the
current strategic plan will remain optimal. Thus, an operationally feasible method to embed alterna-
tives in the mine plan is used. The method presented provides a strategic plan with representative
branches for future possible investment decisions. Adaptive decisions are made sequentially over time,
activating costs and effects over the model. The optimizer chooses the optimal strategic production
plan accordingly, as well as the investments made and their timing. The Escondida mining complex
is a multi-element, multi-pit operation with nine different processing destinations. Investment options
considered are increasing truck and shovel fleet, adding a secondary crusher in one of the plants, and
investing in a main crusher assigned to one of the pits. Additionally, operational alternatives at the
mine and plant levels are included. The adaptive solution shows a substantial probability that the
mine plan might change its design substantially due to geological uncertainty, presenting an increased
expected NPV compared to the two-stage stochastic formulation.
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1 Introduction

Escondida is the world’s largest copper-producing mining complex, located at over 3,000 m.a.s.l. in the

Antofagasta Region in northern Chile. It is operated by Minera Escondida Ltd. and is part of BHP’s

operations (Padilla et al., 2001). A mining complex consists of a set of connected, interdependent

components, including a set of mines, which supply raw material, stockpiles, different processing

streams, and a set of final destinations that sell the processed material for a profit. A diagram of the

Escondida mining complex is presented in Figure 1, which consists of two open-pit mines, Escondida

and Escondida Norte, both of which are part of the multi-element Escondida porphyry. There are

four material types defined as sulfides, oxides, mixed, and waste. Sulfides can be processed by three

different sulfide processing plants, which are fed by four crushers and receive material from both mines;

low-grade sulfide material can also be sent directly to a bio-leach pad as run-of-mine (ROM). Oxide

and mixed material must be processed in a separate leach-pad, which is fed from a fifth crusher, also

receiving material from both mines. Additionally, there are two stockpiles available for oxide and

sulfide material, and a waste dump, which are fed directly from the pits.

Figure 1: Diagram of the Escondida Mining Complex

Mining complexes are governed by inherent uncertainties both internally (geological, technical), as

well as externally (royalties, markets, etc.) (Dowd, 1997, 1994; Johnson, 1968; Ravenscroft, 1992). In

order to obtain a reliable mine plan, a mining complex must be optimized simultaneously, accounting
for the value created by the synergies that exist between its components (Bodon et al., 2011; Hoerger

et al., 1999; Pimentel et al., 2010; Whittle, 2010, 2007), as well as for the effects of uncertainty over its

strategic plan (Goodfellow and Dimitrakopoulos, 2016; Kumar and Dimitrakopoulos, 2019; Lamghari

et al., 2015; Montiel et al., 2016; Montiel and Dimitrakopoulos, 2018; Saliba and Dimitrakopoulos,

2018). Montiel and Dimitrakopoulos (2015) develop a model to optimize the production schedule of a

mining complex that considers supply uncertainty, including operating alternatives at the processing

plant and the transportation systems of the mineral value chain. To account for supply uncertainty,

the authors use a set of stochastically simulated realizations of the deposit, which represent the local

variability of the attributes of interest, such as the grade of metal, material ore types, or deleterious

elements (Goovaerts, 1997). Similarly, Goodfellow and Dimitrakopoulos (2017) present a simultane-

ous stochastic optimization framework that integrates decisions over material extraction from a set of

sources along with their uncertainty, as well as blending, stockpiling, processing and transportation de-

cisions, while managing the related risk to meet production targets and maximize revenue. Goodfellow

(2014) extends this model to include capital investment alternatives, allowing the optimizer to define

extraction capacities as part of the optimization process. However, all of these studies provide static

solutions, fixed for the whole LOM after optimization, and do not propose any feasible alternatives to

adapt a strategic plan if the expected future changes, underestimating the asset’s potential (Dowd et

al., 2016; Eckart et al., 2010; Wang, 2005).
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To deal with this lack of flexibility, Del Castillo and Dimitrakopoulos (2019) propose an adaptive,

two-stage stochastic programming model with representative branching, which allows for the inclusion

of investment alternatives into the strategic plan. This model provides a clear image of possible

future evolutions of the asset, and develops straightforward implementation plans for them. The

strategic plan produced is presented as a scenario tree, with branches defined through representative

scenario groupings, which show all mine-design investment developments that have a representative

probability of occurring given the uncertainty. In order to control the complexity of the model and

limit the growth of the solution tree, only investments that have an important effect over the strategic

plan are considered for branching. Thus, investment decisions are divided into two sets, branching

(K<) and non-branching (K=). The former are major investments with extensive lead times, and

are taken only once, or once every more than ten years in the LOM, such as the opening of a new

processing plant. The later have a low relative impact over the LOM schedule, and/or are multiple

small decisions taken repeatedly over the LOM, such as truck purchases, which define the mines’

extraction capacity. The proposed approach provides a probabilistic analysis of investing or not in

different big capital expenditures, with their corresponding investment timings, production plans, and

extraction capacities.

Due to the long life of assets and the uncertainties affecting it, expecting that their setup will remain

unchanged throughout its life is a strong assumption that might hinder the potential to maximize

revenue. The Escondida mining complex has a reported life of asset of 58 years, as of January 2018

(“Mining Data Solutions - Escondida Mine,” 2018), thus, it is necessary to develop a strategic plan

that not only respects production forecasts, but that also enables change. Traditionally, mine plans are

updated annually according to the previous year’s information on costs, commodity price evolutions,

and extracted material. However, this is a suboptimal practice that only allows reactive responses,

inhibiting timely and efficient large-scale changes and investments, as these require extensive lead

times and coordination between the components involved. The simultaneous stochastic optimization

of a mining complex (Goodfellow and Dimitrakopoulos, 2017; Montiel and Dimitrakopoulos, 2015)

manages risk and maximizes value given the mining complex’s setup, but also produces static plans.

Project value can be maximized by generating strategic plans that react in a timely way to change

(Siegel et al., 1987). For this, flexibility alternatives must be created and maintained within the model,

optimizing the type and timing of new investments that could become valuable given future changes.

A “flexible design” is defined as being able to adapt and reconfigure if needed (De Neufville et al.,

2004; De Neufville and Scholtes, 2011). Accordingly, flexibility in strategic plans is often translated

into a set of different possible solutions that are operationally impossible to follow in real life. For

strategic plans and financial assessments to be reliable, the strategic plan and mining design must be

operationally feasible. In mining terms, this means that they must follow all operational requirements

and physical geotechnical restrictions. Including flexibility in mining operations has been a topic of

interest in the technical literature, tackling different sources of uncertainty, such as commodity price,

geology, or operating costs (Boland et al., 2008; Groeneveld and Topal, 2011; Kazakidis and Scoble,

2003; Singh and Skibniewski, 1991), but they have failed to produce optimized mine plans that allow

for feasible, implementable designs.

Mining operational requirements demand a unique strategic plan for the life of assets, mostly in order

to define clear medium- and short-term plans. However, the strategic plan may allow variations and

alternatives during later periods without affecting short-term planning. The model developed by Del

Castillo and Dimitrakopoulos (2019) extends past approaches on simultaneous stochastic optimization

of mining complexes by including feasible implementations of alternatives in the strategic plan through

the dynamic planning of investments, providing a broader look at possibly profitable evolutions of the

plan. Del Castillo (2018) extends this work by including decisions over operational alternatives into

the model, letting the optimizer define blast-hole patterns to affect rock fragmentation, as well as

plants’ throughput and recovery configurations. This work stresses the advantages of integrating the

optimization of different investment and operating alternatives into one model, as a part of the strategic

planning process, as well as the benefits of allowing a mine design to branch, planning for investment

decisions that might be profitable in the future.
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This paper outlines the application of the adaptive stochastic optimization model at the Esconida

mining complex in the presence of supply uncertainty. For comparison, the mining complex is also

optimized using the traditional two-stage stochastic simultaneous optimization, with and without con-

sidering investment and operating mode alternatives. Results show substantial benefits in considering

dynamic alternatives within the optimization, both in terms of net present value (NPV) as well as the

use of available equipment. The next section briefly describes the adaptive methodology. Section 3

presents the application at the Escondida mining complex and introduces the different cases compared.

Conclusions follow.

2 An adaptive simultaneous optimization method

The adaptive, two-stage stochastic programming model with representative branching proposed by

Del Castillo and Dimitrakopoulos (2019) aims at maximizing value while managing risk due to the

presence of uncertainties. In this case, uncertainty in supply is represented through a set of S geological

simulations of the deposit, and the strategic plan is optimized over a period of T years, aiming at

maximizing the following objective function.

max
1

|S|
∑
s∈S

∑
t∈T

(
Discounted Profits,t − Investment Costss,t − Penalty for Deviationss,t

)
(1)

The first term of Eq. 1 corresponds to all discounted revenues from the final products, minus

extraction and processing costs. The second term considers directly the purchase cost of the different

investments acquired along the LOM, also discounted to present value. Finally, the third term aims

at managing risk by minimizing deviations from production targets. These targets consider maxi-

mum production and extraction capacities, as well as blending targets and constraints in the different

processing streams.

To allow the adaptive two-stage optimization model to branch, ensuring that decision variables remain

constant within a branch, and differ only between separate branches, non-anticipativity constraints are

included (Birge and Louveaux, 1997). These non-anticipativity constraints are the only constraints

linking the separate scenarios, and ensure that decisions are nonanticipative of future outcomes, and

in this case, are present for all extraction sequence decisions, destination policy decisions, operating

mode decisions, and non-branching investment decisions. A representation of the set of constraints

related to the extraction sequence decisions (xb,t,s) is presented in Eq. (2), where xb,t,s equals to 1 if

block b of mine M is extracted in period t, in scenario s, and 0 otherwise.

(1−At−1) (xb,t,s − xb,t,s′) = 0, ∀t, t− 1 ∈ T ; b ∈M ; s ∈ Ωρ1; s′ ∈ Ωρ2; Ωρ1,2 ∈ Ωρ (2)

Given that Ωρ is the set of scenarios in that branch, Ωρ1
⋃

Ωρ2 = Ωρ are scenario partitions, where

Ωρ1 = {s ; inv. = true,∀s ∈ Ωρ} , Ωρ2 = {s ; inv. = false,∀s ∈ Ωρ}. Variable At is activated (equals

to 1) in a given period t if there is a representative probability R* of investing and not investing in a

branching capital expenditure, eliminating the constraint, and thus, allowing decisions to vary for the

following planning period (t). However, if At is not activated (equals to 0), then constraint 2 enforces

all extraction decision variables to be equal throughout all scenarios (see Del Castillo (2018) for details

on the calculation of At and for the full model). The actual decision to branch is taken by calculating

the representativity of the probability of purchasing a branching investment. For this, a threshold

parameter R ∈ [0, 0.5] is defined, where branching only occurs when the probability of investing (R∗)

falls within this threshold (∈ [R, 1−R]). If the probability of investing is lower than the threshold

(R∗ ∈ [0, R)), the solution does not branch, and no investment is made. On the other hand, if the

probability is higher than the threshold (R∗ ∈ (1−R, 1]), there is also no branching, but the full mine

plan invests.

The proposed adaptive, two-stage stochastic programming model is solved by using a rolling-horizon

decision-making mechanism (Adulyasak et al., 2015; Bertsekas et al., 1997; Sethi and Sorger, 1991),
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which iteratively fixes decisions on an increasing time horizon, and allows later periods to differ. This

process quantifies investing probabilities and, if these probabilities are representative, branches and

rolls back to generate feasible strategic plans for each branch, later fixing the decisions taken until that

period. This process is repeated until all periods of the LOM are fixed.

3 Application at the Escondida mining complex

3.1 Overview

As mentioned previously, the Escondida Mining Complex (presented in Figure 1) consists of two open-

pit mines, Escondida and Norte, which contain over 120 and 78 thousand blocks, respectively. Each

block measures 25m x 25m x 15m in dimension, and contains a variable concentration of copper, gold,

silver, and molybdenum as valuable elements, as well as arsenic and iron which must be controlled.

The mines are connected to four crushers that feed three sulfide processing plants, OGP1, LC, and LS,

which have a processing capacity of 160, 120, and 130 thousand tonnes per day (ktpd) respectively, as

well as a crusher that feeds an oxide leach-pad with a capacity of 25 million tonnes per year. Material

from both mines can also be sent to a bio-leach pad that has the capacity to treat 135 million tons of

run of mine (ROM) material per year, and a waste dump with assumed infinite capacity. Additionally,

there are two stockpiles available for oxide and sulfide material, which are fed directly from the pits

and have a capacity of 75 and 30 million tons per year respectively.

Exploration drill-holes show that the life of mine is in the order of decades, however the strategic

plan is defined for a time-range of 8 years. The main product sold by the mining complex is copper

concentrate produced by the processing plants, which has a premium for gold, silver, and molibdenum

content. Copper cathodes are also produced by the oxide and bio-leach pads. Escondida has an initial

fleet capacity of 98 trucks and 14 shovels, and Norte has 42 trucks and 6 shovels assigned for the first

two years of the strategic plan. Extraction capacity after that point will be defined by the optimizer

for both mines, by investing in trucks and shovels. Because of geotechnical constraints, Escondida

can have a fleet of up to 120 trucks, and Norte of up to 70. Due to cycle times and maintenance, for

optimal performance, it is considered that a shovel can haul up to 7 trucks.

3.2 Alternatives considered

The alternatives included into the Escondida Mining Complex are divided into operational and invest-

ment alternatives. Operational alternatives correspond to intrinsic flexibilities that allow for adapting

the configuration of a process at a given component of the mining complex, and investment alternatives

are capital expenditures in equipment or infrastructure that are feasible to consider within the mine

plan.

3.2.1 Investment alternatives

A summary of the investment alternatives considered is presented in Table 1. Here, the two sets of

investments defined earlier are presented, which are periodic investments (K=) and one-time invest-

ments (K<). In this case, the first set includes truck and shovel purchases for the Escondida and Norte

pits separately, which jointly define the extraction capacity of the mining complex, and the second

considers investments over a secondary crusher at the LS plant, and an extra crusher assigned to the

Escondida pit, which feeds material to OGP1 and LS plants.

3.2.2 Operational alternatives

In this case, as in Del Castillo (2018), two sets of operational alternatives are considered. These are i)

adapting the processing modes at each of the three plants, increasing the metallurgical recovery, but

at a cost in throughput, and ii) applying a change in the blasting pattern at each of the mines, in order

to help fragmentation, but at a higher mining cost due to extra explosives and blasting perforations.
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Table 1: Parameters of the investment alternatives considered in the mining complex

Equipment Parameters Truck (K=) Shovel (K=) 2ry Crusher
in LS (K<)

Extra Main
Crusher (K<)

Undiscounted cost MUS$4.8 MUS$32.0 MUS$45.0 MUS$400.0
Life of equipment 6 years 7 years 25 years 25 years
Periodicity of decision 2 years 2 years Once/LOM Once/LOM
Lead time 1 year 1 year 2 years 3 years
Maximum purchase 100 units 15 units 1 unit 1 unit
Initial Capacity available E/N pits 100 / 40 units 14 / 6 units - -
Tonnage increment 2.9 Mt/unit 20.3 Mt/unit 5.0 Mt/unit 54.0 Mt/unit

The interaction between the different investment and operational alternatives within the mining

complex’s performance is shown in Figure 2. The left side of the figure presents a detail of plant

LS’s flow of material, where the blasting modes and the fleet investment alternatives affect both

mines. These sources feed a possible new extra crusher, which in turn feeds the ball mill of LS, which

can be aided by the addition of a secondary (2ry) crusher incorporated within the processing plant.

This processing plant also has an operating mode that defines whether it will be operating at high

throughput/ low recovery, or low throughput/ high recovery mode. The right side of the figure shows

the global view of the adaptive mining complex, which consists on Figure 1, along with the set of

alternatives mentioned (investment alternatives in red, mining modes in green, and processing modes

in blue).

Figure 2: Detail of the interaction between investment and operating modes in the LS processing plant (left) and the
global mining complex (right)

3.3 Results

Three cases are presented next, all of which consider geological uncertainty within the optimization in

the form of equally probable simulations of the deposits. The first case corresponds to the traditional

two-stage optimization where a fixed extraction and processing capacities are defined over the whole

mining complex, as well as fixed operating modes. This is the traditional stochastic simultaneous opti-

mization of a mining complex (Goodfellow and Dimitrakopoulos, 2016; Montiel and Dimitrakopoulos,

2018). Next, results obtained for the stochastic optimization considering alternatives is presented. In

this case, the dynamic adaptive analysis is not performed, but the optimizer is allowed to define the

optimal investment plan as in Goodfellow (2014), as well as the operational alternatives, similar to

Montiel and Dimitrakopoulos (2015). Thereafter, the results are compared including the alternatives,

both separately and simultaneously. Finally, the dynamic adaptive case is presented, which includes

the possibility of branching over one-time investments, presenting a probabilistic solution of the life of
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asset design, which allows maintaining flexibilities available until more information is obtained to take

the final design decisions.

3.3.1 Base case

The base case extraction plan and equipment purchase plan is presented in Figure 3, where there is

a fixed equipment capacity for both Mine 1 (in black) and Mine 2 (in blue), even though the actual

extraction (in dashed lines) is considerably less in various periods. In Figure 4, the risk profiles for the

first Crusher, as well as for the three different plants are presented. As demonstrated, Crusher 1 (left of

Figure 4) is working consistently at full capacity, however, there is still some capacity available at the

processing plants. This analysis allows for identifying possible investments as interesting alternatives

that could improve the performance of the mining complex, such as increasing the crushing capacity

in order to increase the plants’ feeds.

Figure 3: Base Case’s mine extraction and fleet acquisition plan for Mine1: Escondida, and Mine2: Norte

Figure 4: Base Case’s risk profile of the annual material feed for i) Crusher 1, and plants ii) LS, iii) OGP1, and iv) LC,
with respect to the target in red

3.3.2 Optimized alternatives

The second case presented includes the operating and investment alternatives mentioned in Figure 2,

however, these alternatives are only considered as fixed strategic decisions in the two-stage optimiza-

tion (as in Goodfellow (2014) investment acquisition plans and Montiel and Dimitrakopoulos (2015)

operating mode alternatives). Figure 5 presents the annual mine extraction and equipment acquisition

plan for both mines, showing the number of equipment units with respect to the initial quantity avail-

able in the left axis, and the percentage of extraction capacity (in full lines) and actually extracted

(dashed lines) in the right axis, with respect to the total extraction capacity of the mining complex.

In comparison to the base case fleet acquisition plan presented in Figure 3, the full alternative case

reduces its initial fleet for the first four years, delaying the cost of investing in new trucks and shovels

only for when this extra tonnage is required, instead of having idle equipment, as seen in the base case.
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Figure 5: Full alternatives case’s mine extraction and fleet acquisition plan for Mine1: Escondida, and Mine2: Norte pits

The risk analysis of the material fed into the main processing streams is presented in Figure 6.

It can be seen in the leftmost graph that the capacity of Crusher 1 increases in year 5 due to an

investment in an extra crusher in period 2, as this investment has a lead time of 3 years (Table 1). The

targets of the three graphs on the right side of Figure 6 are modified by the acting operating modes,

which adapt the plants’ throughputs with an effect over their recovery (Table 2). Additionally, the

capacity in the LS plant is increased in periods 6 through 8 because the plan chooses to invest in a 2ry

crusher in period 4. Some deviations can be seen from the plant’s maximum capacity, particularly in

OGP1 and LC, however these are mostly during the final periods of the strategic plan.

Figure 6: Risk profile of the Case with full alternatives for the annual material feed of i) Crusher 1, and plants ii) LS, iii)
OGP1, and iv) LC, with respect to the target in red

Table 2: Operating mode’s costs and effects information

Plant Operating Modes Effect over Recovery Effect over Throughput

LS Plant Mode 0.8% -10%
LC Plant Mode 0.8% -10%
OGP1 Plant Mode 0.9% -12%

Mining Operating Modes Effect over Mining Cost Effect over Throughput

Escondida’s Blast-hole Pattern 15% 7%
Norte’s Blast-hole Pattern 10% 5%

3.3.3 Proposed adaptive dynamic case

The final solution tree representing the dynamic strategic plan with adaptive decisions is presented in

Figure 7, where the first row illustrates the period of the plan, where T = 8, and the plan of period 1

corresponds to the same as the one presented in the previous section. The figure shows that, in this

case, there is a 40% chance of branching over the investment of an extra crusher in period 2. Then, if

the investment is done, there is a 30% chance of also investing in a 2ry crusher in period 3 and, if the

extra crusher is not purchased in period 2, there is a 67% chance of investing in it later in period 4.
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If this is done, there is also a 50% chance of also investing in a 2ry crusher in that same period. With

these probabilities, it is possible to calculate the probability of each branch, showing that there is only

a 20% chance of not investing in any CAPEX alternative (last branch), but there is an 80% chance of

investing in the extra crusher between periods 2 and 4, showing that it might be interesting to advance

this investment, compared to the fixed case with alternatives presented in the previous section.

Figure 7: Investment solution tree representation of the strategic adaptive plan

Each branch of this solution tree includes a full production schedule, with its corresponding oper-

ating modes and minor equipment purchases. For example, the extraction and equipment purchase

program for the second branch, which has the highest probability of occurring (28%), is presented in

Figure 8, where it shows that, in this case, the overall fleet size is reduced compared to the original

base case. However, in this case, more trucks are purchased in period 2 (40 instead of 45 as in the

previous case for Escondida and 21 instead of 14 for Norte) and there is also an increase in extraction

capacity towards the last years, investing in trucks and shovels during years 4, 5, and 6 in both mines.

The material feed for the extra crusher purchased in period 2, as well as for the three different plants

is presented in Figure 9. The figure also shows the effect of the different operating modes over the

processing capacities (red line), compared to the initial targets (dotted-line), where it can be seen that

the risk profiles are able to closely follow the capacities adapted by the operating modes, with some

slight deviations.

Figure 8: Mining extraction and fleet acquisition plan for both mines, under the second branch of the dynamic adaptive
model

3.4 Discussion

The NPV distribution for each of the three cases presented is shown in Figure 10, where the horizontal

axis presents the scaled NPV with respect to the original base case, and the vertical axis presents
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Figure 9: Adaptive plan’s risk profile for branch 2 of the annual material feed for i) Crusher 1, and plants ii) LS, iii) OGP1,
and iv) LC, with respect to the operating mode target (continuous red), and to the original target without operating
modes (dotted red)

the probability of obtaining at most that NPV. The values have been scaled to the 50th percentile of

the initial base case (i.e., the P50 value) for confidentiality reasons, showing that if investment and

operational alternatives are included (“2-STAGE WITH ALT.” curve in dashed grey), the NPV of

the mining complex can increase between 8 and 12% compared to the original base case (“2-STAGE

WITHOUT ALT.” curve in light grey). This difference is due to three main reasons: first, the expansion

opportunities obtained by allowing the processing streams to expand their crushing capacities; second,

because of the flexibilities that the operating modes provide to the configuration of the different

component, being able to have a better control over how the material is being processed according to

its characteristics; finally, because a lot of this value is obtained by optimizing the timing of purchase

of the different equipment, it delays investments that are not immediately required. Figure 10 also

shows the NPV distribution for the dynamic adaptive case proposed. Results show that the dynamic

analysis provides a more general look at the mining complex’s future performance, maximizing the

value of possible opportunities, while hedging from risk.

Figure 10: Net present value cumulative probability distribution for the three cases presented in Section 3.3

The strong differences in NPV are directly related to the significant differences in terms of the phys-

ical extraction schedules obtained from each optimization, meaning that these different optimization

models produce mine plans that choose to extract different areas and amounts of material in different

periods. This can be seen in Figure 11, which presents a comparison between the schedule of Mine 1

for the traditional two-stage optimization with alternatives (Section 3.3.2), and the proposed dynamic

analysis (Section 3.3.3). It can be seen that the first two periods are equal between all schedules,

and the third one is common between the base case and branches 3,4, and 5, following the branching

schedule presented in Figure 7.

It is interesting to notice how the schedule corresponding to branch 5 is clearly smaller than the

one obtained by the two-stage method, showing the extent of the effect that these investments have

over the optimal schedule of the deposit.
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Figure 11: Comparison between two-stage fixed schedule (left) and adaptive schedules per branch (right), showing the
corresponding investments in each case

4 Conclusions and future work

In conclusion, the current application of the dynamic optimization over the Escondida mining complex

has shown that the proposed method is able to capitalize on the full extent of the information provided

by the set of geological simulations used to represent the deposit’s uncertainty, as these provide an

understanding of the deposit’s areas where the variability and/or the lack of data may cause the

strategic plan to change. The method proposed in this paper is able to produce feasible strategic plans

that are operational in the short-run, and can take advantage of possible future opportunities, allowing

the mining complex to be prepared for the possible effects of uncertainty over the strategic plan, being

able to react in a timely manner.

The method proposed is based on the two-stage stochastic optimization of mining complexes and

uses multistage optimization techniques to represent the strategic plan as a scenario tree with rep-

resentative branching. This means that transition probabilities between one stage and the next are

filtered to ensure that they are representative and are iteratively solved as two-stage optimizations

over the corresponding scenarios, avoiding overfitting problems and providing a probabilistic approach

to the possible developments of the mineral value chain.

The algorithm was able to solve the Escondida mining complex comprised of almost 200,000 blocks

contained in two mines, with six different processing streams and stockpiles. Results showed that the

proposed analysis can increase project value by between 8% and 20% compared with the traditional

fixed two-stage plan. This value is mostly created due to the optimized investment timings, the

possibility of expansions, the better configuration of processing streams obtained through the different

operating modes, and the ability to branch the strategic plan, allowing the optimizer to consider and

develop alternatives that might be profitable in the future.
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