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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract: Overbooking is a common practice in the air cargo industry because booked and actual
demands often differ greatly. As a consequence, in case of excessive overbooking, the overflowing
commodities must be reassigned to other flights on the day of departure. We propose a stochastic
approach to reoptimizing cargo shipping plans so that the expectation of cargo overflow is minimized.
A probability distribution consisting of the mixture of a normal and a constant 0 distribution is
introduced to model the show-up rate so that no-show is taken into account. From this mixture
distribution, we derive an analytic expression for the expectation of overflow. An approximation of
this expression is then used as the objective function of the formulation of an integer programming
model to reoptimize an air cargo shipping plan. In a series of simulation experiments, we compare
the resulting analytical model with an equivalent scenario-based stochastic linear program. It is found
that the analytical model delivers results that are similar to the ones of the scenario-based stochastic
program, but with a significant reduction in computation time.
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1 Introduction

Over the last decades, the air cargo industry has experienced a strong growth and is still expected to

grow at an annual rate of 4.3 % through 2037 (Boeing (2016)) because of globalization. Moreover,

despite representing less than 1% of world trade shipments by volume, air cargo accounts for around

35% of them by value (Shepherd et al. (2016)).

Air passenger transportation has already been studied extensively by the scientific community.

However, there exist many differences between the air passenger and cargo industries. As a result, the

methods developed for planning passenger transportation can generally not be applied directly to the

world of air cargo transportation. Kasilingam (1997a) discusses the main differences:

1. Flight capacity is unknown until a few hours before departure. Indeed, since cargo is often

stored in the baggage hold of passenger airplanes, a part of the available space is already used

by luggage.

2. Many dimensions must be taken into account. Because pieces of cargo have specific weights and

volumes, capacity in terms of volume can be reached before weight capacity, and vice versa.

3. The number of available routes is much greater. Indeed, contrary to passengers, cargo will (in

general) not suffer from detours or from a larger number of connections.

4. A large part of the capacity is kept for allotments, i.e., some clients have special contracts that

allow them to use a reserved block of capacity over a specific period of time.

Another important difficulty related to planning air cargo transportation is that no penalty is

generally incurred by a client that books a certain capacity but does not use it all. This has for

effect that clients often book more capacity than actually required or simply do not show up at the

airport with their goods on the day of departure. This last phenomenon is called a no-show. Moreover,

some of the demands correspond to allotments with freight forwarders, i.e., companies that organize

the shipment for individuals or other companies. At the time of signing the contract, forwarders

usually do not know exactly how much space they will need for their clients. As a result, the capacity

booked might differ greatly from what is used. The (weight) percentage of the demand that is actually

brought to the airport on the day of departure is called the show-up rate. In order to compensate for

this potential waste of capacity, airfreight carriers resort to overbooking, i.e., they sell more capacity

than is actually available.

When a client places an order for delivery with an airfreight carrier, it is often an employee of this

airline that decides, along with the client, by which route, i.e., series of flights, the commodities will

travel from the origin to the destination. Taken together, these route assignments form what we call

a shipping plan. Given the presence of no-shows and overbooking, the way that orders are assigned

to routes in the shipping plan can have important effects on air cargo operations. For example, a

shipping plan that does not take into account uncertainty on the quantity of goods could result in an

overflow of cargo for some planes and in an under-utilization of the cargo capacity for others. When an

overflow occurs, the commodities in excess have to be reassigned to other flights, and this procedure

often takes place only a few hours before departure, which usually results in a loss of efficiency.

In order to promote a better utilization of cargo capacity, we study the question of rebalancing

a transportation network by reoptimizing the shipping plan under uncertainty about the quantity

of cargo. More precisely, given a flight schedule, i.e., a list of all the flights available (including for

each flight their departure date, origin, destination, volume and weight capacity) and a shipping plan

(including the weight and volume of the individual demands), we propose to generate an improved

shipping plan by reassigning in advance some of the orders to other routes in a way that minimizes the

total expectation of overflow. Besides preventing that overflows arise too often, a better distribution

of cargo among the different flights would also allow cargo airlines to accept more orders by creating

space on the busiest flights.
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1.1 Literature survey

We present here an overview of the literature that addresses the problem of reoptimizing a shipping

plan. Other related approaches that are orthogonal to ours and could be used to complement it are

included below as well. For an extensive literature survey on air cargo operations, the reader is referred

to Feng et al. (2015).

1.1.1 Reoptimization of the shipping plan

Deterministic In Nahum et al. (2019), the authors discuss deterministic optimization models that aim

to minimize the total transportation cost while satisfying time and capacity constraints. Moreover,

their models suppose that goods can be transported by full cargo aircraft, that transport exclusively

cargo, as well as in the baggage hold of passenger aircraft. However, overbooking is not taken into

consideration, and capacity limits are treated as hard constraints.

Stochastic demand The problem of reoptimizing an existing shipping plan in order to load as much

priority cargo as possible is studied in Peng et al. (2019). The authors developed a data-driven air

cargo redistribution model based on a combination of dynamic and linear programming that reassigns

the commodities that could not be loaded to other flights of the same airline segment. It was found that

for a given origin/destination pair, some flights are full, whereas others are not used at all. The model

they developed allows for more homogeneous flight loads, but treats airline segments independently.

Steadie Seifi (2017) addresses a multimodal transportation problem for perishable products in which

empty loading units have to be managed. The goal is to allocate and reposition the empty loading

units while finding a trade-off between the operation costs and product freshness. In order to do so, a

two-stage scenario-based stochastic model embedded within a rolling horizon framework is developed.

Since the model they end up with is very large, they cannot solve them using exact algorithms, but

resort instead to an adaptive large neighbourhood search heuristic.

Stochastic time Patomtummakan and Nananukul (2017) present a decision support system that sug-

gests routes and that allows the user to accept or reject clients’ demands. Moreover, in their system,

an optimization problem that produces an improved shipping plan by reassigning orders is solved daily.

It takes direct flights into account, but not routes possibly consisting of many flights. Their model

assumes deterministic demand, but stochastic arrival times. The problem of optimizing cargo routing

has also been investigated from the point of view of a freight forwarder by Azadian et al. (2012). They

developed a dynamic programming model in which weight and volume are considered as deterministic
quantities, but that takes into account stochastic departure delays (due, e.g., to weather or holidays).

Since they treat the problem from the standpoint of forwarders, their goal is not to reduce overflow or

to make a better utilization of the flight capacity.

1.1.2 Other approaches

A frequent approach to improving air cargo planning and operations consists in tackling the problem

from the point of view of revenue management. Since the spot market price is not fixed over the sales

period, rejecting orders in anticipation of a future increase in price might lead to higher profits than

accepting all of them right away at a lower price and thus using up capacity too early. Many papers are

then dedicated to this question (see, e.g., Han et al. (2010), Levina et al. (2011), and Barz and Gartner

(2016)). Moreover, since allotments take up a considerable part of cargo capacity, numerous efforts

are directed at determining how much space should be allocated to them (see, e.g., Amaruchkul and

Lorchirachoonkul (2011), Zhang et al. (2010), and Levin et al. (2012)). In another common approach,

attempts are made at determining the best overbooking rate for a given flight, i.e., the space that

should be sold in excess of the flight capacity so as to reduce the different costs resulting from an

overflow of goods or a waste of capacity (see, e.g., Kasilingam (1997b), Luo et al. (2009), Wang and

Kao (2008), and Wannakrairot and Phumchusri (2016)).
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1.2 Contributions and organization of the paper

In this paper, we propose a new approach to dealing with the uncertainty inherent to the air cargo

industry, namely reoptimizing the shipping plan in a way that minimizes the expectation of overflow.

The main contributions of this paper are as follows. 1) We model the show-up rate with a mixture

distribution that takes no-shows into account. 2) Based on this probability distribution, we derive an

analytic expression for the expectation of overflow. 3) We introduce an integer programming model

which takes as objective function this analytic expression. This model solves the stochastic problem

without resorting to the construction of scenarios. Only an estimation of the no-show rate, the average

and the variance is required. Moreover, the whole transportation network is taken into account when

reoptimizing the shipping plan and not only direct flights or airline segments, which potentially allows

for a greater reduction of overflow. 4) We propose different approximations of the analytic expression

(which is nonlinear and may contain a very large number of terms) that transform the model into an

integer program solvable by a commercial solver. 5) We show with simulation experiments that the

resulting model provides reductions of overflow that are similar to the ones that could be obtained

with a standard (scenario-based) stochastic programming approach, but with calculation times much

smaller. Since we do not use real demand data, these experiments are not suitable for evaluating actual

cost savings that could be achieved by using our models. Our goal is rather to analyze computational

time and precision of our different formulations, and thus to show that our new approach is ready to

be tested with real data coming from the air cargo industry.

The rest of the paper is organized as follows. In Section 2, we model the weight distribution of

demands, and we derive from it an analytic expression for the expectation of overflow. Moreover,

different models of overflow minimization are presented there. In Section 3, we discuss some possible

approximations of the analytic expression. In Section 4, we present the results of our simulation

experiments. Finally, we conclude and summarize future work in Section 5.

2 Overflow minimization

In this section, we introduce our model to reoptimize shipping plans in order to minimize the expec-

tation of overflow. First, we present in Section 2.1 a simpler version of the model, in which the weight

of the demand is considered as a deterministic quantity. In Section 2.2, we introduce a probability

distribution to model the show-up rate. The deterministic model is then modified to take into ac-

count stochasticity of the demand weight. The resulting stochastic model is tackled using a standard

scenario-based approach in Section 2.3. Finally, we derive in Section 2.4 an analytic expression for the

expectation of overflow, which is then used as the objective function of the stochastic model developed

in Section 2.2.

2.1 Deterministic model

Let D be the set of all cargo demands and Ωd be the set of all the routes that can satisfy demand

d ∈ D. Define

xdω =

{
1 if route ω ∈ Ωd is chosen to satisfy demand d ∈ D,
0 otherwise.

Let L be the set of all legs. Define

aωl =

{
1 if leg l ∈ L is in route ω ∈ Ωd,

0 otherwise.

For each l ∈ L, let ul be the capacity of leg l (in terms of weight). Let md be the weight of the

commodities associated with demand d. Define the weight overflow on the leg l ∈ L by

Ol(x,m) := max

(
0,
∑
d∈D

∑
ω∈Ωd

mdaωlxdω − ul

)
, l ∈ L,
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where x := (xdω)d∈D,ω∈Ω and m := (md)d∈D. The total overflow for the entire transportation network

is then given by

O(x,m) :=
∑
l∈L

Ol(x,m). (1)

We are interested in minimizing the total overflow of the transportation network. In other words,

we want to solve the following nonlinear program:

min
x

O(x,m) (2a)

subject to∑
ω∈Ωd

xdω = 1 for all d ∈ D, (2b)

xdω ∈ {0, 1} for all d ∈ D and for all ω ∈ Ω. (2c)

The objective function (2a) is not linear, but can easily be linearized by introducing one slack

variable Zl for each leg l ∈ L and the corresponding appropriate constraints.

For logistical and administrative reasons, it may be advisable to limit the number of demands that

can be reassigned to a new route during the optimization. Indeed, an important adjustment of the

workforce at the airport might be required if the shipping plan has changed substantially. Moreover,

since clients must be informed whenever their order is reassigned, unnecessary reassignments might

lead to additional administrative costs. To limit the number of demand reassignments, the following

constraint can be added to the model: ∑
d∈D

∑
ω∈Ωd,
ω 6=ωd

xdω ≤ nr, (3)

where ωd is the route to which the demand d was assigned initially (e.g., during the booking) and nr
is the maximal number of demand reassignments.

2.2 Stochastic model

Since the quantity of commodities arriving at the airport on the day of departure can differ greatly

from the one booked, the weight of a commodity should be considered as a random variable. Popescu

et al. (2006) argue that the show-up rate does not follow any of the usual parametric distributions

(e.g., exponential, beta, normal, etc.), but rather a nonparametric discrete distribution, the density of

which can be estimated using a histogram estimator. This can be explained, at least to some extent,

by the fact that there is an important probability of no-show, which cannot be taken directly into

account by the usual parametric distributions. In order to capture this phenomenon, we make the

assumption that for a given demand, there can be a no-show with probability 0 ≤ 1− p ≤ 1.

Moreover, we will suppose that when the client shows up at the airport (with probability p), the

demand weight is not exactly the one booked, but follows a normal distribution. This assumption

is made in view of the central limit theorem, which implies that when the number of demands on

a flight is large, a normal law should be a good approximation for the total weight, regardless of

the weight distribution of the individual demands. Moreover, in the case of an order placed by a

freight forwarder, since the commodities correspond to an aggregation of several demands, its weight

distribution is already expected to resemble a normal distribution. For these reasons, modeling the

weight of the demands that showed up at the airport with the help of a normal law is not expected

to introduce large errors on the total freight distribution on each aircraft. This error will be discussed

when presenting the experimental results in Section 4.
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Given the aforementioned assumptions, we will model the weight of a commodity as a random

variable following a probability distribution that is a mixture of a normal distribution and a constant

random variable with value 0. Its probability density function is then given by

fmd
= (1− p)f0 + pfXd

, (4)

where f0 and fXd
correspond to the probability density functions of 0, i.e., the constant random

variable taking the value 0, and of Xd ∼ N (µd, σd) respectively. Note that when one takes the

normalized weight md

µd
instead of md (so that Xd ∼ N (1, σd/µd)), then (4) corresponds to the density

function of the distribution of the show-up rate.

Instead of minimizing the overflow, we minimize the expectation of overflow:

V (x) := Em

(∑
l∈L

max (0, gl(x,m)− ul)

)
,

where m := (md)d∈D, and gl(x,m) :=
∑
d∈D

∑
ω∈Ωd

mdaωlxdω is the weight of the commodity assigned

to the leg l ∈ L. A stochastic version of the overflow minimization model (2a)–(2c) is obtained by

replacing the objective function with

min
x

V (x) (5)

2.3 Sample average approximation (SAA)

The expectation can be approximated using the Monte Carlo method as follows:

Em

(∑
l∈L

max (0, gl(x,m)− ul)

)
≈ 1

n

n∑
i=1

(∑
l∈L

max
(
0, gl(x,m

i)− ul
))

,

where (mi)ni=1 is a sequence of equal-probability realizations of the (multivariate) random variable m.

In the rest of the paper, those realizations will be called scenarios.

Since the function f contains a max function, the resulting model is not linear. The max function

can be linearized as follows:

min
1

n

n∑
i=1

∑
l∈L

Zil (6a)

subject to

Zil ≥ 0 for all l ∈ L, for all i = 1, . . . , n, (6b)

Zil ≥
∑
d∈D

∑
ω∈Ωd

mi
daωlxdω − ul for all l ∈ L, for all i = 1, . . . , n, (6c)

∑
ω∈Ωd

xdω = 1 for all d ∈ D, (6d)

xdω ∈ {0, 1} for all d ∈ D, for all ω ∈ Ω. (6e)

This stochastic integer programming model will be referred to as the SAA model in the remainder of

the paper.

2.4 An analytic expression for the expectation of overflow

This subsection is dedicated to deriving an analytic expression for V (x).
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Theorem 1 Let Dl ⊂ D be the set of all the demands that could potentially travel by the leg l ∈ L, and

let nl := |Dl|, i.e., the cardinality of Dl. Let Σ1, · · · ,Σ2nl be an enumeration of all the 2nl subsets

of Dl. Then, the expectation of overflow is given by

V (x) =
∑
l∈L

2nl∑
i=1

PΣi

2

[
(µi(x)− ul) (1− erf (zi(x, ul))) + σi(x)e−z

2
i (x,ul)

]
(7)

where

PΣi := p|Σi|(1− p)nl−|Σi|, erf(x) :=
1√
π

∫ x

−x
e−t

2

dt, zi(x, ξ) :=
ξ − µi(x)√

2σi(x)

µi(x) :=
∑
d∈Σi

cdl(x)µd, σ2
i (x) :=

∑
d∈Σi

c2dl(x)σ2
d, and cdl(x) :=

∑
ω∈Ωd

aωlxdω.

Proof. Since

Em

(∑
l∈L

max (0, gl(x,m)− ul)

)
=
∑
l∈L

Em (max (0, gl(x,m)− ul)) , (8)

we can consider independently the expectation of overflow on each flight leg, i.e.,

Vl(x) := Em (max (0, gl(x,m)− ul)) .

By definition of the expectation,

Vl(x) =

∫
gl(x,m)>ul

(gl(x,m)− ul) dP (m) =

∫ ∞
ul

(ξ − ul) fgl(ξ)dξ,

where fgl is the probability density of the random variable gl(x,m).

In order to obtain an analytic expression for the expectation of overflow, the density fgl has first

to be determined. Note that given a vector x, the random variable gl(x,m) corresponds to a linear

combination of the random variables md. Indeed, gl(x,m) =
∑
d∈D cdl(x)md.

Let Yl be the random variable defined by Yl = i if Dl \Σi are all no-shows. Since the events Yl = i

correspond to the success of |Σi| independent Bernoulli trials of parameter p, it follows that

P (Yl = i) = p|Σi|(1− p)nl−|Σi|. (9)

By the Law of Total Expectation,

Vl(x) = EYl
[Em (max (0, gl(x,m)− ul) |Yl)]

=

2nl∑
i=1

V il (x)P (Yl = i) =

2nl∑
i=1

p|Σi|(1− p)nl−|Σi|V il (x), (10)

where V il (x) := Em (max (0, gl(x,m)− ul) |Yl = i). Moreover,

V il (x) =

∫
gl(x,m)>ul

(gl(x,m)− ul) dP (m|Yl = i)

=

∫ ∞
ul

(ξ − ul) fgl|Yl=i(ξ)dξ, (11)

where fgl|Yl=i is the conditional density function of gl(x,m) given Yl = i. When Yl = i, the function

gl(x,m) corresponds to a linear combination of Xd, i.e., of normally distributed random variables.

Therefore, gl(x,m) is also a normally distributed random variable, and its probability density is

fgl|Yl=i(ξ) =
1√

2πσi(x)
exp

{
−z2

x(ξ)
}
. (12)
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If we replace this expression of fgl|Yl=i(ξ) in (11) and then integrate by parts, we obtain

V il (x) =
1√

2πσi(x)

∫ ∞
ul

(ξ − ul) exp
{
−z2

x(ξ)
}
dξ

=
1√

2πσi(x)

[√
π

2
σi(x)(µi(x)− ul)erf (zi(x, ξ))− σ2

i (x) exp
{
−z2

i (x, ξ)
}]∞

ξ=ul

=
1

2

[
(µi(x)− ul) (1− erf (zi(x, ul))) + σi(x) exp

{
−z2

i (x, ul)
}]
. (13)

By combining (8), (10), and (13), we obtain (7), which concludes the proof of the theorem.

Remark 1 For the sake of simplicity, we assumed in the proof of Theorem 1 that all the demands have

the same no-show rate 1− p. However, this assumption could be lifted by considering for each demand

d ∈ D a different no-show rate 1− pd. Equation (9) should then be replaced by

P (Yl = i) =

(∏
d∈Σi

pd

) ∏
d∈Dl\Σi

(1− pd)nl−|Σi|

 ,

and the rest of the proof would remain the same.

From a practical point of view, it might be useful to express the expectation of overflow in terms

of the (weight) load factor rather than in terms of absolute weight. This is the result of the following

corollary of Theorem 1.

Corollary 1 Let µ̃i(x) := µi(x)
ul

(i.e., the average of the weight load factor), and σ̃i(x) := σi(x)
ul

(i.e.,

the standard deviation of the weight load factor). Then

V (x) =
∑
l∈L

ul

2nl∑
i=1

p|Σi|(1− p)nl−|Σi|E(µ̃i(x), σ̃2
i (x)), (14)

where

E(u, v) :=
1

2

[
(u− 1)

(
1− erf

(
−u− 1√

2v

))
+
√
v exp

{
− (u− 1)2

2v

}]
. (15)

Proof. By using the definitions of µ̃i(x) and σ̃i(x) in (13), we obtain

V il (x) =
ul
2

[
(µ̃i(x)− 1) (1− erf (−z̃i(x, ξ))) + σ̃i(x) exp

{
−z̃2

i (x, ξ)
}]
,

where z̃i(x, ξ) :=
(
µ̃i(x)−1√

2σ̃i(x)

)
. Hence, V il (x) = ulE(µ̃i(x), σ̃2

i (x)), and the statement of the corollary

follows.

If we use the analytic expression for V (x) provided by Corollary 1 as the objective function (5) of

the stochastic model described in Section 2.2, we obtain the following (nonlinear) integer programming

model, that will be referred to as the analytic model :

min
x

∑
l∈L

ul

2nl∑
i=1

p|Σi|(1− p)nl−|Σi|E(µ̃i(x), σ̃2
i (x)) (16a)

subject to∑
ω∈Ωd

xdω = 1 for all d ∈ D, (16b)

xdω ∈ {0, 1} for all d ∈ D and for all ω ∈ Ω. (16c)

This nonlinear integer program can be solved if its objective function is convex. This is a consequence

of the following proposition.
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Proposition 1 The function x 7→ E(µ̃i(x), σ̃2
i (x)) is convex.

Proof. Define G(x,m) := max (0, gl(x,m)− ul). Since gl is a linear function of x, the function x 7→
G(x,m) is convex. By definition of the expectation,

E(µ̃i(x), σ̃2
i (x)) =

1

ul
Em (max (0, gl(x,m)− ul) |Yl = i)

=

∫
R|D|

G(x,m)

ul
dP (m|Yl = i).

The function x 7→ E(µ̃i(x), σ̃2
i (x)) then corresponds to the integral of a convex function, which itself

is convex.

3 Approximation of the analytic expression for the expectation of
overflow

The analytic expression proven in Theorem 1 has two main drawbacks. First, since it is neither linear

nor quadratic, standard commercial solvers would not be able to solve the analytic model (16a)–(16c)

directly. This issue is addressed in Section 3.1. Second, since the number of terms in the inner

summation of (7) increases exponentially with the number of demands that can potentially travel on a

leg, the total number of terms in the objective function of the resulting analytic model will most likely

be too large to be tractable, when reoptimizing shipping plans of a real transportation network.

3.1 Approximation of the function E

The integer model (16a)–(16c) could be solved directly by a commercial solver, if we first approximate

the function E (see Corollary 1) by piecewise linear or quadratic functions. Some ways of approximating

it are described below.

Before proceeding with specific approximation methods, note that even though σ2
i (x) is a quadratic

function in the variable x, it can be considered as a linear function of x since xdω ∈ {0, 1}, which implies

that x2
dω = xdω. Similarly, aωl ∈ {0, 1} implies a2

ωl = aωl, and then c2dl(x) = cdl(x). Therefore,

σ2
i (x) =

∑
d∈Σi

c2dl(x)σ2
d =

∑
d∈Σi

cdl(x)σ2
d, (17)

which is a linear function in the variable x. A piecewise linear (resp. quadratic) approximation of E

will then lead to a piecewise linear (resp. quadratic) objective function. Moreover, keeping in mind

that σ2
i (x) will be used in the linear relaxation of the analytic model, replacing x2

dω with xdω gives a

better lower bound for the branch and bound algorithm. Indeed, since xdω > x2
dω for 0 < xdω < 1,

this replacement provides a convex upper bound on the original objective function, which corresponds

to a better lower bound.

3.1.1 Surface approximation

By letting u and v varying over the possible values for µ̃i(x) and σ̃i(x) respectively, the values of

E(u, v) form a convex surface. More precisely, the set

S :=
{

(u, v, w) ∈ R3 : 0 ≤ u <∞, 0 < v <∞, w = E(u, v)
}

corresponds to a smooth convex surface in R3. This surface is represented in Figure 1.
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Figure 1: On the left, the surface S, and on the right, curves described by the function w : u 7→ E(u, v) for different fixed
values of v. Here, u corresponds to the ”average”, v to the ”variance”, and w to the ”expectation”.

Linear approximation The surface S can be approximated using standard triangulation algorithms.

Each triangle lives in a plane that can then be added as a constraint to the model by using a standard

slack-variable method. Note that even though S is convex, the resulting triangulation is not necessarily

convex. Therefore, in order to make sure that an optimal solution is found, additional precautions

have to be taken when constructing the triangulation. Another solution would be to use a different

convex linear approximation. For example, the surface could be approximated by a certain number of

tangent planes, which then provides a convex lower bound on the objective function.

An important drawback of this approach is that a fair number of triangles should be used in order

to obtain a good approximation of the surface. This results in a large number of new constraints and

variables to be added to the model.

Quadratic approximation The surface S can also be approximated by a two-variable quadratic func-

tion. By (17), if E(u, v) is approximated by a quadratic function, say Ẽ(u, v), then Ẽ(µ̃i(x), σ̃2
i (x)) is a

quadratic function of x. It follows from Corollary 1 that the objective function is also quadratic. Since

finding a single quadratic function that approximates well enough E is not an easy task, quadratic

approximation is expected, in general, to lead to poor results.

3.1.2 Curve approximation

If we were able to express σ̃i(x) as a function of µ̃i(x), we could replace the surface S depending on the

two parameters µ̃i(x) and σ̃i(x) by a curve depending on the single parameter µ̃i(x). Approximating

the function E with better precision would then be possible with a smaller model.

Since the standard deviation of the load factor should generally increase as the average of the load

factor increases, finding a precise relation between σ̃i(x) and µ̃i(x) does not appear too far-fetched at

first glance. However, given that the specific values of the elements of the vector x have an impact on

the variance, it is not possible, in theory, to express σ̃i(x) directly as a function of µ̃i(x).

On the other hand, from a more practical point of view, a rough estimate of σ̃i(x) expressed as

a function of µ̃i(x) might represent a good approximation of the actual value of σ̃i(x). The loss of

precision incurred by this approximation is expected to be compensated by the better approximation

of the function E.

A simple way to express σ̃i(x) as a function of µ̃i(x) is to interpolate σ̃i(x) from its maximal value

on a given flight, i.e.,

σ̃app
i (µ̃i(x)) :=

µ̃i(x)

µ̃max
i

σ̃max
i , (18)
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where σ̃max
i := maxx σ̃i(x) and µ̃max

i := maxx µ̃i(x). The surface S can then be replaced by a set of

curves, one for each leg l and each of the 2nl configurations Σ1, . . . ,Σ2nl :

Cl,i :=
{

(s, w) ∈ R2 : 0 ≤ s <∞, w = E(s, σ̃app
i (s))

}
, l ∈ L, i = 1, . . . , 2nl

An example of such curves is shown in Figure 2. The functions defining these curves are nonlinear,

but can be interpolated by linear or quadratic functions. Since curves are one dimensional, they are

easier to approximate than surfaces, and a smaller number of pieces are generally required to reach

the same precision.

Figure 2: Curve described by the function s 7→ E(s, σ̃app
i (s)) for µ̃max

i = 2.

For the computational experiments presented in Section 4, we use a linear interpolation of this curve

approximation. More precisely, for each flight l ∈ L and each subset Σ∗i of D∗l , we first determine the

value that µ̃i(x) would take if all the goods were assigned to the flight l, i.e., µ̃max
i . Using at most npces

pieces, we then interpolate linearly the function s 7→ E(s, σ̃app
i (s)). In order to have a finite number

of linear pieces of same length, the interpolation is done on the finite interval 0 ≤ s ≤ smax, for some

smax ∈ R fixed beforehand. Given npces, the set of interpolation points P is chosen as follows:

P(µ̃max
i ) :=


{

0, 1
npces

, 2
npces

, . . . , n∗
}

if 0 ≤ µ̃max
i < 1{

0, 1
npces

µ̃max
i , 2

npces
µ̃max
i , . . . , µ̃max

i

}
if 1 ≤ µ̃max

i < smax{
0, 1

npces
smax,

2
npces

smax, . . . , smax

}
if µ̃max

i ≥ smax

where n∗ is the smallest integer such that n∗

npces
> µ̃max

i . Note that with this choice, |P(µ̃max
i )| = npces

for µ̃max
i ≥ 1 and |P(µ̃max

i )| ≤ npces for µ̃max
i < 1. Considering that a good approximation is only

required when the average of the load factor is close to 100%, or in other words, when s ≈ 1, the main

idea behind the definition of P(µ̃max
i ) is to restrict the number of interpolation points when µ̃max

i is

small. For the experiments described in Section 4, we fixed smax := 4.

3.2 Aggregating the demands

Since the number of subsets of Dl increases exponentially with nl, the analytic expression for the

expectation of overflow is inapplicable when the number of demands that can potentially travel by a

leg is not relatively small. Indeed, the number of terms in the sum in the expression of the objective

function (10) becomes quickly prohibitive when |Dl| increases.

A solution to this problem would consist in conditioning on a fixed number nmax of events Yl = i

in the equations that lead to (10). More precisely, if |Dl| > nmax, let D∗l be a subset of Dl that

contains nmax demands. Considering that no-shows for orders of larger sizes have a greater impact on
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planning than no-shows for orders of smaller sizes, a simple and efficient way of selecting the demands

that will be part of D∗l is to keep the nmax ones with the largest weights. Let Σ∗1, · · · ,Σ∗2nmax be an

enumeration of the 2nmax subsets of D∗l . Let Y ∗l be the random variable defined by Y ∗l = i if D∗l \ Σ∗i
are all no-shows. By repeating the argument that led to (10), we obtain

Vl(x) =

2nmax∑
i=1

p|Σ
∗
i |(1− p)nmax−|Σ∗i |Em (max (0, gl(x,m)− ul) |Y ∗l = i) .

However, when Y ∗l = i, the function gl(x,m) does not correspond to a linear combination of

normally distributed random variables. Indeed, only the nmax terms associated with the demands in

D∗l form a linear combination of normally distributed random variables. The other terms, associated

with the demands in Dl \D∗l , correspond to random variables following the mixture distribution whose

density is given by (4). The function gl(x,m) can then be decomposed as two sums, one corresponding

to the ”main” nmax demands, which are larger, and thus no-shows for them would have a greater

impact on the total weight of the demands travelling by the leg l, and another corresponding to the

demands exceeding nmax:

gl(x,m) =
∑
d∈D∗l

cdl(x)md︸ ︷︷ ︸
Smain:=

+
∑

d∈Dl\D∗l

cdl(x)md︸ ︷︷ ︸
Sexcess:=

.

Since the first sum is a linear combination of normally distributed random variables, the probability

density of Smain is given by (12), i.e.,

fSmain|Yl=i(ξ) =
1√

2πσ̄i(x)
exp {−z̄i(x, ξ)} ,

where z̄i(x, ξ) := ξ−µ̄i(x)√
2σ̄i(x)

,

µ̄i(x) :=
∑
d∈Σ∗i

cdl(x)µd and σ̄2
i (x) :=

∑
d∈Σ∗i

c2dl(x)σ2
d.

On the other hand, when |Dl \D∗l | is large, it seems reasonable in view of the central limit theorem

to approximate the probability density of Sexcess using a normal approximation, i.e.,

fSexcess
(ξ) ≈ 1√

2πσexcess(x)
exp

{
−z2

excess(x, ξ)
}
,

where zexcess(x, ξ) := ξ−µexcess(x)√
2σexcess(x)

,

µexcess(x) :=
∑

d∈Dl\D∗l

cdl(x)pµd,

σ2
excess(x) :=

∑
d∈Dl\D∗l

c2dl(x)(pσ2
d + p(1− p)µd).

Moreover, given that most of the demands contained in Dl \D∗l will generally be much smaller than

the demands in D∗l , the value of the errors induced by this approximation should be relatively small.

Since Smain is normally distributed and Sexcess can be approximated by a normally distributed

random variable, their sum, i.e. gl, can also be approximated by a normally distributed random

variable as follows:

fgl|Yl=i(ξ) ≈
1√

2πσ∗i (x)
exp

{
− (ξ − µ∗i (x))2

2σ∗i
2(x)

}
, (19)
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where µ∗i (x) := µ̄i(x) + µexcess(x) and σ∗i
2(x) := σ̄2

i (x) + σ2
excess(x). Since the right-hand side of (19)

has the same form as (12), the same argument that led to (14) can be applied to (19). Hence

V (x) ≈
∑
l∈L

ul

2nmax∑
i=1

p|Σ
∗
i |(1− p)nmax−|Σ∗i |E(µ̃∗i , (σ̃

∗
i )

2
), (20)

where E is given by (15), µ̃∗i (x) :=
µ∗i (x)
ul

and σ̃∗i (x) :=
σ∗i (x)
ul

.

By applying some of the approximations of E presented in Section 3.1, the analytic model (16a)–

(16c) can then be solved using a commercial solver.

4 Computational experiments

In this section, we present the results of computational experiments carried out with the three models

developed in the previous sections: the deterministic model (see Section 2.1), the SAA model (see

Section 2.3), and the analytic model (see Section 2.4) with the linear interpolation of the curve ap-

proximation described in Section 3.1.2. Our goal is twofold: first, to show that it is worthwhile using

a stochastic approach to reduce overflow, and second, to evaluate the gain in computational time that

it is possible to obtain with the analytic model as compared to the SAA model.

All experiments were run using a personal computer equipped with an Intel Core i7 processor (i7-

6700 CPU @ 3.40GHz) and 32 GB of RAM. The models were all implemented with CPLEX 12.8.0.0

(and an optimality gap of 2 %) in C++11 and compiled with GCC 8.1.0 on Linux.

4.1 Generation of benchmark instances

In the experiments, we use the actual flight schedule (including flight capacity) of a passenger airline

for the month of May 2017. We will reoptimize randomly generated shipping plans for the week from

May 5th to May 11th. In order to construct those shipping plans, three instances A, B and C of 60 000

demands each were generated randomly so that the resulting instances have different maximum load

factors of 1.25, 1.10 and 1.05 respectively. Each demand is randomly associated with a day between

May 3rd and May 19th. It corresponds to the day at which the demand is expected to be brought to

the airport by the client. Moreover, each demand has a 50 % chance of being a priority shipment, in

which case the corresponding commodities have to leave the airport the same day. If not, then they are

allowed to stay at the airport an extra day. Note that the period during which demands are created

(i.e., May 3rd to May 19th) extends outside of the optimization week (i.e., May 5th to May 11th) in

order to provide more realistic flight loads. Indeed, demands associated with the latter days of the

week could be reassigned to routes that include flights on days after the optimization week.

Care was taken when fixing demand weights so that their distribution reflects what one can expect

in practice, namely that relatively few demands have a very large weight. The graph on the left of

Figure 3 provides a graphical representation of the general distribution of demand weights for each

instance A, B, and C. The vertical axis corresponds to the actual weight divided by the mean weight of

the instance (i.e., the sum of all the demand weights divided by the number of demands). The graph

indicates that for a given point (x, y) on the curve, x% of all the demands have a normalized weight

less than y. Note that the curves for B and C overlap.

With each instance is then associated an initial shipping plan that was constructed by assigning

randomly each demand to a series of flights taken from the set of all available routes. These available

routes correspond to routes that the airline actually used to transport cargo in May 2017. The graph

on the right of Figure 3 gives for each instance A, B, and C information about the distribution of

demand weight among the flights. The vertical axis corresponds to the actual flight load factor (in

terms of weight), i.e. for each flight the total weight of the commodities assigned to it divided by the

capacity of the plane. The graph indicates that for a given point (x, y) on the curve, x% of all the

flights have a load factor less than y.
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Figure 3: On the left, the distribution of the demand weights normalized by their mean weight. On the right, the
distribution of the flight load factor.

It is worthwhile to mention that since the demands are generated randomly, the results we obtain

should not be used to estimate potential economic gains from using our approach. On the other hand,

we use a real flight schedule with actual routes, as well as a realistic number of demands. As a result,

the solution times we obtain should be representative of what to expect with a real industrial dataset.

Our partially simulated benchmark instances are then sufficient in order to assess the value of the

approximations used in our approach.

4.2 Overflow reduction

With a shipping plan is associated an order-route assignment vector x = (xdω)d∈D,ω∈Ω (see Section 2.1).

Whenever a shipping plan is optimized, a new order-route assignment vector is produced from the

initial one. In order to determine the quality of the optimized shipping plan, we would like to evaluate

how much cargo overflow can be reduced with the optimized shipping plan, as compared to the initial

shipping plan. This would be possible only if we knew the actual weights of the demands that were

brought to the airport on the day of departure. To this end, we simulate a weight vector sample,

m̃ = (m̃d)d∈D, corresponding to the actual weight of the demands. More precisely, for each demand,

we pick up a show-up rate αd randomly from the mixture distribution given by (4) (with respect to

the normalized weight md

µd
), and we multiply it by the corresponding average weight, i.e., m̃d := αdµd.

Since our goal is not to assess the potential economic benefits of the reoptimization, the precise

values of the parameters of the mixture distribution do not play an essential role in this research.

We fixed them arbitrarily as follows. The no-show rate is chosen to be 1 − p = 0.3 for all demands.

The standard deviation of the weight of a demand that shows up at the airport is assumed to be

proportional to its mean, namely, σd = 0.3µd, where µd corresponds to the weight of the demand.

Let xinitial and xoptimized be the order-route assignment vectors of the initial and optimized shipping

plans respectively. Given a set of nsample sample weight vectors m̃1, m̃2, . . . , m̃nsample
, we define the

(relative) (average) overflow reduction (OR) as follows:

OR :=
1

nsample

nsample∑
i=1

O(xinitial, m̃i)−O(xoptimized, m̃i)

O(xinitial, m̃i)
,

where O(x, m̃) is the total overflow of the network, given by (1). All the experiments below are done

with nsample = 100.

4.3 Parameters for the experiments

Before carrying out the experiments that would allow us to compare the models, we will proceed to a

calibration of the SAA model and the analytic model. In other words, we will be looking for the values
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of the following parameters that are expected to offer the best trade-off between overflow reduction

and computational time: the number of scenarios in the SAA model, the number of segments in the

linear approximation of the analytic expression (i.e., the value of nmax as defined in Section 3.1),

and the number of unaggregated demands in the analytic model (i.e., the value of npces as defined in

Section 3.2).

4.3.1 Number of scenarios

Keeping in mind that the SAA model will be used as our standard of comparison, it is of fundamental

importance to choose a number of scenarios that will deliver a good overflow reduction while requiring

a relatively small solution time. In order to determine this suitable number of scenarios, we proceeded

as follows. Starting with 10 scenarios, we increased the number of scenarios by 10 until no improvement

could be observed (given that the solver was given an optimality gap of 2 %). This experiment was

carried out with instance B. The results are shown in Figure 4. Given that there is a large increase

in computational time for more than 50 scenarios and essentially no improvement in terms of overflow

reduction, the best trade-off between quality of solution and computational time seems to be reached

with about 50 scenarios. Thus, the number of scenarios in all the remaining experiments was fixed to

50. Note that the jumps in the graphs of Figure 4 as well as of all the figures below are typical of hard

integer programs.

Figure 4: Overflow reduction and solution time of the SAA model for different numbers of scenarios (with instance B).

4.3.2 Number of unaggregated demands

As mentioned in Section 3.2, the number of terms in the objective function increases exponentially

with the number of (unaggregated) demands that could potentially travel on a leg. Therefore, for

the analytic model to be solvable in practice, the value of nmax should be kept relatively small. In

order to determine a suitable value for nmax, we ran an experiment with instance A in which we

fixed npces = 10 and increased gradually the value of nmax starting from 0 (i.e., all the demands are

aggregated). Figure 5 shows the results of this experiment. Comparing the overflow reduction and

solution time for different maximal numbers of unaggregated demands, we came to the conclusion that

nmax = 4 offers the best trade-off between quality of solution and computational time. This value of

nmax will be used from now on.
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Figure 5: Overflow reduction and solution time of the analytic model for different values of nmax (with instance A).

4.3.3 Number of pieces in the linear approximation

In order to make the analytic model solvable by CPLEX, we first linearized it using the curve approxi-

mation described in Section 3.1.2. Increasing the value of npces adds pieces in the linear approximation

of the curve representing the the expectation of overflow, which, in turn, makes the model more com-

plex by adding new constraints as well as terms in the objective function. It is then expected that

by increasing the value of npces, the solution time should increase significantly. In order to determine

a suitable value for this parameter, we proceeded similarly as in Section 4.3.2. In other words, we

compared overflow reduction and solution time for an experiment in which we gradually increased the

value of npces from 2 to 20. Results of this experiment appear in Figure 6. It can be seen that a fairly

good trade-off between quality of solution and computational time is offered for a maximal number

of linear pieces in the region 7 ≤ npces ≤ 13. The value of npces was fixed to 10 in the remaining

experiments.

Figure 6: Overflow reduction and solution time of the analytic model for different values of npces (with instance B).

4.4 Comparison of the models

In this subsection, we compare overflow reduction and solution time for the deterministic, the SAA

and the analytic models. Given that the deterministic model does not take into account stochasticity

of the demand, it should not allow for an overflow reduction that is better than the stochastic models.

Moreover, since the SAA and the analytic models both correspond to approximations of the same

stochastic model (defined in Section 2.2), their percentage of overflow reduction is expected to be

about the same. On the other hand, solution time could differ greatly between all the models. Note

that since the deterministic model can be solved in only a few seconds, its solution time was not

included in the figures below.
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4.4.1 Size of the problem

In order to analyze the influence of the size of the problem on overflow reduction and computational

time, we ran an experiment in which various proportions of the shipping plan were fixed, i.e., some xdω
were kept fixed during the resolution. For the sake of the experiment, the fixed demands were chosen

randomly. However, in real operations, the airline may want to fix priority shipments or commodities

of a specific type (e.g., perishables).

Results for overflow reduction and solution time for instance B are shown in Figure 7. Note that

the smaller the percentage on the horizontal axis, the larger the problem. When less than 50 %

of the demands are fixed, the deterministic model offers an overflow reduction that is significantly

lower than with the stochastic models. As expected, the SAA model and the analytic model deliver

similar performances as far as overflow reduction is concerned. However, for smaller percentages of

fixed demands, the time needed to solve the SAA model increases considerably. When all demands

are allowed to be reassigned, the analytic model is close to ten times faster than the SAA model.

Therefore, the analytic model seems to be less sensitive to the size of the problem. For this reason,

this model appears to be more suitable to deal with large instances or with medium-size problems in

which a demand is not the finest unit (e.g., if a demand is divisible into a fixed number of pieces).

Figure 7: Overflow reduction (%) and solution time (s) for different fixed percentage of the shipping plan (with instance B).

4.4.2 Maximal number of demand reassignments

As explained in Section 2, reoptimizing the shipping plan for a large number of demands is not always

advisable (due to logistical and administrative reasons). To limit the number of demand reassignments,

constraint (3) can be added to our three models. We analyze now the influence of this constraint on the

quality of the solution. We carried out an experiment in which the maximal number of demand reas-

signments was made to vary from 100 to 2 500 (out of a maximum of 11 357 possible reassignments). For

this experiment, instance C with 30 % of the shipping plan fixed was used. This instance, which has a

maximal overbooking rate of 1.05, was chosen on purpose. Indeed, when planes are heavily overbooked,

the value of the expected cargo overflow tends to the value of the actual cargo overflow. This can be

seen from the curves on the right of Figure 1. When the average of the load factor is high, all the curves,

regardless of their variance, tend to the curve with zero variance, i.e., the deterministic case. It follows

that great improvements of the shipping plan can be made by reassigning the actual overflow of cargo,

which is exactly what the deterministic model does. Further improvements, that are possible only when

taking into account the stochasticity of the demands, will then be made only when a relatively large

number of demands are allowed to be reassigned. Therefore, an instance with a relatively small over-

booking rate was chosen so that the improvements due to stochasticity can stand out. The results of this

experiment are presented in Figures 8. For the reasons explained above, all three models deliver similar

performances when the number of reassignments is small. However, starting from 500 reassignments

allowed, both stochastic models offer a significantly greater overflow reduction than the deterministic

one. As for computational time, the solution time of the analytic model does not increase much when
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more changes are allowed, which is in stark contrast with the SAA model. Indeed, its solution time is

more than 10 times larger than the one of the analytic model for a maximal number of changes of 2 500.

Figure 8: Overflow reduction (%) and solution time (s) for different maximal numbers of demand reassignments (with
instance C).

4.4.3 Robustness

When developing the probability density (4), we assumed that a precise knowledge of the show-up

rate distribution is not required to integrate the important stochastic information in the optimization

model. We made the hypothesis that only a good estimation of the no-show rate and of the first

two moments are necessary. To test this hypothesis, we replaced the normal distribution in (4) by an

asymmetric distribution that has for probability density the piecewise constant function represented

on the left of Figure 9. This distribution was constructed so that its mean (i.e., 1.00) and standard

deviation (i.e., 0.31) are almost the same as the the ones of the normal distribution (i.e., µd = 1.00 and

σd = 0.30). On the other hand, since its skewness and its excess kurtosis are 0.66 and 0.64 respectively,

this distribution is significantly different from a normal distribution (for which skewness and excess

kurtosis are both 0). The resulting mixture distribution was then used to generate the weight vector

samples (as described in Section 4.2). Moreover, the scenarios of the SAA model were generated from

this new mixture distribution.

Figure 9: Overflow reduction with the asymmetric distribution (with instance A).

The graph on the right of Figure 9 shows overflow reduction for different fixed percentages of the

shipping plan when tested with weight vector samples generated from the asymmetric distribution.

The curves of the analytic model (assuming a normal distribution) and the SAA model (with scenarios

from the asymmetric distributions) almost overlap even though only the SAA model assumes the same

distribution as the one with which it is tested. This suggests that as long as the no-show rate, the
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mean and the variance can be well estimated, the analytic model is, at least to some extent, robust to

the precise shape of the show-up rate distribution.

The fact that the SAA model does not perform better than the analytic model might be a con-

sequence of the higher load factors of instance A. Indeed, as shown in Figure 1, the higher the load

factor, the less meaningful an error on the variance of the load factor is on the expectation of overflow.

As a result, the analytic model might not perform as well with lower load factors. However, this is not

a major limitation since minimizing the expectation of overflow primarily makes sense in the context

of overbooking.

5 Conclusion

In this paper, we introduced new stochastic models to address the cargo overflow reduction problem in

an air transportation network. One of the main novelties of our approach is to represent the show-up

rate using the mixture of a normal and a constant distributions. It has the advantage of capturing the

important no-show phenomenon while still taking into account variability in the weight of the goods

that are actually brought to the airport. We provided an analytic expression for the expectation of

overflow, as well as different ways of approximating it as a piecewise linear or quadratic function. This

approximated expression can then be used as the objective function of a stochastic integer program

that can be solved without resorting to a standard scenario-based approach. Since no scenarios have

to be constructed, input preparation time is considerably reduced. Only an estimation of the no-show

rate and of the first two moments of the show-up rate distribution are required.

The analytic model has then been implemented and tested against an implementation of the SAA

model. For all the instances, our implementation of the analytic model has shown to provide overflow

reductions similar to the ones obtained by the SAA model, but with calculation times much smaller.

When the problem at hand is large, the gain in calculation time can be up to a factor of 10. Moreover,

our approach has shown robustness with regards to the shape of the actual show-up rate distribution.

It is important to mention that this research does not represent yet a valid economic study of the cost

savings that could be realized from a reoptimization of the shipping plan because the required actual

demand data were not available to the authors at the time of the research. However, it constitutes an

important first step by determining a way to reduce calculation time without significantly altering the

quality of solutions. Furthermore, this paper identifies a reduced set of demand information required

in order to obtain a good model. An important second step would be to evaluate the efficiency of our

approach by testing our model with an industrial dataset. Additionally, further research should be

conducted to study how the analytic model could be extended to deal with both weight and volume

at the same time.

As a final remark, note that even though our approach was developed with a view to applications

in the air cargo industry, it could also be suitable for other contexts where the phenomenon of no-show

represents an important aspect of planning.
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