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Abstract: The complex-step derivative approximation is a numerical differentiation technique that
can achieve analytical accuracy, to machine precision, with a single function evaluation. In this paper,
the complex-step derivative approximation is extended to be compatible with elements of matrix Lie
groups. As with the standard complex-step derivative, the method is still able to achieve analytical
accuracy, up to machine precision, with a single function evaluation. Compared to a central-difference
scheme, the proposed complex-step approach is shown to have superior accuracy. The approach is
applied to two different pose estimation problems, and is able to recover the same results as an
analytical method when available.
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1 Introduction

Attitude and pose, ubiquitous entities of interest in robotics problems, are most naturally represented

as elements of matrix Lie groups. Path planning, state estimation, and control algorithms often

require Jacobian computations with respect to attitude and pose. Often these Jacobians are computed

analytically, by hand, via a Taylor-series expansion while adhering to the matrix Lie group structure

of the problem [1]. However, in some cases analytical computation of Jacobians may be impractical,

necessitating a numerical procedure. Numerical computation of Jacobians is also useful for quickly

comparing algorithms that require Jacobians, before investing effort into one specific algorithm and the

associated analytically derived Jacobians. Numerical Jacobians can also be used to verify Jacobians

that are derived by hand.

A variety of numerical differentiation techniques appropriate for matrix Lie groups can be found

in the literature. In [2] a forward-difference method is described for general matrix manifolds, a

method that is used in the open-source software MANOPT [3]. A central-difference method is em-

ployed in the open-source software GTSAM [4], and algorithmic differentiation methods are presented

in [5, 6]. The Python-based software PYMANOPT [7] is an open-source optimization toolbox for

matrix manifolds that employs algorithmic differentiation. SOPHUS [8] is another open-source C++

package that exploits the automatic differentiation functionality available in CERES [9], a nonlinear

least-squares library developed by Google. However, algorithmic differentiation can be time con-

suming to implement and finite-differencing is prone to subtractive cancellation errors, thus limiting

precision [10]. The complex-step derivative approximation is a numerical method for computing first

derivatives that does not suffer from subtractive cancellation errors [10]. One of the earlier appearances

of the complex-step derivative can be found in [11], where the derivatives of scalar functions of real

variables are evaluated. In [10], the complex-step derivative is investigated further, along with its use

in Fortran, C/C++, and other languages. An application to a multidisciplinary design optimization

problem is also shown. This method has gained popularity due to its ability to realize machine-precision

accuracy of derivative computations, and doing so without tuning the step size, since it can be reduced

to an arbitrarily small value. The complex-step derivative also requires only one complex function

evaluation, which is beneficial compared to central-differencing when the function is expensive to eval-

uate. The complex-step derivative is straight-forward to implement, especially in Matlab, where the

default variable type is complex.

This paper considers the formulation and application of the complex-step derivative approximation

to functions of matrix Lie group elements. The aforementioned advantages of the standard complex-

step derivative remain present, while the proposed method can be used to compute both left and right

Jacobians. Various examples are presented, demonstrating the utility and advantages of the matrix Lie

group version of the complex-step derivative. In particular, pose estimation problems are considered,

one using the ETH Zürich EuRoC dataset [12], where analytical Jacobians are available for comparison,

and one using the ‘Lost in the Woods’ dataset [13], where computation of analytical Jacobians is

possible, but time consuming. When solving for the maximum a posteriori (MAP) estimate of the

pose using a Gauss-Newton algorithm, it is shown that computing the Jacobians using the complex-

step derivative realizes the same accuracy and convergence properties as when analytical Jacobians

are used.

2 Preliminaries

2.1 Matrix Lie groups

A matrix Lie group G is a Lie group that consists of the set of m ×m invertible matrices, where the

group operation is matrix multiplication [14, Ch. 10.2]. From the definition of a group, a matrix Lie

group is closed under matrix multiplication. That is, given X,Y ∈ G, it follows that XY ∈ G. A matrix

Lie group is a closed subgroup of the general linear group defined by [15, Ch. 1.1]

GL(m,C) = {X ∈ Cm×m | det(X) 6= 0},
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which is also a matrix Lie group. The matrix Lie algebra of G is denoted g, and is defined as [15,

Ch. 3.3],

g = {Ξ | exp(tΞ) ∈ G,∀t ∈ R}. (1)

It can be shown that the matrix Lie algebra defined by (1) is a valid Lie algebra [15, Ch. 3.1], and is

a vector space closed under the operation of the Lie bracket [·, ·], which can be computed by

[A,B] = AB− BA ∈ g, ∀A,B ∈ g.

The wedge operator (·)∧ : Rn → g maps a column matrix to the matrix Lie algebra. The exponential

map exp(·) : g→ G maps an element of the matrix Lie algebra to the matrix Lie group, and is computed

using the matrix exponential. The only matrix Lie group elements X ∈ G that are considered in this

paper are those that can be written as

X = exp(ξ∧),

where ξ ∈ Rn. The “vee” operator (·)∨ : g→ Rn maps an element of the matrix Lie algebra to a

column matrix. The logarithmic map ln(·) : G → g maps an element of the matrix Lie group to the

matrix Lie algebra, and is computed by the matrix logarithm. A parameterization of the group G can

be retrieved from X via

ξ = ln(X)∨

when the matrix logarithm is well defined. The adjoint representation of X is denoted Ad(X), such

that (Ad(X)ζ)∧ = Xζ∧X−1, ζ ∈ Rn. This leads to the identity

exp((Ad(X)ζ)∧) = X exp(ζ∧)X−1.

The Baker-Campbell-Hausdorff (BCH) formula is the solution to

z = ln(exp(ξ∧1 ) exp(ξ∧2 )),

and the exact solution is expressed as an infinite sum [1, Ch. 7.1.5]. A first-order approximation to

the BCH formula is

ln(exp(ξ∧1 ) exp(ξ∧2 )) ≈ ξ∧1 + ξ∧2 ,

which is exact in the event that [ξ∧1 , ξ
∧
2 ] = 0. Such an approximation is typically used when both ξ1

and ξ2 are assumed to be small.

The details of the special Euclidean groups SE(2), SE(3), and the group of double direct isometries

SE2(3) can be found in the appendix.

2.2 Gauss-Newton algorithm

The Gauss-Newton algorithm is an optimization algorithm appropriate for nonlinear least-squares

functions of the form

J(x) =
1

2
e(x)TWe(x), (2)

where W ∈ Rq×q is a symmetric positive definite weight matrix and e : Rp → Rq is some error function.

Employing Newton’s method directly on (2) requires the Hessian of J(x), which is potentially difficult

to obtain. An alternate strategy is to substitute a first-order approximation of e(x) about some nominal

x̄, given by [1, Ch. 4.3]

e(x̄ + δx) ≈ e(x̄) +
∂e(x)

∂x

∣∣∣∣
x=x̄

δx,

into (2), thus yielding the Jacobian and a Hessian approximation of J(x),

J(x) ≈ 1

2
e(x̄)TWe(x̄) + e(x̄)TW

∂e(x)

∂x︸ ︷︷ ︸
∂J(x)
∂x |̄x

δx +
1

2
δxT

(
∂e(x)

∂x

)T

W
(
∂e(x)

∂x

)
︸ ︷︷ ︸

∂J(x)
∂x∂xT |̄x

δx.
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The Gauss-Newton algorithm then proceeds identically to Newton’s method, where the nominal point

is iterated by x̄` = x̄`−1 + δx`−1. The step δx`−1 is calculated as

δx`−1 = −

(
∂J(x)

∂x∂xT

∣∣∣∣
x̄`−1

)−1(
∂J(x)

∂x

∣∣∣∣
x̄`−1

)T

.

3 The complex-step derivative approximation

3.1 Review

Consider the complex-differentiable function f : C→ C perturbed about the nominal point x̄ by jh

where x̄, h ∈ R and j =
√
−1. A Taylor series expansion yields

f(x̄+ jh) = f(x̄) +
∂f(z)

∂z

∣∣∣∣
z=x̄

jh− 1

2

∂2f(z)

∂z2

∣∣∣∣
z=x̄

h2 − 1

3!

∂3f(z)

∂z3

∣∣∣∣
z=x̄

jh3 . . . (3)

If f(x̄) is assumed to be real for all real x̄, then, to first order, taking the imaginary portion of (3)

yields [11]
∂f(z)

∂z

∣∣∣∣
z=x̄

=
Im{f(x̄+ jh)}

h
+O(h2).

This is valid as long as f(x̄) ∈ R for all x̄ ∈ R, and that derivatives are evaluated at strictly real nominal

points. From a practical standpoint, a user is often attempting to find derivatives of f : R → R.

Providing that this can be extended to f : C → C such that f is complex-differentiable, then with a

minor abuse of notation, this can construct a derivative approximation for f(x) as written in [10, 11],

∂f(x)

∂x
≈ Im{f(x+ jh)}

h
.

Since there are no subtractive cancellation errors, the complex-step derivative approximation can

produce machine-precision approximations by reducing h to an arbitrarily small step size.

3.2 The complex-step derivative on matrix Lie groups

Consider a complex-differentiable function f : G → C where G ⊂ GL(m,C), X(εR) = X̄ exp(εR
∧

) ∈ G
is parametrizable by a perturbation εR = [εR1 εR2 . . . ε

R
n ]T ∈ Cn on the right, and X̄ ∈ G is some nominal

value of X. Consider perturbing f(X(εR)) by εR = 0 + jh1i, where 1i is the ith column of the

appropriately-dimensioned identity matrix 1. The composition f(X(εR)) has essentially recast f as

f : Cn → C, from which a Taylor series expansion yields [14, Ch. 11.3]

f
(
X̄ exp((jh1i)∧)

)
= f(X̄) +

∂f(X(εR))

∂εRi

∣∣∣∣
εR=0

jh− 1

2

∂2f(X(εR))

∂εR
2

i

∣∣∣∣
εR=0

h2 +O(h3). (4)

Since it is assumed that f(X̄) ∈ R, taking the imaginary component of (4) yields an approximation

for the right derivative of f(X),

∂f(X(εR))

∂εRi
≈

Im{f
(
X̄ exp((jh1i)∧)

)
}

h
. (5)

The right Jacobian ∂f(X(εR))/∂εR can be obtained by individually computing the derivatives using (5)

with i = 1, 2, . . . , n. The left Jacobian can identically be obtained by instead parametrizing X with

X(εL) = exp(εL
∧

)X̄. This leads to

∂f(X(εL))

∂εLi
≈

Im{f
(
exp((jh1i)∧)X̄

)
}

h
. (6)
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Note that the superscripts on εR and εL are simply labels that correspond to right and left perturba-

tions, respectively, as opposed to exponents.

Example 1: Consider the function

f(T) = vTTy,

where T ∈ SE(3) and v, y ∈ R4. The left Jacobian can be determined analytically using the first-order

approximation T = exp(εL
∧

)T̄ ≈ (1 + εL
∧

)T̄ and a Taylor series expansion. To this end,

f(exp(εL
∧

)T̄) = vT exp(εL
∧

)T̄y

≈ vT(1 + εL
∧

)T̄y

= vTT̄y + vT(T̄y)�︸ ︷︷ ︸
∂f(T(εL))

∂εL

∣∣∣
εL=0

εL, (7)

where the (·)� operator is defined in the appendix. The elements of ∂f(T(εL))/∂εL are computed

using (6) with varying step sizes h, and the results are compared with a central-difference scheme in

Figure 1. The error is computed by taking the relative 2-norm of the difference between the analyt-

ical and numerical solutions. Like the standard complex-step derivative, the complex-step derivative

tailored to the matrix Lie group SE(3) is able to achieve analytic accuracy, up to machine precision,

for small enough h, while the central-difference derivative is not.

10-2010-1510-1010-5100

10-15

10-10

10-5

100 Complex Step

Central Difference

Figure 1: Variation of relative error in gradient of f : SE(3) → R with step size, for both complex-step and central-
difference methods. Machine precision is achievable with a sufficient reduction in step size.

Example 2: Consider the nonlinear least-squares function

J(T) =
1

2
e(T)TWe(T), (8)

where T = exp(εL
∧

)T̄ ∈ SE(3), W ∈ R6×6 is a symmetric positive definite weight matrix, and the

error is given by

e(T) = ln(T−1Tref)∨.

The matrix Tref ∈ SE(3) is some reference point used to construct the error. The Jacobian ∂e(T(εL))/∂εL

can be used to construct Jacobian and Hessian approximations of J(x), which are used in the Gauss-

Newton algorithm. Like in Example 1, the analytical left Jacobian can be determined by perturbing
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T on the left,

e(exp(εL
∧

)T̄) = ln(T̄−1 exp(−εL
∧

)Tref)∨

= ln(exp((−Ad(T̄−1)εL)∧) T̄−1Tref︸ ︷︷ ︸
exp(e(T̄)∧)

)∨

≈ e(T̄) + (−Ad(T̄−1))︸ ︷︷ ︸
∂e(T(εL))

∂εL

∣∣∣
εL=0

εL,

where, in the last line, a first-order approximation to the BCH formula has been used.

The elements of the Jacobian ∂e(T(εL))/∂εL were also calculated using (6) with a step size of

h = 10−20. An optimization was performed with both Jacobian calculation methods, where the

Gauss-Newton step δε`−1 is is determined from

δε`−1 =

[(
∂e
∂εL

)T

W
(
∂e
∂εL

)]−1 [
−
(
∂e
∂εL

)T

We(T̄)

]
,

and the argument of e(T(εL)) is dropped for conciseness. The point is updated by

T̄` = exp(δε∧`−1)T̄`−1.

As shown in Figure 2 using both an analytic Jacobian or a complex-step Jacobian results in an

optimum being reached in a single step. Note that calculating Jacobians using the complex-step is

shown to have a minor improvement in cost function reduction as compared to the analytical method.

The reason is that the analytical method uses a first-order BCH approximation, which is ultimately

slightly less accurate than the machine-precision complex-step Jacobian calculations.

0 1 2
10-20

10-15

10-10

10-5

100

105

Analytical Jacobians
Complex-Step Jacobians

Figure 2: Convergence history of a Gauss-Newton optimization algorithm on a simple nonlinear least-squares problem.
The analytical Jacobians require an approximation to be tractable. The complex-step can calculate Jacobians down to
machine precision, hence providing a more accurate first step.
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4 Batch estimation

The methodology of Example 2 is now applied to a practical state estimation problem. Consider the

task of estimating the position and attitude of a rigid body at different points in time t0, t1, . . . , tK using

various measurements. The state of the rigid body at a discrete point in time tk can be represented

by the matrix Lie group element Tk ∈ G, where G will depend on the estimation task.

4.1 Maximum A Posteriori estimation

The MAP approach [1, Ch. 8.2.5] to estimate the states in a batch framework results in the minimiza-

tion of the least-squares cost function shown in (8), where the errors to be minimized are

e(T0,T1, . . . ,TK) =



eu,0
eu,1

...
eu,K
ey,0

...
ey,K


.

The error term eu,0 represents an error between the known initial state Ť0, with uncertainty, and the

estimated initial state T0. This term is computed as,

eu,0 = ln(T−1
0 Ť0)∨.

The process error terms eu,1, . . . , eu,K are a function of a discrete-time process model of the form

Tk = F(Tk−1,uk−1,wk−1) where uk−1 and wk−1 are the input and zero-mean process noise at time

tk−1, respectively. These error terms are calculated as

eu,k = ln(T−1
k F(Tk−1,uk−1, 0))∨.

Finally, the terms ey,0, . . . , ey,K correspond to the errors between measurements, and a measurement

model of the form yk = g(Tk,νk), where νk is zero-mean measurement noise. Hence, the measurement

errors are

ey,k = yk − g(Tk, 0).

Following the MAP formulation the weight in (8) is,

W = diag(P−1
0 ,Q−1

1 , . . . ,Q−1
K ,R−1

0 , . . . ,R−1
K ),

where the matrix P0 is a covariance matrix associated with the uncertainty in the initial state, Ť0.

The matrices Qk and Rk are covariance matrices associated with the process and measurement noises,

respectively.

The goal is to find T0, . . . ,TK that minimize the least-squares cost function given by (8). To use a

Gauss-Newton algorithm, the right (or left) Jacobian ∂e(T(εR))/∂εR is needed, where εR = [εR
T

0 . . . εR
T

K ]T

is a matrix that consists of perturbations to the individual estimated states. Since the error e(T0, . . . ,TK)

is a function of K different Lie group elements, it is worth mentioning a simple technique that allows

a user to treat the same function as a function of a single matrix Lie group element, as shown next in

Section 4.2. The Jacobians can then be computed using the complex-step with (5) or (6).

4.2 Recasting f(X0, . . . ,XK) as f(X)

Consider a function f(X0, . . . ,XK) ∈ R where X0, . . . ,XK ∈ G. Let Xi = X̄i exp(εR
∧

i ). Define

X 4
= diag(X0, . . . ,XK),
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thus leading to

X =

 X̄0

. . .

X̄K


 exp(εR

∧

0 )
. . .

exp(εR
∧

K )



=

 X̄0

. . .

X̄K

 exp

 εR
∧

0

. . .

εR
∧

K

 . (9)

By defining εR
4
=
[
εR

T

0 . . . εR
T

K

]T

, X̄ 4
= diag(X̄0, . . . , X̄K) along with a new operator (·)4 such that

ε4
4
= diag(ε∧0 , . . . , ε

∧
K), Equation (9) becomes

X = X̄ exp(εR
4

).

Therefore, a collection of matrix Lie group elements can be packaged into a single element of a new

group. This can be done similarly with left perturbations.

4.3 The EuRoC dataset

The EuRoC micro aerial vehicle dataset collected by the Autonomous Systems Laboratory at ETH

Zürich, Switzerland [12] includes accelerometer and gyroscope measurements, as well as ground truth

position data. To simulate position measurements akin to GPS or UWB measurements, normally

distributed random noise is added to the provided ground truth measurements. The state of the rigid

body can be represented by the matrix Lie group element Tk ∈ SE2(3), and as such the velocity is

also estimated. The accelerometer measurements uacc
k and gyroscope measurements ugyro

k are treated

as process-model inputs uk = [uaccT

k ugyroT

k ]T, while the position measurements ypos
k are treated as

measurement-model outputs.

For this problem, the analytical expression for the Jacobian ∂e(T)/∂εR can be obtained, and the

details of the derivation can be found in [16, Ch. 5]. Henceforth, the arguments of functions of

multiple matrix Lie group elements will be consolidated under T, as described in Section 4.2. The

right Jacobian is

∂e(T)

∂εR
≈



−1

F0
. . .

. . .

−1
FK

H0

. . .

HK


,

where

Fk = Ad(T−1
k Fop

k−1)B,

Fop
k−1 =

 Ck−1 vk−1 + Tg rk−1 + Tvk−1

1
1

 ,
B =

 1
1
T1 1

 ,
Hk =

[
1 0 0

]
Tkp�,
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where T = tk − tk−1, p = [0 1]T, and g is the gravity vector resolved in the datum frame. These

expressions require first-order approximations to the BCH formula, similar to Example 2. This is

common procedure, as the approximation becomes more accurate as errors become small [1, 16].

A Gauss-Newton optimization is performed on the MH 03 medium dataset. For simplicity, the

accelerometer and gyroscope measurements are downsampled from the original 200 Hz in order to

reduce the amount of variables in the optimization procedure. An alternative to downsampling is to

perform IMU preintegration as described in [17], but this is beyond the scope of this paper. The

specifications of the batch-estimation problem are shown in Table 1. The process covariance matrix

was set to,

Qk = diag(1.6 · 10−7 · 1 , 2 · 10−6 · 1 , 10−101). (10)

Table 1: EuRoC estimation scenario specifications.

Specification Value Units

Accelerometer meas. freq. 25 Hz
Gyroscope meas. freq. 25 Hz
Position meas. freq. 10 Hz
Data time span 60 - 80 s
Number of states estimated 500 -
Std. deviation of position meas. 0.1 m
Initial state guess covariance P0 10−10 · 1 [rad2, (m/s)2, m2]
Process covariance Qk See eqn. (10) [rad2, (m/s)2, m2]
Measurement covariance Rk 0.12 · 1 m2

Complex-step der. step size h 10−20 -

The initial state, Ť0, is set to the ground truth, and hence the diagonal of P0 is given arbitrarily small

numbers. The matrix Qk was further tuned to yield better performance, after obtaining the nominal

noise values provided in the EuRoC dataset. Using the initial state, the process model is directly

integrated using the accelerometer and gyroscope measurements, which then provides an initial guess

for the poses at all the discrete time points. This dead reckoning solution is then used to initialize the

Gauss-Newton algorithm.

Figure 3 shows a visualization of the trajectory once the optimization procedure has converged.

Figure 4 shows the value of the cost function J(T) across the iterations of the Gauss-Newton algorithm.

Since the initial guess for the states is obtained by dead reckoning, this sets all the process errors

eu,1, . . . , eu,K to zero. The first iteration attempts to decrease the measurement errors, resulting in an

increase in process errors, and hence an increase in the overall cost function.

1.2

1.4

1.6

1.8

-2
2.5-1 21.510 0.50-0.5-11 -1.5-2-2.5

Figure 3: Trajectory visualization of a batch-estimation solution from the EuRoC Dataset.
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Figure 4: Convergence history of a Gauss-Newton algorithm on EuRoC Dataset. Virtually identical performance is
achieved to the analytical solution, and using a central-difference method. However, the complex-step requires only 1
function evaluation, and no step-size tuning was needed.

In this example, BCH approximations in the analytical Jacobians did not create any difference

in the convergence history since the errors are initialized to be small in the the dead reckoning step.

A central-difference scheme was also used to calculate Jacobians, and after multiple trial-and-error

attempts with different step sizes, an identical convergence history to what is shown in Figure 4 was

obtained. However, the central-difference method requires twice as many function evaluations as the

complex-step method, and therefore required approximately twice the total computing time. Finally,

Figure 5 shows the 2-norm of the difference between the batch-estimation solution and the ground

truth. The errors are small, indicating the MAP framework has converged close to the ground truth.

60 62 64 66 68 70 72 74 76 78 80
0

0.05

0.1

60 62 64 66 68 70 72 74 76 78 80
0

0.1

0.2

0.3

60 62 64 66 68 70 72 74 76 78 80
0

0.02

0.04

Figure 5: Magnitude of errors in position, velocity, and attitude resulting from the optimal batch-estimation solution using
the complex-step.
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4.4 The ‘Lost in the Woods’ dataset

The ‘Lost in the Woods’ dataset consists of a mobile wheeled robot navigating through a “forest”

of tubes [13], as seen in Figure 6. The robot is equipped with wheel odometry providing forward

velocity measurements, denoted uvel
k , and angular velocity measurements, denoted uang

k . Furthermore,

the robot has a laser range finder that provides range and bearing measurements to pre-identified

landmarks (the tubes shown in Figure 6), denoted r`k, φ
`
k for landmark ` at tk, respectively. The

positions of the landmarks in a datum reference frame are known in advance, and are denoted r`. The

state of the robot can be represented by Tk ∈ SE(2).

Figure 6: Experimental setup of the ‘Lost in the Woods’ dataset, courtesy of [13]. Truth measurements are obtained from
a motion capture system.

Table 2: ‘Lost in the Woods’ estimation scenario specifications.

Specification Value Units

Wheel odometry freq. 5 Hz
Laser range finder freq. 5 Hz
Data time span 500 - 620 s
Number of states estimated 600 -
Initial state guess covariance P0 1 [rad2, m2, m2]
Complex-step der. step size h 10−20 -

The process model consists of the nonholonomic vehicle kinematics. Written in the form

Tk = F(Tk−1,uk−1,wk−1),

Tk = Tk−1Ψk−1,

where

Ψk−1 =

[
exp(T (uang

k−1 + wang
k−1)∧) T (uvel

k−1 + wvel
k−1)11

0 1

]
,

T = tk − tk−1, and wvel
k−1, w

ang
k−1 are zero-mean normally distributed noises associated with the velocity

and angular velocity measurements, respectively. The measurement model consists of the range and

bearing measurements for each landmark. Written as y = g(Tk,νk), the measurement model is[
r`k
φ`k

]
=

[ √
(r` − DTkp)T(r` − DTkp)

atan2
(
1T

2 (r` − DTkp), 1T
1 (r` − DTkp)

)
− 1T

1 ln(Tk)∨

]
+ νk,

where νk is zero-mean normally distributed measurement noise, D = [1 0], p = [d 0 1]T, and d is the

distance between the laser range finder and the reference point on the robot.
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Computing the Jacobians associated with the measurement model by hand is, although not im-

possible, laborious due to the atan2(·, ·) term. Hence, the complex-step derivative is used to directly

evaluate the right Jacobian ∂e(T)/∂εR for use in the Gauss-Newton optimization.

As with the EuRoC dataset, dead reckoning was performed using the wheel odometry, in order to

generate an initial guess for the Gauss-Newton optimization. All measurements were downsampled

from the original 10 Hz to 5 Hz in order to limit the number of variables in the optimization procedure.

The Qk and Rk matrices were directly formed from the discrete-time covariances provided in the

dataset [13]. The initial state T0 was set to be a random perturbation from the ground truth value.

The algorithm converged in 6 iterations, and produced a trajectory visualizable in Figure 7. The

errors are shown in Figure 8, which show good performance when compared to the ground truth position

and attitude data. This can also be achieved with central-difference, but again, the computation time

is significantly longer, and the step sized must be tuned.

0 1 2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3

4

Ground Truth

Complex-Step Batch Solution

Figure 7: 2D trajectory trace for the ‘Lost in the Woods’ dataset. The solution using the complex-step derivative shows
excellent agreement with the ground truth data.

5 Conclusion

This paper has shown that the complex-step derivative can successfully be used to obtain Jacobians of

functions that have matrix Lie group elements as arguments. Machine-precision can be achieved with a

single complex function evaluation. To use the complex-step, functions must be programmed to accept

complex numbers, which is occasionally time consuming. In Matlab, it is critical to use the (.’)

transpose operator as opposed to the (’) conjugate transpose, and also to redefine the abs(), max(),

and min() functions. A guide to proper implementation in various other programming languages can

be found in [18].

There is a multitude of other potential applications for this tool, such as numerical linearization of

high-fidelity dynamics models, real-time state estimation and Kalman filtering [19], and the training of

matrix Lie group-based neural networks [20]. For second derivatives, the complex-step is unfortunately

unable to realize machine-precision accuracy. However, methods are available to improve the accu-

racy [21], which is likely extendible to matrix Lie groups. Furthermore, if an analytical function for the

Jacobian is known, the Hessian can be determined with machine precision using the complex-step [10].
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Figure 8: Error in position x, y and attitude θ between estimated solution and ground truth (blue), along with ±3 standard
deviation bounds (black). There is less than 10 cm of position error, and less than 0.1 rad of attitude error.

Appendix
5.1 The Special Euclidean Group SE(2)

The group SE(2) is defined as [14],

SE(2) =

{
T =

[
C r
0 1

]
∈ R3×3

∣∣∣∣ C ∈ SO(2) , r ∈ R2

}
,

where SO(n) refers to the Special Orthogonal Group consisting of orthonormal matrices with unit

determinant. The matrix Lie algebra associated with SE(2) is

se(2) = {Ξ = ξ∧ ∈ R3×3 | ξ ∈ R3},

where

ξ∧ =

 ξφ

ξr1
ξr2

∧ =

 0 −ξφ ξr1
ξφ 0 ξr2
0 0 0

 .
The closed-form expression for the exponential map exp : se(2)→ SE(2) is

exp(ξ∧) =

[
C J`ξr

0 1

]
,

where ξr = [ξr1 ξ
r
2 ]T and

J` =
1

ξφ

[
sin(ξφ) −(1− cos(ξφ))

(1− cos(ξφ)) sin(ξφ)

]
.

5.2 The Special Euclidean Group SE(3)

The matrix Lie group SE(3) is defined as [1, Ch. 7.1.2]

SE(3) =

{
T =

[
C r
0 1

]
∈ R4×4

∣∣∣∣ C ∈ SO(3) , r ∈ R3

}
.
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The matrix Lie algebra associated with SE(3) is

se(3) = {Ξ = ξ∧ ∈ R4×4 | ξ ∈ R6},

where

ξ∧ =

[
ξφ

ξr

]∧
=

[
ξφ
×

ξr

0 0

]
, ξφ, ξr ∈ R3,

and

ξφ
×

=

 ξφ1
ξφ2
ξφ3

× =

 0 −ξφ3 ξφ2
ξφ3 0 −ξφ1
−ξφ2 ξφ1 0

 .
The closed-form expression for the exponential map exp : se(3)→ SE(3) is

exp(ξ∧) =

[
exp(ξφ

×
) J`ξr

0 1

]
,

where

J` =
sin(φ)

φ
1 +

(
1− sin(φ)

φ

)
aaT +

1− cos(φ)

φ
a×,

exp(ξφ
×

) = cos(θ)1 + (1− cos(θ))aaT + sin(θ)a×,

and φ =
∥∥∥ξφ∥∥∥ and a = ξφ/φ. The matrix J` is known as the left Jacobian of the group SO(3). It is

also useful to define the operator [1, Ch. 7.1.8]

p� =

[
ε
η

]�
=

[
−ε× η1

0 0

]
, ε ∈ R3, η ∈ R,

such that x∧p = p�x holds.

5.3 The group of Double Direct Isometries SE2(3)

The matrix Lie group SE2(3) is defined as

SE2(3) =

T =

 C v r
0 1 0
0 0 1

 ∣∣∣∣ C ∈ SO(3), v, r ∈ R3

 .

The matrix Lie algebra associated with SE2(3) is

se2(3) = {Ξ = ξ∧ ∈ R5×5 | ξ ∈ R9},

where

ξ∧ =

 ξφ

ξv

ξr

∧ =

 ξφ
×

ξv ξr

0 0 0
0 0 0

 , ξφ, ξv, ξr ∈ R3.

The closed-form expression for the exponential map exp : se2(3)→ SE2(3) is

exp(ξ∧) =

 exp(ξφ
×

) J`ξv J`ξr

0 1 0
0 0 1

 .
It is also useful to define the operator

p� =

 ε
η1

η2

� =

[
−ε× η11 η21

0 0 0

]
,

where ε ∈ R3 and η1, η2 ∈ R, such that x∧p = p�x holds.
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