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nécessaire et un lien vers l’article publié est ajouté.
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Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2019-79) afin de mettre à
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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: A. Bani, I. El Hallaoui, A.I. Corréa, A. Tahir (Oc-
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– Bibliothèque et Archives Canada, 2019

The publication of these research reports is made possible thanks
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3000, chemin de la Côte-Sainte-Catherine
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Abstract: In this paper, we solve a rich real-word Multi-Depot Multi-Period Petrol Replenishment
Problem with a heuristic based on Branch-and-Price heuristic. The network consists of five distinct
depots, a group of five private carriers with heterogeneous fleets of compartmented tank-trucks and
five types of gas to replenish three main groups of clients on a weekly basis. Due to the hazardous
nature of the products carried, some complex handling rules apply and are addressed in the column
generation sub-problem as an Elementary Shortest Path Problem with Resource Constraints. Accel-
eration strategies are discussed. Numerical results on some real-world data show the effectiveness and
high potential of the proposed approach.

Keywords: Mathematical programming, branch-and-price, petrol replenishment, multi-compartment
vehicle routing problem
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1 Introduction

The petroleum sector is still a major component of most of modern societies even though other alter-

native sources of energy (gas, electricity, solar) are increasingly used. One of the key success factors

in the petroleum industry is the efficiency of its distribution system. The sound management of its

different activities is a real challenge. These activities include the procurement, the transportation of

petroleum products from depots to sales points and the inventory management at both depots and

sales points.

In this paper, we focus on the transportation of different types of gas from the depots to a network

of distinct clients by a fleet of tank-trucks in a real-world application. Some complex handling rules

apply due to the hazardous nature of the products carried. On a weekly basis, a Petroleum Company

(PC) based in West Africa has to replenish with five types of gas a network of clients from five different

depots using a heterogeneous fleet of compartmented tank-trucks. The tank-trucks are owned by five

private transportation companies that are also doing business with some of PC competitors. That is, a

pool of petroleum companies are contracting with the same group of private transportation companies.

The rental of a specific truck T by a petroleum company from a transportation company is subject

to its temporary availability since it may have been already rented by a competitor of the petroleum.

This is one of the justification of the design of an efficient decision support system. The network of

clients is comprised of three distinct subfamilies of clients: (i) gas stations mostly owned by the PC

(ii) marine stations and (iii) private bakeries. The main attributes are then:

1. Rich Vehicle Routing Problem (VRP) with multiple depots and multiple products;

2. Limited number of a heterogeneous fleet of multi-compartment vehicles with up to 15 compart-

ments which is absolutely huge;

3. Hazardous material (gas) transportation problem;

4. Cyclic network on a weekly horizon (multi-period) and many customers per route. Each can be

visited more than once in a day/the horizon. From one planning period (horizon or instance) to

another one the number and type of clients to be serviced may vary. It is not a rolling horizon.

These characteristics, often studied separately in the literature, make the problem complex and un-

common in the literature. The mid-term goals of this research project are : (i) provide near optimal

routes and delivery schedules by considering the complex loading constraints (ii) rapidly re-optimize

the solution in case of accidents, vehicle breakdowns or unexpected unavailability of drivers and (iii)

pave way to the design of an effective Decision Support System (DSS). We address in this paper the

first point. Our main contributions are the following:

• A Branch-and-Price based heuristic introducing a new branching rule;

• A pattern learning technique to accelerate the generation of routes/schedules respecting the very

complex loading constraints, i.e., the solution of the column generation sub-problem.The problem

is unsolvable without this technique even with a state-of-the-art solver;

• Two effective acceleration has been found;

• Extensive numerical results showing that our approach produces better quality solutions (in

average 0.31 % of gap in less than 3.5 minutes) than a state-of-the-art Branch-and-Price method

and the solutions provided by the PC.

This paper is organized as follows: After the introduction (Section 1), we review the most important

publications related to Multi-Depot Multi-Period Petrol Replenishment Problem (MDMPPRP) in

Section 2. In Section 3, we give a detailed description of the problem. The compact mathematical

model is defined in Section 4, followed by a description of the proposed solution method (Section 5). In

Section 6, we present and discuss the computational results obtained on real-world instances provided

by PC before the conclusion and some suggestions for future research (Section 7).
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2 Literature review

A variety of applications of the Petrol Replenishment Problem (PRP) have been reported in the

literature. This type of problem is considered as the most studied variant of the Multi-Compartment

VRP (MCVRP) [1] which is a generalization of the classical vehicle routing problem. The MCVRP

has several aspects: (i) it considers demand for multiple heterogeneous products instead of a single

product (ii) a vehicle has multiple compartments instead of a single one (iii) all goods delivered on a

route must be assigned to compartments of a vehicle (iv) some products must not be loaded in the

same vehicle and (v) presence of incompatibility between some products and compartments.

One of the first articles in the context of PRP was published in 1981 by [2]. They developed a

method to solve a problem minimizing the transport costs with only one client per route. Each order

corresponds to a full tank-truck load. The authors proposed, on the one hand, an exact approach

using the set partitioning model. On the other hand, they proposed a heuristic based approach

to assign orders to the tank-trucks by taking into account some operational constraints (product

incompatibility, heterogeneous fleet, ...). Clients control their inventory level and place orders to the

supplier, indicating their desired delivery time. [3] described a computer system they developed for

Mobil Oil Corporation in the United States. The centerpiece of this system is a Computer Aided

Dispatch (CAD) system where they focused on the possibility to add more than one client per route to

their previous work [2]. [4] helped a large oil company in the Netherlands to redesign its distribution

network. They suggested some simple models to assign clients to depots, to determine the fleet size

and composition, and to restructure the depots network. [5] conducted a similar study and proposed

three models to solve vehicle dispatching: set partitioning (SPP), elastic set partitioning (ESP) and

set packing (SPK) models. The objective of the first two models is a transportation cost minimization.

The ESP model involves a penalty in the case of constraint violation in the model, while the SPK

model aims to maximize the overall profit (the cost saving between using the contracted tank-trucks

against the owned tank-trucks).

The authors of [6] proposed two heuristics to solve the PRP with one depot, unlimited homogeneous

tank-truck fleet and no time windows. In the first heuristic, each route visits only one client. The

second one allows for multiple client routes. They mentioned that single client routes are common

in distribution policy practice and showed that this practice is not efficient by applying these two

heuristics to some test problems. [7] gives a more realistic constraint to the PRP by using a limited

heterogeneous fleet of tank-trucks with three to nine compartments; They designed a set of least-cost

tank-truck routes subject to more complex constraints than [6]. In addition, they only allow up to two

stations in the same route. They adapted the Variable Neighborhood Search (VNS) [8] metaheuristic

to reach a near optimal solution to this difficult problem due to the high number of constraints and

variables. [9] proposed four heuristics for the Multi-Period PRP (MPPRP). The MPPRP’s aim is to

optimize the delivery of several petroleum products to a set of gas stations over a given planning

horizon. A special feature of the problem studied was that while some clients manage their own

inventories and send their orders to the vendor whenever they want, the inventory of other clients

is managed by the transportation company that decides when to replenish these clients and what

quantities to deliver. Their heuristics were tested using some real-world problems obtained from

a transport company in eastern Quebec. These authors showed that their heuristics could lead to

significant savings.

The authors of [10] proposed a Branch-and-Price algorithm based on a set partitioning model with

one depot and a limited number of heterogeneous fleet of tank-trucks on a single period. They proposed

a heuristic to provide an initial set of columns for the Branch-and-Price algorithm. They allow multiple

clients per route. To test the performance of their approach, they used real-world data consisting of

25 customers and 6 tank trucks of 3 different types. [11] studied two small gas distribution networks in

Hong Kong: the Hong Kong Island network and the network for the Kowloon Peninsula and the New

Territories. They proposed a two-stage approach: heuristic clustering, and optimization assignment

and routing. The clustering is based on the geographic limitation and expert considerations. The



Les Cahiers du GERAD G–2019–79 3

optimal model for assignment and routing is a binary program with multiple objectives. For this case,

clients inventories are managed by the vendor. The proposed model does not guarantee that no client

will run out of stock.

The authors of [12] decompose the PRP using a priori column generation scheme. On a single

period, they proposed an exact algorithm which decomposes the PRP into two sub-problems: the

tank-truck loading problem (TTLP) and the Routing Problem (RP). The RP is used to select routes

for all clients minimizing overall transportation costs. They reduced the complexity of the RP by

allowing just two clients per route. The TTLP is used to assign orders to tank-truck compartments,

maximizing the total quantity delivered and the profit. They start solving this problem by a heuristic

assigning, if the heuristic fails, then they solve an exact MIP formulation of the problem. [13] proposed

a heuristic algorithm to solve the MPRP. The objective is to maximize the total profit equal to the

revenue minus the sum of routing costs and of regular and overtime costs. [14] proposes two heuristic

approaches to solve the PRP with time windows (PRPTW).

The authors of [15, 16] conducted a study similar to [13] but proposed different approaches. [15]

applied a heuristic approach to solve the MPPRP and used a simulation approach to analyze the

results. [16] proposed a heuristic approach consisting of two steps ”cluster first, route second”. Both

studies considered these problems at the inventory routing level since the supplier has full control of the

client inventory, including determining order quantity as well as the delivery period. [17] conducted

a further study to solve the Multi-Depot PRPTW (MDPRPTW). They proposed a new heuristic

algorithm to solve the problem by using what they called trips (combination of routes and used

vehicles). From this statement, it implies that multiple trips can have the same route. [18] proposed a

stochastic VNS heuristic to solve MPPRP. The stochastic VNS heuristic is compared to a MIP model

and a deterministic Compartment Transfer Heuristic (CTH).

A similar approach was proposed by [19], they solve their problem with a heuristic approach

which combines a matheuristic component for the determination of an initial solution and a variable

neighborhood descent algorithm to search further improvements. They also study the impact of fleet

size costs on their solutions. [20] proves in real-world instances that considering multiple-periods gives

a better outcome in comparison to a single period. They proposed two Multi-phase heuristics. They

also allow clients to be visited more than once a day, which reflects the real-world situation where

high demand clients could potentially be served several times per day. [21] proposed a Tabu Search

algorithm where specific attention is paid to tank-trucks with compartments and clients with different

types of ordered products and time windows.

Table 1 lists the studies described above and summarizes some of their characteristics to give

a better understanding of them. Most of these studies proposed heuristic approaches to solve the

MPPRP, due to the fact that the exact method might not be an appropriate approach to solve large

scale problems [22]. Finally, to the best of our knowledge, none of these studies solve the integrated

MPPRP (i.e., the TTLP and RP in one shot) using a Branch-and-Price algorithm with unlimited

number of clients per route and multi-periods.

3 Problem statement

The MDMPPRP is defined over one-week horizon D (from Monday to Sunday), in which the PC

must replenish a network of clients with five different types of gas P denoted (chemically) Marked

Products and Unmarked Products. The marked products are Diesel, Marine Zoom and Kerosene.

The unmarked products are Super and Gasoil.

The network of clients mainly consists of: (i) gas stations which are owned by PC (ii) marine

stations located at some fishing docks and (iii) bakeries. However, from time to time, the PC has

occasional clients (private enterprises). Customs escort fees apply for gas supplied to marine station. A

discount on these fees is applied when two consecutive visits in different marine stations are performed.
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Table 1: Main characteristics of past studies vs this paper.
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Brown and Graves [2] X X 1 X
Brown et al. [3] X X +∞ X
Van der Bruggen et al.[4] X X 1 X
Ronen [5] X X 1
Taqa allah et al. [6] 1/+∞
Malépart et al. [9] X X +∞
Abdelaziz et al. [7] X X ≤ 2
Avella et al. [10] X X +∞
Ng et al. [11] X X +∞
Cornillier et al. [12] X ≤ 2
Cornillier et al. [13] X X ≤ 2 X
Cornillier et al. [14] X X +∞ X
Popovic et al. [15] X X ≤ 2 X
Hanczar [16] X X +∞ X
Cornillier et al. [17] X X +∞ X X
Popovic et al. [18] X ≤ 3 X
Vidovic et al. [19] X ≤ 4 X
Charusakwong and Lohatepanont [20] X X ≤ 2 X X X
Benantar et al. [21] X X +∞ X X
This paper X X +∞ X X X

The distribution of the marked and unmarked products is carried out by a pool of heterogeneous

fleet of tank-trucks K owned by four private transportation companies. We have two types of tank-

trucks according to there capacities: (i) small tank-trucks with capacity < 20000 liters (ii) jumbo

tank-trucks with capacity ≥ 20000 liters. Some tank-trucks labeled ’Fishing’ are exclusively used to

carry the marked products while some others cannot carry unmarked products and marked products

at the same time. Note that a tank-truck can be both jumbo and labeled ’Fishing’ or none of that. The

tank-trucks may not be all available at the same time. For each tank-truck k ∈ K, we define Dk the

subset of availability days, Lk the set of compartments where each compartment l ∈ Lk has constant

capacity Clk.

The delivery consists in completely unloading one or more compartments using gravity because

the tank-trucks are not equipped with a debit meter. The business contracts between the PC and

each transportation company are distinct. Different penalties applied according to the four status of

tank-trucks as (i) dedicated to marked products (ii) paint in the colors of the PC (iii) accepting to

be partially paid with gas at one gas station of the PC (ix) regular tank-trucks. Before supplying

the clients of the PC, the tank-trucks must pick-up some gas from the depots (precedence constraints

between some deliveries and pick-ups). For the remainder of this article, we will assume that the

total of gas available at the depots is always greater than the total demand for petroleum products of

the clients.

An order placed by a client consists in a specific product denoted by client-product, its associated

volume needed and its latest day of delivery. The set of client-products is denoted by N. A gas station

may order several types of gas while marine stations and bakeries can order just one distinct type of

gas. The orders of petroleum products are placed before Friday of the week preceding the week of

distribution. The loading time at each depot, the waiting time and the unloading time at each client

are constant and do not depend on the quantities poured inside the client’s tanks.

Some complex handling rules must be enforced (see Table 2). In addition, to ensure the balance

of any loaded tank-truck during its route, a special attention is paid to the stowage of the petroleum
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products in the compartments. Parts of the gas carried during the routes of tank-trucks turn into gas

due to the friction caused by the liquid on the walls of compartments, thus changing the shape and the

volumes of compartments. This phenomenon is called slushing. Therefore, the fact of having empty

space in a tank-truck at the beginning of its route should be avoided as much as possible.

The direct billing is applied. That is, the billing of each customer supplied in gas is based on the

distance between the client location and the depot(s) holding the petroleum product even the tank-

truck visits other clients in the same route. The billing of a route to each customer also depends on

the cost per kilometer per unit of volume defined for every type of gas and the volume of gas carried.

Then, with this type of billing, the transportation costs could be considered as fixed costs therefore

they do not impact the optimization.

The MDMPPRP consists in constructing a transportation plan over D in which, the type and

volume of gas supplied, the tank-trucks and compartments used and the delivery time must be deter-

mined. In addition to the pick-up periods at the depot, the exact volumes of gas and the compartments

loaded in every tank-truck. The objective function includes the following costs: (i) sum of the penalties

incurred for fleet sizing purpose (ii) sum of the customs escort fees (iii) route length (ix) sum of the

empty space of the tank-trucks.

Table 2: Main business rules.

Rule Description

R-1 Exclusion constraint between marked products and unmarked products.
R-2 Some clients cannot accommodate ’jumbo’ tank-trucks.
R-3 Tank-trucks labeled ’Fishing’ may only carry marked products.
R-4 Demand satisfaction: each client-product must be served by a single tank-truck.
R-5 The quantities of products at the depots are limited.
R-6 When a compartment of a tank-truck is used, it must be completely filled.
R-7 One client-product per compartment.
R-8 We can only deliver what we collect from the depot.
R-9 The daily total travel time must not exceed the total working time in a day.
R-10 A truck can not visit more than two marine stations.

4 Mathematical model

We first introduce the network representation followed by some notations. Then, we give a mixed

integer programming formulation with explanation of each constraint.

4.1 Network representation

Let G = (V,A) be a directed multi-graph, where V is the node set and A the arc set. The network

G is partially illustrated in Figure 1, where for clarity reasons, some arcs are truncated or omitted. In

addition to one source node (σ) and one destination node (δ), this network contains five node types:

depot, client, client-departure, client-arrival and client-product. The client-product nodes N represent

a product p ∈ P requested by a client, while Np is the subset of client-products nodes of product

p ∈ P. There is a pair of departure and arrival nodes for each client. The subset of fictive nodes V’

are the client-arrival which represent the entry to the client site and the client-departure nodes which

represent the exit from each client site.

The network involves four arc types connecting the different nodes mentioned above: travel arc,

pickup arc, delivery arc and end of delivery arc. The travel arcs link the client-departure node of each

client to the client-arrival node of other clients, depot node to client-arrival node. The pickup arcs

connect the source node with depots and the depots between them. Delivery arcs link the client-arrival

node with the client-product nodes of the same client. The arcs connecting the client-product node

of a client with the client-departure node are the end of delivery arcs. It should be noted that the

graph above contains two disjoint sub-graphs: the sub-graph of unmarked products and the sub-graph

of marked products.
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Figure 1: Example of a part of the network.

The problem can be modeled as a large-scale mixed integer program. Whereas this formulation is

too large to be used in practice, it is helpful to understand the problem and the decomposition method

that follows.

4.2 Sets and elements

• P: Set of all products;

• N: Set of all client-products nodes, each client-product node corresponds to an order of one

product by a client;

• Np: Subset of client-products of product p ∈ P ;

• Nf : Set of client-products from marine stations;

• E: Set of depots;

• V′: Set of fictive nodes;

• V = {N∪E∪ {σ, δ}} ∪V′: Set of all nodes of the network including the source and destination

nodes in addition to fictive nodes;
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• S: Subset of vertices in the sub tour;

• A: Set of possible connections (arcs). Note that the Rule R-1 are respected in connection

definition;

• K: Set of tank-trucks;

• D: Set of days in a week (numbered from 0 to 6) ;

• Dk: Set of availability days for each tank-truck k ∈ K;

• Lk: Set of compartments of each tank-truck k ∈ K;

4.3 Parameters and variables

The parameters and variables of the proposed model are defined as follows:

Parameters

• Qpe: Quantity of product p available in depot e;

• Clk: Capacity of compartment l in tank-truck k;

• cij : Cost of visiting node j after node i including the distances and custom escort fees;

• τij : Time of visiting node j after node i, including the waiting time and the unloading times of

the products;

• Tmax: Length of a working day;

• on: Quantity of product ordered by the client-product n ∈ N ;

• Ψk: Penalty value of using tank-truck k;

• ∆k: Capacity of tank-truck k ∈ K, also equal to
∑
l∈Lk

Clk;

The decision variables

• ukd = 1 if a tank-truck k is used on day d, 0 otherwise.

• xkdij = 1 if a tank-truck k visit node j on day d after visiting the node i, 0 otherwise. Note that

the rules R-2 and R-3 are implicitly considered in this variables definition.

• ykdln = 1 if the product in client-product n is loaded in compartment l of tank-truck k on day d,

0 otherwise.

• qkdpe ≥ 0 quantity of product p picked-up from depot e by tank-truck k on day d.

4.4 MDMPPRP compact formulation

Given this notation, the problem can be modeled as follows:

min
x,y,u,q

∑
k∈K

∑
d∈Dk

(Ψkukd) +

 ∑
(i,j)∈A

cijx
kd
ij

+

(
∆kukd −

∑
l∈Lk

∑
n∈N

Clky
kd
ln

) (1)

s.t.:
∑

(i,n)∈A

∑
k∈K

∑
d∈Dk

xkdin = 1 ∀n ∈ N (2)

∑
k∈K

∑
d∈Dk

qkdpe ≤ Qpe ∀p ∈ P,∀e ∈ E (3)

qkdpe ≤ Qpe
∑

i∈E\{e}

xkdie ∀p ∈ P,∀e ∈ E,∀k ∈ K, ∀d ∈ Dk (4)

xkdij ≤ ukd ∀(i, j) ∈ A,∀k ∈ K,∀d ∈ Dk (5)∑
l∈Lk

Clky
kd
ln = on

∑
(i,n)∈A

xkdin ∀n ∈ N, ∀k ∈ K,∀d ∈ Dk (6)
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∑
n∈N

ykdln ≤ 1 ∀k ∈ K,∀d ∈ Dk,∀l ∈ Lk (7)∑
e∈E

qkdpe =
∑
n∈Np

∑
l∈Lk

Clky
kd
ln ∀p ∈ P,∀k ∈ K,∀d ∈ Dk (8)

∑
(i,j)∈A

τijx
kd
ij ≤ Tmax ∀k ∈ K,∀d ∈ Dk (9)

∑
(i,j)∈{N×Nf}

xkdij ≤ 2 ∀k ∈ K,∀d ∈ Dk (10)

∑
i∈V

xkdij −
∑
i∈V

xkdji =


−1 if j = σ

0 if j ∈ V \ {σ, δ}
1 if j = δ

∀k ∈ K,∀d ∈ Dk (11)

∑
i,j∈S

xkdij ≤ |S| − 1 ∀k ∈ K,∀d ∈ Dk

(S ⊂ V, 2 ≤ |S| ≤ |V | − 2) (12)

xkdij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K,∀d ∈ Dk,∀p ∈ P (13)

ukd ∈ {0, 1} ∀k ∈ K,∀d ∈ Dk (14)

ykdln ∈ {0, 1} ∀n ∈ N, ∀k ∈ K,∀d ∈ Dk,∀l ∈ Lk (15)

qkdpe ≥ 0 ∀k ∈ K,∀d ∈ Dk,∀p ∈ P,∀e ∈ E (16)

The objective function (1) aims at minimizing the total cost, including the penalty costs of using

tank-trucks, total distance, and customs escort fees. The total cost includes also the empty space in

tank-trucks used. Constraints (2) indicate that each client-product must be visited exactly once as

stipulated by Rule R-4. The Rule R-5 on quantities available at the depot is ensured by constraints (3).

Constraints (4) ensure that tank-truck can only load products from the depot after visiting it. Con-

straints (5) ensure that a tank-truck can be used only if available on the day d. Constraints (6) indicate

that the sum of the capacities of the compartments in which we want to put the order of client-product

n must correspond exactly to the quantity demanded as introduced in Rule R-6. Constraints (7) im-

pose that for each tank-truck k, at most one client-product is allowed in the same compartment on a

given day d (R-7). Constraints (8) define that the quantities of each product delivered to clients must

be loaded from depots as mentioned in Rule R-8. Constraints (9) make sure that the daily total travel

time must fall within the length of a working day for each driver tank-truck requested by Rule R-9.

Constraints (10) state that a tank-truck cannot visit more than two marine stations as imposed by

Rule R-10. Constraints (11) and (12) are the flow conservation constraints and sub-tour elimination

constraints respectively. Finally, the domain of the decision variables are restricted by (13)–(16).

5 Solution method

We propose a new Branch-and-Price Heuristic to solve this hard problem where each node in the branch

and bound tree is evaluated using Column Generation (CG). CG is closely connected to Dantzig–Wolfe

decomposition which is introduced by [23]. It involves reformulating the problem as a Restricted Master

Problem (RMP) and one or more Column Generation Sub-Problems (CGSPs). To perform CG, we

reformulate the MDMPPRP compact formulation described in Section 4.4 as a set partitioning Master

Problem (MP) in Section 5.1 and define the CG Sub-Problems (CGSPs) in Section 5.2. CG is an

iterative approach where in every iteration, we consider only a subset of all possible columns (or

routes) in the MP, that is why it is known as restricted MP (RMP). The RMP guides the CGSPs to

generate new promising columns (routes) by providing them at each iteration with a dual solution.

The CG procedure continues until no negative reduced cost columns (using this dual solution) are

generated. To solve the CGSPs, we have used a dynamic labeling algorithm given in Section 5.3.

Finally, the Section 5.4 outlines how we obtain integer solutions.
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5.1 The master problem

We reformulate the MDMPPRP as a set-partitioning model using Dantzig–Wolfe Decomposition [23].

For this, let Ω = {1, . . . , |Ω|} be the set of feasible routes (columns). For each route ω ∈ Ω, a binary

variable ρω is associated. ρω gets the value 1 if route ω with cost cω = (ceω + cpω + cdω + cgω) is selected

or 0 otherwise where ceω is the sum of customs escort fees, cpω is the penalty of using the tank-truck of

the ω route, cdω is the sum of the distances traveled by the ω route tank-truck, and cgω is the penalty

for the empty space in ω route.

The coefficient snω is set to 1 if the tank-truck running the route ω ∈ Ω serves the client-product

n ∈ N , 0 otherwise. The coefficient ukdω is equal to 1 if the route ω is served by a tank-truck k in

day d, 0 otherwise. The coefficient qpeω is the quantity of the product p loaded from the depot e

to satisfy the order for the product p on the route ω. The mathematical formulation of our master

problem is as follows:

min
ρ

∑
ω∈Ω

cωρω (17)

s.t.:
∑
ω∈Ω

snωρω = 1 ∀n ∈ N (18)∑
ω∈Ω

ukdωρω ≤ 1 ∀k ∈ K, ∀d ∈ Dk (19)∑
ω∈Ω

qpeωρω ≤ Qpe ∀p ∈ P,∀e ∈ E (20)

ρω ∈ {0, 1} ∀ω ∈ Ω (21)

The objective function (17) is to minimize the total cost. The partitioning constraints (18) indicate

that each client-product must be visited exactly once, note that we perform multiple visits per day

if we visit two client-products of the same client in the same day. The additional constraints (19)

ensure that we can use the tank-truck k only once per period d. The additional constraints (20)

ensure that the quantities loaded from each depot do not exceed what is available. Finally, integrality

constraints (21) are imposed on the variables ρω. These latter are relaxed when the CG is used to find

the lower bound in a branching node.

In summary, in the master problem, we manage two constraints of the original formulation: the

demand satisfaction requirement (2) and the availability of products at the depots (3). So, the other

constraints (4)–(16) are managed in the CGSPs.

5.2 The column generation sub-problem

The constraints (4)–(16) are decomposed by tank-truck k and day d. So, we modeled our pricing

problem CGSP as an ESPPRC. It consists in a connected graph Gkd(V kd, Akd) where V kd ⊆ V is the

subset of nodes possible to be covered by tank-truck k on day d ∈ Dk; this subset includes the nodes σ

and δ, Nkd, Nkd
p , Nkd

f and depot nodes. Akd ⊆ A is the subset of arcs induced by V kd. The ESPPRC

finds a least negative reduced cost route among all the routes from σ to δ that satisfy the resource

constraints imposed by the set of rules (R-5)–(R-10).

Every resource-feasible route from σ to δ in the ESPPRC corresponds to a feasible route ω ∈ Ω.

The cost of this route is the sum of the costs of its arcs Aω and is equal to the corresponding route

cost cω. However, in a CGSPs, the arc costs need to be modified because the role of a CGSP is to find

negative reduced cost routes, if at least one exists. Hence, the cost of a route should be changed to

the reduced cost of the corresponding route variable. Let πn, γdk, θpe, be the dual variables associated

with the master problem constraints (18), (19), (20), respectively. To ensure that, we must define the

appropriate arc reduced cost cij for each arc (i, j) ∈ A. For that, we define four sets of arcs:
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• Aω: Set of arcs of the route ω.

• Aun: Set of unloading arcs is corresponding to serve client-product n.

• Alpe: Set of loading arcs is corresponding to pickup a quantity qpe of product p from depot e.

• Ao: Set of other arcs.

The reduced cost cω of a variable ρω is then given by:

cω = cω − (
∑
n∈N

snωπn)− (
∑
k∈K

∑
d∈Dk

ukdωγdk)− (
∑
p∈P

∑
e∈E

qpeωθpe) =
∑

(i,j)∈Aω
cij (22)

In this case, the (reduced) cost cij of arc (i, j) ∈ Aω is given by:

cij =


cij − πn if (i, j) ∈ Aun
cij − qpeθpe if (i, j) ∈ Alpe
cij if (i, j) ∈ Ao

(23)

The CGSPkd is formulated as follows:

min
x,y

(Ψk − γdk) +

 ∑
(i,j)∈A

cijx
kd
ij

+

∆k −
∑
l∈Lk

∑
n∈Nkd

Clky
kd
ln

 (24)

s.t.: qkdpe ≤ Qpe
∑

i∈E\{e}∪s

xkdie ∀p ∈ P,∀e ∈ E (25)

∑
l∈Ik

Clky
kd
ln = on

∑
(i,n)∈Akd

xkdin ∀n ∈ N, ∀l ∈ Lk (26)

∑
n∈N

ykdln ≤ 1 ∀l ∈ Lk (27)∑
e∈E

qkdpe =
∑

n∈Nkdp

∑
l∈Lk

Clky
kd
ln ∀p ∈ P (28)

∑
(i,j)∈Akd

τijx
kd
ij ≤ Tmax (29)

∑
(i,j)∈{Nkd×Nkdf }

xkdij ≤ 2 (30)

∑
i∈V kd

xkdij −
∑
i∈V kd

xkdji =


−1 if j = σ

0 if j ∈ V kd \ {σ, δ}
1 if j = δ

(31)

∑
i,j∈S

xkdij ≤ |S| − 1 ∀k ∈ K,∀d ∈ Dk

(S ⊂ V kd, 2 ≤ |S| ≤ |V kd| − 2) (32)

ykdln ∈ {0, 1} ∀n ∈ Nkd,∀l ∈ Lk (33)

xkdij ∈ {0, 1} ∀(i, j) ∈ Akd (34)

The objective function (24) minimizes the reduced cost. The constraints (25)–(34) are a restriction of

constraints (4)–(16) to tank-truck k and day d respectively.

5.2.1 Resource constraint reformulation.

We replace the constraints (29)–(30) with resource constraint reformulation suitable for the algorithm

presented in Section 5.3. So, let R = {0, 1, 2, 3} be the set of resources where resource 0 represents

the time and resource 1 represents the number of marine stations in the route while resources 2 and 3

correspond to tank-truck resources.
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Time and marine resources. The [a0, w0] = [0, Tmax] are the lower and upper bounds on the time

resource, while [a1, w1] = [0, 2] are the lower and upper bounds on the number of marine stations

resource. The resource consumption for the resource 0 is r0
ij = τij ,∀(i, j) ∈ Akd, while the resource

consumption for the resource 1 is r1
ij = 1 if the type of the j node is a marine station, 0 otherwise.

Tank-truck resources. We also use two additional resources to check feasibility of a route such as capac-

ity and number of full compartments denoted by resource 2 and 3 respectively. For resource 2, [a2, w2] =

[0,∆k] are the lower and upper bounds and the resource consumption is r2
ij = oj if node j ∈ Nkd,

0 otherwise. In the meanwhile, the lower and upper bounds of resource 3 are [a3, w3] = [0, |Lk|] and the

resource consumption is given by r3
ij = {the minimum number of compartments required to load the

quantity oj} if node j ∈ Nkd, 0 otherwise.

We denote by Rmi the consumption of resource m ∈ R over all the arcs composing of a partial route Φi
from σ to i. The new formulation is as follows :

(Rmi + rmij −Rmj )xkdij ≤ 0 ∀m ∈ R,∀(i, j) ∈ Akd (35)

ami ≤ Rmi ≤ wmi ∀m ∈ R,∀i ∈ V kd (36)

In this formulation, constraints (35) model the resource consumption along arc (i, j) whenever it is

part of the route, while constraints (36) require the resource consumption along the σ-i partial route

to be within the corresponding resource interval. The following section describes the Sub-problem

Labeling Algorithm to determine the possible optimal partial paths and eliminate labels using some

dominance rules.

5.3 Sub-problem Labeling Algorithm

Many articles covering the basics of solving ESPPRC by using dynamic programming based labeling

algorithms already exist. In this section, we give the details of all modifications to classical ESPPRC to

solve our sub-problem. The ESPPRC is NP-hard in the strong sense, see [24]. A relaxed version of the

ESPPRC, the shortest path problem with resource constraints (SPPRC), is commonly used instead.

The SPPRC can be solved with pseudo-polynomial algorithms, see [25]. However, this relaxation

provides a lower bound of poor quality than those of the ESPPRC.

The basic dynamic programming algorithm was devised by [26] as an extension of the well-known

Ford-Bellman algorithm. The central part of the algorithm is the use of labels to store information

about resource values for partial-routes rooted at source node σ. We use the improved definition of

label introduced by [27]. Hence, each label ζ has a set of attributes: (i) a unique id (ii) current

vertex v(ζ) (iii) accumulated reduced cost C(ζ) (iv) the cumulative travel cost (v) the accumulated

consumption of each resource given by R(ζ) = (r1, r2, ..., r|R|) (vi) an ordered set of last i− 1 visited

nodes vis(ζ) ⊆ V \{v} (vii) a set of client-products served N(ζ) (viii) set of unreachable nodes U(ζ) by

the tank-truck k on day d (ix) the number of unreachable nodes s(ζ) (x) the parent label id p(ζ) (xi)

the tank-truck associated k(ζ) (xii) the corresponding TTLP denoted by TTLP (ζ). To summarize,

each label is represented by ζ = {C,R, v, vis,N, U, k, p, TTLP}.

The concept of labeling algorithm as presented in Algorithm 1 is to iteratively extend labels ac-

cording to resource constraints in the following way, until there are no more labels left. When a label

has been extended, it is considered “processed”. Loading constraints are managed in the Extension

Function (EF).

We initialize the first label from the source node σ which is then inserted into 0 in line 1. We loop

as long as there are unprocessed labels left in lines 2–9. In line 3, a dominance function is used to

remove dominated labels as described in Section 5.3.1. It is clear that without removing dominated

labels in line 3, these results in a complete enumeration of all feasible paths. We pick out a label in

line 4 which is then extended using the EF in line 9. In this function, client-products are assigned

to the compartments according to the rules specified in Table 2. We use the TTLP-heuristic (defined



12 G–2019–79 Les Cahiers du GERAD

Algorithm 1: Labeling(G, σ, δ)

1 0← {ζσ = {0, [0, 0, ...., 0], σ, ∅, ∅, ∅, k, ∅, ∅}} // Set of unprocessed labels

2 while 0 6= ∅ do
3 Remove-Dominated(0)
4 ζ ← pick a ζ ∈ 0 and 0← 0 \ ζ
5 foreach Node j ∈ Extendables(ζ) // Nodes to which ζ can be extended to: j /∈ U(ζ)
6 do
7 ζj = Extend-Label(ζ, j) // Defined in Algorithm 2

8 if v(ζj) = δ then Store-Solution(ζj , Sol) // List of Labels at destination.

9 else 0← 0 ∪ {ζj}

10 return Sol

in Section 5.3.3) as long as it finds a solution to the TTLP. If the TTLP-heuristic fails, the EF uses

a MIP to solve the TTLP. The MIP formulation of the TTLP denoted by TTLP-MIP and extension

function are described in the Section 5.3.1. Feasible routes that reach the destination node δ are saved

in line 8, otherwise, the labels are marked as unprocessed.

5.3.1 Extension function

Algorithm 2: Extend-Label(ζ, j)

ζj ← create-Label(ζ) // create new label from a parent label on vertex j

Check the feasability of TTLP:

TTLP(ζj) ← Build TTLP from (N(ζj), k(ζj))
h-code ← HF(TTLP(ζj))
if h-code is in HM then

if HM[h-code] is not feasible then
return ∅

else
if TTLP-Heuristic(ζj) finds a feasible solution then

HM[h-code] ← result of TTLP-Heuristic(ζj)

else
HM[h-code] ← Solve TTLP-MIP(ζj)
if TTLP-MIP(ζj) is not feasible then

return ∅

Update the list of unreachable vertices:

foreach j′ ∈ SUCCESSORS of j do
if ζj can not be extended to j′ due to
resource constraints or the corresponding TTLP is not feasible then

U(ζj)← U(ζj) ∪ j′

return ζj

Calling function Extend-Label extends the existing labels at node i ∈ V to its successor nodes

{j ∈ V |(i, j) ∈ A}, checks the feasibility of the new labels, and discards infeasible ones. A label ζj is

feasible if it corresponds to a partial route that respects the resource constraints and the correspond-

ing TTLP (ζj) is feasible. The function first updates the consumption of resources. If the resource

constraints are satisfied, it updates the set of client-product N(ζj) and solves the TTLP (ζj). In this

case, we do not need to solve the same problem more than once. For that, we give a method to store

the solved problem in a hash-map HM using a hash function (HF); the HF is used to determine if a

TTLP problem is already solved or not. The HF assign a unique key (h-code) for each TTLP (ζj), we

start by transforming the sorted list of N(ζj) into a string of characters. We concatenate this with

the id of the vehicle k separated by a separator (”;”). If the TTLP (ζj) is feasible, it explores the

set of outgoing arcs of node j to update the vector of unreachable nodes U(ζj) and the number of

unreachable nodes s(ζj).
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We use an adaptation of the heuristic proposed in the literature by [12] to our context. In our case,

we do not have lower and upper bounds on the quantity of product requested by a client-product.

5.3.2 TTLP-MIP

As we mention in Section 3, tank-trucks are not equipped with follow meter. In this case, to remove

any ambiguity we consider the following rules: (i) The delivery of client-product is to completely

unload one or more compartments by gravity, a compartment is either filled at 100% or empty. (ii)

We can only assign one client-product per compartment. (iii) We can only ship a maximum of |Lk(ζj)|
client-products. (iv) A client-product can however be assigned to multiple compartments.

The mathematical formulation of the loading problem of the client-products in the tank-truck

denoted by TTLP-MIP(ζj) takes the form:

min
y

∑
n∈N(ζj)

∑
l∈Lk(ζj)

ykdln (37)

s.t.:
∑

n∈N(ζj)

ykdln ≤ 1 ∀l ∈ Lk(ζj) (38)

∑
l∈Lk(ζj)

Clky
kd
ln = on ∀n ∈ N(ζj) (39)

ykdln ∈ {0, 1} ∀l ∈ Lk(ζj),∀n ∈ N(ζj) (40)

The objective function (37) minimizes the number of filled compartments. The constraints (38) ensure

that at most one client-product per compartment while the constraints (39) match the compartments

assigned to each client-product with the requested quantity.

5.3.3 TTLP-Heuristic

Here we describe how to solve the TTLP (ζj) using TTLP-Heuristic. Let Γ be the number of client-

products in the list N(ζj) and Γs be the number of client-products in the list N(ζj) that are greater

than the largest compartment. In Step 1 of Algorithm 3, we start by quick identification of sufficient

conditions of unfeasibility, this step is performed by the tank-truck resource constraints introduced in

Section 5.2.1. In Step 2, we start by sorting the Lk(ζj) in descending order, then we loop as much as

Γ > 0. We sort the list N(ζj) in descending order. We pick the client-product n̂ with the highest
value from N(ζj). If the n̂ does not fit to the largest compartment l̂ from the list Lk(ζj), then we

split n̂ to d
′′

and Cl̂k(ζj)
, we insert the result d

′′
in N(ζj). If a client-product cannot be assigned to a

compartment, then we return false.

5.3.4 Dominance rules

To keep the number of labels as small as possible, it is decisive to perform a dominance step for

eliminating unneeded labels. A label ζ1 dominates a label ζ2 if each resides at the same vertex and

if, for every possible extension of ζ2, there is a feasible extension of ζ1 wherever the value of every

cardinally scaled resource is a smaller than or up to the value of the resource within the extension of ζ2,

and wherever the value of every nominally scaled resource is up to the worth of the resource within

the extension of ζ2. Dominated labels need not be extended. A label that is not dominated by the

other label is called undominated or Pareto-optimal. In this paper, we use two phases of dominance,

each one has different rules to follow:
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Phase 1 is a heuristic dominance formulation. ζ1 domi-
nates a label ζ2 if and only if :

C(ζ1) ≤ C(ζ2) (41)

rm(ζ1) ≤ rm(ζ2) ∀m ∈ R (42)

s(ζ1) ≤ s(ζ2) (43)

Phase 2 is an exact dominance formulation. ζ1 dominates
a label ζ2 if and only if :

C(ζ1) ≤ C(ζ2) (44)

rm(ζ1) ≤ rm(ζ2) ∀m ∈ R (45)

U(ζ1) ⊆ U(ζ2) (46)

Algorithm 3: TTLP-Heuristic(ζj)

Γ← |N(ζj)|, Γs ← {n ∈ N(ζj) | on > max
l∈Lk(ζj)

Clk}

Step 1:

if Γs > |Lk(ζj)| or
∑

n∈N(ζj)

on > ∆k(ζj)
then No feasible solution exists: return False

Step 2:

Sort Lk(ζj) in descending order of their capacities.

while Γ > 0 do
Sort N(ζ) in descending order.
n̂← first element in N(ζ) and N(ζ)← N(ζ) \ n̂
l̂← first element in Lk(ζj) and Lk(ζj) ← Lk(ζj) \ l̂
if on̂ > Cl̂k(ζj)

then

Split the client-product n̂ : d
′′ ← (on̂ − Cl̂k(ζj))

Insert the new client-product N(ζ)← N(ζ) ∪ d′′ .
Γ← Γ + 1

else

if n̂ can not be assigned to the compartment l̂ then
return False

else

Assign the client-product n̂ to l̂
Γ← Γ− 1

return True

5.4 Integer solutions by primal diving heuristic.

As we mentioned earlier, to derive integer solutions from the RMP, we used a method denoted by Primal
Diving Heuristic (PDH). Diving Heuristic (DH), as defined in [28], is a heuristic of the Branch-and-Price

Heuristic method which consists in deeply branching until finding an integer solution by branching on

the variable with the highest fractional value. DHs are generic ways of repairing infeasibilities. The

RMP that remains after a rounding operation must be cleaned up before re-optimization, deleting all

columns that could not be part of an integer solution to the residual problem (and hence would lead to

infeasibility if selected). Such preprocessing is a key feature in diving heuristics. It helps to avoid the

primal heuristic dead-ending with an unfeasible solution. In this context, one should generate so-called

proper columns, i.e., columns that could take in a non-zero integer value in an optimal solution to

the RMP.

The DH method has no information about any integer solution. The idea of the PDH is that

we reinforce the DH method by adding a new type of branching rule. This branching rule is related

to the family of local search methods (see [28]). We use the information provided by the current

integer solution to choose the variable on which to branch. This variable gives the minimum difference

between its value in current integer solution and fractional solution from the set of support of the

integer solution variables equal to 1 in the current integer solution. Algorithm 5 gives the pseudo-code

of the method.
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We start by finding an initial fractional and integer solution, denoted by xLP and xIP respectively.

If the gap between xLP and xIP is smaller than a given value Lgap, we stop. Otherwise we attempt

to find a better integer solution by performing the branching method. A description of the generic

algorithm of Branch-and-Price is presented by [29]. Algorithm 4 shows the solution of a branch and

bound node with the CG.

Algorithm 4: SolveNode(η,Ω)

// η is the node number

// Ω is a set of columns

c← −1;
while c < 0 do

(x, α)← Solve RMP // x is the solution, α is the vector of duals

foreach k ∈ K and d ∈ D do
// Ωkd : is the set of columns generated by CGSPkd

// ckd : is the minimum reduced cost of columns in Ωkd
(ckd,Ωkd)← Solve CGSPkd(α)
Ω← Ω ∪ Ωkd
c← min{0, ckd}

return (x)

Initial solutions. The Restricted Master Heuristic suggested by [30] searches for an integer feasible

master solution by restricting the formulation again to a subset of promising variables, hence regarding

a problem which is of considerably smaller size than the current master formulation. We use this

approach as described in Algorithm 5 to find an initial fractional and integer solutions. We solve the

root node to optimality to obtain the fractional initial solution xLP = SolveNode(0,Ω). Then we

solve the RMP as a MIP using only the columns generated during the solution of the root node of the

Branch-and-Price method to get an initial integer solution xIP .

Algorithm 5: PDH

1 Initial solutions:

2 Initialize Ω with initial set of columns

3 xLP ← SolveNode(0,Ω) // Defined in Algorithm 4.

4 xIP ←Solve RMP as a MIP

5 Branching:

6 η ← 1, zNotI ← 0

7 while GAP (xLP , xIP ) ≤ Lgap or zIpNotI ≤ maxZIpNotI do
8 nbV ars← 0
9 while nbV ars ≤ nbMaxFV ars do

10 i′ ← arg min
i|xIPi =1

(xIPi − xLPi ) and set value xi′ = 1

11 Cleanup and preprocessing

12 xLP ← SolveNode (η,Ω)

13 if xLP is Integer and Z(xLP ) < Z(xIP ) then
14 xIP ← xLP , zIpNotI ← 0

15 else if xLP is Integer and Z(xLP ) ≥ Z(xIP ) then
16 zIpNotI ← zIpNotI + 1

17 η ← η + 1, nbV ars← nbV ars+ 1

18 xIPM ←Solve RMP as a MIP

19 if Z(xIPM ) < Z(xIP ) then xIP ← xIPM , zIpNotI ← 0
20 else zIpNotI ← zIpNotI + 1

21 return (xIP )
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Branching. In line 6, we initialize a node counter η = 1 and the number of the integer objective value

not improved zIpNotI = 0, then we loop (line 7) as long as the gap≤ Lgap or zIpNotI ≤ maxZIpNotI
(where maxZIpNotI is a parameter that gives the maximum of not improved objective value allowed).

In this loop we initialize in line 8 the number of fixed variables (nbV ars = 0) before solving the RMP as

a MIP. We loop in line 9 as long as the number of fixed variables do not exceed nbMaxFV ars which is

the maximum number of variables to be fixed before the call to MIP. We choose the branching variable

and fix his value to 1 (line 10). We create a new branch and bound node (η). In line 11, we perform

the cleaning and the preprocessing, then we solve the new node in line 12. If the solution is an integer

(line 13), then we compare the objective value Z of the new solution with the integer current solution

and update the counter zIpNotI in line 14. If the solution is better, we update the current integer

solution xIP (line 14). We increase the node and nbV ars counter and nbV ars in line 17. After fixing a

nbMaxFV ars we solve in line 18 the RMP as a MIP and consequently we update the current solution

in line 19 if the objective is better than the current objective. Else, we increase zIpNotI in line 20.

5.5 Acceleration strategies

We apply many acceleration strategies to reduce the runtime of the PDH in the CGSPs. We start by

defining the network reduction scheme. Then we present the activation and deactivation of arcs in the

CGSPs.

Network Reduction. Based on the following elements we define an acyclic network Ga of the clients :

• Country divided into four geographic regions;

• All the depots are located in the western region;

• Marine stations are located in the western seafront;

• Movements of tank-trucks : West →East, West → North, West → Center-West and West →
South;

• Configuration of the actual road network;

• Pruning of arcs between and inside some regions: Logical pruning is based on the actual road

network and the predefined directions of movement of tank-trucks.

• Aggregation of some bakeries nodes geographically close into super nodes. Each bakery order is

around 1000 liters while the orders from gas stations are tens times higher;

Activation and deactivation of arcs We start with the reduced network Ga. For each iteration, we

activate a maximum na of the first best arcs (from the original network G) with negative reduced cost

and we deactivate a maximum na arcs with positive reduced cost. We stop when no arcs are activated

or deactivated. We modify the Algorithm 4 to consider the arcs activation and deactivation strategies

given in Algorithm 6.

Algorithm 6: SolveNodeArsActivation(η,Ω)

c← −1;
if η = 0 then

Active all arcs of Ga

while c < 0 do
(x, α)← Solve RMP
Sort arcs by reduced cost
Select a maximum of na of non activated arcs with negative reduced cost and active them.
Select a maximum of na of activated arcs with positive reduced cost and deactive them.
foreach k ∈ K and d ∈ D do

(ckd,Ωkd)← Solve CGSPkd(α)
Ω← Ω ∪ Ωkd
c← min{0, ckd}

return (x)
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6 Computational results

In this section, we present computational experiments on a benchmark of 29 real-world data-sets

provided by PC from Senegal. At the beginning, we go through characteristics of the instances featuring

our test benchmark. Then, we report and discuss the computational results obtained from these

experiments. Finally, we compare our results with those provided by the current solution approach

used by PC.

All algorithms have been implemented using the C ++ language. The optimization runs were

performed on a machine equipped with an Intel (R) Core (TM) i7-6700 CPU at 3.40 GHz using a Linux

operating system. All Linear Programs and Mixed Integer Programs are solved by the IBM CPLEX

Commercial Solver (version 12.9.0.0). We use the OsiSolverInterface (version 0.107.9 ) framework

to communicate with CPLEX solver via C++ language. All the CGSPs are ESPPRCs, solved by

dynamic programming using the Boost library (version 1.57.0) [31]. The computational times are in

seconds. For the test settings, we use the following parameters: Lgap = 0.5%, nbMaxFV ars = 3 and

maxZIpNotI = 3 and na = 5000.

6.1 Instances characteristics

The 29 real-world instances available correspond to 29 planning weeks chosen from two years (2015-

2016) of data shared gratefully by the PC. The latter covers a network of 78 distinct locations. The

locations consist in 5 depots, 13 gas stations, 11 marine stations, 7 enterprises, 42 bakeries. First, in

Section 6.1.1, we describe the planning weeks. Next, in Section 6.1.2, we give the characteristics of the

tank-trucks used.

6.1.1 Planning weeks

Table 3 shows the instances and their characteristics, namely (from left to right), instance type, instance

name (Inst.), the week from which it was generated, the number of client-products (#CP), the total

number of stations (#Stat.), the number of gas stations it contains (#Gas), the number of marine

stations (#Mar), the number of bakeries (#Bak), the number of enterprises (#Entr). We also give

the volume of unmarked products (UnPr) and the volume of marked products (MaPr). Note that the

volume of products is in cubic meter. The number of client-products is between 38 and 68 while the

number of stations varies from 31 to 54.

Based on the number of feasible routes (Figure 2), the instances are divided into the following

three groups: small size instances with less than 2 millions of feasible routes, medium size instances

between 2 millions and 7 millions and large size instances with more than 7 millions of possible routes.

Note that for the five large instances (W24, W25, W26, W27, W29), we are not able to generate all

feasible routes, we give the value 5 × 107 just to represent the maximum that we can generate using

the memory available.

6.1.2 Tank-trucks description

Table 3 presents the heterogeneous tank-trucks database and their characteristics, namely (from left

to right), the id of tank-truck (Id), the total capacity (Ca.), the configuration of the compartments in

order (Config.) where each digit represents a compartment multiplier (the capacity of the compartment

is 1000l × this multiplier), the number of compartments it contains (Co.), the last two columns indicate

if the tank-truck is labeled ’Fishing’ or not (F.) or jumbo (J.). To summarize, the database contains

36 tank-trucks with their capacities varying between 13000 and 40000 liters. Each tank-truck contains

from 3 to 15 compartments of capacities variying between 1000 and 10000 liters. We have 11 tank-

trucks labeled ’Fishing’ and 21 Jumbo.
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Table 3: Overview of the set of instances.

Type Inst. Week #CP #Stat. #Gas #Mar #Bak #Entr UnPr MaPr

Small

W1 14-12-2015 41 33 16 2 12 3 18233 8029
W2 04-01-2016 49 36 17 8 10 1 18250 8098
W3 01-02-2016 46 33 16 6 8 3 18263 8100
W4 22-06-2015 47 39 20 5 13 1 18285 8065
W5 19-10-2015 48 31 18 2 10 1 18272 8040
W6 18-01-2016 49 37 16 6 12 3 18293 8092
W7 18-01-2015 50 38 16 6 13 3 18303 8092
W8 02-11-2015 47 37 22 3 6 6 18310 8054
W9 24-11-2015 51 34 21 2 9 2 18325 8034
W10 16-11-2015 58 44 20 7 15 2 18299 8136
W11 02-05-2016 56 44 20 4 17 3 18312 8075
W12 14-03-2016 43 32 15 5 9 3 18246 8069
W13 18-04-2016 68 54 18 7 24 5 18275 8124
W14 05-04-2016 45 33 16 8 6 3 18247 8099

Medium

W15 16-05-2016 44 36 13 6 14 3 18250 8089
W16 21-12-2015 51 39 18 6 15 0 18253 8083
W17 09-11-2016 56 44 18 6 19 1 18287 8094
W18 09-05-2016 53 42 18 8 14 2 18303 8117
W19 29-03-2016 50 39 14 6 17 2 18228 8080
W20 15-02-2016 46 35 14 7 12 2 18222 8090
W21 12-10-2015 49 40 16 3 20 1 18222 8073
W22 25-01-2016 52 39 16 5 18 0 18267 8083
W23 08-02-2016 63 47 19 8 17 3 18306 8121

Large

W24 11-04-2016 67 49 23 7 17 2 18326 8100
W25 11-01-2016 43 34 11 6 14 3 18149 8070
W26 21-03-2016 64 50 18 9 23 0 18288 8143
W27 11-06-2016 44 34 11 6 14 3 18150 8070
W28 28-12-2015 52 39 17 3 17 2 18245 8062
W29 30-11-2015 38 31 8 3 18 2 18113 8057
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Figure 2: Distribution of feasible routes on the instances.

6.2 TTLP solving

TTLP Results. To better understand the TTLP, we report in Table 5, the number of distinct TTLP-

MIPs solved (#MIP); this number include those solved in the preprocessing phase (in which we solved

all the combination of 1 to 2 client-products for each tank-truck to determine if we will add the

corresponding arc to the graph or not), the number of call to already solved TTLP-MIP (#CAS),

the maximum time to solve one TTLP-MIP (MaxT(s)), the total time spent in solving TTLP-MIPs

(T(s)) and the percentage of solving TTLP in total time (P(%)). From this table, we observe that the

percentage of time consumed in solution of TTLP decreases when the size of instances increases (32%



Les Cahiers du GERAD G–2019–79 19

Table 4: Tank-trucks properties.

Id Ca. Config. Co. F. J. Id Ca. Config. Co. F. J.

1 13 3-2-2-3-3 5 � � 19 21 2-3-1-1-2-3-5-4 8 � X�
2 13 3-1-1-1-1-2-2-2 8 � � 20 22 2-2-1-3-2-1-2-3-2-2-2 11 � X�
3 13 1-2-4-6 4 X� � 21 30 7-7-2-7-7 5 � X�
4 13 2-1-4-6 4 X� � 22 33 5-4-3-2-1-1-2-2-3-4-6 11 � X�
5 14 2-1-1-4-4-2 6 � � 23 33 4-5-4-3-2-3-2-5-5 9 � X�
6 14 4-2-1-1-4-2 6 � � 24 33 5-4-3-2-1-1-2-2-3-4-6 11 � X�
7 14 2-1-1-1-1-2-3-3 8 X� � 25 33 5-3-4-1,5-1,5-1-1-2-3-2-4-3-2 13 X� X�
8 14 4-2-3-2-3 5 X� � 26 35 6-4-3-1-1-2-5-6-7 9 X� X�
9 14 4-2-3-2-3 5 � � 27 35 6-4-5-2-2-2-3-8-3 9 X� X�
10 14 4-2-3-2-3 5 � � 28 35 4-6-2-4-3-4-3-6-3 9 � X�
11 14 4-3-7 3 � � 29 36 4-2-6-2-4-2-3-6-3 9 � X�
12 18 5-2-2-2-3-4 6 � � 30 37 10-3-4-2-5-6-7 7 � X�
13 18 3-2-2-3-2-6 6 � � 31 37 6-3-6-4-6-6-6 7 X� X�
14 18 2-2-2-2-1-1-1-1-3-3 10 � � 32 37 5-2-5-2-2-1-1-2-2-2-2-5-2-2-2 15 X� X�
15 18 2-1,5-1-1-1,5-4-4-3 8 � � 33 38 8-4-3-2-2-1-1-2-5-4-6 11 X� X�
16 19 5-1-1-5-5-2 6 � � 34 38 6-4-6-2-3-5-4-2-6 9 � X�
17 20 6-5-5-2-2 5 � X� 35 38 6-4-1-1-4-2-4-6-4-3-5 11 X� X�
18 20 2-4-3-4-5-1-1 7 � X� 36 40 6-4-1-1-4-2-4-6-4-3-5 11 � X�

on average for the small instances, 19% for the medium ones and 6% for the largest). This is justified

by the number of TTLP-MIPs solved in the first iteration. We solve 99% of the TTLP-MIPs in the

first iteration. In the next iterations, we just use the output of the already solved TTLP-MIPs in the

majority of cases. We also observe that #CAS increases with the size of instances (3.8E+06, 1.0E+07,

7.3E+07, for the small, medium and large instances, respectively).

In the EF (see Section 5.3.1), for some cases we solve a TTLP-MIP to check if a label is feasible

or not which takes a maximum of 0.11 seconds on average on the medium instances. The time needed

to solve all the TTLP-MIPs is on average ranging from 2 seconds (reported in the small instances) to

34 seconds (observed in the large ones). The number of TLLP-MIPs solved compared to the value of

#CAS is insignificant. It represents less than 0.50%. on average, we call one distinct TTLP-MIP 640

times for the small instances, 2254 and 13308 times, for the medium and large ones, respectively. In

the following paragraph, we explain the impact of the pattern learning technique.

Impact of TTLP Hashing. To evaluate the impact of TTLP Hashing we ran the PDH method with

and without TTLP hashing on all instances with a time limit of 1 hour. As mentioned in Section 5.3.1,

without the hashing TTLP, the same TTLP problem is solved many times. The results obtained are

as follows: (i) PDH with TTLP hashing solves all instances in less than 417 seconds, (ii) PDH without

TTLP hashing cannot solve any instance in less than one hour (there are instances that are not solved

even after 6 hours). Figure 3 gives an overview of the progress of the two methods on instance W3.

First, we report in Figure 3a, the evolution of the number of TTLPs solved at each iteration without

using TTLP hashing. Second, in Figure 3b we report the evolution of the number of TTLPs solved at

each iteration using TTLP hashing.

We observe that the number of TTLPs solved in the first case is very big, jumping from 123418 in

the first iteration to 919285 in the last iteration with an augmentation of more than 100000 at each

iteration. For the second case, the number of TTLPs solved is 75 times smaller and stable (varying

between 1636 and 1638). Note that in the two cases we obtain the same solution. In the first case,

the time needed is more than one hour (3702 seconds) while it is 16 seconds in the second case. We

observe that using TTLP hashing is 231 times faster than not using TTLP hashing. Therefore, we use

TTLP hashing in the following sections.

Impact of TTLP-Heuristic. Table 5 reports, for each instance, the number of calls to the heuristic

(#calls) and the percentage of success (Success(%)). Note that the number of TTLP-MIPs solved

is not necessary less than the value #Calls because we include the TTLP-MIPs that we solve in the

preprocessing phase. We observe that TTLP-heuristic performs well in the same way for the small
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Table 5: TTLP statistics of PDH.

TTLP TTLP-Heuristic

Type Inst. #MIP #CAS MaxT(s) T(s) P(%) #Calls Success(%)

Small

W1 2 904 1,1E+06 0,05 5 34 2391 36
W2 3 508 8,3E+05 0,04 5 33 3174 42
W3 4 265 8,6E+05 0,05 7 42 4211 39
W4 2 967 2,1E+06 0,04 2 13 1711 47
W5 5 828 1,5E+06 0,05 11 43 6313 41
W6 4 241 4,3E+06 0,04 6 22 3419 38
W7 4 101 4,0E+06 0,04 5 18 3062 42
W8 6 847 4,5E+06 0,05 18 41 7223 29
W9 7 989 4,1E+06 0,05 19 42 8732 33
W10 7 517 5,2E+06 0,04 15 33 7831 38
W11 8 598 4,3E+06 0,06 22 48 8366 25
W12 8 407 8,4E+06 0,06 17 32 9326 34
W13 6 513 9,4E+06 0,05 11 21 7001 40
W14 5 858 2,3E+06 0,06 9 31 5110 38

Avg 5 682 3,8E+06 0,05 11 32 5562 37

Medium

W15 2 340 9,5E+06 0,03 2 5 1316 49
W16 5 652 5,4E+06 0,04 8 25 5309 39
W17 6 122 6,4E+06 0,08 11 27 6240 36
W18 8 301 7,4E+06 0,05 14 31 8282 32
W19 3 898 1,1E+07 0,04 5 12 3562 40
W20 6 641 9,5E+06 0,05 13 23 7227 39
W21 3 596 1,6E+07 0,63 6 11 2798 37
W22 5 567 1,3E+07 0,04 8 14 4361 32
W23 6 746 1,6E+07 0,05 15 22 7150 31

Avg 5 429 1,0E+07 0,11 9 19 5138 37

Large

W24 7 376 4,8E+07 0,07 15 8 8004 37
W25 4 973 4,8E+07 0,04 10 6 6430 44
W26 6 445 6,5E+07 0,06 9 4 5386 37
W27 5 878 8,1E+07 0,05 12 4 7343 40
W28 12 786 7,8E+07 0,05 34 11 15740 32
W29 3 441 1,2E+08 0,05 6 1 3608 41

Avg 6 817 7,3E+07 0,05 14 6 7752 38
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Figure 3: Impact of TTLP-Hashing on instance W3.

and the medium instances. It succeeds to solve the TTLP in 37% of cases on average. It gives better

performance for the large instances (+1% on average). The TTLP-Heuristic is a polynomial algorithm

while solving the TTLP-MIP is not polynomial. For that, this percentage of success helps the EF to

be faster than solving the TTLP-MIP all to time.
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6.3 PDH and DH performance testing

The goal of this section is to demonstrate that PDH finds excellent solutions in very short times. We

provide a comparison between PDH and DH and give performance analysis. In Table 6, we report the

optimal value of the linear relaxation (LP) obtained at the root node followed by the root node time

(RT). These values are the same for the two methods (PDH and DH). For each method, we report

the integrality gap (GAP) in percentage and the total runtime (T). In addition, we report three types

of information: the number of generated columns (#cols.), the number of iterations (It.) and the

number of branch and bound nodes (No.). We can see that all the instances are solved by PDH in

smaller computing time. The average time for the large instances is 274 seconds and the largest one

is 417. The DH fails to find a feasible solution for two instances W22 and W28. We observe that PDH

outperforms the DH in all the instances.

The PDH time is 5 times faster (we compare T-RT) on average for the small instances, 8 times for

the medium and 38 times for the large instances. This is justified by the number of branching nodes

that needs. It needs 8 times less nodes on average for the small instances, 9 and 7 for the medium

and large ones. It needs 3 times less iterations on average for all instances. We stop after finding the

initial integer solution in all instances except for W28 and W29 for each we solve 9 and 10 nodes to

find a better solution than the initial integer solution.

Table 6: Runtime and solution quality.

Root Node PDH DH

Type #Inst LP RT(s) GAP(%) T(s) #Cols It. No. GAP(%) T(s) #Cols It. No.

Small

W1 57033 9 0,37 14 4543 9 1 0,93 16 4558 13 2
W2 168111 8 0,03 14 5469 8 1 0,38 20 5494 23 6
W3 173060 11 0,06 16 6099 7 1 0,58 27 6198 34 8
W4 142765 9 0,01 17 4727 13 1 0,03 23 4745 25 4
W5 57934 18 0,09 26 7331 7 1 0,12 35 7362 18 5
W6 173114 20 0,49 27 6739 12 1 1,05 80 7030 70 14
W7 174047 18 0,44 26 6141 12 1 0,48 64 6238 38 8
W8 77341 36 0,12 43 7052 9 1 1,74 107 7476 56 11
W9 57546 36 0,41 44 8747 9 1 0,79 112 8994 48 12
W10 197748 35 0,02 45 9131 11 1 0,02 73 9215 30 6
W11 82706 36 0,19 45 6723 10 1 0,6 89 6836 39 9
W12 141953 45 0,04 53 7161 13 1 0,14 97 7304 34 5
W13 148299 46 0,14 55 9966 18 1 0,75 93 10124 44 7
W14 153104 18 0,05 27 8842 9 1 0,54 52 9078 34 8

Avg 25 0,18 32 7048 11 1 0,58 63 7189 36 8

Medium

W15 122726 30 0,12 36 4352 17 1 0,65 66 4356 30 7
W16 153645 23 0,16 32 6475 14 1 0,56 57 6581 43 8
W17 138419 32 0,25 40 8482 12 1 0,71 85 8620 42 9
W18 189546 36 0,07 46 7842 13 1 0,29 89 7946 49 10
W19 163038 40 0,06 46 7410 16 1 0,56 115 7793 57 8
W20 162834 48 0,34 57 7720 14 1 1,16 128 7802 47 11
W21 92952 50 0,13 57 6169 23 1 0,13 57 6169 23 1
W22 132679 47 0,29 57 6188 16 1 - 150 6282 51 11
W23 199063 64 0,14 71 8281 15 1 0,75 187 8922 64 12

Avg 41 0,17 49 6991 16 1 0,60 104 7163 45 9

Large

W24 178067 180 0,07 190 12454 17 1 0,7 756 12910 74 14
W25 157705 161 0,1 167 7511 26 1 0,65 559 7785 84 11
W26 203309 248 0,27 259 9548 15 1 0,35 991 9674 51 8
W27 157712 301 0,11 308 7663 32 1 0,45 554 7887 72 7
W28 76940 149 0,71 303 10130 35 9 - 329 10415 60 8
W29 71564 293 0,59 417 6230 44 10 1,76 391 6369 54 5

Avg 222 0,31 274 8923 28 4 0,78 597 9173 66 9

The DH generates more columns compared to the PDH (from 140 to 250 on average for each type

of instances) as a result of solving more branch and bound nodes. The solution quality measured
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by the integrality gap of the PDH is 5 times better than DH. When we analyze the solutions of the

two methods, we find that this is to the DH solutions that have more empty space on average (see

Section 6.5).

PDH detailed performance statistics. We give the detailed performance statistics of the PDH method.

Table 7 shows from left to right, the instance type, the instance name (Inst.), the total number of labels

(#Lbs), the total number of calls to dominance function (#DC), the time of CGSPs (CGSPt(s)) and

the time of MP (MPt(s)). The first thing we can observe that the time of MP solution is very small

compared to the time consumed to solve the CGSPs for all instances, it represents at most 3,57 seconds

while the CGSP take 416,03 seconds for the instance W28. It is due to the complexity of the CGSPs

related to the complex loading constraints and the elementary routes. We can observe an important

number of created labels (ranging 2,1E+06 on average for the small instance, 3,5E+06 for the medium

instances and 1,2E+07 for the large instance).

Table 7: Performance statistics of PDH.

Type Inst. #Lbs #DC CGSPt(s) MPt(s)

Small

W1 9,3E+05 7,2E+05 13,94 0,06
W2 8,4E+05 6,1E+05 13,77 0,23
W3 7,6E+05 5,8E+05 15,79 0,21
W4 1,5E+06 1,1E+06 16,93 0,07
W5 1,3E+06 9,9E+05 25,84 0,16
W6 2,1E+06 1,7E+06 26,46 0,54
W7 2,1E+06 1,7E+06 25,56 0,44
W8 2,5E+06 2,1E+06 42,63 0,37
W9 2,4E+06 2,0E+06 43,35 0,65
W10 2,9E+06 2,4E+06 44,60 0,4
W11 1,9E+06 1,6E+06 44,53 0,47
W12 3,5E+06 3,0E+06 52,90 0,1
W13 5,2E+06 4,2E+06 54,57 0,43
W14 1,8E+06 1,4E+06 26,44 0,56

Avg 2,1E+06 1,7E+06 31,95 0,34

Medium

W15 2,7E+06 2,3E+06 35,91 0,09
W16 2,1E+06 1,6E+06 31,70 0,3
W17 2,9E+06 2,4E+06 39,73 0,27
W18 2,5E+06 2,0E+06 45,61 0,39
W19 4,1E+06 3,4E+06 45,72 0,28
W20 3,7E+06 3,1E+06 56,01 0,99
W21 4,2E+06 3,5E+06 56,94 0,06
W22 4,4E+06 3,7E+06 56,52 0,48
W23 5,3E+06 4,5E+06 70,57 0,43

Avg 3,5E+06 3,0E+06 48,75 0,37

Large

W24 1,2E+07 1,1E+07 188,78 1,22
W25 1,1E+07 9,8E+06 166,35 0,65
W26 1,3E+07 1,2E+07 258,60 0,4
W27 1,8E+07 1,6E+07 307,12 0,88
W28 2,2E+07 2,0E+07 299,43 3,57
W29 2,4E+07 2,2E+07 416,03 0,97

Avg 1,7E+07 1,5E+07 272,72 1,28

6.4 PDH acceleration strategies

In this section, we analyze the impact of acceleration strategies on the PDH method, denoted by

PDHAA. In the Table 8, we report similar information given in Table 6 but this time for the PDHAA.

In addition, we report the percentage of reduction by adding the prefix (r.) obtained for PDHAA

vs PDH. From these results, we can see that we conserve the same solution quality, we have a small

augmentation of the gap and the number of nodes (an increase of 29% on the small instances but this

represents a 0.01% of the gap). PDHAA needs more iterations (24% to 208 iterations on average).
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This is justified by the additional iterations needed by the activation and deactivation of arcs. These

additional iterations do not augment the runtime because the network is reduced. The impact of

acceleration strategies is shown on the runtime and especially for the large instances (we save 38% of

time on average).

Table 8: PDH acceleration strategies results.

PDHAA PDHAA vs PDH (%)

Type #Inst GAP(%) T(s) Iter. #Nds r.GAP(%) r.T(s) r. It. r.#Nds

Small

W1 0,48 14 18 1 30 -7 100 0
W2 0,05 14 13 1 67 -7 63 0
W3 0,07 17 17 1 17 6 143 0
W4 0,01 15 30 1 0 -17 131 0
W5 0,03 28 18 1 -67 8 157 0
W6 0,54 34 37 10 10 17 208 900
W7 0,43 23 21 1 -2 -15 75 0
W8 0,12 40 16 1 0 -7 78 0
W9 0,38 48 19 1 -7 9 111 0
W10 0,09 46 22 1 350 2 100 0
W11 0,19 46 21 1 0 -4 110 0
W12 0,03 54 25 1 -25 0 92 0
W13 0,18 51 28 1 29 -7 56 0
W14 0,05 29 14 1 0 -3 56 0

Avg 0,19 32,79 21,36 1,64 29 -2 106 64

Medium

W15 0,1 25 21 1 -17 -31 24 0
W16 0,13 25 26 1 -19 -29 86 0
W17 0,29 34 18 1 16 -19 50 0
W18 0,07 38 26 1 0 -21 100 0
W19 0,06 34 24 1 0 -23 50 0
W20 0,33 49 23 1 -3 -9 64 0
W21 0,13 31 34 1 0 -48 48 0
W22 0,3 67 24 1 3 14 50 0
W23 0,13 39 18 1 -7 -51 20 0

Avg 0,17 38,00 23,78 1,00 -3 -24 55 0

Large

W24 0,08 176 32 1 14 -1 88 0
W25 0,07 31 19 1 -30 -82 -27 0
W26 0,28 242 35 1 4 -5 133 0
W27 0,12 64 28 1 9 -78 -13 0
W28 0,78 446 86 13 10 26 146 44
W29 0,71 55 30 7 20 -87 -32 -30

Avg 0,34 169,00 38,33 4,00 5 -38 49 2

6.5 Functional results

In this section, we give an overview of functional results of PDHAA, PDH and DH. For each method,

we report in Table 9 the number of routes (#Ro) followed by the number of tank-trucks used (#Ta).

In addition, we show the value of escort fees (Ef) and the percentage of escort fees saved (Sef(%)) for

each instance. Another important characteristic of the solutions is related to the percentage of empty

space (Es(%)) in tank-trucks.

As we can see, the value of escort fees saved is the same for all methods. We save an average

8% of escort fees for the small instances. For the medium and large, we save 11% on average. We

note that for all instances where the value of escort fees saved is equal to zero, we cannot save escort

fees, because we cannot link two marine stations, either because there is no reduction for each pair

or the two stations cannot be served by the same tank-truck due to capacity or the compartments

configuration. We also observe that the PDH gives the best match between the number of vehicles,

the number of routes used in the solution and the empty space for most instances. PDHAA provides

a solution close to the PDH giving the same number of routes with a similar number of tank-trucks
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used. The DH uses only one more route on average for the small and medium instances. For the large

instances, it uses on average the same number of routes.

The DH shows highest values of the empty space, which explains why it finds a solution with a

gap (reported in the Table 6) with a higher value than the other methods. The empty space impacts

directly the objective value of integer solutions (consequently, the value of the gap increases).

Table 9: Number of routes and number of vehicles.

PDHAA PDH DH

Type Inst. Ef Sef(%) #Ro #Ta Es(%) #Ro #Ta Es(%) #Ro #Ta Es(%)

Small

W1 55000 0 13 10 3 13 10 3 14 12 4
W2 185000 11 15 12 2 16 11 2 16 12 4
W3 180000 6 17 11 1 17 10 1 18 10 5
W4 140000 0 17 12 1 17 13 1 17 13 1
W5 55000 0 14 12 2 14 12 2 15 11 2
W6 195000 13 18 13 6 17 12 5 19 13 8
W7 195000 13 19 14 11 19 12 8 18 13 9
W8 90000 17 16 11 2 17 12 2 17 10 6
W9 55000 0 15 10 2 16 11 2 16 11 2
W10 195000 0 20 11 1 19 12 0 19 14 0
W11 90000 11 16 13 3 16 14 3 17 14 4
W12 140000 0 13 11 0 13 11 0 13 11 0
W13 165000 12 19 13 3 19 13 3 20 13 6
W14 185000 19 16 12 3 16 12 3 17 10 5

Avg 137500 7 16 12 3 16 12 3 17 12 4

Medium

W15 120000 0 15 11 1 16 10 1 18 12 4
W16 175000 14 15 14 4 15 12 4 18 13 6
W17 160000 16 17 12 4 17 12 4 21 13 6
W18 220000 16 18 13 6 18 13 6 19 12 7
W19 175000 9 15 9 2 14 10 2 15 10 5
W20 170000 6 15 12 4 16 10 3 17 11 9
W21 105000 14 14 11 5 14 10 5 14 10 5
W22 145000 10 16 12 3 16 12 3 18 13 9
W23 230000 15 19 15 3 19 14 3 20 14 7

Avg 166667 11 16 12 4 16 11 3 18 12 6

Large

W24 190000 8 21 12 0 21 12 0 20 12 4
W25 180000 14 12 10 5 12 10 5 14 10 10
W26 235000 15 20 14 3 20 14 3 20 16 4
W27 180000 14 12 10 5 12 11 5 12 11 8
W28 90000 17 14 12 4 15 10 4 13 10 1
W29 70000 0 10 7 4 10 7 4 12 7 11

Avg 157500 11 15 11 4 15 11 4 15 11 11

6.6 Comparison with PC solutions

In this section, we compare the solutions of the PDH to those of PC. The manual solutions (MS)

provided by PC are obtained manually by an expert who spends two working days to find a solution

for each week of scheduling. Note that for the MS we do not have the information about the order of

visiting clients. So, we compare the functional aspect only. For that, we report in Table 10 the same

information in Table 9 (RE,#Ro, #Ta, Es(%), Sef(%)) for the MS. In addition, we report for PDH

the reduction by adding prefix (r.) obtained for MS vs PDH.

From these results, we observe a significant reduction on the escort fees representing more than

200% on the small instances and 300% on the medium and large size instances. For the number

of routes, we observe a reduction of 15% routes on average for all types of instances. Looking at

the numbers of vehicles used, one can notice that for the small instances, we have a small variation

(±1%) on #Ve. For the empty space, no significant reduction for the medium instances (1% on
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average). A significant reduction on the small and large instances are observed, 20% and 28% on

average, respectively. Finally, the reduction of runtime to find a good solution to the problem is very

significant, it represents 99% (a max of 424 seconds compared to 14 hours of work needed by the PC

expert).

Table 10: Comparison MS and PDH solutions.

MS PDH vs MS

Type Inst. #Ro #Ta Es(%) Sef(%) r.#Ro r.#Ta r.Es(%) r.Sef(%)

Small

W1 17 8 11 0 -4 2 -8 0
W2 21 10 1 0 -5 1 1 -11
W3 21 13 2 0 -4 -3 0 -6
W4 18 8 3 0 -1 5 -2 0
W5 17 11 2 0 -3 1 0 0
W6 20 14 4 8 -3 -2 1 -5
W7 21 14 6 8 -2 -2 2 -5
W8 19 12 2 0 -2 0 0 -17
W9 19 12 2 0 -3 -1 -1 0
W10 24 13 8 0 -5 -1 -8 0
W11 20 13 3 0 -4 1 0 -11
W12 18 13 1 0 -5 -2 0 0
W13 22 13 4 6 -3 0 -1 -6
W14 20 13 2 5 -4 -1 0 -14

Avg 20 12 4 2 -3 0 -1 -5

Medium

W15 18 10 2 0 -2 0 -1 0
W16 20 10 1 0 -5 2 3 -14
W17 19 12 5 9 -2 0 0 -6
W18 21 12 1 11 -3 1 5 -5
W19 17 11 0 0 -3 -1 2 -9
W20 18 12 2 0 -2 -2 2 -6
W21 19 9 7 0 -5 1 -2 -14
W22 21 10 7 0 -5 2 -5 -10
W23 24 12 6 0 -5 2 -3 -15

Avg 20 11 3 2 -4 1 0 -9

Large

W24 24 12 0 0 -3 0 0 -8
W25 15 9 6 6 -3 1 -1 -8
W26 24 13 3 4 -4 1 0 -11
W27 15 9 6 6 -3 2 -1 -8
W28 18 10 4 0 -3 0 0 -17
W29 12 7 8 0 -2 0 -3 0

Avg 18 10 4 3 -3 1 -1 -9

7 Conclusion

In this paper, we present and discuss a real-world of the Multi-Depot Multi-Period Petrol Replen-

ishment Problem of a Petroleum Company located in Senegal. This problem is challenging for its

specific complexity related to loading constraints (from 3 to 15 compartments), Multi-Product, the

Multi-Depot, the Multi-trip and the clients that can order a small quantity of gas this increases the

number of clients included in a single route. Furthermore, some clients may be visited by tank-trucks

more than once.

We propose a Branch-and-Price Heuristic to find a near optimal solution to this problem. In this

method, we solve the integrated problem of tank-truck loading problem and the routing problem. We

use a pattern learning technique to accelerate the generation of routes. The extensive numerical results

on a 29 real-world instances show that our approach produces better quality solutions (with 0.31% on

the gap on average) than a state-of-the-art Branch-and-Price method and the solutions provided by

the PC. These results show the effectiveness and high potential of the proposed approach.
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Future developments could address the generalization of the pattern learning technique to the

general MC-VRP. We believe that this method will be useful to accelerate the solution of CGSPs

with dynamic programming approach. We plan to test our approach on bigger real-world network.

With more realistic constraints such as integrating safe stowage, the inventory management with

deterministic and stochastic demand and the case with the total supply of gas is less than the total

demand.
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