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Abstract: This work proposes strategies to handle three types of constraints in the context of blackbox
optimization: binary constraints that simply indicate if they are satisfied or not; unrelaxable constraints
that are required to be satisfied to trust the output of the blackbox; hidden constraints that are not
explicitly known by the user but are triggered unexpectedly. Using tools from classification theory,
we build surrogate models of those constraints to guide the Mads algorithm. Numerical results are
conducted on three engineer problems.

Keywords: Blackbox optimization, derivative-free optimization, surrogate functions, progressive bar-
rier, k-nearest-neighbors
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1 Introduction

Derivative-free optimization (DFO) studies problems for which there no access to the derivatives of

the functions defining the problem, even if they may exist. However, the structure can be known and

exploited. Blackbox optimization is a part of DFO where there is no known structure of the functions

used in the optimization problem definition. Those optimization problems can happen when output

of the blackbox is given from a laboratory experiment or a computer simulation.

Consider the following constrained blackbox optimization problem
min
x∈X

f(x)

subject to bi(x) ≤ 0, ∀i ∈ J1, qK
ci(x) ≤ 0, ∀i ∈ J1,mK

(1)

where for all i ∈ J1; qK, bi : Rn 7→ {0; 1}, for all i ∈ J1;mK, ci : Rn 7→ R, f : Rn 7→ R and X ⊆ Rn. The

output of the blackbox from an input x ∈ Rn is composed of all the ci(x), bi(x) and f(x). The set

Ω = { x ∈ X : ∀i ∈ J1, qK, bi(x) ≤ 0; ∀i ∈ J1,mK, ci(x) ≤ 0 }

denotes the feasible region.

This optimization problem contains different kinds of constraints and we will use the terminology

from [12] to describe them. First of all, the constraints ci(x) ≤ 0 and bi(x) ≤ 0 are “relaxable”. That

means that if a point violates one of these constraints, the user does not need to lose the trust in

the other functions involved in the problem. Secondly, the constraint x ∈ X contains two types of

constraints: “unrelaxable” and “hidden” constraints. If an unrelaxable constraint is violated, then

the user cannot trust the rest of the output. A point that violates an unrelaxable constraint cannot

be exploited as well as a boint that violates only unrelaxable constraints. Hidden contraints, first

defined in [8], are constraints that are not explicitly described by the user. It can occur for example

when a negative value is used in a log from one of the functions involved. If a point violates a hidden

constraint, the blackbox fails to return an output for that point. The article [16] offers a treatment

of hidden constraints by modifying the “DIRECT” algorithm. It uses sub-dividing steps in case the

center of a hyper-rectangle violates a hidden constraint. All unrelaxable and hidden constraints are

defined in the set X.

The Mads algorithm [6] was designed to solve such blackbox optimization problems. This algorithm

creates a discretization of the input space Rn called a “mesh”. In Mads, each type of constraints is

handled in its own way. Especially, the points that violate an unrelaxable or a hidden constraint are

rejected. Despite the binary constraints, as defined in the optimization problem being relaxable, Mads

handles them as if they were unrelaxable or hidden. The main objective of this work it to propose

alternative ways to handle those three types of constraints.

The paper is structured as follows. Section 2 describes how Mads handles constraints. Section 3

describes how surrogates of binary, unrelaxable and hidden constraints can be calculated and used

within Mads. Section 4 shows numerical results to see the gain of this new approach. Section 5

concludes the work of the article and suggests future work.

2 Opportunistic strategy and constraints management in Mads

Mads is an iterative direct search optimization algorithm, that generates trial points on a discretization

of the space of variables called the mesh. The objective and constraint functions are sequentially

evaluated at these trial points. These evaluations belong to two possible steps. (i) The first one is the

“poll step”. It is a local search in order to find local optimum. The convergence analysis of Mads

relies on this step [6]. (ii) The second possible step is the “search step” and is optional. It can be

any methods the user wants to suggest new points on the mesh for evaluation in order to find a global
optimum. It can be, for example, a “Variable Neighborhood Search” [2] or a Nelder-Mead [7] search
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step. At each step, Mads suggests a list of candidate points Lk that will be given to the blackbox for

evaluation. However, terminating the step as soon as a new incumbent is found may reduce the overall

computational time.

This section is explains some features of Mads. It includes how Mads sorts the elements of Lk
with surrogate functions and how Mads handles the constraints.

2.1 Ordering strategy and surrogate functions

Mads uses the opportunistic strategy to reduce the number of evaluations. It can be used both at

the poll and the search step. At iteration k ∈ N, the opportunistic strategy consists of stopping the

evaluation of the elements of Lk as soon as an element of Lk is shown to be feasible and improves the

current best objective function value. Ordering Lk with the objective to find such element as soon

as possible is called using an “ordering strategy”. If this element is found early, then the remaining

elements of Lk will not be evaluated and the budget of evaluation will be then preserved. The work

from Sarrazin-Mc Cann [17] shows the importance of the opportunistic strategy and ordering strategies

in DFO.

To order Lk, surrogates from the objective function and the constraints can be used. There are

static surrogates which can be simplified versions of the problem given by the user. Dynamic surrogates

are surrogates that depend on the elements already evaluated through the solving process. For example,

it can be quadratic models [9]. This work proposes a surrogate functions for binary, unrelaxable and

hidden constraints. Those surrogates will give an approximation of the objective function and of the

constraints. Thus they will give an idea of which elements of Lk have the more chances to be feasible

and to improve the objective function value. The next sections describes the different ways Mads

handles constraints and how it uses surrogates.

2.2 Constraints management

The first way to handle constraints is through the so-called extreme barrier approach [6]. Instead of

minimizing f with all the constraints, a function fΩ(x) is defined such that all infeasible points have

an infinite value through fΩ(x):

fΩ(x) =

{
f(x) if x ∈ Ω
+∞ if x /∈ Ω.

The optimization is then conducted on the unconstrained minimization of the barrier function fΩ.

Since the extreme barrier rejects all the infeasible point, the progressive barrier was introduced

in [4] to bring more flexibility. It uses the constraint violation function [10] which quantifies how much

the constraints are violated.

Definition 2.1 The constraint violation function h is defined as:

h(x) =


m∑
i=1

max(0, ci(x))2 if x ∈ X

+∞ otherwise.

The errors are squared so that no additional non-smoothness is introduced. The progressive barrier

uses both f and h to choose the next list of points to evaluate Lk. All the details are given in [4].

This work considers surrogates of binary, unrelaxable and hidden constraints. It has an impact on the

ordering strategy, thus on the order in which elements will be evaluated. This has no impact on the

convergence analysis from [4].

The function h being defined, if surrogate functions of the constraint functions ci, i ∈ J1;mK are

available, then a surrogate of h, noted h̃, can be defined. This surrogate, in addition to a surrogate

of f , allows the following ordering strategy: let us define x, y ∈ Rn, then x will be evaluated before y

if (f̃(x) ≤ f̃(y) and h̃(x) < h̃(y)) or if (f̃(x) < f̃(y) and h̃(x) ≤ h̃(y)).
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3 Treatment of binary, unrelaxable and hidden constraints

Consider the optimization problem (1) from in which the set X contains all the non-relaxable con-

straints but also the hidden constraints. The constraints, for all i ∈ J1; qK, bi ≤ 0 and, for all i ∈ J1;mK,
ci ≤ 0 are relaxable constraints.

Unrelaxable, hidden and binary constraints bi(x) ≤ 0 are treated with the extreme barrier by

Mads. In this work, the unrelaxable constraint x ∈ X is treated as a binary constraint, and all binary

constraints will have surrogates b̃i. Those b̃i will then be used to construct a surrogate constraint

violation function h̃. Since the unrelaxable constraints and hidden constraints are considered as one

binary constraint.

3.1 Different formulation of the optimization problem

All unrelaxable constraints and hidden constraints are combined into a single binary constraint. By

construction, that new constraint is necessarily unquantifiable, as described in [12]. The constraint is

either satisfied or it is not, without being able to give further information. Thus, the fusion of those

constraints in a binary constraint is meaningful. In order to do that, x ∈ X will be substituted by the

binary constraint b0(x) ≤ 0 where b0 : Rn 7→ {0; 1} with:

b0(x) =

{
0 if x ∈ X
1 if x /∈ X.

Problem (1) may be reformulated as:
min
x∈Rn

f(x)

subject to bi(x) ≤ 0, ∀i ∈ J0, qK
ci(x) ≤ 0, ∀i ∈ J1,mK.

(2)

The progressive barrier allows a more flexible way to handle the constraints than the extreme

barrier. The progressive barrier uses the constraint violation function, but only for the relaxable

constraints. So the formula remains unchanged despite the appearance of the new constraint b0(x) ≤ 0.

For all x ∈ Rn,

h(x) =


q∑
i=1

max(0, bi(x))2 +
m∑
i=1

max(0, ci(x))2 if b0(x) ≤ 0

+∞ otherwise.

which can be re-written even more simply by using properties of binary functions.

h(x) =


q∑
i=1

bi(x) +

m∑
i=1

max(0, ci(x))2 if b0(x) ≤ 0

+∞ otherwise.

Different surrogate functions of h will be suggested. They are defined, for all x ∈ Rn, by

h̃1(x) =

q∑
i=0

max
(

0, b̃i(x)
)2

+

m∑
i=1

max (0, c̃i(x))
2

; (2)

h̃2(x) =

q∑
i=0

max
(
b̃0(x), b̃i(x)

)2

+

m∑
i=1

max (0, c̃i(x))
2

; (3)

h̃3(x) =
(

1 + b̃0(x)
)( q∑

i=1

max(0, b̃i(x))2 +

m∑
i=1

max(0, c̃i(x))2

)
. (4)



4 G–2019–76 Les Cahiers du GERAD

The function h̃1 is the natural prolongation of the default version of h̃ while taking into account

the binary constraints with their surrogates of binary constraints b̃i, i ∈ J1; qK and taking into account

the unrelaxable and the hidden constraints with b̃0.

The function h̃2 is very similar to Equation 2 by replacing to max(0, b̃i(x))2 by max(b̃0, b̃i(x))2.

This attempts to favor points who have a chance to satisfy the constraint b0.

The function h̃3 is the natural prolongation of the default version of h̃ by adding a multiplicative

penalization for the b0 constraint.

The constraint functions bi and ci are not necessarily taking values of the same magnitude. The

binary constraints only take the values 0 and 1. However, the other constraints can take a wide range

of values. If a function ci takes much higher values than 1, then it will penalize a lot more in h̃1, h̃2, h̃3

than any binary constraints. The technical report [3] suggests definitions of other surrogates of h.

Those surrogates will use scalings of the output.

Using the expressions of the surrogates of h given by h̃1, h̃2 and h̃3, other definitions of surrogates

of h can be given using scaling.

h̃4(x) =

q∑
i=0

max
(

0, b̃i(x)
)2

+

m∑
i=1

max

(
0,
c̃i(x)

aki

)2

; (5)

h̃5(x) =

q∑
i=0

max
(
b̃0(x), b̃i(x)

)2

+

m∑
i=1

max

(
0,
c̃i(x)

aki

)2

; (6)

h̃6(x) =
(

1 + b̃0(x)
)( q∑

i=1

max
(

0, b̃i(x)
)2

+

m∑
i=1

max

(
0,
c̃i(x)

aki

)2
)
. (7)

Since the constraints are being scaled, h̃5 can be adapted to compare b̃0 with all c̃i.

h̃7(x) =

q∑
i=0

max
(
b̃0(x), b̃i(x)

)2

+

m∑
i=1

max

(
b̃0(x),

c̃i(x)

aki

)2

. (8)

At the beginning of iteration k ∈ N, the coefficient aki , i ∈ J1;mK will be equal to the highest

violation of the constraint ci as suggested by the conclusions of [3]:

aki =

{
1 if {ci(x) : x ∈ V k, ci(x) > 0} = ∅
max
x∈V k

ci(x) otherwise

where V k is the list of all the points fromRn that have been evaluated up to the beginning of iteration k.

With f̃ and h̃, the ordering strategy sorts the points according to the following rule: a trial point

x ∈ Lk is given to the blackbox before y ∈ Lk if and only if f̃(x) ≤ f̃(y) and h̃(x) < h̃(y) or f̃(x) < f̃(y)

and h̃(x) ≤ h̃(y).

3.2 Surrogates with weighted k-nearest-neighbors (WKNN)

The surrogates of the constraint functions bi, i ∈ J0; qK are computed using the weighted k-nearest-

neighbors algorithm. It relies on doing a weighted average of the classes of the k nearest neighbors

from x0 [11]. This weighted average will give the desired estimation.

b̃(x0) =
1

k

k∑
i=1

wib(x
i)

k∑
j=1

wj

.
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The weights wi can be determined with a non-negative kernel K : Rn 7→ (R+)n:

b̃(x0) =
1

k

k∑
i=1

K
(
||x0−xi||

λ

)
b(xi)

k∑
j=1

K

(
||x0 − xj ||

λ

) .

where λ > 0 is called the “bandwidth”. The kernel that will be used when making surrogates for binary,

unrelaxable and hidden constraints is the Epanechnikov kernel because of its optimal properties [13].

The general expression of the Epanechnikov kernel is [19]:

K(u) =

{
3
4 (1− u2) if u ∈ [−1, 1]
0 otherwise.

4 Numerical results

In this section, numerical results will be generated using 30 instances from each of the three following

blackboxes:

• The “Styrene” problem [2] contains four binary constraints and hidden constraints. The hidden

constraints are important here since approximately 14% of the evaluated points fail to satisfy

one of the hidden constraints [5]. There are also seven relaxable constraints.

• The original formulation of the “MDO” problem [18] has no binary, hidden nor unrelaxable

constraints. To observe the behaviour of the algorithm with h̃ considering binary, hidden and

unrelaxable constraints, the first constraint of MDO is transformed into a binary constraint,

while the second constraint is considered as an unrelaxable constraint. The last constraint is

unchanged and is the only relaxable constraint here.

• Just like for MDO, “Lockwood” [14] has its first constraint replaced by a binary constraint and

the second changed to an unrelaxable constraint. The two other constraints are unchanged and

are the only relaxable constraints.

Tests are done with Nomad 3.8.0 using OrthoMads to generate the directions [1], quadratic

models [9] are activated to get the surrogates f̃ and c̃i. The budget of evaluations is set to 1500.

The substitute functions b̃i, i ∈ J1; qK using WKNN with the Epanechnikov kernel and a number of

neighbors equals to
⌈√
|Vk|

⌉
where k ∈ N is the number of the iteration and Vk ⊂ Rn the elements

evaluated at the beginning of iteration k. The bandwidth λ is chosen to be equal to the distance to

the
⌈√
|Vk|

⌉
-th neighbor. To compare those different versions, data profiles [15] are produced. Those

rely on the following convergence test

f(x0)− f(x) ≤ (1− τ)(f(x0)− fL), (9)

where x0 ∈ Rn is a feasible starting point, fL is the best value found by all the compared versions,

given a budget of evaluation, and τ > 0 is the wished precision of the test of convergence. The

abscissa of data profiles show the number of evaluations divided by n + 1. The ordinate shows the

ratio of problems that satisfy the test of convergence given at precision τ The first tests compare the

default version using the extreme barrier for binary, unrelaxable and hidden constraints, and the others

versions using h̃1, h̃2 and h̃3.

Figure 1 shows that each of the three different ways to calculate h̃ (with h̃1, h̃2 and h̃3) solves more

problems than the default method of calculating h̃. Despite the fact there are few differences between

those three ways, it seems that the treatment with the function h1 leads to better results.

Figure 2 shows that, once again, using surrogate functions of binary, unrelaxable and hidden

constraints gives better solutions according to the data profiles at precisions τ = 10−2 and τ = 10−4.

h̃4, h̃5, h̃6 and h̃7 all dominate the default version of Nomad 3.8.0 at those precisions. However, in that
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Figure 1: Data profiles with τ = 10−2 and τ = 10−4 for blackboxes with surrogates that do not scale the constraints.
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Figure 2: Data profiles with τ = 10−2 and τ = 10−4 for blackboxes with surrogates that scale the constraints.

situation, weighting did not bring much improvements. An explanation could be that those blackboxes

are already well balanced.

The next results compare the best definition of h̃ without scaling and with scaling, which are h̃1

and h̃7. This is done in order to offer the reader what version should be preferred. Figure 3 shows

two data profiles with h̃1 and h̃7 in the same conditions as previously. Those profiles show only

small differences between those two variations. However, h̃7, with the squares, dominates at precision

τ = 10−2 and seem to dominate at precision τ = 10−4 after 180 groups of n+ 1 evaluations.
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Figure 3: Data profiles with τ = 10−2 and τ = 10−4 for blackboxes comparing the default surrogate and the best surroagte
with and without scaling.
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The numerical results show that the recommended surrogate of the constraint violation function is

given by h̃7. Overall, that means that using surrogates for the binary, the unrelaxable and the hidden

constraints give on average better solutions and that scaling is recommended.

5 Discussion

Prior to this work, binary, unrelaxable and hidden constraints were handled by Mads by the extreme

barrier. This work offers different ways to deal with them. First, binary constraints are modeled

through k-nearest-neighbor in order to have an estimation of the probability to satisfy the constraint.

This estimation is used through h̃, the surrogate of the constraints violation function. The unrelaxable

and hidden constraints are considered as binary constraints. Thus, they take advantage of WKNN to

have a surrogate of them in h̃. It provides a way to use the information given by those constraints. It is

also suggested that the constraints could be suffering from scaling issues. This is why weighting of the

constraints using the maximum violation is used. Numerical results showed that making surrogates

with WKNN of those constraints was useful compared to the extreme barrier and that the differences

between all the versions were minimal. The weighting did bring little improvement, even if it is

not significant. It is therefore recommenced to use surrogates function of those functions and to use

weightings within h̃.

There is also another use for the surrogate of the binary relaxable constraints. In the constraint

violation function, the true value of the function is used. With a binary relaxable constraint, only the

values 0 and 1 would be used. However, the surrogate function gave an estimation of the probability to

not satisfy the constraint. So, it gives the kind of information interesting for the constraint violation

function. If done so, true values and surrogate values would cohabit in the constraint violation function.

References
[1] Abramson, M. A., Audet, C., Dennis, Jr., J. E., Le Digabel, S., Jan. 2009. Orthomads: A deterministic

mads instance with orthogonal directions. SIAM Journal on Optimization 20(2), 948–966.
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[15] Moré, J. J., Wild, S. M., 2009. Benchmarking derivative-free optimization algorithms. SIAM Journal on
Optimization 20(1), 172–191. https://doi.org/10.1137/080724083

[16] Na, J., Lim, Y., Han, C., 2017. A modified direct algorithm for hidden constraints in an lng
process optimization. Energy 126, 488–500. http://www.sciencedirect.com/science/article/pii/

S0360544217304164

[17] Sarrazin-Mc Cann, L. A., mai 2018. Opportunisme et ordonnancement en optimisation sans dérivées.
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