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Abstract: Production planners in the non-ferrous metal industry face an inherent combinatorial
complexity of the metal production process within a fast changing market environment. Herein, we
study the benefit of an integrated optimization based planning approach. We present the first value-
based optimization approach for operational planning in the non-ferrous metal industry that yields
high economic and technical benefits. We present a mixed integer linear program for non-ferrous
metal operational production planning that covers the complexity of material flows and the entire
production process and is amenable for real-time application. We give insights into the practical
implementation and evaluation of our modeling approach at a plant of Aurubis, a large European non-
ferrous metal producer. Our results show that an optimization and value-based production planning
approach provides significant benefits, including a 38% better planning solution in practice. Besides
economic benefits, we highlight the technical advantages that result from a detailed techno-economic
representation of the entire production process.

Keywords: Process industries, process optimization, applied optimization
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1 Introduction

Generating a metal value of more than e 600bn in 2016, the non-ferrous metal industry is one of the

cornerstones of overall industrial growth (Ober 2017). Nevertheless, the non-ferrous metal industry

faces the same challenges as other industries: fluctuating demands, increasing customer expectations,

and high cost pressure. This forces major players to review existing planning processes and to increase

overall production efficiency.

Metal producers usually face a very high complexity in their planning processes due to external

market related and internal process related complexity drivers. With regard to external drivers, a

very high (and further increasing) variety of input materials with a multitude of precious metals and

impurities must be handled. In addition, internal processes of non-ferrous metal refinement show a high

complexity with many interdependencies, e.g., bottleneck resources, cycle materials, and a multitude

of technical limitations. Costs vary for different processing steps, and costs as well as processing times

depend on the material content. Additionally, a variety of environmental, regulatory, and process

restrictions must be considered. This complexity further increases with changes in regulations, new

sources of data, and improving technologies. Despite this complexity, the efficient operation of smelting

and processing capacities is inevitable to maximize profits and to meet all internal and external process

restrictions.

In practice, human planners carry out the planning process manually, i.e., based on spreadsheet

calculations and human intuition or ’gut feeling’. However, human planners are usually not able to

take the entire production process with all interdependencies and constraints into account. Thus,

planners often focus on specific production steps to reduce the overall planning complexity. This

may lead to significant shortcomings in the resulting planning solution and to unforeseen production

downtimes. Additionally, production planners tend to apply a more throughput-oriented perspective,

i.e., focus on the maximization of the total throughput under selected processing constraints and

material compositions instead of applying a value-oriented approach (cf. Sakallı and Birgoren 2009).

In order to overcome these shortcomings, mathematical optimization models are able to capture

the overall complexity of the underlying planning tasks. Moreover, if following a value-based perspec-

tive and integrating physical and financial planning aspects, optimization models can be enhanced

to become valuable decision support tools for companies. However, implementing such a complex

optimization model is a non-trivial task in practice due to complex real-world constraints and require-

ments.

Against this background, we develop and implement a comprehensive optimization model for pro-

duction planning in the non-ferrous metal industry and discuss challenges, procedures, and benefits

of a real-world application. To set this study apart from recent work, we briefly discusses related

literature, before we detail the aims and the scope of our study.

1.1 Related literature

In general, our work relates to two different research streams: i) value-based supply chain and produc-

tion planning and ii) non-ferrous metal production planning. Both have been extensively discussed for

various applications within different disciplines such as industrial engineering, operations management,

and operations research. In the following, we give a concise overview about both streams in order to

place our research in between these fields and to highlight its novelty.

Value-based planning approaches: Value-based planning approaches have been discussed for various

applications and perspectives, ranging from a strategic supply-chain-planning perspective to an op-

erational production-planning perspective. The common denominator between these heterogeneous

approaches is the definition of their objective: a value-oriented objective integrates a shareholder-

oriented approach that considers implications for all planning levels of a company, i.e., strategic,
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tactical and operational. Often, value-driver trees are used to translate high-level indicators to tangi-

ble measures, objectives, and decision variables for lower (mid- and short-term) planning levels (see,

e.g., Hahn and Kuhn 2011). To this end, a value-based perspective aligns all planning and resource

allocation processes with their value creation to integrate physical and financial planning.

Among the large body of existing literature, Hahn and Kuhn (2012b) presented a comprehensive

review of quantitative decision support models for value-based supply chain management and devel-

oped a modeling approach for value-based performance and risk optimization. In this line of research,

Guillen et al. (2007) introduced an integrated supply chain planning and scheduling model for the

chemical industry, considering financial aspects (e.g., change in equity) by integrating budgetary infor-

mation. Sousa et al. (2008) developed a multi-stage planning framework for the agrochemical industry,

where the first stage redesigns the supply chain network, and the second stage optimizes production

and distribution decisions. Kannegiesser et al. (2009) presented a two-phase robust optimization ap-

proach for profit optimization, which bases on coordinating sales quantity, price, and supply decisions

throughout the value chain. Hahn and Kuhn (2011) provided a deterministic value-based decision

framework for mid-term sales and operations planning focusing on the economic value added as ob-

jective function. Hahn and Kuhn (2012a) extended this framework towards a robust framework for

integrated performance and risk management that is applicable for chemical commodity production.

Brandenburg (2013) introduced a conceptual framework for value-based supply chain management and

derived two quantitative models to asses the impact of different value drivers of supply chain manage-

ment. Motivated through applications in the semi-conductor industry, Bayram et al. (2019) focused

on integrated capacity, inventory, and demand allocation decisions.

Other approaches focused on optimal control strategies, often capturing uncertainty, e.g., through

a Markov decision process. Amongst others, Gavirneni (2004) analyzed an inventory system with

fluctuating purchasing costs, which are modeled through a time-homogeneous Markov chain. Wu and

Chen (2010) analyzed the price-inventory relationship for commodities using a rational expectations

equilibrium model, herein determining optimal procurement, production, and sales policies. Liu and

Yang (2015) focused on the periodical control of both raw material purchasing activities and sales

prices. In this setting, raw material costs evolve in a Markovian fashion and the demand is a random

variable that depends on the sales price. While most of the control models focused on a specific part

of the value chain, Karabağ and Tan (2019) analyzed a discrete material flow and inventory system

that allows to analyze the impact in between purchasing, production, and sales policies through a state

space continuous Markov process.

Another line of research focuses on simulation models to derive estimates of expected operations

performance in complex and highly dynamic or stochastic environments. For instance, Brandenburg

et al. (2014) presented a conceptual framework for value-based supply chain management linked to

a discrete-event simulation model. Recent work of Lin et al. (2019) combined simulation approaches

with analytical methods for performance evaluation.

Non-ferrous metal production planning approaches: So far, research in non-ferrous metal production

planning focused either on blending models or on integrated production planning models.

Blending problems, i.e., mixing input materials into blends to satisfy output constraints and to

optimize a specific objective, were already discussed in the 1960’s (cf. Dantzig 1963). Depending on

the structure of the problem, blending models may be linear or nonlinear mixed integer programs

(MIPs) (Kallrath 2000, 2005, Misener and Floudas 2009). A multitude of specific blending models

exist, e.g., for the oil industry (Singh et al. 2000), the chemical industry (Kallrath 2005), or the food

industry (Jank and Wäscher 1999). Further studies for the metal mining sector exist (Epstein et al.

2012, Ramazan 2007, Alonso-Ayuso et al. 2014), but applications to the non-ferrous metal production

industry are still scarce. Nikolić et al. (2009) presented a first outranking approach to determine

an order of copper concentrates, but were neither able to optimize a final blend nor to regard the

multitude of internal and external requirements. Other approaches extended existing blending models
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developing specific linear programs for the copper industry (Jovanović and Stanimirović 2012) or

for brass production (Sakallı and Birgoren 2009) with extensions for uncertain parameters (Baykoç

and Sakalli 2009, Sakallı and Baykoç 2011). These models do not cover the complexity of a real-

world planning problem in the non-ferrous metal industry, because they simplify the problem to a

few concentrates and elements. Additionally, these models omit the multitude of technical, logistical,

environmental, and inventory restrictions as they neglect the interdependencies between blending and

production processes. Moreover, decision relevant costs of production processes or metal losses during

processing are not considered. Even advanced models that use input-output functions (Fröhling and

Rentz 2010) show the same deficits. Concluding, existing blending models do not provide the level of

detail that is necessary to consider the multitude of external and internal restrictions of non-ferrous

metal production.

In contrast, integrated production planning models explicitly regard the technical aggregates with

shared resources and cycle materials. Herein, models with different levels of detail exist. Strategic

planning models aim at investment decisions anticipating the future operation of the plant with its

technical and environmental restrictions (Caldentey and Mondschein 2003). However, these strategic

planning models are naturally limited in scope and granularity. More detailed approaches exist for

operational planning. Rentz et al. (2006) developed a material flow based approach with a multi-

period planning horizon and a holistic process representation. This approach considers lower and upper

concentration limits as well as minimum and maximum material mass flow amounts and specifications

of product qualities. However, this approach does not consider technical and logistical restrictions in

sufficient detail. Also, logistics and material handling costs are neglected.

Methodological placement: The above reviewed research streams provide important insights for

value-based production planning in non-ferrous metal industries. First, value-based planning ap-

proaches indicate that it is necessary to align production planning with the overall targets of a company,

i.e., to translate high level performance indicators to lower level objectives and decision variables. Sec-

ond, existing production planning approaches indicate that the non-ferrous metal industry requires

detailed operational planning models due to an inherent process complexity and high product quality

standards.

Often value-based planning approaches are developed within a general manufacturing and assem-

bly context and do not consider the specific requirements of the non-ferrous metal industry. Even

approaches that focus on the process industry are not able to account for the variety of restrictions

and the high level of detail in material flow specifications that have to be considered in non-ferrous
metal production. Concluding, a detailed approach for integrated blending and production planning

that considers technical, logistical, environmental, and inventory restrictions in sufficient detail, that

captures the production process’s complexity with respect to materials and components, and that

considers the underlying business model of the non-ferrous metal industry is still missing. This work

aims at providing such an integrated approach.

1.2 Aims and scope

We present the first generalized value-based optimization model for non-ferrous metal production

planning that overcomes these limitations as it

i) considers the technical characteristics of the production system at an adequate level, i.e., models

individual material flows and considers internal (technical, logistical, and inventory) and external

(environmental, regulatory) constraints;

ii) considers the core business model of this industry, i.e., captures decision relevant costs and

revenues from a value-based perspective;

iii) can be applied and used in practice, i.e., shows acceptable computational times and a sufficient

production schedule granularity.
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Figure 1 further details these requirements. In general, such planning problems remain inherently

complex and computationally intractable for standard MIPs as soon as a real-world case is addressed.

Due to the problem size these real-world cases usually call for a tailored meta-heuristic or even more

problem specific exact algorithms. Contrary to these approaches, we develop a sophisticated linear

MIP for the outlined problem. We avoid bilinearities such that our approach remains computationally

tractable for real-time application in a real-world non-ferrous metal production plant.

Figure 1: Requirements for an operational production planning approach.

Herein, the contribution of our work is fourfold: first, we provide a generic and comprehensive

modeling approach that can easily be transferred to other non-ferrous metal processes with minimal

tailoring efforts which would be necessary when transferring tailored metaheuristics or exact algo-

rithms. Second, we implement and validate our modeling approach as a decision support system

(DSS) at the copper production plant of Aurubis, the largest European copper producer. We discuss

this application case and detail its implementation process in practice. Herein, we highlight key success

factors and best practices that helped to successfully integrate the developed DSS in practice. Third,

we evaluate the economic benefit of our modeling approach compared to the previous state-of-the-art

planning in practice and show that an optimization based solution clearly outperforms previously used
methods. Fourth, based on these results, we derive general managerial insights for non-ferrous metal

producers.

The remainder of this paper is structured as follows. First, we detail the real-world characteristics

of our planning problem and discuss necessary planning requirements. Based on these, we introduce

a generic, comprehensive MIP for non-ferrous metal production planning. Then, we describe the real-

world planing task, the experimental design and data, and the implementation of the DSS at the

copper production plant of Aurubis in practice. Finally, we detail operational results from our real-

world application case and highlight the benefits of our solution approach in practice, deduce general

managerial insights for non-ferrous metal producers, and conclude this paper with a short summary

of its main findings.

2 The non-ferrous metal production planning problem

Our main planning task is to determine a production plan that is feasible with respect to the variety of

environmental, regulatory, technical, and inventory restrictions at the operational level. Furthermore,

this production plan should maximize profits based on the underlying business model of the company.

To create such a production plan, we take decisions on i) the optimal blending of input materials, ii)
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the optimal amounts of material flows in processing steps, and iii) inventories. To detail this planning

problem, we first focus on the production process and its material flows and afterwards on the business

model of the non-ferrous metal industry. Then, we precisely define all constraints and requirements of

the planning problem at hand.

2.1 Material flows and production processes

To analyze the material flows and production processes in detail, we consider external (market related)

and internal (process related) drivers of complexity.

External drivers include the high number of potential input materials. More than 650 copper mines

currently offer raw materials on the market (International Copper Study Group 2013). Additionally,

the number of mines is increasing, while the mining projects are getting smaller due to risk minimiza-

tion strategies of the mining companies. The raw material of each mine has a unique composition

of elements, i.e., a unique composition of precious metals and of impurity elements that harm the

refinement process. In the past decade, the proportion of impurity elements increased in relation to

the metal share as a result of high tonnage operations and depletion of high grade deposits. Thus, the

chemical complexity of raw materials steadily increases (Thomson Reuters 2016). As a consequence,

raw materials differ strongly in their technical processability and in their value contribution. Regarding

the business model, materials with a higher share of impurities usually generate higher revenues, but

also higher costs due to lower processability.

Figure 2 illustrates the production process structure. As can be seen, the technical processes within

non-ferrous metal production plants show a high complexity, too. The process consists of several pyro-

and hydro-metallurgical steps aiming at refining the metal by removing all other elements during the

process. In the following, we describe the technical process of copper production used for the case study

exemplary and refer to Biswas and Davenport (2013) for a more detailed description. The process itself

consists of a blending part and a refining part. During blending, raw materials are mixed according to

specific characteristics (blends) that are determined by the operational production planning. Herein,

a first mixing step is already carried out at the harbor (preblending) before the material is shipped.

The main mixing step takes place at the production plant (blending). The refining starts at the flash

smelter, which receives a continuous stream of dry raw material blends. Temperatures of over 1200 ◦C

melt the blends and produce copper matte. The electric furnace further processes the remaining slag to

recover a share of its metal content. The copper matte is transported to the converter, where amounts

of sulfur and iron are removed by an injection of oxygen-enriched air. The result of this refining step is

the so-called blister copper that has a copper content of 98%. In the anode furnace, further refinement

increases the blister’s minimum copper content to at least 99% and often even 99.99%.

Afterwards, the copper melt is casted into copper anodes, which are cooled down and inserted

into the electrolysis. During the electrolysis process, copper and metals with a lower electronegativity

dissolve at the anode. The metals with a higher electronegativity such as gold, silver, platinum and

palladium settle down at the bottom of the electrolysis cell as undissolved anode slime which is further

processed. Herein, the soluble impurities are removed from the electrolyte bleed in the chemical plant.

Copper cathodes and several by-products result from this production process. For environmental

and economic reasons, many of the by-product streams of the refining process are reclaimed or further

processed (e.g., in the chemical plant). The precise amount and quality of the copper cathodes as well

as of the by-products depends on the raw material input, on the corresponding element content, and

on the processing parameters. This results in a very complex techno-economic production planning

problem with a multitude of restrictions and parameters. A variety of technical restrictions must be met

to avoid process disturbances ranging from anode passivation and the formation of swimming sludges

to precipitation of impurities in the copper cathode. Additionally, a multitude of concentration limits

exist with regard to impurities. Table 1 details all restrictions that arise in the production process as

described above.
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Figure 2: Non-ferrous metal production process.

2.2 Business model

Figure 3 shows the core of the non-ferrous metal production business model, which is to sell refining

and smelting capacities. This business model applies independent of the refined material for the whole

non-ferrous metal industry, but differs significantly from other industries where revenues are usually

based on the number and price of the finally sold products. The revenues of a non-ferrous metal

producer include smelting fees, metal deductions, and premiums for refined metal products as well

as by-product sales. Costs for metal concentrates and recycling materials base on the London Metal

Exchange (LME) metal price excluding smelting fees and metal deductions for unpaid metal amounts.

Smelting fees typically result from annually negotiations and contain treatment charges (TCs), refining

charges (RCs), and penalties. The actual sales price of the refined product is the LME price plus a

sales premium that depends on various factors, e.g., metal purity.

The volatile LME metal price constitutes the basis of price calculations for raw materials and

products. However, extensive and continuous hedging avoids significant direct risks resulting from

these price fluctuations. Therefore, metal producers do not realize any direct earnings or arbitrages

by just trading the metals.

2.3 Operational requirements

We aim for a modeling approach that can be used within a DSS in practice and should meet the

following requirements: The approach

• covers the entire process chain end-to-end, i.e., from raw materials to the final products.
• is able to account for each material flow individually, even allowing to track flows on the element

level.
• considers the multitude of process restrictions, limitations for inbound logistics, inventory con-

straints, environmental restrictions, and regulatory restrictions with sufficient detail.
• considers the underlying business model such that the total contribution margin is maximized

regarding all decision-relevant revenues and costs. Revenues include TCs and RCs, penalties,
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metal deductions, and revenues for (by-)products. Costs include process costs dependent on the

composition, internal logistics costs for material handling as well as working capital costs for

capital tied up in the raw materials and the process.
• covers a multi-period planning horizon that is sufficiently long and has a granularity of at least

one day to be able to implement it into the daily operational planning process.
• is computationally tractable for the multitude of parameters and decision variables of a real-world

application.

Table 1: Restrictions in non-ferrous metal production.

Type Restriction

Process
restrictions

• Minimum and maximum heat values to cover the operational window

• Capacity limits per process aggregate

• Lower and upper concentration limits for process internal flows to avoid breakdowns and
process interruptions as well as specifications for (by-)products

• Ratios between element concentrations to avoid interruptions

• Total mass amount limits per material flow

• Limited changes in the material mix and heat balances in the production steps

Logistics &
inventory
restrictions

• Maximum mass amounts to be transported within the process

• Limitations on the number of materials that can be blended in parallel

• Maximum capacities of inventory facilities

Environmental
& regulatory
restrictions

• Upper concentration limits for disposal materials

• Maximum emission of particular elements

• Maximum total mass of particular flows

• Maximum mass amount of refined metal

Figure 3: Added value shares of metal producers and mining companies.

Table 2 summarizes these requirements and shows which of them have already (partially) been

studied in recent works. As can be seen, none of the existing approaches considers all these require-

ments.

Even single requirements are mostly not considered satisfactorily with respect to the high complex-

ity in non-ferrous metal production. Therefore, we introduce the first modeling approach that covers

all of these requirements in the following.
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Table 2: Comparison of state-of-the-art modeling approaches for non-ferrous metal production.

Requirement a b c d e f g h i j

Technical
representation

Entire production process
Each material flow on element level
Technical restrictions
Logistical limitations
Inventory constraints
Environmental/regulatory restrictions

Economic objective
Decision relevant revenues
Decision relevant costs

Applicability and
usability

Multi-period planning horizon & daily granularity
Industry case study

Indices a–j signify publications as follows: (a) Nikolić et al. (2009);(b) Jovanović and Stanimirović (2012); (c)
Jovanović et al. (2013) ; (d) Sakallı and Birgoren (2009); (e) Baykoç and Sakalli (2009); (f) Sakallı and Baykoç
(2011); (g) Fröhling and Rentz (2010); (h) Caldentey and Mondschein (2003); (i) Rentz et al. (2006) (j) this
paper.

3 Methodology

In this section we introduce a MIP for operational planning in non-ferrous metal production.

We consider a non-ferrous metal production plant and focus on all processes that are necessary to

transform a wide range of raw material inputs of different composition into copper products with a

very high purity level of at minimum 99%. Our objective is to maximize total profit resulting from

total revenues minus total costs of processing and materials supply according to the business model of

the company. In addition, we impose penalties to avoid an accumulation of impurities at the end of the

limited planning horizon, and to account for process changeovers. We take decisions on the quantity

and quality of input materials, the production levels of the processes, and the inventory levels. In order

to account for the eminent purity level of products, we specify material flows at the chemical element

level. Additionally, we model the full process chain from input of materials to the final product with

all technical and legal requirements.

This modeling approach is based on the following assumptions which do not affect its applicability

in practice. First, we assume that there is no demand shortage, i.e., produced products can always be

sold in a dedicated planning horizon. This reflects the nature of the copper market, which is mainly

based on commodity products. Second, we consider shipment arrivals for the planning horizon to be
deterministic and known upfront as purchasing processes are fixed several weeks ahead of production.

Analogously, material flows from other plants or entities within the company, from here on referred

to as inter-company flows, are given for the entire planning horizon. Third, we assume that the

metallurgical processes in each step of the production process show stationary operating points, and

thus we use fixed distribution coefficients in our model. Mass conservation must be ensured for all

process units.

Instead of modeling this problem straightforward, we use an enhanced concept for modeling frac-

tional flows to avoid bilinearities and keep the MIP computationally tractable. Due to this concept

and the general process complexity, the modeling approach is anything but intuitive. Hence, we de-

rive the model stepwise and introduce some fundamentals first, before we detail the notation and the

constraints, and finally discuss the objective.

3.1 Fundamentals

Modeling the non-ferrous metal production on the necessary granularity level requires the representa-

tion of fractional flows, i.e., total flows as well as element concentrations, which results in bilinearities.

To avoid these bilinearities, we use a split fraction modeling approach as introduced by Quesada and

Grossmann (1995). Herein, a separate flow (variable) denotes the flow between two balance areas for
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a single element. Figure 4 exemplary shows how the concept of our split fraction modeling looks like

for two balance areas b and b′ and five element flows (k1, ..., k5). Flows are modeled by arcs, such that

they are directed (k2 vs. k5), may yield to other balance areas (k4), or represent circular flows (k1)

that arise e.g., for slag flows.

Figure 4: Exemplary illustration of the underlying multigraph structure.

We represent the complete production process by flows between balance areas. Herein, B denotes

the set of all balance areas b ∈ B, and consists of subsets for external source balance areas BES,

inter-company source balance areas BIS (e.g., other company plants), production units BPU, and sink

balance areas BS. Flows between two balance areas arise for different materials m ∈M.

3.2 Notation and constraints

Using the basic set definitions and the concept of split fractional modeling, we define our MIP on

an incomplete, directed multigraph G = (B,K). Herein, B denotes its balance area vertices and the

arc set and K denotes the balance area connecting flows. In G, a unique flow k = (mk, bk, b
′
k) is

a triple of its material type mk, its source balance area bk, and its sink balance area b′k, such that

K ⊆ {M×B×B}. For the sake of conciseness, we define a cut set δ(S) = {k = (mk, bk, b
′
k) ∈ K|mk ∈

M, bk ∈ S, b′k ∈ S} of any arbitrary subset S ⊆ B as the set of all flows with exactly both balance

areas in S. Similarly δ+(S) = {k = (mk, bk, b
′
k) ∈ K|mk ∈ M, bk ∈ S, b′k 6∈ S} defines all outgoing

flows of S and δ−(S) = {k = (mk, bk, b
′
k) ∈ K|mk ∈ M, bk 6∈ S, b′k ∈ S} defines all ingoing flows of

S respectively. In the following, we apply these definitions also for singleton sets. Since our planning

approach is time dependent, T = {1, ..., n} denotes the set of time periods t. Note that for some

parameters initial values for t = 0 are given.

To model the production process with sufficient detail, a material m consists of different elements

e ∈ E . Each element e has a specific heat coefficient ηe. To relate e to m, γekt is the distribution

coefficient that denotes the share of element e for material flow k in period t. Furthermore, αekt is

the material concentration of element e in raw material flow k in period t. Let fekt be the amount of

element e in flow k in period t, and fTotkt be the total amount of flow k in time period t. In addition,

f ICkt denotes the amount of inter-company flow for material k in period t. Besides these decision

variables and parameters, two more binary variables help to model our planning task: ykt+1 denotes

if the amount of flow k changes between period t and period t + 1; zkt indicates if a flow k is active

in period t. Shipments for material k in period t are given by σkt and ikt denotes the inventory of

material k at the end of period t.

Besides these basic quantities, some additional quantities are necessary to represent constraints

and relations in the production process, which are to some extend interrelated between several flows or

balance areas. To consider these dependencies, L denotes a set of flows ` ∈ L that have a shared limit.

Analogously, C denotes a set of balance areas c ∈ C with a shared limit. Additionally, G depicts inven-

tory groups g ∈ G that share inventory space. Interdependent concentration ratios have to be secured

for specific flows k and elements e. Let r ∈ R be the set that denotes these interrelations. Analogously,
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q ∈ Q consists of sets of flows and elements for which interdependent sum constraints hold. Herein,

lower and upper bounds are given for element interdependent ratio constraints (ζLHS
rek , ζ

RHS
rek ), as well

as for element interdependent sum constraints (ξLHS
qek , ξ

RHS
qk ). We refer to all other non-interdependent

lower and upper bounds by a lower or upper bar on the respective quantity (see Table 3). Note that

we refer to the respective subsets of B,K,M with a subset of the respective shared set, e.g., K`. Ta-

ble 4 summarizes this notation, which is sufficient to define a computationally tractable MIP for our

planning task.

In the following, we derive the constraints of our model, focusing stepwise on i) material flow

constraints, ii) balance area constraints, and iii) inventory and additional constraints.

Table 3: Boundaries used in the mixed integer linear program (MILP).

f
¯
Tot
kt / f̄

Tot
kt Lower / upper total amount limit for material flow k in time period t

f
¯ek

/ f̄ek Lower / upper amount limit of element e for material flow k
f
¯`

/ f̄` Lower / upper total amount limit for shared flow limit `
αekt / αekt Minimum / maximum concentration of element e in material flow k in time period t
υRatio
eb′ / υRatio

eb′ Minimum / maximum ratio of element e in balance area b′ coming from matte flow kMatte

η
b′

/ ηb′ Lower / upper heat value bound for balance area b′

o
¯b
′t / ōb′t Minimum / maximum throughput of balance area b′

o
¯eb
′t / ōeb′t Minimum / maximum throughput per element e of balance area b′

o
¯c

/ ōc Minimum / maximum boundary for shared capacity c

ϑRatio / ϑ
Ratio

Lower / upper bound for ratio of sand to iron in converter
ik / ik Minimum / maximum inventory for material flow k
igt / igt Minimum / maximum inventory for inventory group g in time period t

z̄b′ Maximum number of incoming material flows for balance area b′

Table 4: Notation used in the MILP.

Sets
M Set of materials
B Set of balance area vertices (B = BES ∪ BIS ∪ BPU ∪ BS)

BES Set of external source balance areas
BIS Set of inter-company source balance areas
BPU Set of production units
BS Set of sink balance areas
T Set of time periods
E Set of chemical elements and molecules
L Set of material flows
R Set of concentration interdependency ratio constraints

(q ∈)Q Set of concentration interdependency sum constraints
C Set of balance areas with shared limits
G Set of material inventory groups with shared limits

Decision variables
fekt Amount of element e in flow k in time period t
fTot
kt Total amount of flow k in time period t
ikt Inventory of material flow k in time period t

ykt+1 Binary variable that indicates, if the flow amount changes from time period t to t+1
zkt Binary variable that indicates, if a flow k is active in time period t (amount > 0)

Parameters
mk material of flow k
γekt Distribution coefficient related to element e for material flow k in time period t
αekt Material concentration per element e in raw material flow k in time period t
f ICkt Amount of inter-company material flow k from another plant in time period t
σkt Planned incoming shipment for material flow k in time period t

ζLHS
rek Left-hand side of element interdependency ratio r in material flow k
ζRHS
rek Right-hand side of element interdependency ratio r in material flow k
ξLHS
qek Left-hand side of element interdependency sum q in material flow k

ξRHS
qk Right-hand side of element interdependency sum q in material flow k

ηe Heat coefficient of element e
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Material flow constraints
Constraints (1) enforces mass conservation between production units, while constraints (2) defines the

total mass amount of each flow. Constraints (3) determine the element distribution of all chemical

elements e ∈ E for balance area b′ ∈ B, depending on its distribution coefficient γekt. Constraints (4)

calculate the fixed overall mass amounts of inter-company flows. These flows originate from other

plants or entities and are exogenously given since we consider a single plant problem. Constraints (5)

split all incoming material flows (i.e., inter-company and external raw material flows) to element based

flows.

Different constraints on lower and upper flow limits are given in (6)–(12). Constraints (6) obtain

the lower and upper mass amount limits for each material flow. Analogously, constraints (7) obtain

these limits per element. Constraints (8) secure lower and upper mass amount limits for flows with

shared capacities. In addition to amount limits, constraints (9) ensure that element concentration

limits are met. Interdependent concentration limits must be secured for interrelated element ratio

constraints (10) and for interrelated element sum constraints (11). For the main metal flow from the

smelter k′, a certain ratio of metal must be secondary material, such that the ratio of metal from

primary materials is restricted (12).∑
k∈δ−(b)

fekt =
∑

k∈δ+(b)

fekt b ∈ BPU, e ∈ E , t ∈ T (1)

fTotkt =
∑
e∈E

fekt k ∈ K, t ∈ T (2)

fek′t = γek′t
∑

k∈δ−(bk′ )

fekt e ∈ E , k′ ∈ K, t ∈ T (3)

fTotkt = f ICkt k ∈ δ+(BIS), t ∈ T (4)

fekt = αektf
Tot
kt e ∈ E , k ∈ δ+(BES ∪ BIS), t ∈ T (5)

f
¯
Tot
kt ≤ fTotkt ≤ f̄

Tot
kt k ∈ K, t ∈ T (6)

f
¯ek
≤ fekt ≤ f̄ek e ∈ E , k ∈ K, t ∈ T (7)

f
¯`
≤

∑
k∈K`,e∈E

fekt ≤ f̄` ` ∈ L, t ∈ T (8)

αektf
Tot
kt ≤ fekt ≤ αektfTotkt e ∈ E , k ∈ K, t ∈ T (9)

ζLHS
rek fekt ≤ ζRHS

rek fekt r ∈ R, e ∈ Er, k ∈ Kr, t ∈ T (10)∑
e∈Eq

ξLHS
qek fekt ≤ ξRHS

qk fTotkt q ∈ Q, k ∈ Kq, t ∈ T (11)

υRatio
eb′k

∑
k′∈δ−(b′k)

fek′t ≤ fekt ≤ υRatio
eb′k

∑
k′∈δ−(b′k)

fek′t e ∈ E , t ∈ T (12)

Balance area constraints
The metal refining processes consist of exothermic process steps. To avoid equipment damage and

downtimes, a heat balance, dependent on the heat input per element ηe must be considered. Con-

straints (13) secure lower (13a) and upper (13b) limits for these balances. Constraints (14) define the

corridor for the total throughput of a balance area. Analogously, constraints (15) hold for the through-

put of single elements. Balance areas with shared throughput limits are defined by constraints (16).

Constraints (17), secure a minimum and maximum silicon (Si) to iron (Fe) ratio to ensure the slag

building in the pyrometallurgical process steps. Since the maximum number of active flows is limited,

constraints (18) secure this upper bound.

η
b′

∑
k∈δ−(b′)

fTotkt ≤
∑

k∈δ−(b′),e∈E

ηefekt b′ ∈ BPU, t ∈ T (13a)
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∑
k∈δ−(b′)

∑
e

ηefekt ≤ ηb′
∑

k∈δ−(b′)

fTotkt b′ ∈ BPU, t ∈ T (13b)

o
¯b
′t ≤

∑
k∈δ−(b′),e∈E

fekt ≤ ōb′t b′ ∈ BPU, t ∈ T (14)

o
¯eb
′t ≤

∑
k∈δ−(b′)

fekt ≤ ōeb′t e ∈ E , b′ ∈ BPU, t ∈ T (15)

o
¯c
≤

∑
k∈Kc,e∈Ec

Λcbkfekt ≤ ōc c ∈ C, t ∈ T (16)

ϑRatio
∑

k∈δ−(b′)

fFekt ≤
∑

k∈δ−(b′)

fSikt ≤ ϑ
Ratio ∑

k∈δ−(b′)

fFekt t ∈ T (17)

∑
k∈δ−(b′)

zkt ≤ z̄b′ b′ ∈ B, t ∈ T (18)

Inventory and additional constraints
Constraints (19) obtain the inventory balance considering raw material process inputs, inventory levels,

and incoming material shipments. Additionally, lower and upper inventory limits hold for single

materials (20) and for material groups (21). Note that in this formulation out-of-stock events are

not allowed. However, this model can easily be extended for out-of-stock events by introducing slack

variables in the inventory constraints and corresponding penalty terms in the objective function.

Non-negativity and binary constraints are stated in (22) and (23). Constraints (24) secure that

zkt = 1 holds if fTotkt > 0. Constraints (25) ensure that ykt+1 = 1 holds if the corresponding material

flow changes from time period t to t+ 1. Certainly, we reformulate (25) by state-of-the-art techniques

to avoid non-differentiability.

ikt = ikt−1 + σkt − fTotkt k ∈ K, t ∈ T (19)

ik ≤ ikt ≤ ik k ∈ K, t ∈ T (20)

igt ≤
∑
k∈Kg

ikt ≤ igt g ∈ G, t ∈ T (21)

fekt, f
Tot
kt , ikt ≥ 0 e ∈ E , k ∈ K, t ∈ T (22)

zkt, ykt ∈ {0, 1} k ∈ K, t ∈ T (23)

fTotkt ≤Mzkt k ∈ K, t ∈ T (24)

|fTotkt+1 − fTotkt | ≤M × ykt+1 k ∈ K, t ∈ T \ {n} (25)

3.3 Objective function

Our objective function (26) considers three different quantities: revenues (Rev), costs (Cost), and

penalty terms (Pen). Table 5 summarizes the additional parameters used to define these quantities.

max z = Rev − Cost− Pen (26)

The revenues (27) include smelting fees, metal deductions from raw materials, anticipated sales for

by-products, and premiums for the production of products with a particularly high metal purity.

Herein, smelting fees consist of TCs paid per total ton of material, RCs paid per ton of precious metal,

and penalties paid per ton of impurity. In practice, the smelting fees are accounted at the moment

the materials are inserted into the smelter. Although these fees are already fixed during contract
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negotiations, they are accounted at this point to maximize the impurity utilization. This utilization is

essential to reach high contribution margins.

Rev =
∑

t∈T ,k∈K

(βTC
kt f

Tot
kt +

∑
e∈E

(βRC
ekt + βPen

ekt + βDed
ekt µet)fekt) +

∑
t∈T ,k∈δ−(BS)

(βProd
k + βPrem

kt )fTotkt (27)

The considered costs (28) comprise costs for material handling, processing costs, technical losses for

unpaid metals in product streams, and imputed working capital costs for metals tied up in the process

or in the inventory.

Cost =
∑

t∈T ,k∈K,e∈E

(κMat
k fTotkt +κPro

ek fekt+ ιektµetfekt+µet
wacc

365
((τProcess

eb′k
−τPayment

ek )fekt+αektikt)) (28)

Additionally, we consider penalty terms (29) to account for additional soft objectives that stabilize

the process or exceed our planning horizon. These include i) penalty costs for impurities in inventories

at the end of the planning horizon and ii) total changeover costs. Penalty costs for impurities in

inventories maximize the impurity throughput and enable a better treatability of incoming materials

in later time periods that exceed the planning horizon. We differentiate changeover costs into heat

value changeover costs and material changeover costs. These are caused by deviations between the

time steps of either the heat values or the raw material amounts. The smaller these deviations, the

less disturbances occur in the process. The values for the penalty cost factors κImp
e , κHeat and κCO

can be either determined in expert interviews or be exogenously given.

Table 5: Additional parameters for the objective function.

Revenue related parameters
βTC
kt Treatment charge for material flow k: bk ∈ BES in time period t
βRC
ekt Refining charge per element e for material flow k: bk ∈ BES in time period t
βPen
ekt Penalty per element e for material flow k: bk ∈ BES in time period t
βDed
ekt Percentage of metal deduction of element e for material flow k: bk ∈ BES in time period t
µet Metal price of metal e in time period t
βProd
k Revenues or costs per ton of output for material product flow k: b′k 6∈ B

PU

βPrem
kt Premium per ton for products with an outstanding high purity

Cost related parameters
κMat
k Material handling costs per ton for material flow k
κPro
ek Processing costs per ton of element e for material flow k
ιekt Percentage of metal loss of element e in material flow k: b′k 6∈ B

PU in time period t
wacc Weighted average cost of capital
τProcess
eb′ Time needed for processing of element e if material is inserted in balance area b′

τPayment
ek Payment target of element e in raw material flow k: b′k 6∈ B

PU defined as a number of days
Penalty related parameters

κImp
e Imputed cost factor per ton in inventory for element e
κHeat Changeover costs related to the change of the heat value between two time periods
κCO Changeover costs for the change of one material flow between two time periods

Pen =
∑

k∈K,e∈E

(κImp
e αekn × ikn +

∑
t∈T \{n}

(κHeatηe(fekt+1 − fekt) + κCOykt+1)) (29)

4 Application in the copper industry

To validate our planning approach and show its applicability in industry by delivering tangible results

for daily planning, we implemented our MIP as a DSS in the daily processes of Aurubis, the largest

European copper company. This section provides details on the experiences that we gained during the

design of the DSS and during its implementation. Herein, we first discuss the status quo at the plant

before we implemented our DSS. Then, we detail the design of our DSS. Finally, we elaborate our

work with the company and detail the integration, validation, and application of the DSS in practice.

Herein, we highlight several key success factors.
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4.1 Status quo

We implemented the DSS into the daily operations at the primary copper production plant of Aurubis.

First, we analyzed the production process in detail. Herein, we identified about 1,500 material flows

comprising 1,350 raw material flows, 100 intermediate product flows, and 50 final product flows.

Besides the sheer quantity of flows, the high requirements that exist for conversion of input materials

to products (cf. Tables 6 and 7) indicate the high complexity of the planning problem. Table 6 shows

the range of the element concentrations in the raw materials, while Table 7 presents upper concentration

limits for the copper cathodes, the main product of the company. As can be seen, the concentration

of key elements varies significantly within the raw materials, while the upper concentration limits for

grade A copper cathodes are very tight. Thus, reaching the high purity standards of copper products

is all but intuitive and the overall complexity cannot be captured by mere human planning.

When we started our work at Aurubis, the production planners still conducted a manual plan-

ning approach based on spreadsheet calculations. Herein, production planners tried to overcome the

complexity of the problem at hand by considering certain constraints but omitting others. Also, plan-

ners focused on selected production processes while other aggregates were neglected. As a result, the

planners were often not able to find a fully feasible solution. Therefore, they approximated a feasible

solution, consciously violating some constraints or omitting certain restrictions. The resulting short-

comings in the overall planning then had to be fixed just-in-time during the plant operations, which

leads to enormous additional efforts or even products that did not fulfill market requirements. Even

if the planning solution was feasible, planners often targeted on the total material throughput and

did not aim at the value-contribution of the material mix. These manual planning results were the

status quo when we joined the company. Thus, they serve as a baseline for the comparison with our

optimized planning results at a later stage.

Table 6: Minimum and maximum concentration analysis per element in raw materials.

Element Cu Ag As Au Bi Cd Fe Ni Pb Pd Pt S Sb Se Sn Te

Min [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Max [%] 100 97 32 34 2 2 51 29 27 11 3 43 12 12 18 24

Table 7: Examplary upper concentration limits for grade A cathodes.

Element Ag As Bi Fe Pb S Sb Se Te

Limit [%] 0.0025 0.0005 0.0002 0.001 0.0005 0.0015 0.0004 0.0002 0.0002

4.2 Design of the decision support system

To identify a suitable DSS design, we conducted workshops with different stakeholders at the opera-

tional as well as at the management side at Aurubis. We started with an initial design that worked well

in previous projects. Hence, we were able to identify a suitable DSS design in only a few workshops.

Herein, two key factors were essential for the design decision: first, the DSS had to be intuitive and

easy to use even for users without a background in Operations Research, and second, the DSS hat

to provide interfaces to the existing monitoring and planning system in order to receive the required

data and to pass back planning results. Focusing on these requirements, we designed a DSS with an

Excel-based user interface that uses VBA extensions and operates a commercial MILP solver (in our

case Gurobi 6.5.2) in the background. This DSS is run as a real-time application at the plant using a

workstation with 64 GB RAM and an Intel Xeon e5-2650 processor.

Figure 5 shows the structure and the interfaces of this DSS. As can be seen, we extract the required

input data via interfaces from different systems such as the plant’s Enterprise Resource Planning (ERP)

system or its Material Execution System (MES). The interfaces have two different types of processing
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macros. Green colored macros process master data that requires only monthly updates. Contrary,

red colored macros process data for which we recommend a real-time update before running the

optimization. With this system, the user faces only the excel front-end to fill in and check the relevant

data. Data sources with low update frequencies can still be provided by corresponding functions in

spreadsheets to add flexibility for modifying the input data.

After providing all data, the optimization starts via an Excel add-in. Herein, the MIP solver runs in

the background, completely hidden from the user. While one may expect that the user asks for more

detailed information on the model and its solution status, we experienced the opposite in practice.

During the initial discussions with operational planners at Aurubis and during the implementation

process, we received comprehensive feedback from the practitioners, which showed that the overall

usability and acceptance of the DSS increased when the model and the corresponding solution process

was hidden from the user. This holds especially if the user is missing a background in Operations

Research. After the MIP is solved to optimality, the VBA code displays the results in Excel and

provides additional reports.

Figure 5: Design of the decision support system.

4.3 Implementation and validation

In total, we worked for 12 months with Aurubis to analyze the production process, create the modeling

approach, and realize its implementation as a DSS. This time span can be divided into three different

periods.

In Period I (months one to five), we mainly analyzed the production process of the Aurubis plant

and defined the corresponding MIP and requirements for the DSS. During this offline discussion and

development, we also considered alternative objective functions and tested a throughput-based opti-

mization approach. This approach performed slightly worse than the initial status quo solution that

was used by Aurubis. Already at this early stage, we paid attention to a profound stakeholder man-

agement and frequently carried out workshops to identify and discuss requirements as well as technical

details. At this early stage, staying close to the operational level and considering the requirements

of the planners helped to create a DSS with high usability and functionality that fostered trust in

the new system. Besides hiding the detailed information on the optimization algorithm, we found

that a profound and detailed visualization of all process related results and constraints helped to gain
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the planners’ trust into a new DSS. Thus, we implemented several pivot charts displaying e.g., the

inventory development and all EBT related financial figures. Also, visual representations are provided

displaying the tightness of process related constraints.

In Period II (months six and seven), we implemented the DSS and ran it in parallel to the manual

planning solution. This phase was used as an alpha-test to validate the MIP and to fix technical errors

in the DSS. In this period, we significantly broadened the audience of our stakeholder management.

Still, a close contact at operational level was necessary to spot the last technical errors and to improve

the usability of the DSS even further. Furthermore, reporting first results at (strategic) management

level of Aurubis helped to gain the trust in and support for our project within the company.

Period III started in parallel to Period II and covered the last six months. Herein, the beta-test

phase of the DSS was carried out. During this phase, we offered extensive on-the-job trainings for the

production planners of Aurubis to guarantee increasing competences in operating the DSS. This helped

to increase the trust of the planners in the system and secured a long-term usability without much

need for support. Still, we continued the profound stakeholder management at all levels, reporting the

benefits of the new system compared to the manual planning solution.

During this implementation and validation process, we identified three key success factors that

helped significantly to complete this challenging project in this short period of time, and to guarantee

a long-term system adoption in practice:

A high usability and easy-to-use interfaces increase the users openness and willingness

to adopt the new system: The development of professional, easy-to-use interfaces for the DSS

helped to reduce the complexity for the user and also empowered planners without a background in

Operations Research to use the system. Visualizations and additional reports on operational details

facilitated the understanding and analysis of the results significantly. Furthermore, the direct interface

to other operational systems such as ERP or MES with an automated data preprocessing reduced

the manual effort needed compared to the stats quo. This focus on ensuring a high tool usability

was a crucial step to increase the willingness of the users to accept the DSS after years of applying a

manual approach.

A transparent and extensive implementation and maintenance concept helps to gain

trust in the new DSS: The integration of our value-based planning tool into current business

processes was essential to ensure the long-term usability of the tool. Figure 6 details the structure of

the business process and indicates the responsibilities of different departments within this process. To

preserve the established workflow between different departments, we paid attention to implementing

our DSS in a way that does not require changes in the organization of the business process. As can be

seen, our DSS is closely interlinked with the main process steps, but affects only the determination of

the production plan. Still, we allow for a manual evaluation check of the results of our DSS and permit

for adjustments if discrepancies arise. Keeping changes to the organization of the business process

at a minimum, allowing different departments to interact as before and permitting sanity checks on

the DSS’s results contributed substantially to gaining the stakeholders’s trust and acceptance into the

new system.

We developed a governance structure, including tool management and maintenance processes. We

also defined a new set of key performance indicators, tailored to the DSS, and integrated these into the

existing rewarding system. In addition, we defined a business-to-be process to ensure that the input

data is provided in time and with sufficient quality, and that results are used in an optimal way. This

step turned out to be key to enable a successful implementation into the daily planning processes.

Continuously high effort in demonstrations of the benefits and in change management

during the design and implementation phase helps to get the buy-in of key stakeholders:

To stick to our timeline, it was essential to convince the upper management to support the imple-

mentation of the DSS and to provide additional resources when necessary. To get these credits, we
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Figure 6: Business process overview, including the DSS and organizational responsibilities.

frequently emphasized the value gained from the DSS and highlighted financial as well as process ben-

efits. In addition, we conducted a comprehensive stakeholder management to keep all involved parties

and stakeholders informed.

5 Results

In this section, we discuss the results analyzed during Period III of the project. In this phase, we

already ran the DSS in real-time in its final version at Aurubis, but still in parallel to the manual

planning solution in order to validate results and to evaluate the performance of the DSS. During this

period, the DSS was executed 18 times to create a production plan for the next 40 days, which was

then partly executed in a rolling horizon mode.

In the following, we discuss this evaluation. Herein, we first focus on the realized contribution

margin as the targeted objective, and secondly we analyze the quality of the solution with respect to

the impact on the plant’s operations. Finally, we identify different improvement levers that set the

optimized solution apart from the manual planning solution. To allow for a comparison between the

manual solution and the optimized solution while at the same time preserving confidentiality agree-

ments, we average and normalize results in monetary units (MU) to the average total contribution

margin of the manual planning results. However, the resulting values still reflect the improvement po-

tential without loss of scientific relevance, and improvement ratios quantify the realized improvements

accurately.

Contribution margin
To assess the economic benefit of the planning approach, we compare the average contribution margin

of the manual planning as baseline with the average contribution margin attained by the DSS. Fig-

ures 7a and 7b show the composition of the average total contribution margin for the manual and for

the optimized planning solution. As can be seen, the smelting fees, the process costs, and the metal

result (i.e., the difference between deducted metal value and metal loss) are the main drivers of the

average total contribution margin. Table 8 further details and compares these results. As can be seen,

the average contribution margin of the optimal solution is 38% higher than the average contribution

margin of the manual planning solution.



18 G–2019–75 Les Cahiers du GERAD

In practice, increasing contribution margins in production planning are often realized by reducing

production costs (especially when applying optimization approaches). Analyzing Table 8 this is not

the case for our study. Process costs as the main cost driver even increase after applying the DSS.

Lockup costs resulting from materials in stock slightly decrease, but are not sufficient to compensate

for the increasing process costs. Instead, the increased process costs are more than compensated by

significantly increasing revenues, especially smelting fees and metal result revenues. This to some

extend unexpected effect arises because the DSS decides not only on the production plan but also on

the production program, i.e., which type and amount of product to produce.

(a) Manual planning solution. (b) Optimal planning solution.

Figure 7: Contribution margin of the optimal and manual planning solution

Table 8: Economic planning results.

Component Manual planning Optimized planning Deviation

Smelting fees 136.95 165.26 20.7%
Metal result 88.88 112.64 26.7%
By-product sales 17.50 19.28 10.2%
Premiums 18.19 20.38 12.0%
Process costs -144.69 -164.60 13.8%
Capital costs -16.80 -14.95 -11.0%
Penalties -0.03 -0.03 0.0%

Contribution margin 100.00 137.98 38.0%

Solution quality
The optimized planning solution does not only improve the objective value, but also the technical

process of the metal production and the quality of the production plan with respect to violated con-

straints. Figure 8 shows a box-whisker plot for the input materials mix of the manual (orange) and

the optimal (blue) planning solution. Only materials that have a maximum share of more then 10%

in one solution are shown. Raw materials are labeled consecutively. ’Opt’ indicates the optimal share,

whereas ’Man’ indicates the share that results from manual planning. As can be seen, the material

mix of the optimal and the manual planning solution differ significantly. The material compositions

of the optimal planning show a significantly higher variation compared to the material compositions

of the manual planning approach. These higher variations indicate the complexity that is captured

when deriving an optimal planning solution. Contrary, the lower variations in the manual planning

solution indicate that the full complexity, i.e., all degrees of freedom, cannot be captured by human

planners. The manual planner derives only solutions with low material variability, since he is artificially

restricting the solution space in order to decrease the planning complexity.
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Figure 8: Comparison of material shares in the input mix between optimal and manual planning.

The higher variation in the input mix allows for improved blending to achieve a higher utilization

of existing aggregate and impurity capacities. Figure 9 shows the impurity capacity utilization for

both the manual and the optimized planning. As can be seen, the impurity capacity utilization of the

optimal planning solution is significantly higher than the utilization of the manual planning solution.

However, unused potentials with respect to impurity capacity utilizations remain even in case of optimal

production planning. To leverage these unused capacities, materials with high impurities but also high

contribution margin would have to be purchased, and an implementation of an integrated supply and

production planning approach seems to be promising to tackle this issue in the future.

Figure 9: Average upper concentration limit utilizations.

To assess the operational quality of both the manual and our optimized planning approach, we

focus on the number of operational constraints that are violated by a production plan. Table 9
details violations for the different types of constraints, stating the absolute number as well as the

relative share of violations. As can be seen, all optimal solutions are 100% feasible. Contrary, manual

planning solutions violate approximately 3.5% of the planning constraints, since the manual planner

neglects certain constraints and omits a number of technical aggregates in order to overcome planning

complexity. In practice, this is partially addressed by higher safety factors for the considered aggregates.
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Table 9: Number of constraint violations.

Manual solution Optimized solution

Classification Type of constraint Absolute Relative Absolute Relative

Flow
constraints

Total amount limits 70 4.9% 0 0%
Element amount limits 29 4.0% 0 0%
Concentration limits 1000 2.8% 0 0%
Interdependency limits 239 3.8% 0 0%

Balance area
constraints

Total throughput limits 0 0.0% 0 0%
Element throughput limits 208 8.3% 0 0%

If not addressed, this is one of the sources for unforeseen breakdowns. Thus, besides increasing

economic viability, the DSS helps to reduce the risk of an unforeseen breakdown significantly.

To compare the efficiency of both planning approaches, we evaluate the time effort that is needed to

carry out the different planning approaches (cf. Figure 10). In practice, we observed a reduction of the

total planning effort of 54% by using the DSS. Our observations show that employees shift their effort

to more strategic activities. However, a certain amount of time is still needed for data preparation and

selection of scenario specific data, e.g., selecting a reasonable planning horizon or current throughput

figures, although most of the data is provided from the company’s information systems.

Figure 10: Work effort in hours.

Improvement levers
The advantages of the optimal solution are mainly due to three

improvement levers that lead to a key planning policy. In a nutshell, this policy is ’In-time use

of the right material mix in the right input aggregate’. The corresponding improvement levers hold as

follows:

1. The first and most critical improvement lever is the selection of the right input material mix.

Herein, materials must be selected and mixed that jointly generate a higher total contribution

margin. As our analyses show, a portfolio effect exists, i.e., materials with a negative individual

contribution margin act as diluter, and thus enable the usage of materials with high impurity

and a high contribution margin. The identification of this portfolio effect is enabled by our

value-based optimization approach that maximizes the total contribution margin.

2. The second improvement lever comprises the improved selection of the right aggregates. This

results in a lower metal loss and a better metal result, because more metal ends up in prod-

uct streams in which the metal content is paid. This positive effect even overcompensates the

potentially increased process costs.

3. The third improvement lever realizes the early input of materials with a high material (metal)

value. Thus, capital lockup costs decrease as high-value materials have a shorter cycle time. In
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the manual planning solution, high-value materials stay longer in stock, which results in higher

capital lockup costs because of the tied-up material value.

6 Managerial insights

In this section, we derive general managerial insights for practitioners by consolidating our findings

from the results and the implementation sections. Herein, we derive four key insights:

To achieve feasible, high-quality production plans, the inherent complexity of the

production process must be captured: Herein, all material and element flows and the multitude

of technical, environmental, and regulatory restrictions must be considered. Material amounts and

material content may vary significantly with respect to the analyzed production processes. Therefore, it

is not sufficient to determine a production plan based on an excerpt of production steps and aggregates.

Instead, the entire production chain must be considered end-to-end. Furthermore, a planning approach

as comprehensive as the DSS helps to prevent unforeseen production downtimes caused by planning

shortcomings, and additionally increases the transparency on bottlenecks and operational metrics.

A value-based planning perspective is inevitable to increase economic viability: Cur-

rently, most production processes in the non-ferrous metal industry are planned from a throughput-

based perspective. Changing this planning perspective to a value-based approach helps to significantly

increase economic viability. Herein, the business model of the non-ferrous industry, i.e., all decision

relevant revenues and costs, must be considered throughout the planning process.

Optimization based planning helps to tackle the planning complexity: The information

used in our optimization based planning approach equals the information used for the status quo

planning. The differences in solution quality and operational feasibility show that the mere availability

of information is not sufficient to guarantee a feasible, high-quality production plan. Independent of

the data basis, a human planner cannot handle the inherent complexity of the planning task. Herein,

an optimization based DSS with a user friendly interface and high usability helps to tackle the planning

complexity and finds the optimal production plan.

A strong focus on the implementation is needed to ensure stakeholder acceptance

and a sustainable long-term use of a DSS: In order to ensure stakeholder acceptance it turned

out to be key to emphasize the benefits of the DSS and to apply change management techniques.

By so doing, we convinced the key user to adapt to the new system. We also gained the support
of the upper management where needed. Furthermore, the integration of the DSS into the current

business processes and the definition of to-be process for the tool use ensures a long-term usability and

application of the tool.

The optimization approach and the DSS that we developed in this paper comprise all of these

features. Although we implemented our DSS for the copper production process of Aurubis, it can easily

be transferred to other copper producing companies as well as to other (non-) ferrous metal refining

processes or even beyond. As we derived the underlying MIP generically, additional requirements can

easily be implemented without major changes. Additional effort may only be needed to gather the

required data and input parameters when transferring the DSS to other fields of application. However,

this depends only on the information basis given at other companies. The interface layout of the DSS

can easily be used at this point since it provides standard protocols, e.g., a connection to an ERP

system.

7 Conclusion and outlook

In this paper we addressed the multi-period integrated blending and production planning problem of

the non-ferrous metal industry. We developed a generalized MIP that covers the entire production
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chain, i.e., the blending process and the entire production process with all aggregates in sufficient

detail. Herein, we considered all process related limitations, internal technical, logistical, and inventory

restrictions as well as external environmental and legal requirements. Furthermore, we applied a value-

based objective that covers the business model of the non-ferrous metal industry. We embedded this

optimization approach into a DSS that was implemented and is operated in practice at the largest

European copper company Aurubis.

The successful integration and operation of our DSS validates our modeling approach and proves

its applicability in practice. The comparison between the manual and the optimal planning results

highlights the economic advantages of our modeling approach. Focusing on the contribution margin,

we reach an improvement of 38% compared to the status quo. Besides realizing economic benefits, our

DSS simplifies and streamlines the process of operational planning and accelerates the decision-making

support while increasing the planning quality. In addition, it increases the transparency on bottlenecks

and other operational metrics.

Overall, our results show the practical relevance and underline the improvement potential of opti-

mization based decision support in the non-ferrous metal industry. Although we applied our approach

to one specific copper producer, it can easily be transferred to other companies and even to other

non-ferrous refining processes or industries.
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Ü. S. Sakallı and Ö. F. Baykoç. An optimization approach for brass casting blending problem under aletory
and epistemic uncertainties. International Journal of Production Economics, 133(2):708–718, 2011.
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