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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: C. Audet, G. Caporossi, S. Jacquet (September
2019). Constraint scaling in the Mesh Adaptative Direct Search
algorithm, Technical report, Les Cahiers du GERAD G–2019–65,
GERAD, HEC Montréal, Canada.
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Abstract: In an optimization problem, multiplying an inequality constraint by a positive scalar has
no effect on the domain. However, such a transformation might have an effect in practice. A common
strategy in constrained optimization is to aggregate the sum of all constraint violation in a single
real-valued function. Multiplying a constraint by a scalar impacts that function. The present work
proposes a dynamic methodology to select weights for each constraint in the Mesh Adaptive Direct
Search (MADS) algorithm with the progressive barrier.
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1 Introduction

The formulation of an optimization problem impacts the solution process. A constraint requiring that

a road length be less than 1km is equivalent to being less than 1000m. The present work studies the

impact of scaling on the Mesh Adaptive Direct Search (MADS) algorithm [6].

The MADS algorithm is designed for blackbox optimization. In such a field, characteristics of

the problem such as derivatives and Lipschitz constants are unavailable. MADS handles inequality

constraints through the progressive barrier [5]. However the progressive barrier depends on the scaling

of the initial problem. This means that an algorithm may generate different solutions for problems

that diffent only by the constraint scalings.

Let n,m ∈ N, X ⊂ Rn. Let f : Rn 7→ R and for all i ∈ J1,mK, ci : Rn 7→ R. Consider the blackbox

optimization problem: {
min
x∈X

f(x)

subject to ci(x) ≤ 0, ∀i ∈ J1,mK.

Denote Ω = {x ∈ X : ∀i ∈ J1,mK, ci(x) ≤ 0} the feasible domain. Using the terminology from [17],

the constraints c : X → Rm are quantifiable and relaxable, and the set X contains the unrelaxable

ones. Typically X = Rn or X is an hyperrectangle in Rn.

It is easy to imagine a constraint that takes high values, like a production cost in dollars, and others

that take low values, such as execution time of a simple task in minutes. Even if the user is aware of

these magnitudes and rectifies the constraints, the scaling differences may create an imbalance between

the constraints. This can give more importance to constraints compared to others. The problem{
min
x∈X

f(x)

subject to ci(x)
ai
≤ 0, ∀i ∈ J1,mK

where 0 < a ∈ Rm is equivalent to the previous problem.

The MADS algorithm was expanded [8] to take into account the scaling of the input variables

x ∈ Rn. However, no scaling was performed for the constraints. This is the main focus of the present

work.

MADS is a direct search algorithm based on a discretization of the space of variables called “mesh”.

MADS performs two different types of steps at a given iteration. The first is called the search. It can

be any user-defined strategy: a quadratic model [13], latin hypercube sampling [11], or a Nelder-

Mead search [9] for example. The second one is the poll step, a local exploration on the mesh. The

convergence analysis of MADS relies on that step. Unlike pattern search algorithms, there is not

only one parameter that describes the mesh, but two: the mesh size parameter (δk) that defines the

resolution of the mesh and the frame size parameter (∆k) that defines the resolution of the frame

where the points can be evaluated in the poll step.

At iteration k ∈ Rn of a poll step, the set of points that can be evaluated at this iteration is:

Pk = {xk + δkd : d ∈ Dk}

where Dk is a positive spanning set in Rn.

During a search or a poll step, a finite list of elements Lk ⊂ Rn is given for evaluation of the

blackbox. But in order to accelerate the convergence, the list Lk is not fully evaluated. As soon as a

new incumbent solution is found, then the other elements of Lk are not evaluated. This is called the

“opportunistic strategy”. It is preferable to identify this solution as early as possible in order to save

many function evaluations. To achieve this, the elements of Lk are sorted from most to least promising

using an ordering strategy. The importance of ordering the elements of Lk in the opportunistic strategy

is quantified in [22].
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The present work is structured as follows. Section 2 describes the progressive barrier to handle the

constraints. Section 3, which is the main focus of this work, defines three weightings and how they

will impact the progressive barrier. Section 4 shows the numerical results. The different weightings

apply on both analytical problems and blackboxes. Section 5 concludes and discusses the theoretical

aspect, the numerical results and describes future work.

2 Progressive barrier in MADS

In [6], MADS handles the constraints using the extreme barrier by simply rejecting infeasible points

by optimizing the function:

fΩ(x) =

{
f(x) if x ∈ Ω
+∞ if x /∈ Ω.

In 2009 [5], MADS-PB offers a different way to handle the constraints using the constraint violation

function, which is an adaptation from [14]. For this function called h, if x /∈ X then one of the

unrelaxable constraints is not satisfied and thus the other values cannot be trusted. So the constraint

violation function takes the value +∞.

Definition 1 The constraint violation function h is defined as:

h(x) =


m∑
i=1

max(0, ci(x))2 if x ∈ X

+∞ otherwise.

The function h aggregates all the constraint violations. It also satisfies the following propertyfoe every

x ∈ Rn: h(x) = 0 if and only if x belongs to Ω = {x ∈ X : ∀i ∈ J1,mK, ci(x) ≤ 0}.

The progressive barrier does not reject all infeasible points. Let V k ⊆ X be the set of points

previously evaluated by the beginning of iteration k that satisfy all non-relaxable constraints. Consid-

ered the bi-objective optimization problem where the functions are the objective f and the constraint

violation h. In the progressive barrier, the only feasible points that are kept are the ones with the

lowest value of f . Let

Fk = argmin
x∈V k

{f(x) : h(x) = 0}

be the set of the best feasible points. The best value of f among the feasible points is

fFk =

{
+∞ if Fk = ∅
f(x) for any x ∈ Fk otherwise.

A partial order relation is created amongst the infeasible points, and the non-dominated points are

kept according to the following order relation.

Definition 2 Let x, y ∈ V k be two evaluated points. It is said that x dominates y, denoted x ≺ y, if

h(x) < h(y) and f(x) ≤ f(y), or if h(x) ≤ h(y) and f(x) < f(y).

Amongst all infeasible points of V k, only the non-dominated ones are kept. Let us define Uk =

{x ∈ V k − Ω : @y ∈ V k − Ω, y ≺ x} the set of non-dominated infeasible points.

A positive scalar called hkmax is also defined at each iteration k. Rather than rejecting all the

infeasible points, as with the extreme barrier, the progressive barrier rejects those whose constraint

violation function value exceeds the threshold hkmax. At iteration k, every point x from the cache that

verifies h(x) > hkmax is rejected. The key to this method is that as k increases, the threshold hkmax

progressively decreases. The progressive barrier keeps all the infeasible elements from the set

Ik = argmin
x∈Uk

{f(x) : 0 < h(x) < hkmax}.
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The rules to update hkmax, as described in [5], guarantee that the sequence {hkmax}k∈N is non-

increasing. Furthermore, the sequence is bounded below by 0 so it converges. The progressive barrier

has also been adapted in a trust region context [4].

The notion of a refined subsequence [5] also needs to be defined to analyze the convergence of the

method. Let U ⊆ N the subset of the indices of unsuccessful iterations. If the poll was performed

around an element xFk ∈ Fk, with k ∈ U, then xFk is called “feasible minimal frame center” and if the

poll was done around xIk ∈ Ik, with k ∈ U, then xIk is called “infeasible minimal frame center”.

Definition 3 A subsequence of the MADS-PB minimal frame centers {xk}x∈K , with K ⊆ U is a

refining subsequence if {∆k}k∈K converges to 0. The limit of a convergent refining subsequence x̂

is called a refined point. If limk∈L
dk

||dk|| converges (to say v ∈ Rn), with L ⊆ K and poll direction

dk ∈ Dk(xk), and if xk + δkdk ∈ X for infinitely k ∈ L, then the limit v is said to be a refining

direction of x̂.

The analysis of the progressive barrier also uses the definition of the hypertangent cone. We use

the definition from [6], but an equivalent one is found in [16].

Definition 4 Let A ⊆ Rn and x̂ ∈ A. Then v ∈ Rn in an hypertangent vector to the set A at the

point x̂ if there exists ε ∈ R∗+ such that

y + tw ∈ A for all y ∈ A ∩Bε(v), w ∈ Bε(v) and 0 < t < ε}.

TH
A (x̂) is the set of all the hypertangent vectors to A at x̂ and is called the hypertangent cone of A

at x̂.

Jahn [16] generalizes derivative the Clarke derivative [12] to take the domain X into account:

Definition 5 The generalized gradient of Clarke of f : X 7→ R at x̂ ∈ X in the direction d ∈ Rn is the

following limit, if it exists:

f◦(x; d) = lim
y→x̂,y∈X

sup
t↓0,y+tv∈X

f(y + td)− f(y)

t
.

Two assumptions are made.

Assumption A1 There exists some x0 provided by the user in V 0 such that x0 ∈ X, f(x0), h(x0) are

both finite.

Assumption A2 All trial points generated by the algorithm lie in a compact set.

It is now possible to describe two of the main convergence results of the progressive barrier. Both

assumptions come directly from [5].

Theorem 1 Let assumptions A1 and A2 hold and assume that the algorithm generates a refining

subsequence {xFk }k∈K , with xFk ∈ Fk converging to a refined point x̂F in X near which f is lipschitz.

If v ∈ TH
X (xF ) is a refining direction for x̂F , then f◦(x̂F ; v) ≥ 0.

The second result is a similar theorem but on h with a refining subsequence of infeasible elements.

Theorem 2 Let assumptions A1 and A2 hold, and assume that the algorithm generates a refining

subsequence {xIk}k∈K , with xIk ∈ Ik converging to a refined point x̂I in X near which h is lipschitz. If

v ∈ TH
X (xI) is a refining direction for x̂I , then h◦(x̂I ; v) ≥ 0.

Theorem 1 gives conditions ensuring that the method produces a limit point that satisfies nons-

mooth necessary optimality conditions for the minimization of f over Ω, and Theorem 2 gives nons-

mooth necessary optimality conditions for the minimization of h over X.
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3 Scaling of the output: Impact on the constraint violation func-
tion

Section 2 described the progressive barrier technique. The definition of the constraint violation func-

tion is impacted by the constraint scaling. In the introduction, two formulations of an equivalent

optimization problem were given, leading to two formulations of the constraint violation function:

h(x) =

m∑
i=1

max (0, ci(x))
2

or h(x) =

m∑
i=1

max

(
0,
ci(x)

ai

)2

.

In this section, we analyze three different weights to scale the constraints and study its impact on the

progressive barrier.

In order to do that, we generalize the constraint violation function definition by adding a a second

argument containing the weights.

Definition 6 Let 0 < a ∈ Rn be a scaling parameter. The constraint violation function h : Rn ×Rn 7→
R ∪ {+∞} is defined by

h(x; a) =


m∑
i=1

max

(
0,
ci(x)

ai

)2

if x ∈ X

+∞ otherwise.

Since a has positive components, then for x ∈ Rn, x is feasible if and only if h(x; a) = 0. Also if the

vector from Rn with only ones as components is denoted 1, then h(·;1) corresponds to the constraint

violation function from Definition 1.

3.1 Three different weights

Three weightings are used, based on a sequence {ak}k∈N of vectors with positive elements to create

the sequence of constraint violation functions {h(·; ak)}k∈N. All sequences {ak}k∈N are initialized by

a0 = 1.

First violation. The first weighting aims to correct the scaling as soon as possible. In order to do

that, for a given constraint, the weight will be set to value of the first encountered violation of that

constraint. More formally, let i ∈ J1;mK be the index of a constraint. The value ai is set equal to ci(x)

where x is the first point found in V k such that ci(x) > 0. Thus, the weighting is done as soon as it

matters, so when a candidate point x that violates the constraint: ci(x) > 0. Moreover, when it has

been modified once, all subsequent aki will keep the same value throughout the rest of the optimization

process.

Recalculating the values of h(x; ak), for all x ∈ V k is a problem that is asked at most once

per constraint. However, two drawbacks are anticipated: (i) The value of the weighting is entirely

dependant of the value found by the first violation, which can be very different by the usual values

returned by that constraint. This can create an unbalance with respect to the other constraints. (ii)

if aki is very small, computational difficulties may arise due to divisions by small numbers.

A second weighting uses the median in order to avoid those drawbacks.

Median violation. The second option is to wait until the constraint is violated a total of n times,

where n is the dimension of the problem. This strategy provides a more representative sample. At

iteration k ∈ N, let j ∈ N denote the number of time the constraint ci was violated. Let {x1, . . . , xj} ⊆
Rn be the corresponding points that violate the constraint ci, ordered by increasing values of ci(x

j),

j ∈ J1;nK. Then, let

aki =

{
1 if j < n

ci(x
dn

2 e) if j ≥ n
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be the violation associated to the median. Just like for the weighting with the first violation, the

changes of weighting occurs only once per constraint.

Even if the risks of having a weighting that is not adapted are reduced, because the median is used,

it is always possible that the n first violations are not representative of the values usually taken by

that constraint.

Maximum violation. The third weighting takes the value of the largest violation of the constraint.

More precisely, the sequence {aki }k∈N of general term

aki =

{
1 if {ci(x) : x ∈ V k, ci(x) > 0} = ∅
max
x∈V k

ci(x) otherwise

for all i ∈ J1;mK. As a consequence, 0 ≤ ci(x)

ak
i

≤ 1 for every x ∈ V k. This makes the constraints’

magnitude comparable. This dynamic scaling is well adapted to binary constraints since the coefficient

is then equal to 1.

That way to calculate the aki may lead to three drawbacks. (i) if a very high value is found compared

to the other typical valued found for that constraint, aki risks to lower significantly ci(x)

ak
i

and lower

too strongly the importance given to that constraint. (ii) an arbitrarily high value (such as 1020)

is returned for some blackbox problems, when there is an error (provoked for example by a hidden

constraint). In that case, it has a direct impact on the value of aki and on the calculation of hk. (iii)

we have to update aki each time a new higher positive value is found for that constraint. Thus, it is

required to check every time if the weights need to be updated, when the other methods had only at

most one change of the weight by constraint.

3.2 Impact on the progressive barrier

When there is no scaling of the output, the function h remains the same throughout the algorithm. The

constraint violation functions are calculated with the same formula, so there is no need to recalculate

for elements that have been evaluated previously. This is no longer the case with scaling of the output,

since the weightings change the way to calculate h (through the sequence {hk}k∈N). This leads to

many changes on the progressive barrier when one of the coefficients changes.

Firstly, hkmax should be updated accordingly to {h(·; ak)}k∈N. For example, it is possible that, at

iteration k ∈ N, if hkmax does not have a different update rule when h(·; ak) changed, that all the points

be on the other side of the barrier, which means that for all x ∈ V k that are infeasible, h(x; ak) > hkmax.

But, in that case, all the points from the cache could be rejected from the progressive barrier. Lacking

of points, MADS terminates. So, an update of hkmax becomes necessary.

Figure 1 illustrates how hkmax is determined when a coefficient changes.

At iteration k ∈ N of MADS, if there is at least one infeasible point then hkmax is chosen such that

it has the line of equation h = hkmax go through one of the points in the corresponding diagram h vs f

from the traditional progressive barrier. This point is denoted by xkmax ∈ Rn, and represented by the

triangle X in the left diagram h(·; ak) vs f of Figure 1. So after the change of one of the coefficient and

the update on hk+1 compared to h(·; ak), the point X changes position on the h(·; ak+1) vs f , as seen

on the right image of the figure. When h(·; ak) 6= h(·; ak+1), it is decided to choose hk+1
max such that the

line of equation h( · ; ak+1 ) = hk+1
max still goes through the point X in the diagram h ( · ; ak+1)

vs f . So, it gives the guarantee that at least one point will not be cut by the progressive barrier, which

is the point xkmax. This will be called “the update of hkmax”.

3.3 Convergence analysis

The scaling of the output impacts the progressive barrier and its convergence analysis. Several weight-

ings have been developed and they do not all have the same impact. Those weightings are analysed

separately.
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(b) Beginning of iteration k + 1.

Figure 1: Update of h(·; ak) and hk
max.

First and median violation. The two first weightings are grouped because they have identical conver-

gence analyses. Firstly, in both cases, there is at most one change in the weights per constraint, that

weight being equal to 1 initially and taking a value noted ai ∈ R∗+. That means that, for all i ∈ J1;mK,
there is an iteration number ki ∈ N such that for all k ∈ J0; kiJ, aki = 1 and for all k ∈ Jki; +∞J,
aki = ai > 0. So {aki }k∈N converges to a positive value. Then, by construction h(·; ak) = h(·; akmax)

for every k ≥ kmax where kmax = max{ki : i ∈ J1;mK}. So, from the iteration kmax, the sequence

{h(·; ak)}k∈N always takes the same value, and thus the convergence analysis of the progressive barrier

mentioned in 2 and described in [5] is still valid from that iteration number.

Maximum violation. The reasoning for the convergence analysis of the first violation and the median

weighting is not possible for the weighting using the maximum. This is because there are cases where

the algorithm will converge to the optimal solution with an infinite number of updates if an infinite

budget of evaluation is given. For example, consider f : [0; 2] 7→ R defined by its general term

f(x) = −x and c : [0; 2] 7→ R defined by its general term

c(x) =

{
0 if x ∈ [0; 1]
3− x if x ∈]1; 2].

The optimization problem 
min
x∈R

f(x)

subject to c(x) ≤ 0
0 ≤ x ≤ 2

has a single optimal solution x∗ = 1.

If MADS is used with the starting point x0 = 0.9, points will be generated from either side of x∗.

As the algorithm progresses, the mesh size will diminish and points higher and closer to 1 will be

generated, which will produce higher values of the constraint c. Thus, there will be an infinite number

of points which will lead to a new scaling of h. However, some properties can be proven.

Theorem 3 The sequence of functions {h(·; ak)}k∈N converges.
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Proof. For all i ∈ J1;mK, it should be noted that the sequence {aki }k∈N is non-decreasing from a

certain rank (either from the the first violation of the i-th constraint, if this constraint is violated at

least once, or from the rank 0 if the constraint is never violated), by construction of the weighting.

Since {aki }k∈N is a positive sequence non-decreasing from a certain rank, two cases can occur.

Either that sequence is majored and it converges to a real number ai > 0, either it is not majored and

it diverges to +∞. In both cases,
{

1
ak
i

}
k∈N

converges to a non-negative value. The convergence of

that last sequence implies the convergence of {h(·; ak)}k∈N, which proves the theorem.

In the case where the sequence {aki }k∈N for a i ∈ J1;mK diverges to +∞, the conventions ai = +∞
and 1

ai
= 0 are adopted.

The next theorem is about the non-increasing aspect of the sequence {hkmax}k∈N. It was one of the

properties the convergence analysis of the progressive barrier [5].

Theorem 4 The sequence {hkmax}k∈N is non-increasing from a certain rank.

Proof. The proof of the previous theorem showed that, for all i ∈ J1;mK the sequence {aki }k∈N is

non-decreasing from a certain rank. Let note ki that rank, and define kmax = max{ki : i ∈ J1;mK}.
From the rank kmax, either the value hkmax changes because of a change in the weighting as explained in

Section 3.2, or it changes because of the way the progressive works originally as explained in Section 2

and in [5]. In the second case, it is known that hkmax is updated with a lower value. In the first case, let

k ∈ N, k ≥ kmax and let x̄ the element that was used for the update of hkmax. Then hkmax = hk(x̄) and

hk+1
max = h(x̄; ak+1). It is just needed to show that h(x̄; ak+1) ≤ h(x̄, ak). But since, k ≥ kmax, then for

all i ∈ J1;mK, 0 < aki ≤ a
k+1
i , so 0 < 1

ak+1
i

≤ 1
ak
i

. This is true for all i ∈ J1;mK so h(x̄; ak+1) ≤ h(x̄; ak).

Thus, hk+1
max ≤ hkmax. This shows that from the rank kmax, whatever the way the barrier has been

updated, hk+1
max ≤ hkmax, which proves the Theorem 4.

A similar proof can be used to show that, for any given x ∈ X, the sequence {h(x; ak)}k∈N is

non-increasing from the certain rank kmax. Furthermore, by construction, the sequence {hkmax}k∈N is

minored by 0. And since it is non-increasing from a certain rank, then it converges.

There is a property close from the non-increasing property of {h(x; ak)}k∈N for all x ∈ X from the

rank kmax. In fact, the points will never have their values increase through the sequence {h(x; ak)}k∈N
as soon as they are evaluated. This is summarized with Theorem 5.

Theorem 5 Let k0 ∈ N. For any x ∈ V k0 ∩X, the sequence {h(x; ak)}k≥k0 is non-increasing.

Proof. Let k0 ∈ N and A = {i ∈ J1;mK : ∀x ∈ V k0 ci(x) ≤ 0}. A is the set of the constraints that

have not been violated at the beginning of the iteration k0. Let x ∈ V k0 ∩X. Then, for all k ∈ J1;mK:

h(x; ak) =

m∑
i=1

max

(
0,
ci(x)

aki

)2

=
∑
i/∈A

max

(
0,
ci(x)

aki

)2

(by definition of A)

Furthermore, for all i /∈ A, there exists xi ∈ V k0 , such that ci(x
i) > 0. But the sequence {aki }k∈N is

non-decreasing from the first violation of the constraint ci. So, for all i /∈ A, {aki }k≥k0
is non-decreasing

and has positive values. Thus, i /∈ A, { 1
ak
i

}k≥k0
is non-decreasing and has positive values. It leads to

the fact that {h(x; ak)}k≥k0 is non-decreasing, which proves the theorem.

Theorem 5 shows that the only elements x ∈ X for which the sequence {h(x; ak)}k≥k0 is not non-

increasing are among the points that have not been evaluated yet. It shows also that from the diagram

h(·; ak0) vs f , a point will never move to the right on the diagram h(·; ak0+1) vs f .
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In the progressive barrier (see Section 2), there are convergence analysis results both on f and h.

The results on f remain unchanged. However, since h has been substituted by {h(·; ak)}k∈N. Ideally,

the best would be if the same results remain for

h(·; a) = lim
k→+∞

h(·; ak).

In [5], the results on h relies on the hypothesis that h is lipschitz at the convergent point. The same

hypothesis could be made on h(·; a). Another assumption needs to be made.

Assumption A3 For all i ∈ J1;mK, ci is bounded above on X.

Theorem 6 Under assumptions A1, A2 and A3, {h(·; ak)}k∈N converges uniformly to h(·; a) on X.

Proof. Let x ∈ X and k ∈ N. Since for all i ∈ J1;mK, ci is upper-bounded on X, then

C = max
i∈J1;mK

{sup max(0, ci(x)), x ∈ X}

is well defined.

∣∣h(x; ak)− h(x; a)
∣∣ =

∣∣∣∣∣
m∑
i=1

(max(0,
ci(x)

aki
)2 −max(0,

ci(x)

ai
)2

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
1

(aki )2
− 1

(ai)2
) max(0, ci(x))2

∣∣∣∣∣
≤ C2

m∑
i=1

∣∣∣∣ 1

(aki )2
− 1

(ai)2

∣∣∣∣
This is last inequality is true for all x ∈ X, so

sup
x∈X

∣∣h(x; ak)− h(x; a)
∣∣ ≤ C2

m∑
i=1

∣∣∣∣ 1

(aki )2
− 1

(ai)2

∣∣∣∣→ 0

Which proves the Theorem 6.

The next section will analyse how weightings can be used for the surrogate function of the constraint

violation function.

3.4 Impact of a surrogate on the constraint violation function h̃

As described in the introduction, MADS uses the opportunistic strategy. In order to help the oppor-

tunistic strategy, it is possible to use a surrogate for each constraint.

In this work, for all i ∈ J1;mK, the surrogate of the constraint ci is noted c̃i and is a quadratic

model [13] (default choice in Nomad, the optimization software based on MADS). With those surro-

gates, another surrogate of h (which is equal to h(·;1) with current notations) can be built:

h̃(x;1) =


m∑
i=1

max (0, c̃i(x))
2

if x ∈ X

+∞ otherwise.

Currently, if it is supposed that a surrogate f̃ for f and h̃(·;1) for h is at disposal, the ordering

strategy is the following: let x and y, then x is given to the blackbox before y if and only if (f̃(x) ≤ f̃(y)

and h̃(x;1) < h̃(y;1)) or (f̃(x) < f̃(y) and h̃(x;1) ≤ h̃(y;1)).
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Since h̃(·;1) is important in the way MADS works, a weighting on h̃(·;1) seems fair. h̃ is chosen as

h̃(x; ak) =


m∑
i=1

max

(
0,
c̃i(x)

aki

)2

if x ∈ X

+∞ otherwise.

The weightings on h and h̃ can be considered independently. It is possible to test the weighting

on h, with {h(·; ak)}k∈N, without doing it on {h̃(·; ak)}k∈N and vice versa. It is also possible to use

both weightings together. So when surrogates are available, it will be possible to compare the default

version (no weightings), and a version with weightings on {h̃(.; ak)}k∈N.

4 Numerical results

The numerical results are divided in two sections. Section 4.1 studies cases for which no surrogate

functions are used. The absence of surrogates allows to study the numerical impact of the weightings

on the progressive barrier. Adding surrogate functions might compensate some flaws, so this section

focuses on the progressive barrier. In addition, experimental results compare the three proposed

weightings. Section 4.2 uses the best weighting for problems where surrogates are available.

All numerical results are done on Nomad 3.8.0 with the directions generated by OrthoMADS [1] and

the budget of evaluation is set to 1500. Data profiles [19] are generated to compare different versions.

For each problem and for each algorithm the following test of convergence is performed:

f(x0)− f(x) ≤ (1− τ)(f(x0)− fL), (1)

where x0 ∈ Rn is the feasible starting point (all algorithms start with the same starting point), fL the

best value found by all the algorithms compared given a budget of evaluation and τ ∈ R+ the wished

precision. If the algorithm produced a point x ∈ Rn the verifies equation (1), then the algorithm is

said to solve the algorithm at precision τ . The ordinate of data profiles show the ratio of problem

verifying the test convergence at a given precision.

4.1 Without surrogates

In this section, no surrogates for the objective function and the constraints are used. Numerical results

are divided in two groups. The first one contains analytical problems and the second contains blackbox

problems, described in Table 1 and 2, respectively.

Table 1: Five analytical optimization problems from the literature.

# Name Source n m Bounded

1 PIGACHE [20] 4 11 yes
2 PVMC [10] 4 3 no
3 RCBM [15] 3 2 yes
4 SRMMC [10] 7 11 yes
5 SMMC [21] 3 4 yes

Table 2: Three blackbox optimization problem from the literature.

# Name Source n m Bounded

1 Styrene [3] 8 11 yes
2 MDO [23] 7 4 yes
3 Lockwood [18] 6 4 yes

In order to test badly scaled problems, a modified version of each problem, called “unbalanced”, is

created by multiplying the i-th constraint by the coefficient 10ji , ji ∈ Z. The coefficient ji are listed

in Table 3.
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For each problem, feasible points are generated using a latin hypercube, either on the entire domain,

or around a known feasible point.

Table 3: Coefficient ji for the unbalanced variants of the problems.

Name j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11

PIGACHE 2 4 -7 -5 -3 1 3 -2 -1 5 7
PVMC 0 3 -3
RCBM 3 -3
SRMMC -1 -2 -3 -4 -5 0 1 2 3 4 5
SMMC -4 -2 2 4
Styrene 0 0 0 0 -3 -2 -1 0 1 2 3
MDO 3 0 0
Lockwood 3 0 0 0

Analytical problems. The first tests are on the 5 unmodified analytical problems from 100 feasible

starting points. This makes a total of 500 instances. The same starting points are used on the

“unbalanced” problems.

Figure 2 contains the data profiles from the 500 instances on the unmodified analytical problems.

The weighting that uses the maximum violation dominates the other methods on the profiles. In

particular, at precision τ = 10−5, it solves 58% of the problems, and all other strategies solve less

than 35% of them.
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Figure 2: Data profiles for unmodified analytical problems.

Figure 3 shows the data profiles from the 500 instances on the “unbalanced” analytical problems.

These problems appear to be more difficult, as all the curves are slighly lower than the corresponding

ones in Figure 2. Once again, the graphs show a domination of the weighting that uses the maximum

violation. The two other weightings seem to perform slightly worst than the default strategy that does

not alter the weights of the constraints.
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Figure 3: Data profiles for “unbalanced” analytical problems.
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The analytical problems show a clear domination of the weighting that uses the maximum violation.

Blackbox problems The blackbox problems are “Styrene”, “MDO” and “Lockwood”, and their de-

scriptions are found in [3, 7, 9]. For each blackboxes 30 feasible starting points are used.

Figure 4 shows the data profiles on those 90 instances from the 3 unmodified blackboxes at precision

τ = 10−1, τ = 10−3 and τ = 10−5. The scaling methods, or even having a scaling or not, does not

seem to be an important impact. All curves are very close to each other.
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Figure 4: Data profiles for unmodified blackbox problems.

Tests are then made on instances from “unbalanced” blackboxes from the same starting points.

Figure 5 shows that the weighting that uses the first violation is outperformed by the others. This is

the case at precision τ = 10−2 et τ = 10−3. Unlike the plots on the unmodified blackboxes, where it

had worst results than the default version, the weighting with the median violation performs as well

as the default version. Concerning the weighting with the maximum violation, it performs as well as

the default variation at precision τ = 10−1 and τ = 10−3 but performs slightly better at τ = 10−2.

However, this is not very significant as all curves are very close to each other.
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Figure 5: Data profiles with for “unbalanced” blackbox problems.

The blackbox problems do not show a clear domination of the scaling strategies.

4.2 With surrogates

This last subsection on numerical experiments compares the scaling strategies on the blackbox problems

using surrogate functions (the quadratic models described in [13]) for the objective function and the

constraints. The first one, represented by circles on the profiles, is the default version that does

not rescale the output. The second one, represented by squares, only adds weights on the surrogate

constraint violation function h̃. The third one, represented by triangles, only adds weights on both the

constraint violation h and on its surrogate h̃. The weightings are done using the maximum violation

of each constraint.
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Figure 6 looks at unmodified blackboxes. At the weighting τ = 10−1, the weightings show no

improvements and the tested blackboxes. At precision τ = 10−2 and τ = 10−3, the weighting done only

on h̃ shows slightly better results than a weighting both on h and h̃ and the default version. However,

the differences are very small and the results in the sub-section 4 showed very few satisfactory results

on unmodified blackboxes.
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Figure 6: Data profiles for unmodified blackboxes.

The “unbalanced” blackboxes are also tested. They were unbalanced the same way as in sub-

section 4. Figure 7 shows the results for the “unbalanced” blackboxes. It shows that the version where

the weighting is made both on h and h̃ dominates the two other versions. It is interesting to note that

at precision τ = 10−2, the weighting on h̃ only dominates the default version but is dominated by the

other one. This shows the cumulative effects of the weighting on constraints. Even if it better to have

a weighting on h or h̃, the best is to have the weighting on both functions h and h̃.
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Figure 7: Data profiles for “unbalanced” blackboxes.

Compared to Figure 6, Figure 7 shows the advantages of weighting of constraints on problems

where constraints are not well scaled.

5 Discussion

This work offers several weightings techniques of the constraints in order to compensate scaling issues

in the formulation of a blackbox optimization problem. These weightings rely on the values taken

by the constraints: the first violation, the median violation on the n first violations and the highest

violation.

From a theoretical point of view, the convergence analysis followed that of the progressive barrier.

It was shown that the two first weightings had no impact on the convergence analysis from the rank

where all the weightings were calculated. For the last weighting, the properties of {hkmax}k∈N were

preserved.
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Numerical experiments on the analytical problems suggest that the strategy with the maximum

violation is preferable to the others on both the unmodified and the unbalanced problems. The results

on the blackbox problems were inconclusive. None of the method clearly dominates the others. A final

set of experiments were conducted on these blackbox problems, with the utilization of a surrogate.

Here, the results on the unbalanced blackboxes revealed a dominant strategy. Applying the weighting

with the maximal violation on both the constraint violation function h and its surrogate h̃ is more

efficient than the other strategies.

This work focused on weighting the constraints so that they have all approximately the same

importance. However, other choices can be made. Learning the importance of the constraints through

the optimization process is a possibility. A selection of the most influential variables in a context of

blackbox optimization problem was achieved in [2]. A similar analysis for the constraints could be

considered in future work.
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