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Abstract: We present a progressive approximation algorithm for the exact solution of several classes
of interdiction games in which two non-cooperative players (namely an attacker and a follower) interact
sequentially. The follower must solve an optimization problem that has been previously perturbed by
means of a series of attacking actions led by the attacker. These attacking actions aim at augmenting
the cost of the decision variables of the follower’s optimization problem. The objective, from the
attacker’s viewpoint, is that of choosing an attacking strategy that reduces as much as possible the
quality of the optimal solution attainable by the follower. The progressive approximation mechanism
consists in the iterative solution of a relaxed interdiction problem —in which the follower actions are
restricted to a subset of the whole solution space—, and of a pricing subproblem invoked with the
objective of proving the optimality of the attacking strategy. This scheme is especially useful when the
optimal solutions to the follower’s subproblem intersect with the decision space of the attacker only in
a small number of decision variables. Under this assumption, the progressive approximation method
can scale and solve interdiction games otherwise untractable for classical methods. We illustrate the
efficiency of this framework on shortest path, 0-1 knapsack and facility location interdiction games.

Acknowledgments: We thank Leonardo Lozano for kindly giving us access to his source code, which
allowed us to assess the efficiency of our framework on shortest path interdiction games.
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1 Introduction

This article studies a sequential two-stage Stackelberg game [92] in which two players, follower and

attacker, interact as follows. The follower aims at solving an optimization problem P : min{cTx+gTw :

Ax + Gw ≤ b,x ∈ {0, 1}n,w ∈ W}, where c ∈ Rn, g ∈ Rp, A ∈ Rm×n, G ∈ Rm×p, b ∈ Rm, and

W ⊆ Rp are the problem parameters. Having complete knowledge of the follower problem, the attacker

seeks to deteriorate the objective function value of P by increasing the cost of a subset of the follower’s

binary decision variables. To represent these decisions, we use binary decision vector y = (yi)
n
i=1 and

parameter (di)
n
i=1 ∈ R+ such that yi equals 1 if the attacker decides to increase the cost of variable

xi from ci to ci + di in P , and equals 0 otherwise. As a result, the follower problem subject to an

attack y ∈ {0, 1}n can be written as P (y) : z(y) = min{
∑n

i=1(ci + diyi)xi + gTw : Ax + Gw ≤
b,x ∈ {0, 1}n,w ∈ W}, where z(y) is the optimal value attained given the attack vector y. For

realistic purposes, we assume that the attacker is constrained by a single resource of which ∆ > 0

units are available. Moreover, attacking the follower’s decision xi requires βi ≥ 0 units of resource

such that
∑n

i=1 βi � ∆, implying that the attacker can only attack a small fraction of all follower’s

decisions. Under these conditions, the attacker’s goal is to find a strategy that causes the most

detrimental impact on the follower’s optimization problem, which is achieved by solving the problem

Q : max{z(y) : βTy ≤ ∆,y ∈ {0, 1}n}.

Problem Q belongs to the category of interdiction and bilevel games, which arise in a vast number

of applications including logistics and transportation [53, 17, 18, 45], military operations [54, 47, 70],

conservation planning [2, 83], critical infrastructure analysis [19, 77], and design of reliable service

networks [95], among others. Regardless of the application, realistic interdiction problems are typically

hard to solve and large-scale in nature, motivating the need for scalable optimization algorithms.

Because interdiction models inherently reveal the worst-case value for the follower’s problem, the

development of effective exact algorithms able to prove the optimality of candidate attacking strategies

is critical. Admitting an attacker’s suboptimal solution may provide biased and incomplete information

regarding the potentially devastating impact of the attacker’s actions on the follower’s problem.

In this paper, we propose a solution approach that builds upon ideas used in previous relaxation-

based methods for other classes of problems such as the minimax diameter clustering problem [7],the

vertex p-center problem [24, 31] and the discrete p-dispersion problem [30]. Moreover, we integrate re-

cent findings in structural decomposition schemes for sparse integer programs with a subjacent network

structure [64]. As a result, our algorithm can handle very large-scale problems under the assumption

that the follower’s optimal solution under any feasible attacking strategy is sparse. This is true in

some combinatorial problems, where the number of nonzero decision variables in an optimal solution is

a small with respect to the total number of decision variables. We provide computational evidence of

the effectiveness of our algorithm by solving the interdiction version of several combinatorial problems

that can be modeled as problem Q, including shortest path, 0-1 knapsack, and facility location.

The remainder of this article is structured as follows. In Section 2, we put our contribution in

context by providing a detailed literature review on interdiction games, bilevel optimization, and

their solution methods. In Section 3, we present our proposed solution approach. In Section 4, we

discuss some acceleration strategies to our scheme, including super-valid inequalities, a metaheuristic to

aproximate the solution at intermediate stages of the solution procedure, and a logarithmic-time search

method for the exact solution of the subproblems. In Section 5, we present computational evidence

of the effectiveness of our method for several classes of interdiction games. Section 6 concludes the

article and provides insights for future research.

2 Literature review

The use of interdiction problems in different fields has dramatically grown in the last two decades [38,

85, 87]. Von Stackelberg [92] established the foundations of these types of multi-level optimization

problems, after which many variants have been proposed. In their simplest version, two players with
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complete information of the system interact sequentially: an attacker seeks to deteriorate the quality

of the underlying system and a follower seeks to optimize the operation of the resulting (perturbed)

system. As a result of this interaction, interdiction games are usually much harder to solve than their

single-level counterparts. For example, network flow problems are solvable in polynomial time but

their associated two-level interdiction problems are often NP-hard [12, 26, 51, 94]. Moreover, when

the associated single-level problems are already NP-hard, their interdiction counterparts are at least

as hard to solve [22, 28]. Because of such complexity, the development of scalable algorithms for

multi-level interdiction games has been the subject of substantial efforts. While some of the latest

advances concern general bilevel programs, tailored algorithms have also been introduced to solve

specific variants of interdiction games.

Network interdiction models are the most studied variant of interdiction games. These models can

be used to optimize the design and operation of flow-based real systems subject to disruptions, having

applications in telecommunication networks, power systems, and supply chains, among others. Since

the early works of Wollmer [93], McMasters and Mustin [65], and Ghare et al. [46] on minimizing the

maximum capacity of a network, many approaches have been proposed for the solution of two-stage

network interdiction problems. A common element throughout these works is the use of linear program-

ming duality to combine both follower and attacker problems into a single-level formulation [43, 48].

Depending on where the attacker’s variables are in the follower problem (e.g., right-hand side), this

dualization approach may also require a linearization or a penalty reformulation [94, 56, 69] so that

the resulting problem can be solved using conventional mixed-integer programming techniques. Some

examples of this dualize-reformulate scheme include shortest-path interdiction games with asymmetric

network information [11], discrete and continuous multicommodity flows interdiction problems [56],

and maximum flow interdiction problems to disrupt illegal drug networks [63], among others. To

solve large-scale shortest-path interdiction problems, Israeli and Wood [51] use Benders cuts and valid

and supervalid inequalities to strengthen the resulting (dualized) single-level formulation. Other ap-

proaches to solve variants of network interdiction problems include Lagrangian relaxation and cut

enumeration [74], sequential approximation algorithms [32, 88], valid inequalities [69, 8], policy de-

sign [16], branch-and-price [49], and dynamic programming [81, 82], among others. Tailored solution

techniques have been developed for the interdiction of other network problems such as maximum

flow [88, 8, 3, 72], minimum spanning tree [42, 57, 12, 98], assignment [82], and matching [97]. Bert-

simas et al. [14], Altner et al. [8], and Chestnut and Zenklusen [26] provide approximation bounds for

some network interdiction variants.

The study of interdiction games has also been extended to other applications of optimization. In
competitive marketing, firms need to decide which products to launch to maximize their profit while

considering the competitors’ reaction. Using an interdiction scheme, Smith et al. [86] propose a model

to maximize revenue under the worst-case competitor’s predatory actions. The problem is solved us-

ing a dualize-reformulate approach enhanced with problem-specific cutting planes. In the same area,

DeNegre [36] and Caprara et al. [22] study a knapsack interdiction problem in which two firms allocate

resources to maximize profits across multiple market segments. One firm has more market power than

the other (e.g., attacker) so it decides which market segments to capture, leaving the remaining ones

for the second firm to choose from (e.g., follower). To solve this problem, Caprara et al. [22] present

a tailored iterative algorithm that is based on the ideas of DeNegre [36], but includes a pre-processing

stage to compute good initial bounds and a cutting-plane approach that iteratively adds strong cuts to

the problem. For a 0-1 knapsack interdiction game in which items selected by one agent are not avail-

able for the other, Croce and Scatamacchia [33] introduce a tailored algorithm based on a new class

of benders-like inequalities that provide lower bounds on the objective function given a set of possible

actions of the agent selecting items first. In the area of infrastructure resiliency, the problem of iden-

tifying critical assets is often modeled as a location interdiction problem in which facilities and their

services are subject to unexpected events represented by the attacker actions (e.g., capacity reduction,

site unavailability). The goal of these problems is to use a rational and optimal attacker to unveil

infrastructure vulnerabilities that, if occurring, cause the worst-case deterioration in the system’s

performance. Examples of interdiction games in infrastructure applications include variants of the
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p-median, maximal covering, and capacitated facility location problems [28, 58, 13]. Other applica-

tions of interdiction games include the delay of a nuclear weapons project [20], disruptions in vehicle

routing [75], selection of conservation areas under worst-case environmental disturbances [83, 2, 71],

and design of resilient power systems [77], among others.

Two-stage interdiction models are useful to identify critical system components and to assess the

impact of adversarial actions. However, they provide little information regarding which components

should be optimally protected if the follower had the opportunity to shield some of them. This ad-

ditional feature is commonly known as fortification and has been subject of scientific interest for a

variety of problems including infrastructure location [6, 27, 45, 55, 54], travel salesperson [62], shortest-

path [76], and inter-modal transportation planning [78], among others. Regardless of the application,

the common goal of these problems is to reduce the system’s vulnerability to attacks by protecting a

subset of system components that become harder to disrupt or inaccessible to the attacker. Interdic-

tion games with fortification are typically modeled as three-level optimization programs, extending the

modeling of the simpler—two-level—interdiction games. Other multi-stage interdiction games include

several rounds of interactions between attacker and follower, where each agent adapts its strategy based

on the previous decisions of the other [81, 82]. Existing solution techniques for solving multi-stage in-

terdiction problems include implicit enumeration algorithms [45, 79], hybrid approaches combining

heuristic and exact methods [100, 80], dynamic programming [81, 82], and heuristic approaches [54, 5],

among others. Smith and Song [84] present a comprehensive review of existing models and mathemat-

ical programming solution techniques for interdiction problems.

Bilevel programs are a generalization of interdiction games and have been studied extensively in

the literature. Although they are a class of Stackelberg games, in bilevel programs the attacker and

follower may not be hostile, i.e., one agent is not necessarily trying to deteriorate the optimal objective

function value of the other. Instead, agents may optimize their own functions and indirectly influence

the operation of other agents given the order in which they play. For this reason, in bilevel problems

the attacker is typically called leader, indicating that it plays first in the game. As an example, Labbé

et al. [53] study a toll-setting problem on a transportation network in which an operator (i.e., leader)

locates tolls in some roads to maximize total revenue. Road users (i.e., follower) optimize their travel

along the network based on a generalized cost function that combines travel time and toll cost. Variants

of this problem are also studied in Brotcorne et al. [17, 18]. Other applications of bilevel programs

include detection of smuggler’s activities Goldberg [47], competitive facility location under disrup-

tions [4], bioengineering [21], traffic planning [66], and image processing [52, 99], among others. From a

methodological perspective, bilevel programs have been solved using hybrid methods combining heuris-

tic and exact approaches [99], branch-and-bound and branch-and-cut algorithms [68, 37, 89, 41, 40],

extreme point enumeration [91], binary-search based approaches [90, 10], problem reformulations using

optimality conditions of the follower’s problem to produce a single-stage equivalent problem [34, 35],

and problem reformulations based on projections of related problems [23], among others. Some ap-

proximation algorithms are available for bilevel knapsack problems [25], Colson et al. [29], Bard [9],

and Migdalas et al. [67] present comprehensive surveys on bilevel (and multilevel) models, algorithms,

and applications.

Because of their applicability, the literature on models and algorithms for the solution of bilevel and

interdiction problems is increasing rapidly. However, general and scalable algorithms are still elusive

and in most cases algorithms exploit particular structures of the underlying optimization problems.

Of special interest for our work is the framework proposed by Lozano and Smith [60]. In this paper,

authors introduced a general-purpose backward sampling algorithm that limits the follower actions

and solves the restricted interdiction problems by means of a cut generation scheme. With respect to

advances in the solution of general bilevel programs, Fischetti et al. [41] introduce intersection cuts

for general bilevel programs. These valid inequalities along with a new class of valid inequalities are

embedded within an exact solver developed by the same authors [40], which outperforms the state-of-

the-art methods for general bilevel programs by a large margin. To the best of our knowledge, this

algorithm is now the state-of-the-art solver for bilevel programming. Recently, Yue et al. [96] proposed

a progressive relaxation scheme for the solution of general bilevel programs. Their computational
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experience indicates that, when the solutions to the single-level problem have sparse support, the

decomposition scheme converges quickly and the solution of the resulting master problems becomes

easy. Lozano and Smith [61] introduced a value-function based exact solver for a class of bilevel

mixed-integer problem in which the upper-level variables are assumed integer. They exploit a single-

level reformulation of the problem that is solved by means of a cut generation scheme in an iterative

fashion.

Progressive approximation methods are not totally novel in the scientific literature although only

scarcely used to solve a handful of problems. They rely on the existence of a single-level mathematical

formulation satisfying two conditions: 1) Only a few constraints are binding in the optimal solutions;

and 2) The relaxed model can further be tightened by removing a large number of variables and

still yield an equivalent relaxed model. Implementations of progressive approximation methods can

be found for clustering problems [7], facility location [24, 31, 30], network design [15] and bilevel

optimization [96].

3 Progressive approximation approach

In this section we introduce some required notation and describe our progressive approximation al-

gorithm. We define X = {x ∈ {0, 1}n : ∃w ∈ W such that Ax + Gw ≤ b}, which is a finite set

but potentially prohibitively large to be enumerated. For a given x ∈ X we define the index set

I(x) = {i ∈ {1 . . . n} : xi = 1} and the function γ(x) = cTx + min{gTw : Gw ≤ b −Ax,w ∈ W}.
For a given x ∈ X , this function returns the objective function value of the follower’s problem at

(x,w∗) in the absence of the attacker, where w∗ = arg minw{gTw : Gw ≤ b −Ax,w ∈ W}. Using

these definitions, we can fully characterize the follower actions by only using x ∈ X as w∗ can be

found implicitly through γ(x) (although w∗ may not be unique). Using this notation and the results

from [60], Problem Q can be reformulated as the following single-level mixed-integer program, which

we call Problem Q′.

[Q′] max λ (1)

s.t. λ ≤ γ(x) +
∑

i∈I(x)

diyi, x ∈ X (2)

βTy ≤ ∆ (3)

y ∈ {0, 1}n (4)

The proposed solution method progressively approximates formulation (1)–(4) by introducing deci-

sion variables and constraints. The goal of such strategy is to maintain a reduced number of variables

and constraints at every iteration so that problem (1)–(4) remains tractable, while preserving its struc-

tural properties. For a given set of indices I ⊆ {1 . . . n}, we let X (I) = {x ∈ X : xi = 0, i /∈ I} be the

set of feasible follower actions (x-variables) whose support is included in the variables indexed by I.

In addition, we define Q′(I) as the restricted version of problem Q′ that results from both allowing

positive values only for those y-variables whose indices are in I (i.e., yi = 0, ∀i 6∈ I) and imposing

Constraints (2) only for x ∈ X (I).

Algorithm 1 describes our progressive approximation mechanism to solve problem Q. In Line 1,

problem P (y) is solved using attack y = 0, producing an initial optimal follower solution (x̃, w̃) and

objective function value z̃ = z(0). This solution also provides a lower bound on the objective value

as there are no attacker decisions in the follower’s objective function. Using (x̃, w̃), Line 2 initializes

the set of indices I and the lower bound on the optimal objective value, LB. Line 2 also initializes an

upper bound, UB, by solving problem P (y) with attack y = 1, meaning that all follower’s x-variables

are attacked. The while-loop in Lines 3–11 progressively approximates problem Q′ by adding elements

to the index set I, which ultimately adds y-variables and constraints to Q′(I). Line 4 solves the

restricted problem Q′(I) in order to update the upper bound value. Using the solution from Line 4,

Line 5 constructs a feasible attack to problem Q′, denoted by ỹ, that is used to solve problem P (ỹ)
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in Line 6. This step produces a feasible solution (x̃, w̃) to problem Q′ with objective value z̃. Line 7

verifies whether the lower bound and incumbent solution need to be updated, which is done in Line 8.

Line 10 updates the set of indices and the γ-function value corresponding to the x̃-variables obtained

in Line 6, which helps creating a new constraint related to the follower response (x̃, w̃) to attack ỹ.

Line 12 returns an optimal solution to problem Q for both the attacker and follower, as well as the

corresponding objective function value.

Algorithm 1 Progressive approximation

1: Calculate z(0) to obtain an optimal solution (x̃, w̃) and optimal value z̃. Set γ(x̃) = z̃.
2: Initialize I ← I(x̃),LB← z̃, and UB← z(1).
3: while UB ≥ LB do
4: Solve Q′(I) to obtain an optimal solution λ̂, ŷ = (ŷi)i∈I . Update UB← λ̂.
5: Define ỹ = (ỹi)

n
i=1, where ỹi = ŷi for i ∈ I and ỹi = 0 for i 6∈ I.

6: Solve P (ỹ) to obtain an optimal solution (x̃, w̃) and optimal value z̃.
7: if z̃ > LB then
8: Update y∗ ← ỹ, (x∗,w∗)← (x̃, w̃), LB← z̃, and z∗ ← z̃.
9: end if

10: Update I ← I ∪ I(x̃) and calculate γ(x̃) = cT x̃ + gT w̃.
11: end while
12: return y∗, x∗, w∗, z∗.

The following propositions establish the correctness and finite termination of Algorithm 1, as well

as some intermediate results. In particular, Proposition 1 proves that function γ(x) can be computed

in Lines 1 and 10 using the solution to problem P (y) in Lines 1 and 6, respectively, without additional

computational effort.

Proposition 1 Let (x̃, w̃) be an optimal solution to P (ỹ) for any ỹ satisfying (3) and (4). Then,

γ(x̃) = cT x̃ + gT w̃.

Proof. Suppose for a contradiction that a solution w′ ∈ W exists such that cT x̃+gTw′ < cT x̃+gT w̃ =

γ(x̃) and Gw′ ≤ b − Ax̃. Because (x̃, w̃) is optimal to P (ỹ), then cT x̃ + gT w̃ +
∑n

i=1 diỹix̃i ≤
cT x̃ + gTw +

∑n
i=1 diỹix̃i, for any w ∈ W satisfying Gw ≤ b − Ax̃, including w′. However, this

implies that cT x̃ + gTw′ ≥ cT x̃ + gT w̃, a contradiction. Because (x̃, w̃) satisfies Gw̃ ≤ b −Ax̃, we

conclude that γ(x̃) = cT x̃ + gT w̃.

Proposition 2 At every iteration of the algorithm, UB provides an upper bound on the optimal value

of Problem Q′.

Proof. The result holds for the initial upper bound in Line 2 because for any (x,w) that is feasible

for P it is true that cTx + gTw +
∑n

i=1 diyixi ≤ cTx + gTw +
∑n

i=1 dixi. Now, because X (I) ⊆ X ,

it follows that relaxing problem Q′ by using only the Constraints (2) indexed by the elements in X (I)

provides a valid upper bound for Q′. Now, note that Problem Q′(I) may have less y-variables than

problem Q′. However, by construction of the set X (I), we have that I(x) ⊆ I, for any x ∈ X (I).

Therefore, γ(x)+
∑n

i=1 dixiyi = γ(x)+
∑

i∈I(x) diyi because xi = 0, for all i 6∈ I(x), and xi = 1, for all

i ∈ I(x). Because β ≥ 0, the support of any optimal attacker solution to Q′(I) when all y-variables are

included in Constraint (2) is included in I, allowing us to use only the subset of y-variables indexed in I.

Proposition 3 At every iteration of the algorithm, LB provides a lower bound on the optimal value of

problem Q′.

Proof. The result holds for the initial lower bound in Line 2 because for any (x,w) that is feasible

for P it is true that cTx + gTw ≤ cTx + gTw +
∑n

i=1 diyixi. For Line 8, the result follows because

any feasible solution ŷ to problem Q′(I) obtained in Line 4 is extended to a feasible solution ỹ to

Problem Q′ in Line 5. This is also true for the incumbent solution updated in Line 8, which records

the maximum observed lower bound.
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Proposition 4 Algorithm 1 performs at most n iterations of the loop and returns an optimal solution

to Problem Q′.

Proof. Consider an optimal solution (x̃, w̃) of problem P (ỹ) obtained in Line 6 at any iteration of the

algorithm. We consider two cases. In the first case, we assume that for this solution I(x̃) ⊆ I, meaning

that set I is not updated in Line 10. This means that x̃ was already in X (I). From Constraints (2), we

have that UB = λ̂ ≤ γ(x̃) +
∑

i∈I(x̃) diỹi. Further, from Propositions 2 and 3, we have that LB ≤ UB

and because (x̃, w̃) is an optimal solution to problem P (ỹ), it follows that z(ỹ) = γ(x̃)+
∑

i∈I(x̃) diỹi ≤
LB. From these observations it follows that LB ≤ UB ≤ γ(x̃)+

∑
i∈I(x̃) diỹi = z(ỹ) ≤ LB. Therefore,

the stopping criterion in Line 3 is met and the algorithm returns an optimal solution to Q′. In the

second case, we assume that I(x̃) 6⊆ I, meaning that set I needs to be updated in Line (10) of the

algorithm. If the stopping criterion is not met, this leads to a new iteration in which Lines 4–10 are

executed again. The process continues until I(x̃) ⊆ I, where the results from the first case apply, or

until the stopping condition is met, meaning that there is an alternative optimal solution to Q′ (which

will be discovered in the next iteration because λ̂ = LB = UB in Line 4). In any case, the maximum

number of times that set I is updated is n, which is when indices are added one at a time. As a result,

Algorithm 1 is correct and finishes in no more than n iterations.

Remark 1 The scalability of the proposed progressive approximation scheme is based on the assumption

that the optimal follower actions x ∈ X to each subproblem P (y) have sparse support. As such,

sets I(x) are small and therefore the resulting problems Q′(I) are tractable. If the algorithm along its

resolution finds an optimal follower strategy x ∈ X to a problem P (y) of dense support, the restricted

problems Q′(I) may become just as difficult as the interdiction problem Q.

4 Acceleration strategies

In this section we describe additional algorithmic features that can be used to accelerate the progressive

approximation method described in Section 3. These enhancements include a metaheuristic procedure

to quickly find solutions to the restricted problem Q′(I), a binary search to dynamically reduce the

search space based on the objective function value found at any iteration, a cutting planes method to

solve restricted interdiction subproblems and super-valid inequalities to strengthen the mathematical

formulation of Q′(I).

4.1 Metaheuristic

We use a Multi-Start Iterated Local Search (MSILS) [59] heuristic to find near-optimal solutions to

problem Q′(I) that can improve the current lower bound at any iteration of Algorithm 1. The MSILS

consists of three phases: multi-start pool, local search, and shaking. The local search and shaking

phases constitute the iterative local search (ILS) part of MSILS. If no improving solution is found at

the end of MSILS, then Q′(I) is solved exactly using an MIP.

The MSILS starts by constructing a set of solutions to be used as starting points in the local

search procedure, which we refer to as the multi-start pool. To do so, we randomly generate T1

feasible attacks over the current index set I. Because an attack that does not deplete the attacker’s

budget is suboptimal (because d-parameters are nonnegative), we only generate attacking strategies

that are maximal, meaning that they cannot be augmented by setting more y-variables to one without

exceeding the attacker’s budget ∆. We estimate a score for each of those T1 attacks y by computing

s(y) =
∑

i∈I diyi. Only T2 (< T1) attacks with the largest scores are kept for further consideration.

For each of these attacks, we solve Problem P (y) and compute z(y). We select T3 (< T2) of these

attacks with the largest z-values to be part of the multi-start pool of our MSILS.

For each of the T3 starting solutions, our procedure performs an ILS that uses a simple SWAP

operator. We use this operator in both the local search and shaking phases. This operator takes two

indices, i, j ∈ I, such that yi +yj = 1 and swaps them. That is, if yi = 1 and yj = 0, then SWAP creates
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a solution y′ where y′j = 1 and y′i = 0, with all other components equal to those in y. The resulting

attack y′ after applying the SWAP operator is kept only if it is feasible (i.e., it satisfies the attacker’s

budget constraint) and it is discarded, otherwise. For the local search phase, it is also required that

y′ improves the attacker’s objective function value with respect to attack y. This second condition is

expensive to evaluate within the local search procedure as it involves the solution of P (y′). Instead, we

replace this evaluation by performing the following surrogate estimation. We select H of the previously

visited follower solutions, (x1,w1), . . . , (xH ,wH), for some H ≥ 1, with the smallest nominal cost (i.e.,

objective function of Problem P ). This cost is independent of the attacker’s strategy so a sorted list

with these solutions can be maintained every time a follower solution is found. For each of those H

solutions, we compute the change in the follower’s objective function attained by performing the swap

move. The minimum of these changes, which can be positive, negative, or zero, is the surrogate value

of the swap move. If positive, we compute z(y′) by solving Problem P (y′), and the swap is accepted

only if z(y′) > z(y). In this case, incumbent solution and objective values are updated given that y′

improves the current solution. The local search continues using the incumbent solution as starting

point. We use a first improvement policy in our ILS that guarantees that the incumbent is updated

only if the objective function value improves.

The MSILS performs a shaking procedure when the local search finds no solution that improves

the current incumbent. This shaking procedure consists of a set of random swaps that are performed

until a feasible attack is found, regardless of its objective function value. When this happens, the

local search is executed again starting from the shook solution. Upon calibration of the method, we

determine that two random shakes during the ILS are sufficient to provide a meaningful diversification,

and that only marginal gains (if any) can be attained beyond this number. After performing three

local searches and two shakes for a given attack (i.e., local search → shake → local search → shake →
local search), the ILS is repeated using a new attack from the multi-start pool. The MSILS procedure

terminates when all attacks in the multi-start pool are used (i.e., T3 iterations).

We point out that any solution (y′, λ′) obtained by MSILS is feasible to Q′(I), and then its objective

function value is a lower bound on the value of Q′(I). If the best solution found by the MSILS suggests

a potential improvement in LB, i.e., λ′ > LB, then ŷ = y′ in Line 4 and Algorithm 1 continues as

described, except that UB is not updated using λ′. This is because λ′ is not necessarily an upper

bound on the value of Q′ as y′ may not be optimal for the attacker. If the best solution found by

MSILS is such that λ′ ≤ LB, Line 4 is executed as described in Algorithm 1 and Q′(I) is solved exactly

using an MIP. Based on our empirical experience, the MSILS procedure is especially useful when the

size of the restricted interdiction problems Q′(I) starts to grow, which makes the MIP executed in
Line 4 computationally too demanding to solve.

4.2 Binary search

We further accelerate the solution of Problem Q′(I) in Line 4 of Algorithm 1 by using a binary

search procedure. This procedure is executed whenever the metaheuristic finds no improving solution,

meaning that Q′(I) has to be solved exactly. To describe our binary search procedure, let l and

u be a lower and an upper bound on the optimal solution to problem Q′(I), respectively, and let

m = d(l + u)/2e. The values of l and u can be initialized using z(0) and z(1), respectively. Define

Q′(I,m, u) as the problem resulting from adding the constraint m ≤ λ ≤ u into problem Q′(I). If

Q′(I,m, u) is feasible, then we know that a solution exists with optimal objective value of at least m,

so we set l = m, a tighter lower bound. We determine whether a feasible solution exists by attempting

to solve Q′(I,m, u) using an MIP solver (e.g., Gurobi) and stopping the solution procedure once the

first (integer) feasible solution is found. If Q′(I,m, u) is infeasible, then we know that no feasible

solution exists with objective value in the interval [m,u], so we set a tighter upper bound given by

u = m − ε, where ε > 0 represents a predetermined tolerance. If the value of z(y) is integer for any

attack satisfying Constraints (3) and (4), then ε = 1. This is the case of the interdiction version of

problems such as shortest path, facility location, and knapsack, among others, where it is also typically

assumed that parameters are integer valued.
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We iterate this procedure until l ≥ u. Upon termination, l is is the optimal value of Q′(I) and the

last feasible solution found is an optimal solution. The bounds m and u encountered when solving

problem Q′(I,m, u) can be used to further strengthen the solution to Problem Q′(I). The lower bound

m can be used to derive supervalid inequalities, as described in Section 4.4. The upper bound u,

on the other hand, can be used to tighten Constraints (2). Using the results from [60], we define

d̃i = max{0,min{di, u− γ(x)}}, for each i ∈ I and x ∈ X (I). As a result, the inequality

λ ≤ γ(x) +
∑

i∈I(x)

d̃iyi. (5)

is valid for Problem Q′ because no attack will improve the optimal value of the attacker’s problem

beyond u (a valid upper bound). We emphasize that u is always an upper bound on Q′ (up to a

tolerance of ε) along the binary search because it is only updated when Q′(I,m, u) is infeasible, thus

we know there is no feasible solution with objective value in the interval [m,u]. Inequalities (5) are

tighter than their counterpart in Constraints (2) (i.e., for the same x ∈ X (I)) because d̃i ≤ di for

any i ∈ I(x). Moreover, we point out that as the algorithm progresses and the value of u declines,

Inequalities (5) become tighter.

4.3 Cutting-planes algorithm

In this section, we describe a cutting-planes algorithm to find a feasible solution to Problem Q′(I,m, u)

or to determine its infeasibility at any iteration of the binary search. The underlying motivation is

twofold. First, for a given I, not all of the constraints

λ ≤ γ(x) +
∑

i∈I(x)

diyi, x ∈ X (I) (6)

are needed to determine the feasibility of a candidate solution (y, λ) to Q′(I,m, u), but only that

with the minimum value of γ(x) among x ∈ X (I). Second, set X (I) can be potentially very large to

enumerate even for a small index set I. For these reasons, we maintain a subset of Constraints (6) and

add new constraints as needed in a cutting-plane fashion until we find a feasible attack to Q′(I,m, u).

To formally describe this algorithm, we define X̄ (I) ⊆ X (I) as a subset of follower actions for a given

subset I. We also define Problem P (y, I) as the version of Problem P (y) that only uses problem

elements (i.e., variables or constraints) that are indexed in I. Note that P (y, I) is always feasible by

construction of X and because X̄ (I) ⊆ X (I) ⊆ X . Moreover, we define Q̄′(I,m, u) as the version of

Problem Q′(I,m, u) with Constraints (6) only for x ∈ X̄ (I).

Algorithm 2 describes our strategy. Line 1 finds a follower solution to initialize set X̄ (I) by solving

Problem P (1, I). This line also computes γ(x), which is necessary to solve Q̄′(I,m, u). Line 2 initializes

set X̄ (I) and the objective values to Problems Q̄′(I,m, u) and Q′(I,m, u) as −∞, respectively. Line 3

seeks a feasible solution to Problem Q̄′(I,m, u). If no solution is found, then the algorithm goes to

Line 9 and returns λ̄ = −∞, indicating that Q′(I,m, u) is infeasible. Otherwise, the feasible attack

is stored in ȳ and its objective function value in λ̄. The while-loop in Lines 4–9 verifies that the

current attack is feasible to Problem Q′(I,m, u), otherwise adding follower solutions to X̄ (I). Line 5

solves Problem P (ȳ, I) to find the follower’s response to attack ȳ and its corresponding γ-value.

This response is added to set X̄ (I) in Line 6, which also calculates the objective function value of

the combined attacker-follower decisions, which we denote by λI . Line 7 seeks a feasible solution to

Problem Q̄′(I,m, u) using the updated set X̄ (I). If none is found, then the algorithm returns λ̄ = −∞.

Otherwise, the information of such feasible solution is stored and the loop goes back to Line 4. Note

that λ̄ > λI indicates that attack ȳ is infeasible to Q′(I,m, u), because there is a follower solution

x̄ ∈ X (I) such that λ̄ > λI = γ(x̄) +
∑

i∈I(x̄) diȳi, which violates Constraints (6). Upon termination,

Algorithm 2 returns a feasible solution to Problem Q′(I,m, u) because any feasible attack to Problem

Q̄′(I,m, u) satisfies the budget constraint and also because the termination condition of the while-

loop indicates that λ̄ ≤ λI = γ(x̄) +
∑

i∈I(x̄) diȳi ≤ γ(x) +
∑

i∈I(x̄) diȳi, ∀x ∈ X (I), where the

last inequality holds given the results in Proposition 1 with x̄ being an optimal solution to P (ȳ, I).
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Algorithm 2 finishes in a finite number of iterations because the number of feasible solutions to Problem

Q′(I,m, u) is finite, if any exist.

In practice, we implement Algorithm 2 as a conventional Branch-and-Cut algorithm, in which

feasible solutions in Lines 3 and 7 correspond to local solutions at any active node in the exploration

tree. Line 5 acts as a separation problem that creates an optimality cut that is imposed in Line 6 by

adding a new element to set X̄ (I). In this case, the algorithm stops once the solution at an active

node is found to be feasible after solving the separation problem. Further, the initialization of X̄ in

Lines 1 and 2 can include attacks from previous iterations of Algorithm 1 and other problems within

the binary search. Also, the problem of finding feasible attacks to Q̄′(I,m, u) in Lines 3 and 7 is further

strengthened by using the valid inequalities described in Section 4.4.

Algorithm 2 Cutting-plane algorithm for finding a feasible solution to Q′(I,m, u)

1: Solve P (1, I) to obtain a solution (x̄, w̄) and compute γ(x̄) = cT x̄ + gT w̄.
2: Initialize X̄ (I) = {x̄}, λ̄ = −∞, and λI = −∞.
3: Obtain a feasible solution ȳ to Q̄′(I,m, u) and denote its objective value by λ̄.
4: while λ̄ > λI do
5: Solve P (ȳ, I) to obtain an optimal solution (x̄, w̄) and compute γ(x̄) = cT x̄ + gT w̄.
6: Add x̄ to X̄ (I) and update λI ← γ(x̄) +

∑
i∈I(x̄) diȳi.

7: Obtain a feasible solution ȳ to Q̄′(I,m, u) and denote its objective value by λ̄. If none found, set λ̄ = −∞.
8: end while
9: return ȳ, λ̄.

4.4 Supervalid inequalities

Supervalid inequalities, as defined by Israeli and Wood [51], are inequalities that that may cut in-

teger feasible or even optimal solutions but guarantee that at least one optimal solution is saved in

an incumbent. We use super-valid inequalities to tighten the problems solved in Lines 3 and 7 in

Algorithm 2, which need to be solved multiple times for each Problem Q′(I,m, u) at every iteration

of the binary search procedure. The goal of the supervalid inequalities is to speed up the search for a

feasible solution to Problem Q′(I,m, u) or to quickly determine its infeasibility while taking advantage

of the existing lower bound m. In this context, we use the following alternative definition of super-valid

inequalities [83].

Definition 1 Given an objective function value m, an inequality aTy ≥ b, with a, y ∈ Rn, for some

integer n > 0, and b ∈ R, is super-valid if aT ŷ ≥ b for all feasible ŷ having an objective function value

greater than m.

Using Definition 1, we construct supervalid inequalities for problem Q′(I,m, u) corresponding to

follower solutions x ∈ X such that γ(x) < m. If this is the case, we know that at least one attack

can be executed so that m ≤ γ(x) +
∑

i∈I(x) diyi. Whenever an inequality (5) is added, we also add a

constraint of the form ∑
i∈I(x)

yi ≥ k(x,m), (7)

where k(x,m) is constructed according to the following steps.

• Step 1: Sort indices in I(x) in nonincreasing order with respect to d-parameters, in such a way

that dI1 ≥ dI2 ≥ · · · ≥ dIt with t = |I(x)|.
• Step 2: Define k(x,m)← arg mins{s :

∑
1≤k≤s dIk ≥ m− γ(x)}.

Inequality (7) is supervalid for problem Q′(I,m, u) because, if not satisfied, an action of value strictly

lower than m could be attained by the follower, meaning that m is not a valid lower bound. This

means that in addition to reducing the time to find a feasible solution, supervalid inequalities in (7)

also help reduce the time to declare the infeasibility of Q′(I,m, u). Similar to Inequalities (5), as the

algorithm progresses and the value of m increases, Inequalities (7) become tighter.
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5 Computational results

We use our progressive approximation method to solve the interdiction version of three problems:

shortest path, 0-1 knapsack, and facility location. In all these problems, we assume that the budget-

constrained attacker can only modify the cost of the follower’s binary decision variables in the objective

function, as stated in the definition of Problem Q. Although we only focus on these three problems,

our solution strategy is general for any problem that can be written as Problem Q.

We report the performance of our method for a set of randomly generated instances as well as

for instances available in the literature. Although data sets exist for the non-interdiction variants

of the 0-1 knapsack and facility location problems, as well as for 0-1 knapsack with interdiction, we

created new sparse data sets to illustrate the scalability of our method under the conditions noted in

Remark 1. This is because in most of the existing data sets, the follower’s optimal solution is dense

(i.e., the number of nonzero binary variables in an optimal solution is large with respect to the total

number of variables) and our method is designed to exploit the optimal solution’s sparsity. For the

shortest-path interdiction problem, we present a comparison of our method with the method of Lozano

and Smith [60], which to our knowledge is the state-of-the-art for such problem. Naturally, sparsity

is not the only factor determining the solution time. Other factors such as the relative magnitudes

between c- and d-parameters also play a role. All the data sets used in this article, either new or

existent, are available at http://claudio.contardo.org.

Our implementation uses Julia 1.1 with the JuMP interface v18.5 and IBM CPLEX 12.8 as mul-

tipurpose optimization solver, which runs on an Intel Xeon E5-2637 v2 @ 3.50 GHz with 128 GB of

RAM. Although this machine is capable of executing code in parallel, for reproducibility purposes we

only use one core per run. In all our algorithms we parameterized the MSILS procedure with T1 = 500

(i.e., number of random attacks generated), T2 = 50 (i.e., the number of attacks kept to solve P (y)),

T3 = 5 (i.e., the number of attacks used in the multi-start procedure), and H = 100 (i.e., the number

of attacks to for the surrogate estimation of an attack’s performance).

5.1 Shortest path interdiction

We generate shortest-path interdiction games using nine very-large-scale road networks available in

the literature. These networks appeared in the 9th DIMACS Implementation Challenge [1] and contain

between 35,697 and 20,394,245 arcs. Some of these instances are undirected, so we follow the directions

provided by Raith and Ehrgott [73] to make them directed while ensuring their connectivity. Table 1
provides the number of nodes and arcs after the necessary modifications for each data set. Data sets

RI, NJ, NY, FL, CA, TX, and DC contain the road networks of the states of Rhode Island, New Jersey,

New York, Florida, California, and Texas, as well as the District of Columbia, all in the United States.

Similar to Lozano and Smith [60], we produce nine instances for each network by randomly generating

the same number of OD-pairs.

Table 1: Road networks

Data set # Nodes # Arcs

DC 9,559 35,697
RI 56,658 171,413
NJ 330,386 1,062,339
NY 716,215 2,214,801
FL 1,048,506 3,284,715
CA 1,613,325 4,901,941
TX 2,073,870 6,437,637
USE 3,598,623 11,727,919
USW 6,262,104 20,394,245

We compare our method against the backward sampling method of Lozano and Smith [60], which

we recompiled and executed on the exact same machine. To make the comparison, we disable the

fortification stage in the backward sampling method, so the resulting method resembles Problem Q.

http://claudio.contardo.org
http://www.dis.uniroma1.it/challenge9/download.shtml
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Moreover, β-parameters in Problem Q are all equal to one, as required by Lozano and Smith’s method.

In other words, the cost of each attacker’s action is unitary, which reduces Constraint 3 to a cardinality

constraint. We use budgets (i.e., ∆) varying between 1 and 20 units.

Table 2 presents the average CPU time (in seconds over the nine generated instances) taken by

each method to solve each set of instances for the same budget. We allow each method to run for 24

hours and record the time to obtain an optimal solution, if achieved. The backward sampling method

rapidly runs out of memory for any budget and any instance from the data sets NY, FL, CA, TX,

USE and USW. For this reason, we restrict the comparison to the three smaller data sets, DC, RI,

and NJ, where both algorithms successfully solve all instances to optimality within the time limit. We

observe in Table 2 that the backward sampling method is faster on average for all network sizes and

budgets considered. However, the proposed progressive approximation is still competitive, considering

that the backward sampling method cannot scale beyond the network sizes in Table 2.

Table 2: Average CPU time to solve the shortest-path interdiction problem using the proposed progressive approximation
method and backward sampling framework [60]

Set
Progressive approximation Backward sampling

∆ ∆
1 3 5 10 15 20 1 3 5 10 15 20

DC 19.4 19.9 20.5 21.1 22.7 24.7 2.9 2.9 3.3 7.0 8.4 15.1
RI 20.6 23.0 25.5 39.3 110.5 211.6 4.7 9.1 14.0 26.1 65.9 113.4
NJ 28.8 42.1 54.5 151.5 415.2 1,302.5 22.7 35.3 51.9 106.0 188.9 647.9

We now report the performance of our method when solving the very-large-scale interdiction prob-

lems on road network data sets NY, CA, FL, TX, USE and USW. Table 3 shows the number of

problems solved to optimality (column #Opt), the average CPU time to solve those instances (column

CPU, in seconds), and the average number of edges required to achieve optimality (column |E|) for

different budgets. We only report the average CPU times and the average number of edges for those

problems solved to optimality within the time limit. Moreover, we include the number of edges nec-

essary to unvelil the optimal solution to illustrate the effectiveness of our solution strategy in keeping

the size of the problem small.

Table 3 shows that the scalability of our method is less sensitive to the size of the underlying

network than to the attacker’s budget. This is because a larger budget admits more elements in the

support of the x-decision variables, which implies that I-sets are larger and problems in Line 4 of
Algorithm 1 are harder to solve. Although a larger network implies more choices available for the

agents, the nature of the problem guarantees that the follower still uses a small portion of the network,

which is what our method exploits (recall that any shortest-path uses no more than n− 1 arcs, where

n is the number of nodes in the underlying network.) Further, Table 3 shows that the progressive

approximation is able to solve all problems with ∆ ≤ 10 and most of those with a larger budget within

the time limit. This is because our approximation only uses very small portion of the total number of

edges (∼0.06% in the worst-case for NY and ∆ = 20) to identify an optimal solution to the problem

over the full network. As a result, the scalability of our method is superior to other methods available

in the literature for these types of instances.

Table 3: Average CPU time to solve the shortest-path interdiction problem on very-large-road networks

Set
∆ = 1 ∆ = 3 ∆ = 5 ∆ = 10 ∆ = 15 ∆ = 20

#Opt CPU |E| #Opt CPU |E| #Opt CPU |E| #Opt CPU |E| #Opt CPU |E| #Opt CPU |E|

NY 9 53.4 283 9 86.6 502 9 114.1 668 9 448.1 997 9 1,587.6 1,297 6 1,594.0 1,135
CA 9 106.6 285 9 179.3 466 9 264.8 694 9 631.1 1,053 9 1,301.1 1,341 7 6,292.2 1,400
FL 9 68.5 256 9 132.8 459 9 165.9 594 9 479.4 979 9 1,542.8 1,345 8 9,708.8 1,515
TX 9 115.1 239 9 176.1 366 9 268.7 479 9 513.1 789 8 1,495.4 950 8 3,367.0 1,160
USE 9 172.0 151 9 295.3 308 9 519.9 433 9 1,151.6 703 7 9,023.5 948 2 13,063.6 1,035
USW 9 316.1 173 9 588.7 291 9 915.3 405 9 2,182.8 588 8 3,392.1 813 5 9,897.6 855
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5.2 0-1 Knapsack interdiction

We study a new variant of the 0-1 knapsack interdiction problem in which the follower solves a tradi-

tional knapsack problem aiming to maximize the value of the chosen objects, while the attacker aims

to decrease the value of a subset of objects subject to a budget constraint. That is, objects are still

available for the follower but with less value. We test the performance of our progressive approximation

on a set of randomly generated instances for this new problem. Although several data sets exist for

knapsack problems in the scientific literature, none of them is useful to illustrate both the benefits and

the limits of our method. The instance generators provided by Caprara et al. [22] and DeNegre [36]

produce problems where a substantial number of items can be chosen by the follower in an optimal

solution, meaning that the follower’s solution is not sparse. As a result, the progressive approximation

scheme becomes of no practical use as problems in Line 4 of Algorithm 1 quickly become as difficult to

solve as the original problem (see Remark 1). Because this problem has a min-max nature, we modify

Problems Q and P accordingly, without any further algorithmic change.

We use the following procedure to construct instances containing 10, 000, 100, 000, and 1, 000, 000

objects with small knapsack capacities. The nominal value ci of an object is randomly picked using

an uniform distribution in the interval [1; 1, 000]. For each object, the decrease in value induced by

the attacker, di, is randomly selected from the interval [1, dmax] with dmax ∈ {125, 250}. Because of

the large number of objects available in the knapsack and the relatively small knapsack capacity (i.e.,

budget), we avoid using uniform distributions to generate the objects’ weights. The reason is that

using uniform distributions will tend to produce many items with a very large value-to-weight ratio,

and thus make the follower’s problem trivially solvable. Instead, we generate the objects’ weights

using a two-step procedure. First, for every item i we generate a random number ξi using a normal

distribution with parameters µ = 100 and σ = 30. Then, the weight ai of object i is computed as

ai ← max{1, dξie}. The same weight generator is used to calculate the attacker’s β-parameters in

Constraint (3). To generate the knapsack capacities for the attacker and follower problems, we use

values b ∈ {200, 400} and ∆ ∈ {500, 1000, 2000}, respectively. This instance generation procedure

produces a diverse range of object weights, admitting objects with large value-to-weight ratios—i.e.,

with high values and low weights—which results on knapsacks being able to fit several hundred objects

for some of the larger instances. However, these cases are less frequent compared to that when uniform

distributions are used. Similar to the shortest-path interdiction problem, we use a time limit of 24

hours and generate nine instances for each possible combination of b and ∆ parameters.

Tables 4–6 summarize the results for the 0-1 knapsack interdiction problem, where N is the number

of available objects. For each combination of parameters, we report the number of problems solved to

optimality and the minimum, average, and maximum CPU times (in seconds) taken by our algorithm

to solve each set of instances. We report the average CPU time only for those instances solved to

optimality within the time limit. Our method can solve most of the generated instances (only two

instances timed out), illustrating our algorithm’s limit.

We emphasize that due to memory issues, we use a different algorithm to handle the 0-1 knapsack

problems in Line 6 of Algorithm 1 and Line 5 of Algorithm 2. That is, problems P (y) and P (y, I),

respectively. Because problem Q′(I) is restricted to a typically small subset of objects indexed in I,

we use dynamic programming for the solution of the associated 0-1 knapsack problem P (y, I). Using

a similar approach for problems P (y) would require a prohibitively large amount of RAM. Instead, we

formulate P (y) as pure-integer linear programs and use a conventional integer programming solver to

find their solution.

As expected, the knapsack capacities have a significant impact on our method’s scalability. Small

values for the knapsack capacities (both the follower’s and the attacker’s problems) result in easier

problems. Further, the number of items does not seem to have a significant impact on the CPU times.

Problems with 1M nodes are not 100x more difficult than those with 10,000 nodes. This is due to the

solution strategy that keeps the problem size moderate even when the initial problem is very large.

Moreover, the impact of dmax becomes more relevant for the difficult problems. For small knapsack
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capacities with a small number of objects, the value of dmax seems to have less impact compared to

those problems with large capacities and large number of objects.

Using the same instance generation procedure, we explore solving problems containing 10M objects,

with larger knapsacks capacities, or using dmax = 500. Although we solve some instances, these

problem size cannot be solved in general by our algorithm.

Table 4: Progressive approximation for 0-1 knapsack interdiction with N = 10, 000

∆ b
dmax = 125 dmax = 250

#opt min avg max #opt min avg max

500 2000 9 23.3 27.3 35.6 9 25.0 29.3 35.8
4000 9 32.7 45.2 58.9 9 39.4 60.4 91.7

1000 2000 9 29.6 36.2 50.9 9 31.9 42.2 61.5
4000 9 58.4 105.4 163.8 9 76.9 194.2 504.8

2000 2000 9 39.9 66.8 132.1 9 53.6 197.3 657.8
4000 9 158.0 263.7 462.1 7 190.6 798.0 TL

Table 5: Progressive approximation for 0-1 knapsack interdiction with N = 100, 000

∆ b
dmax = 125 dmax = 250

#opt min avg max #opt min avg max

500 2000 9 46.8 55.1 59.4 9 43.3 54.6 83.3
4000 9 64.5 92.4 154.7 9 81.5 121.4 199.0

1000 2000 9 61.7 74.8 108.1 9 77.3 96.6 146.5
4000 9 114.3 227.0 484.4 9 149.9 335.3 631.7

2000 2000 9 116.6 190.4 348.9 9 178.5 295.3 695.1
4000 9 230.8 651.3 1,543.3 9 680.8 1,950.6 5,824.0

Table 6: Progressive approximation for 0-1 knapsack interdiction with N = 1, 000, 000

∆ b
dmax = 125 dmax = 250

#opt min avg max #opt min avg max

500 2000 9 196.7 240.8 293.0 9 168.1 261.5 351.6
4000 9 261.4 367.2 480.9 9 350.8 590.0 1,345.9

1000 2000 9 287.2 481.7 1,202.2 9 327.5 665.5 1,412.8
4000 9 376.4 649.2 939.8 9 759.4 1,683.9 6,883.8

2000 2000 9 417.8 868.6 1,350.4 9 689.8 2,230.2 3,861.6
4000 9 1,356.0 1,953.8 2,948.2 9 1,834.6 4,801.6 11,133.3

5.3 Facility location interdiction

We now assess the effectiveness of our method when solving the interdiction version of some facility

location problems (FLPs). Although our modeling and algorithmic approach can solve many variants

of FLPs, we focus on the uncapacitated FLP (UFLP) and the single-source capacitated FLP (SS-

CFLP). Extensive literature exists on the classical versions of FLPs, but very few works focus on their

interdiction counterpart. To our knowledge, there is no study that focuses on the interdiction version

of UFLP and SSCFLP in which location costs can be increased by an attacker who is subject to a

general budget constraint.

In UFLP, the input data consists of two sets, I and J , representing the set of potential facilities and

customers, respectively. A fixed cost fi is associated with selecting location i ∈ I, which is typically

related to the fixed operational cost of using a facility. Parameters cij describe the cost per unit of

satisfying the demand of customer j from facility i. The goal is to open a subset of facilities and

to assign customers to the open facilities at minimum total cost in such a way that every customer

is assigned to exactly one facility. In addition to the elements in UFLP, in SSCFLP customers have

known demands denoted by qj , j ∈ J . Moreover, there is a finite capacity for each facility, denoted
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by Ki, that limits the amount of units available for customers. This capacity constraint makes the

SSCFLP harder to solve because of the bin-packing problem lies underneath its feasibility. In addition,

integrality constraints on the asignment variables become necessary, which are otherwise redundant for

the uncapacitated variant. As a result, the SSCFLP is substantially harder to solve than the UFLP.

We employ binary variables yi to indicate whether facility i ∈ I is chosen. Further, for every pair

facility-customer, we use binary variable xij to indicate whether customer j ∈ J is assigned to facility

i ∈ I. Using these elements, we formulate UFLP and SSCFLP as mixed-integer problems [see, for

instance 50] and solve them using a commercial solver. Certainly, significant speed-ups can be achieved

if customized solution algorithms are used. For state-of-the-art algorithms for these two problems we

refer the reader to Fischetti et al. [39], Gadegaard et al. [44]. The resulting integer program for the

SSCFLP is shown in (8)–(11).

min
∑
i∈I

fiyi +
∑

i∈I,j∈J
cijxij (8)

s.t.
∑
i∈I

xij = 1, j ∈ J (9)∑
j∈J

qjxij ≤ Kiyi, i ∈ I (10)

x ∈ {0, 1}|I|×|J|, y ∈ {0, 1}|I|. (11)

In the absence of capacities, the (allocation) x-variables can be relaxed to take values in [0, 1] and the

model still yields an integer solution. Indeed, once the (location) y-variables are known, each customer

can be assigned to the closest open facility. It is well known in the literature that Inequalities (10)

are weak linking constraints. However, they are necessary in SSCFLP, whose formulation can be

strengthened with the stronger constraints

xij ≤ yi, ∀i ∈ I, j ∈ J. (12)

Constraints (12) can be added as-needed to (8)–(11) in a cutting plane fashion or all at once to

strengthen the linear relaxation. The formulation for UFLP consist of minimizing (8) subject to (9), (12),

x ∈ [0, 1]|I|×|J|, and y ∈ {0, 1}|I|.

To guarantee the sparsity in the optimal solution, we generate a new set of instances for the two

FLP variants of our interest. We generate random demands using an integer uniform distribution

in the interval [1, 100] for 500 and 1000 customers. We assume that only location decisions (i.e., y-

variables) can be interdicted, which is the usual assumption in the literature [4, 5, 6]. We use 50 and

100 candidate facilities, whose fixed and interdiction costs (i.e., d-parameters in Problem P ) are integer

values uniformly selected from the intervals [8, 000; 10, 000] and [1, 000; 3, 000], respectively. Facility

and customer locations are randomly distributed in a square of dimensions 1000x1000. Using such

locations, the cost of assigning customer j to facility i, cij , is computed as the euclidean distance in

the plane multiplied by a random number uniformly distributed in the interval [0.9; 1.1]. Therefore,

our instances may not satisfy the triangle inequality. We use parameter κ to control the number of

facilities to locate in an optimal solution. Defining D as the sum of all customer demands, the average

demand a facility is expected to cover is D̂ = D/κ units. Therefore, capacities are randomly generated

using an integer uniform distribution in the interval [d0.9D̂e; d1.1D̂e]. We use κ = 5 in all experiments

and vary the attacker budget using integer values in the interval ∆ = [1, . . . , 5]. We assume that the

interdiction costs (i.e., β-parameters) are unitary. Following this instance generation approach, we

guarantee that all quantities (demands, costs, capacities) are integer. For each parameter setting, we

generate nine problems and set a solution time limit of 24 hours.

Tables 7 and 8 show the performance of our method when solving UFLP and SSCFLP, respectively.

In these tables, we report the minimum, average and maximum CPU times among all the instances
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solved to optimality for the same parameter configuration. We observe that the interdiction versions

of UFLP and SSCFLP maintain the same hierarchy of complexity than their non-interdiction counter-

parts, where UFLP is easier to solve than SSCFLP. This behavior is mainly due to the complexity of

the core problems, given that problem P (y) in our algorithm is still a FLP. Although not reported in

the tables, we observe that the number of iterations required to achieve optimality is similar regardless

of the instance and parameter configuration. This shows that our algorithm has the potential to scale

as long as the subproblems at each iteration are solved within reasonable time. Further, we observe

that changes in the attacker’s budget impact the CPU time in a similar way than in the shortest path

and 0-1 knapsack interdiction problems, where a larger budget results in a more difficult problem to

solve. The effectiveness of our progressive approximation method on these instances is also due to both

parameter κ and the fixed costs, which keep the number of optimal locations low for any interdiction

pattern. This feature results in restricted interdiction problems Q′(I) with an equally low number of

binary variables, which helps at keeping all subproblems tractable.

Table 7: CPU time (in seconds) for UFLP with interdiction using progressive approximation

|I| ∆
|J | = 500 |J | = 1000

#opt min avg max #opt min avg max

50 1 9 51.1 83.9 154.1 9 135.5 575.6 1,255.3
50 2 9 120.2 168.7 231.9 9 402.9 1,407.5 2,828.6
50 3 9 129.7 325.4 712.3 9 604.8 2,505.1 4,221.4
50 4 9 224.2 484.9 821.6 9 854.2 3,527.8 6,399.8
50 5 9 291.2 501.4 940.2 9 467.3 3,737.1 7,705.5

100 1 9 166.0 271.6 415.9 9 277.2 1,248.8 1,819.9
100 2 9 349.7 963.1 1,668.8 9 743.4 3,824.2 8,291.3
100 3 9 668.3 1,779.7 3,463.9 9 1,269.7 6,454.0 12,012.2
100 4 9 1,045.7 2,332.1 4,595.1 9 5,776.0 8,624.5 14,586.5
100 5 9 980.4 2,582.8 5,690.8 9 4,294.4 12,308.1 29,031.9

Table 8: CPU time (in seconds) for SSCFLP with interdiction using progressive approximation

|I| ∆
|J | = 500 |J | = 1000

#opt min avg max #opt min avg max

50 1 9 149.4 573.2 1,604.9 9 182.9 1,177.2 2,899.0
50 2 9 234.4 1,712.8 5,776.7 9 626.2 2,564.8 4,760.2
50 3 9 353.6 2,815.4 11,226.2 9 830.7 5,112.6 11,888.8
50 4 9 1,108.5 4,511.0 9,338.1 9 1,340.8 7,532.5 15,810.2
50 5 9 2,350.7 6,850.9 13,370.8 9 1,492.1 9,626.2 23,622.3

100 1 9 2,044.9 4,572.6 12,517.8 9 2,110.0 4,926.9 8,329.3
100 2 9 3,831.0 9,765.0 23,290.1 9 5,538.9 15,551.8 32,304.7
100 3 7 9,812.2 23,084.3 51,189.4 9 7,022.2 23,890.6 51,788.5
100 4 7 12,961.6 26,452.0 55,934.4 9 17,439.5 34,424.9 60,765.2
100 5 8 18,536.5 43,235.3 79,470.4 8 18,722.2 47,209.1 80,734.3

6 Concluding remarks

In this article we introduce a progressive approximation method for several classes of interdiction

games in which two players —namely an attacker and a follower— interact sequentially. The attacker

chooses a subset of decision variables from the follower’s optimization problem and increases their cost.

The follower aims at solving a combinatorial optimization problem to minimize its a cost function

that is affected by the attacker’s actions. From the attacker’s point of view, the objective is to

maximize the minimum objective function value achieved by the follower. The proposed progressive

approximation framework constructs smaller interdiction games in an iterative fashion, which are

proven to yield the optimal solution of the complete game. Under certain conditions, these games are

orders of magnitude smaller than the original interdiction game, making problems that could not be

handled using conventional techniques tractable. Through an exhaustive computational campaign, we

demonstrate that the proposed progressive approximation framework can be useful to solve problems
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that are orders of magnitude larger than those solved with traditional methods. The new framework

is not only effective, but also general as it can handle a vast family of interdiction games.

We identify several potential avenues for future research. First, to study the benefits of embedding

the progressive approximation method within a three level Stackelberg game in which follower’s deci-

sions also include the protection (or fortification) of some assets before the attacker’s actions occur.

Second, to assess the effectiveness of the progressive approximation scheme for the solution of other

classes of interdiction games or bilevel programs. Third, to reduce the sensitivity of the proposed

scheme to the sparsity of the follower actions, which as of now is required for the method to be useful

in practice.

Appendix

See the online appendix for Tables 9–102.
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[39] M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning benders decomposition for large-scale facility location.
Management Science, 63(7):2146–2162, 2016.
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