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l’accès au travail et enquêterons sur votre demande.
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Abstract: Intermittent renewable energy, such as solar and wind, brings uncertainty into the grid. To
increase their contribution into the energy mix, load management solutions are necessary to correct the
resulting typical mismatches between generation and demand. This can be achieved rather effectively
with thermostatic loads such as space heaters or water heaters by considering them as means of storage.
This article proposes a mean field game-based controller to provide load flexibility into the grid using
a multi-layer water heater model. A uniform local state feedback law is used to track the temperature
trajectory specified by an aggregator for the group of controlled devices. The law is computed via a near
fixed-point algorithm. A scheduling problem for the desired mean water heater target temperatures
over a time horizon is formulated to find the maximum flexibility available from the group of loads
while maintaining the typical post-control load oscillations within predefined bounds over a fixed time
period. The solution of the scheduling problem is obtained by solving a linear optimization problem
with upper and lower bounds on the power drawn by the group to converge to an acceptable mean
temperature schedule.

Keywords: Smart Grid, thermal storage, mean field games, optimal control

Acknowledgments: This research was supported by the NSERC Energy Storage Technology Network
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Nomenclature

Parameters

xl,t Temperature of layer l at time t
ūl,t Energy input by heating at layer l at time t
ṁin

t Rate of water extraction at time t
Q̇l Presence/absence of a heating element in layer l
xenv Temperature of the surroundings
xin Inlet fluid temperature
xlow Lower comfort temperature
xhigh Upper comfort temperature
Ml Fluid mass in layer l
Al Lateral surface of layer l
Cpf Specific heat of the fluid
U Loss coefficient between tank and surroundings
V̇mix
j Flow for extraction of type j
Nwh Number of water heater considered
∆t Time discretization step
Tstart Time at which control of water heaters starts
Tend Time at which control of water heaters stops
T1 Time separating in two the control horizon, on each separate interval the objective is slightly different.

See Figure 2 for details.
dt Uncontrolled demand at time t
pbt Base aggregate water heater power demand at time t
xmix Temperature desired by the customer
V̇mix
j Rate of extraction for events of type j
ζj,∞(t) Quasi steady-state probability of state j of the water extraction Markov Chain associated to the infinites-

imal generator Lt defined by

{
ζ∞(t)Lt = 0∑
j∈Θ

ζj,∞(t) = 1

ρ Water density
V Water heater volume
A Water heater surface area
Cdirection Indicator for increase (+1) or decrease (-1) in power consumption
rrebound The acceptable range for the post-control rebound
cd a integer coefficient for the bisection alike method.

Decision variables

et Energy stored in the water heaters at time t
ϕt Energy to inject in the water heaters at time t

1 Introduction

Many jurisdictions have adopted energy transition policies that focus on increasing the use of intermit-

tent renewable energy sources in the electricity mix. However, a massive introduction of such sources

brings new challenges linked to the instability they can potentially bring to the electricity grid because

their power generation is highly variable during the day. To increase the integration of power produced

by these sources, it is essential to have sufficient means to ensure the balance between generation and

demand. This balance is often achieved by high marginal cost generation such as gas-fired plants

(when renewable power is insufficient) or by curtailing renewable generation (when too much of it is

available). Load management is thus a promising means to support greater integration of renewables.

Load management or demand response consists in controlling flexible loads to compensate for the

fluctuation of generation. Much research has been done to quantify the demand response potential

for peak reduction and load shifting, see e.g. [1, 2]. Projects such as PowerShift Atlantic [3] have

demonstrated that this is both technically possible and economically promising. Industrial customers

can already participate in demand response programs in Ontario [4].

In order to make residential load management programs possible, a new entity needs to enter into

play: the aggregator. Indeed, on its own, a residential building or house has only a negligible impact on

the balance of the grid, but when aggregated, the group can have a significant impact. The role of the
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aggregator is thus to offer a flexibility product on the electricity market while incentivizing consumer

participation [5,6]. In particular, resildential customers can participate via the energy storage potential

of various devices such as batteries, water heaters, and space-heaters. However, few studies address

the important question of the nature of the offers that aggregators of residential loads can reasonably

bid in markets [7].

This paper proposes a flexibility product that a water heater aggregator could offer. water heaters

have significant potential because they are already present in large numbers in many residential con-

texts. However, to achieve this, the aggregator needs a control strategy for the consumption of large

numbers of water heaters, and this large-scale coordination involves various challenges. The recent

SMARTDesc project [8] explored the possibility of using water heaters for load management and

developed a decentralized control architecture to manage them using a relatively recent theoretical

development, namely mean field game theory [9, 10].

Mean field game theory is at the intersection of statistical mechanics, game theory and optimization.

This theory is devoted to the analysis of games with a large numbers of players who have negligible

individual impact but collectively create a stable mass effect [11,12]. The corresponding controls have

several advantages, including decentralization and communication parsimony. In this paper we adopt

the mean field control strategy as it seems ideally suited for the large-scale control problem at hand.

There are two main contributions in this paper. The first one is the extension of a near fixed-point

algorithm, first proposed for space-heaters in [13], to the case of water heaters. It is a way of deriving

a decentralized control law of individual water heaters that yield an overall behavior consistent with

the aggregator’s target. The second one is the development of a scheduler that produces mean target

temperatures for the group of controlled water heaters, inspired by [9]. These mean target temperatures

correspond to the maximum load decraese or increase that the aggregator can offer while preserving

customer safety and comfort, and meeting post-control power oscillation amplitude constraints upon

restoration of ordinary thermostatic control.

This paper is structured as follows. In Sections 2 and 3 we summarize the water heaters model and

the control used for this work and developed in [10]. Section 4 presents the near fixed-point algorithm,

and Section 5 described the optimization problem to evaluate the possible flexibility offer. Section 6

discusses the simulation results obtained for the proposed strategy. Section 7 concludes the paper.

2 Water heater model

To describe the dynamics of the temperature of a water heater, we model the tank using n equal

volume layers with uniform temperature as shown in Figure 1. This model reflects the stratification

of temperature in a typical tank.

ṁinx1

xenv

xn

xn−1

...

...

x2

x1

ṁinxin

Figure 1: Water heater model
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The thermal dynamics are described by the energy balance in each layer:

MlCpf
dxl,t
dt

=UAl(xenv − xl,t) + Q̇lūl,t (1a)

+ ṁin
t Cpf (x(l+1),t − xl,t), l 6= n,

MlCpf
dxl,t
dt

=UAl(xenv − xl,t) + Q̇lūl,t (1b)

+ ṁin
t Cpf (xin,t − xl,t), l = n.

Note that ṁin
t is modeled as a piece-wise constant process with the extraction and transition rate

evolving according to a continuous time Markov chain,with states θt taking values in Θ = {1, 2, . . . , p},
and an infinitesimal generator denoted Lt = (Lq,k)q∈Θ,k∈Θ as introduced in [14]. Each state j corre-

sponds to a type of water event (no event, dishwashing, showering, etc.) and is associated to a specific

flow V̇ mixj so that ṁin
t = V̇ mixθt

. Note also that we consider only two heating elements, one at the top

of the tank, and one at the bottom. Equations (1) can be written in linear form for all l ∈ {1, . . . , n}
with xt = (x1,t, . . . , xn,t)

T , ūt = (ū1,t, . . . , ūn,t)
T , and Ā(θt), B, c̄(θt) the matrices resulting from this

change of notation. The thermal dynamics thus take the form

dxt
dt

= A(θt)xt +Būt + c̄(θt) (2)

In the optimal control strategy detailed in Section 3, in order to keep the customers comfortable,

we do not penalize the effort to maintain the water heater at its temperature at the start of the control

horizon, but rather the effort to deviate from it when aiming for a different temperature. The thermal

effort to remain on average at the initial temperature is thus obtained for free in our formulation, and

the thermal dynamics can be written as

dxt
dt

= A(θt)xt +But + c(θt) (3)

where A(θt) and c(θt) are modified from (2) to account for the free effort.

3 Control strategy

The control strategy we implement was introduced in [10]. It is based on so called mean field game the-

ory, a theoretical development that occurred in the past 15 years [11,12]. We consider a homogeneous

group of N water heaters, in particular with identical layer structure and water extraction statistics.

Their mean temperature is to follow a target temperature of y. As customary in game theory, a cost

function is attributed to a generic individual water heater i as follows:

JNi (ui, j, t) =E

 T∫
t

[
(Hxi,τ − z)2qyτ

]
dτ |θt = j


+ E

 T∫
t

[
(Hxi,τ −Hxi,0)2qx0

]
dτ |θt = j


+ E

 T∫
t

[
||ui,τ ||2R

]
dτ |θt = j


+ E

[
(Hxi,T − z)2qyT |θt = j

]
+ E

[
(Hxi,T −Hxi,0)2qx0 |θt = j

]

(4)
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where:

• qyt =

∣∣∣∣λ t∫
0

(Hx̄τ − y)dτ

∣∣∣∣;
• z is set to xlow if the objective is to decrease the mean aggregate temperature, and to xhigh if

the objective is to increase that temperature;

• x̄t =
N∑
i=1

1
N xi,t is the vector of mean temperatures of the water heaters;

• H =
(

1
n

1
n · · · 1

n

)
;

• ||ui,t||2R = (ui,t)
TRui,t.

Let us remark that xi,t and x̄t are vectors whose dimension is the number of layers in the tank. Thus

Hxit is the mean temperature of water heater i.

This formulation of the cost function is unusual in that the cost coefficient qyt generating the pressure

to go toward z (first term of (4)) is an integral cost depending on the deviation from the target. This

means that the pressure (either to store energy or to decrease energy power consumption) continues

to build as long as the mean temperature has not reached the target temperature. This temperature

change is partially countered by the second term of (4) which penalizes deviations from the agent’s

initial temperature. Thus, each agent reaches its own specific steady-state with a mean temperature

somewhere between the initial temperature and temperature z, while the overall mean temperature

for the set of water heaters reaches the target y. This happens while minimizing relative temperature

changes in each water heater. Futhermore, those water heaters that can contribute the most are subject

to the highest pressure, and contribute accordingly when computing their best response policy. The

third term of (4), limits the contribution of each water heater to the global effort, in order to favor

local customer comfort. The last two terms represent the final cost.

When the number of controlled water heaters is very large, the laws of large numbers dictate that the

aggregate mean temperature vector x̄t converges to a deterministic (yet a priori unknown) trajectory.

Because that trajectory no longer depends on the actions of individual agents, (4) can be viewed as

an isolated agent, leading to a classical optimal tracking problem. Viewed as a tracking problem for

a linear quadratic regulator, this problem can be solved through a system of Riccati equations with

variables Πj
t and offset variables sji,t [10].

This system can be used to compute the control we need to apply to each individual agent in

order to achieve the common goal of reaching the target temperature. The system depends on the

unknown qyt and to obtain it, we need to consider that individuals optimally responding to the assumed

qyt must collectively produce a mean temperature response x̄t such it replicates the assumed qyt . When

this condition is fullfilled, one can claim that the Nash equilibrium of the game has been reached. The

above argument implies that we need to find the fixed point of the following system:

rClqyt =

∣∣∣∣λ ∫ t

0

(Hx̄τ − y)dτ

∣∣∣∣ (5a)

−dΠj
t

dt
= Πj

tA
j +Aj

T
Πj
t −Πj

tBR
−1BTΠj

t (5b)

+
∑
k∈θ

Lj,kΠk
t + (qyt + qx0)HTH, j ∈ Θ

Πj
T = (qyT + qx0)HTH, j ∈ Θ (5c)

−ds
j
t

dt
= (Aj −BR−1BTΠj

t )
T sjt + Πj

tc
j (5d)

−(qyt z + qx0Hx̄0)HT +
∑
k∈θ

Lj,ks
k
t , j ∈ Θ

sjT = −(qyt z + qx0Hx̄0)HT , j ∈ Θ (5e)
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dx̄jt
dt

= (Aj −BR−1BTΠj
t )x̄

j
t +

∑
k∈θ

Lk,j x̄
k
t (5f)

+ζj,tc
j − ζj,tBR−1BT sjt , j ∈ Θ

x̄t =
∑
j∈θ

x̄jt (5g)

x̄jt = E(1(θt = j)x̄t), j ∈ Θ (5h)

where ζt = [ζ1,t, · · ·, ζp,t] is defined by:
∂ζt
∂t

= ζtL
T (5i)

Computing the fixed point of (5a) corresponds to finding the global strategy of the mean field

game. Then qyt can be used to find the individual control law of each agent. The algorithm used to

find the fixed point is described in the next section.

4 Near fixed-point algorithm

While it is established in [10] that under some technical conditions a fixed points always exists, it may

not always be desirable, i.e, associated with a bounded qyt as t goes to infinity ( or equivalently, a

mean water heater temperature which converges to the target y). We instead look for a desirable near

fixed-point such that the trajectory converges to y when t→∞, which means that the cost coefficient

trajectory qyt (λ) must converge to some qy∞ satisfying the steady state equation of (5a) with x̄∞ = y.

As the convergence to a fixed point with an iterative algorithm highly depends on the choice of the

integration coefficient λ, we modify our approach relative to [10], inspired by the near fixed point

calculations in [13], to rely on the solution of a suitable optimization problem.

Let Sλ(x̄t(λ)) be the solution of (5a) for mean temperature trajectory x̄t and coefficient λ in the

definition of qyt . We want to select the trajectory that is closest to a fixed point within a family of

mean trajectories x̄t(λ) that possess the correct steady-state behavior. This family, first introduced

in [13] for space heaters, is constructed as follows. Let Nq > nq > 1 and t0 > 0. We solve system (5a)

with the cost coefficient

qyt =

{
nqq

y
∞ if t ∈ [0, t0]

qy∞ if t ≥ t0
to obtain x̄1,t and with

qyt =

{
Nqq

y
∞ if t ∈ [0, t0]

qy∞ if t ≥ t0
to obtain x̄2,t. Although they may not be fixed points, these two trajectories satisfy the correct steady-

state behavior and constitute the bounds of the family. The associated lambdas are respectively

λ1 =
qy∞∣∣∫∞

0
(Hx̄1

τ − y)dτ
∣∣ and λ2 =

qy∞∣∣∫∞
0

(Hx̄2
τ − y)dτ

∣∣ .
The family is then defined as

F(f) = {x̄t(λ)|λ =
qy∞∣∣∫∞

0
(Hx̄(λ)τ − y)dτ

∣∣ ,
x̄t(λ) = fx̄1,t + (1− f)x̄2,t,

f ∈ [0, 1], λ ∈ [min(λ1, λ2),max(λ1, λ2)]}.
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Within this family, we select the trajectory that is the closest to a fixed point using the following

optimization problem where the optimiwed variable are on nq, Nq, t0 and f :

min a1

so as to be a fixed point︷ ︸︸ ︷
||x̄t(λ)− Sλ(x̄t(λ))||L2

+a2

convergence to the target︷ ︸︸ ︷
(Sλ(x̄t(λ))(T )− y)2

s.t. x̄1,t, λ1, x̄2,t, λ2 computed as described above

x̄t(λ) ∈ F(f)

Nq ∈ [1, Nmax
q ]

nq ∈ [1, nmaxq ]

t0 ∈ [0, tmax0 ]

where Nmax
q ,nmaxq and tmax0 are chosen arbitrarily, (4,2,5) in our study.

The choice of the length of the control horizon T and of nq and Nq allows us to impose somewhat

the speed at which we wish the aggregate control to operate. The resulting optimal trajectory x̄t can

either i) be sent by the aggregator to all water heaters so that they implement locally their optimal

control policy, or ii), if local computational capacity allows it, the optimization can be carried out

locally by each water heater with only the aggregate mean temperature vector communicated to them

at the start of the control horizon.

We tried several solvers in Julia to solve this problem: BlackBoxOptim.jl [15] (denoted BBO) with

a differential evolution strategy (Adaptive DE/rand/1/bin with radius limited sampling), LBFGS and

Gradient Descent (denoted GD) from the package Optim.jl [16], and finally just an iteration of the

family by iterating the variables in their scope. We tested them with several initial and target tempera-

tures; a pair of initial and target temperatures is called an instance. We tested the solvers on instances

with differences between initial and target temperatures of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We

used an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 8 processors. The results are reported in

Table 1.

The Distance indicator is computed as the mean of ||x̄t(λopt) − S∞λopt
(x̄t(λopt))||1 over all the

instances, where S∞λopt
(x̄t(λopt)) is the solution of (5a) after we have iterated several times starting

with x̄t(λopt) for x̄t and λopt for λ until we converge to a fixed point of the system with a fixed accuracy

ε > ||x̄t(λopt) − Sλopt
(x̄τ (λopt))||1. If there is no convergence to a fixed point after a large number of

iterations the distance indicator will be very large. The time indicator is the mean CPU time over all

instances.

Table 1: Comparison of four optimization solvers

Solver BBO LBFGS GD Iteration

Nunmber of unsolved instances (out of 549) 0 15 8 0
Distance 0.0232 0.0294 0.0261 0.0118
Time (s) 33.98 33.23 32.86 70.03

All four methods display good convergence as the Distance indicator remains relatively small.

Looking at the unsolved instances, the LBFGS and Gradient Descent methods perform poorly because

they failed many times whereas the other two methods solved all the instances. Finally, between BBO

and Iteration, we select BBO because it takes half the time on average.

5 Flexibility product

In this section we describe how to determine the maximum increase/decrease of power consumption

that the aggregator is able to achieve with a given set of water heaters. This information is then used

in the approach from Section 4 to determine the target temperatures.

We model the set of water heaters as one large aggregated water heater with a unique layer and

we compute an energy balance to find the maximum amount of energy that can injected in this large
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water heater during a given ∆t. The stored energy can then be converted into a target temperature

for the mean field control using the equation

yt =
et

NwhρCpf
+ xL.

Two conditions need to be satisfied: i) the water heater power demand must be as close to constant

as possible during the control horizon, and ii) the rebound after the horizon must lie within an accept-

able range, noted rrebound. The rebound is the drop/peak in the power demand after the water heaters

revert to the thermostatic mode relative to the demand in the no-control scenario. The different time

interval and objectives of our flexibility are summaries in Figure 2. To find the maximum achievable

flexibility under these two conditions, we developed an algorithm formed of 4 blocks. The first block

is a scheduler which compute a temperature schedule depending on bounds in the injected energy ϕt,

ϕmin = (ϕminTstart
, ϕminTstart+∆t

, · · · , ϕminTend
) and ϕmax = (ϕmaxTstart

, ϕmaxTstart+∆t
, · · · , ϕmaxTend

). Initial values of

this vectors are ϕmininit = (0, 0, · · · , 0) and ϕmaxinit = (Q̇∆tNwh, · · · , Q̇∆tNwh). The second block is a Sim-

ulator which perform a Monte Carlo simulations of Nwh water heaters under the temperature schedule

just computed, the control described in Section 3 and the dynamics described in Section 2. The third

one is an Updater which actualizes the value of the bounds ϕmin, ϕmax depending on whether the

rebound constraint is satisfy or not. The last one is the Convergence test based on the results of which

we go back to the first block or we exit the algorithm. The flow chart of the algorithm can be found

in Figure 3.

Tstart T1

Maximizing Flexibility

Keep
power

demand
constant

Tend

Anticipate the end
of con- trol rebound
while keeping power

demand constant

Power demand
remains in the
range around
Base demand

Tend + trebound

Thermostatic control Mean Field control Thermostatic control

Figure 2: Definition of the goals depending on time intervals

Scheduler

ϕmin
init , ϕ

max
init

Simulator

Temperature schedule

Updater

Simulated aggregated
power consumption pst

ϕmin, ϕmax

Convergence Test
False

True

ϕmin, ϕmax

Figure 3: Description of the algorithm to implement the rebound constraint
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5.1 Scheduler

The scheduler is an optimization problem, the output of which is a temperature schedule for the mean

field controller.

Objective function to be maximized

Flexibility(ϕt, zt) = a1

∑
t∈]Tstart,Tend]

Cdirection(pbt − pt)

− a2

∑
t∈]Tstart,T1[

zt − a3

∑
t∈[T1,Tend]

zt

The first term maximizes the increase/decrease in power demand by maximizing the distance from the

base power demand to the power demand at optimality, while the second and third terms minimize

the change in power demand to keep it close to constant on ]Tstart, T1[ and [T1, Tend].

Constraints

• The residential power consumption at each time step is the sum of the uncontrollable part dt
and the controllable part, namely the amount of energy injected in the water heater:

pt = dt +
ϕt
∆t

• The change in power consumption zt must be greater than or equal to |pt − pt−1|:

zt ≥ pt − pt−1

zt ≥ pt−1 − pt

• The energy stored in the water heater at time t is equal to the amount of energy stored at t− 1

plus the energy injected minus the losses.

et = et−1 + ϕt − l(et−1)

l(et) = lc(et) + le(t)

where :

lc(et) = UA

(
et

CpfρV
+Nwh(xin − xenv)

)
le(t) = ρCpf (xmix − xin)V extract(t)

V extract(t) =
∑
j∈Θ

Nwhζj,∞(t)V̇ mixj ∆t

lc(et) correspond to the loss from heat transfer by conduction with the environnement and le(t)

is the energy loss due to the water extraction, V extract(t) representing the expectation over the

extraction type of volume of water drawn for the aggregated water heater.

• The energy stored in the water heater is linked to the temperature:

eTstart
= NwhρV Cpf (xinit − xin)

et ≥ NwhρV Cpf (xlow − xin)

et ≤ NwhρV Cpf (xhigh − xin)

This give us bounds on the energy we are able to store, depending on the initial amount of energy

stored.
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• The amount of energy that can be injected into the water heater is bounded by ϕmin and ϕmax

at each time step. Bdown(t) or Bup(t) in (6a), are active depending on the value of Cdirection
and prevents overshooting/undershooting the initial temperature as we act to decrease/increase

the power consumption. ϕt is bounded above/below appropriately:

ϕt ≥ ϕmint (6a)

ϕt ≤ ϕmaxt (6b)

ϕt ≥ Bdown(t− 1) (6c)

ϕt ≤ Bup(t− 1) (6d)

where :

Bdown(t) =NwhρV Cpf (C+xlow + C−xinit − xin)− et + lt

Bup(t) =NwhρV Cpf (C−xhigh + C+xinit − xin)− et + lt

C+ =
(1 + Cdirection)

2

C− =
(1− Cdirection)

2

5.2 Simulator

The Simulator performs the simulation of the Nwh water heaters individually under the tempera-

ture schedule just computed by the Scheduler through a Monte-Carlo simulation on the horizon time

[Tstart − 2h, Tend + trebound]. We perform this simulation because the power demand during the

post Tend rebound phase, needed to evaluate the rebound value, depends on the temperature distribu-

tion within the water heaters, and this distribution cannot be obtained from an aggregate single water

heater model.

5.3 Updater

The Updater takes as input the aggregated power demand computed by the Simulator pst , p
b
t and

rrebound.

First, the Updater performs a rebound constraint test :

1. If |pst − pbt | ≥ rreboundpbt , the rebound constraint is not satisfied

2. If |pst − pbt | ≤ rreboundpbt , the rebound constraint is satisfied

Then, it updates the bounds ϕmaxt and ϕmint using a technique similar to the one used in the bisec-

tion method.

• If we are in case 1, the bounds are too permissive. The bounds are updated the following way :

– If Cdirection = 1 : ϕmaxprev = ϕmax and ϕmaxTend
=

(cd − 1)ϕmaxTend
+ ϕminprev,Tend

cd

– If Cdirection = −1 : ϕminprev = ϕmin and ϕminTend
=
ϕmaxprev,Tend

+ (cd − 1)ϕminTend

cd

• If we are in case 2, the bounds may not be permissive enough. The bounds are updated the

following way :

– If Cdirection = 1 : ϕminprev = ϕmax and ϕmaxTend
=

(cd − 1)ϕmaxTend
+ ϕmaxprev,Tend

cd

– If Cdirection = −1 : ϕmaxprev = ϕmin and ϕminTend
=
ϕminTend

+ (cd − 1)ϕminprev,Tend

cd

ϕminprev and ϕmaxprev are initialized with ϕmininit and ϕmaxinit .



10 G–2019–43 Les Cahiers du GERAD

We can observe that acting on ϕmaxTend
, ϕminTend

will lead to a corresponding change in the temperature

schedule. The last target of the schedule will follow the same trend as ϕmaxTend
, ϕminTend

, when we decrease

ϕmaxTend
it will result in a decrease of the last target temperature for example. Combining this to the

last term of the objective function, which imposes that the power consumption remain as constant

as possible on [T1, Tend], we will observe in the next section, that the target will gradually increase

or decrease on [T1, Tend] to prepare water heaters to shift to thermostatic control and anticipate the

post-control rebound.

5.4 Convergence test

We exit the algorithm if C+|ϕmaxprev,Tend
−ϕmaxTend

|+C−|ϕminprev,Tend
−ϕminTend

| is small enough or if we reached

the maximum permitted number of iterations.

6 Case study

We use in this case study the setup of the SMARTDesc project [8]. We consider 500 identical water

heaters with a two-layer tank. The infinitesimal generator Lt of the Markov chain modeling water

extraction is piecewise constant every 2h during the day with values taken from [17]. The Markov chain

has 2 states θt ∈ {0, 1} that represent the absence or presence of water extraction, and ṁt = V̇ mixθt
where V̇ mix = 2.62`/min is the extraction flow. The parameters are provided in Table 2.

Table 2: Parameters value for simulations

Q̇l 4500 J/s A 2.55 m2

xenv 25°C Ml 136.5 kg
xin 15°C Cpf 4190 J/(kgK)
xlow 50°C U 28.38J/(m2Kmin)

xhigh 60°C V̇mix
j 2.62 l/min

xmix 38°C qx0 8000 h−1

V 273 ` R

(
0.025 0

0 0.025

)
h−1

We ran the scheduler described in Section 5 with T1 = Tstart + 2h and Tend = Tstart + 4h, i.e., the

water heaters are controlled for 4 hours, maximizing flexibility during the first 2 h (Cdirection = −1),

and anticipating the end of control rebound during the other 2 h (Cdirection = −1). The results are

reported in Figure 4 and Figure 5 respectively.

The total power consumption considered is that of the 500 homes and represents the sum of the

uncontrollable demand, dt, and that of the 500 water heaters simulated independently with distinct

initial conditions and extraction trajectories. This corresponds to Monte Carlo simulations of 500

water heaters with the parameters stated above in Table 2. The base power demand with which

our simulations are compared is the total power consumption of 500 homes. Power demand data is

taken from the public demand data report of the Independent Electricity System Operator (IESO) of

Ontario [18]. We used the data from January 30, 2019. This data represents the full power demand

of Ontario; to obtain the demand of 500 homes we have applied a reduction coefficient, 10−4, to this

overall demand to obtain only the power consumption of 500 homes.

We consider the two following cases :

• Case 1.a : Active control between 7a.m and 11a.m. First a 2 hours period of power reduction

relative to base power demand, then 2 hours to anticipate the rebound; after 11a.m mean field

control ends and one reverts to the classical thermostatic control of water heaters.

• Case 1.b : Active control between 2p.m and 4p.m. First a 2 hours period of power increase

relative to base power demand, then 2 hours to anticipate the rebound; after 6p.m mean field

control ends and one reverts to the classical thermostatic control of water heaters.
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Figure 4: Case 1.a - Decrease of the power demand
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Figure 5: Case 1.b - Increase of the power demand

In Figure 4 and Figure 5, we display the output of our optimization for the two cases. Results

are very similar. Looking at the target temperature schedules (Figure 4a and 5a), on the first part

of the control period (before T1) the strategy is to have a target temperature that decreases (resp.

increases) up to T1. After T1 the target starts to increase (resp. decrease) again in order to heat (resp.

cool) the water heaters gradually to anticipate the rebound and have the distribution of water heaters

temperature not too close to the comfort temperatures. In Figure 4b and 5b, we observe that while

achieving the objective of decreasing the power demand (resp. increasing the power demand), the

rebound stays within a 9% range (resp. 14% range) of the base power consumption. This rebounds

are the minimum we can achieve for the given parameters (Tstart, Tend, trebound, ...).

In case 2, we can see also that in the schedule we reach the upper comfort limit temperature. So if

the initial temperature was lower, we anticipate that we could have had more flexibility, as we could

have increased the temperature more. An initial phase were we decrease the temperature of the water

heaters, to anticipate our need of flexibility, could then be beneficial. Reciprocal situation can appear

while decreasing the power demand.

Economic discussion

To assess the economic viability of such an aggregator we consider the case of Ontario with the Ontario

time-of-use (TOU) and the canadian dollars currency. TOU prices are used to compare how much
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consumers would have paid in case where no flexibility control is applied on the water heaters, versus

that when it is applied [19]. The difference will indicate the minimum financial incentives to be given to

participating customers: 0 if they pay less when we apply control on the water heaters, and the net cost

of the flexibility action if customers pay more when we apply control. We then need to evaluate how

much the aggregator can sell their flexibility on the market. For this we rely on the Auction clearing

price of the Demand Response Auction in Ontario [18]. In this auction, bidders commit to provide

flexibility every business day of a six month period. Given this two quantities, we can evaluate the

possible profit for the aggregator for each flexibility product. Results for 1.a and 1.b are summarized

in Table 3. Then we perform a Net Present Value study for a water heater aggregator. We consider

that the initial investment will be a participation to the purchase of new water heaters for the 500

homes, with a cost of 425$ for a new water heater. Water heaters are said to have a 10 to 15 years

lifetime. Then the net cash flows each month will be the profit obtained with the combination of the

two flexibility offers 1.a and 1.b every day and we consider a discount rate of 6% per year, or 0.49%

per month [20]. Results of this study can be found in Table 4. With a participation of 40% from the

aggregator, the NPV becomes positive in 4.5 years, and with a 50 %, it is in almost 6 years. This type

of investment seems to be profitable with a participation rate below 40 to 50% taking into account the

lifetime of a water heater.

Table 3: Profit results for different cases

Case
Duration

Percentage Flexibility
Profit (CAD)

number of rebound provided (kW)

1.a 4 9% 212 49.7
1.b 4 14% 44 10.3

Table 4: Results of the profitability study

Discount Participation Profitability
NPV(10 y) NPV(15 y)

rate (%) time (month)

0.49% 100 177 -49 196$ 2 992 $
0.49% 50 70 57 053 $ 109 242 $
0.49% 40 54 78 303 $ 130 492 $
0.49% 30 39 99 553 $ 151 742 $
0.49% 0 0 163 303 $ 215 492 $

7 Conclusion

In this paper, we have proposed a flexibility product for a water heater aggregator. The control

strategy used for the water heaters is a mean field approach that is suited for controlling large scale

groups. We have adapted a recently developed strategy [13] for solving the mean field control problem

for space-heaters to the case of water heaters. More precisely, we used an optimization approach to

find a trajectory for the water heaters to follow as an approximate, but guaranteed to meet target,

mean field control strategy. Then, to assess the possible flexibility that the group of water-heaters

could provide during a fixed interval, we used a linear program that works as a target scheduler for the

mean field controller. The output is a schedule that permits to maximize the flexibility provided. To

incorporate an additional constraint that ensures that the rebound, at the end of the control period,

in the power consumption remain limited compared to the base power consumption, a bisection like

method algorithm has been added to iterate the scheduler and find eligible schedules.

In future work, it would be interesting to consider some stochastic optimization for the scheduler

to take into account the uncertainty on both the production of renewable sources and on the water

extraction, to have a more robust schedule. It could also be of interest to develop a specific solver to

compute the near fixed point using the form of the optimization problem to achieve greater efficiency.

Also, more detailed economic modelling could give more accurate information on the profitability of

such aggregator.
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via le pilotage de la consommation des chauffe-eau, Ph.D. dissertation, École Polytechnique de Montréal,
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[14] R. Malhamé, A jump-driven markovian electric load model, Advances in Applied Probability, 22(3):564–
586, 1990.

[15] R. Feldt, Blackboxoptim.jl, https://github.com/robertfeldt/BlackBoxOptim.jl, 2018.

[16] P. K. Mogensen and A. N. Riseth, Optim: A mathematical optimization package for Julia, Journal of
Open Source Software, 3(24):615, 2018.
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