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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2019-39) afin de mettre à jour
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l’accès au travail et enquêterons sur votre demande.
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Abstract: User-centered logistics aiming at customer satisfaction are gaining importance due to growing
e-commerce and home deliveries. Customer satisfaction can be strongly increased by offering narrow delivery
time windows. However, there is a tradeoff for the logistics provider because user-friendly delivery time
windows might decrease the operational flexibility. Against this background, we study the Vehicle Routing
Problem with Multiple Time Windows (VRPMTW) that determines a set of optimal routes such that each
customer is visited once within one out of several time windows. We present a large neighborhood search
based metaheuristic for the VRPMTW that contains a dynamic programming component to optimally select
a time window for each customer on a route, and we present computationally efficient move descriptors
for all search operators. We evaluate the performance of our algorithm on the Belhaiza instance set and
provide new best known solutions for 26 out of 48 instances with improvements of up to 25.3% and 1.5%
on average. Furthermore, we design new benchmark instances that reflect planning tasks in user-centered
last mile logistics. Based on these, we present managerial studies that show the benefit of our algorithm
for practitioners and allow to derive insights on how to offer time windows to customers. We show that
offering multiple time windows can be economically beneficial for the logistics service providers and increases
customer flexibility simultaneously.

Keywords: Vehicle routing, multiple time windows, efficient route evaluation, dynamic programming

Acknowledgments: Michael Schneider’s research on efficient neighborhood search for routing problems was
supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. SCHN 1497/1–1.
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1 Introduction

With increasing e-commerce and higher shipping volumes in parcel home deliveries, user-centered last-mile

logistics services gain importance. To increase customer satisfaction, logistics service providers (LSPs) often

offer a selection of multiple narrow time windows to customers or commit to precisely stating and realizing

a certain delivery time window. Despite limiting their own operational planning with such offers, LSPs are

willing to offer these services for two main reasons. First, LSPs seek to meet the expectations of e-commerce

retailers and thus to remain competitive by avoiding the shift of shipping orders to competitors or the launch

of own fleets of e-commerce retailers. Second, failed deliveries cause additional costs as they usually require

a second delivery attempt.

For LSPs applying operations research tools to improve their operational planning, the vehicle routing

problem (VRP) with multiple time windows (VRPMTW) describes this new setting in satisfactory manner

because it allows to select a service time window for each customer out of a given set of potential time windows.

Only little research exists on the VRPMTW so far. Favaretto et al. (2007) introduced the VRPMTW and

proposed two different objective functions, either minimizing the total route duration or the total traveled

distance. The authors proposed an ant colony optimization algorithm and solved new instances that were

generated by adapting the VRP instances from Fisher (1994). Belhaiza et al. (2014) proposed a hybrid

variable neighborhood tabu search heuristic that improved the results of Favaretto et al. (2007). Additionally,

they derived new benchmark instances based on the customer patterns of the well-known Solomon instances

(Solomon 1987). Belhaiza et al. (2017) further improved the results of Belhaiza et al. (2014) with a genetic

variable neighborhood search.

Against this background, the contribution of this paper to the research field of VRPMTWs, which is

likely to gain importance in today’s user-centered last mile logistics, is severalfold. First, we present a large

neighborhood search (LNS) based metaheuristic that provides a new state of the art for the VRPMTW in

terms of solution quality. As core of this algorithm, we develop an exact component to optimally assign time

windows to customers. Additionally, we give rigorous proofs to its computational complexity, and we present

computationally efficient move descriptors for all search operators. Second, we carry out extensive numerical

studies to evaluate the performance of our algorithm. We provide a concise Mixed Integer Programming

(MIP) model and validate our algorithm on small instances against the MIP. We also compare our algorithm

to existing algorithms on larger instances. Herein, we identify new best known solutions for 26 out of

48 instances, deriving improvements of up to 25.3% and 1.5% on average. Third, we design new large-

scale benchmark instances that reflect planning tasks in user-centered last mile logistics. Based on these,

we conduct managerial studies that highlight the benefit of our algorithm to improve daily operations.

Additionally, these experiments allow insights for LSPs into the design of optimal time window offers. We

show that the LSPs can achieve economic benefits by offering the right time windows while simultaneously

increasing customer flexibility.

The remainder of this paper is structured as follows. Section 2 provides a MIP formulation for the

VRPMTW. In Section 3, we present our algorithm including the optimal time window assignment compo-

nent and prove its computational complexity. Section 4 presents our experimental design, numerical, and

managerial studies. Finally, Section 5 concludes this paper with a short summary of its main findings.

2 The vehicle routing problem with multiple time windows

In this section, we introduce a MIP for the VRPMTW to provide a formal basis for our studies and to allow

for comparisons between our metaheuristic and optimal solutions on small-sized instances.

Let G = (V,A) be a digraph with a set of vertices V and a set of arcs A. The vertex set V consists of a set

of customer vertices C = {1, . . . , n− 1} and two vertices 0 and n that represent the depot, i.e., V = C ∪̇ {0, n}.
To keep the notation concise, we introduce C+ = C∪{0} and C− = C∪{n}. Each vertex i ∈ V is characterized

by a service time si, a demand pi, and a set Θi =
{[
e1
i , l

1
i

]
, . . . ,

[
eθii , l

θi
i

]}
of θi time windows during which

a start of service is allowed. Without loss of generality, each customer’s time windows are disjoint and
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chronologically ordered. We define A = {(i, j) | i, j ∈ C, i 6= j} ∪ {(0, j) | j ∈ C} ∪ {(i, 0) | i ∈ C}. For each

arc (i, j) ∈ A, dij denotes its travel distance, tij its travel time, and cij its travel cost. We consider a

homogeneous fleet of vehicles with a freight capacity F and fixed vehicle costs cf. Binary variable xij denotes

whether arc (i, j) is traversed (xij = 1) or not (xij = 0). To consider travel times, τi denotes the time at

which the service at vertex i ∈ V starts. Further, fi denotes the remaining freight load at vertex i. Binary

variable uip denotes whether service at vertex i ∈ V starts during its p-th time window (uip = 1) or not

(uip = 0). With this notation as summarized in Table 1, we state a MIP for the VRPMTW:

min
∑
j∈C

cfx0j +
∑

(i,j)∈A

cijx
r
ij (1)

s.t.∑
j∈C−\{i}

xij = 1 ∀i ∈ C (2)

∑
i∈C+\{j}

xij −
∑

i∈C−\{j}

xji = 0 ∀j ∈ C (3)

fj ≤ fi − pixij + F (1− xij) (i, j) ∈ A (4)

0 ≤ fi ≤ F i ∈ V (5)

τj ≥ τi + tij + si − lθnn (1− xij) ∀(i, j) ∈ A (6)∑
p∈{1,...,θi}

uip = 1 ∀i ∈ V (7)

τi ≥ epi u
i
p ∀i ∈ V,∀p = 1, . . . , θi (8)

τi − lθnn
(
1− uip

)
≤ lpi u

i
p ∀i ∈ V,∀p = 1, . . . , θi (9)

xij ∈ {0, 1} ∀(i, j) ∈ A (10)

uip ∈ {0, 1} ∀i ∈ V, ∀p = 1, . . . , θi (11)

The objective (1) minimizes total costs that consist of travel costs and fixed vehicle costs. Constraints (2)

secure single assignment for each customer, while constraints (3) obtain flow conservation. Constraints (4)

keep track of the freight balance, and constraints (5) ensure freight feasibility. Analogously, constraints (6)

keep track of all time dependencies, and constraints (7)–(9) secure time window feasibility. Constraints (10)

and(11) state the binary domains.

Table 1: Decision variables and parameter definitions for the mathematical model

V set of vertices
A set of arcs

0, n instances of the depot
C set of customers
C+ set of customers including depot vertex 0
C− set of customers including depot vertex n
dij travel distance from vertex i to vertex j
tij travel time from vertex i to vertex j
cij travel cost from vertex i to vertex j
cf fixed cost for vehicles
epi earliest time of arrival at i to start service in time window p
lpi latest time of arrival at i to start service in time window p
θi number of time windows at customer i
si service time at vertex i
pi demand at vertex i
F vehicle freight capacity
xij binary variable, 1 if arc (i, j) is traversed, 0 otherwise
τi time at which the service at customer i starts
uip binary variable, 1 if service at customer i starts during its p-th time window, 0 otherwise
fi remaining freight capacity at vertex i
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3 Solution methodology

The VRPMTW is NP-hard because it generalizes the VRP with time windows (VRPTW). Hence, we develop

a LNS-based metaheuristic to solve large problem instances. First, we present our metaheuristic in Section 3.1.

Then, Section 3.2 introduces our generalized objective function including penalty terms to efficiently handle

infeasible solutions, and we describe a dynamic programming routine for optimal time window assignment in

Section 3.3. Finally, Section 3.4 explains how to efficiently evaluate time window violations.

3.1 Large neighborhood search

During the development of our metaheuristic, we tested a large variety of algorithmic components and

operators. In the following, we detail only the components that finally remained in our algorithm. For the

sake of completeness, we provide a statistical analysis that quantifies the benefit of all tested components in

Appendix D.

Introduced by Shaw (1998), LNS is a metaheuristic that allows for large-scale local search moves. The

exploration of these large neighborhoods bases on a two-step mechanism, the destroy and repair phase. Herein,

a randomly selected destroy operator removes a subset of customers from a solution. Then, a randomly

selected repair operator inserts the removed customers in a certain fashion to construct a new solution. With

this basic mechanism, LNS allows to overcome local optima, and the paradigm has successfully been used

to solve various VRP variants (cf., e.g., Ropke and Pisinger 2006, Kytöjoki et al. 2007, Mattos Ribeiro and

Laporte 2012). For a detailed description of LNS, we refer to Pisinger and Ropke (2010).

Figure 1 shows the pseudocode of our metaheuristic. After some preprocessing steps (Section 3.1.1),

we create an initial solution (Section 3.1.2) that is then improved. Our LNS stops either after imax total

iterations or after imax
noi iterations without improvement. During the search, we allow infeasible solutions and

use penalty terms in our objective function (Section 3.2) to explore neighborhoods that contain only few

feasible solutions (cf. Cordeau et al. 2001). Hence, besides the current solution σ, we store the temporal

solution (σ′), the best solution (σ∗), and the best feasible solution (σ∗f ) during our search. In each iteration,

we apply a destroy and repair step (Section 3.1.3) to create a new temporal solution from σ. Afterwards,

we apply a local search (Section 3.1.4) for intensification if the objective value of σ′ is within a range of

(1 + δ) of the so far best objective function value λ(σ∗). During our search, we forward solutions as follows.

We forward the temporal solution σ′ to σ and σ∗ if it yields an improvement. If σ′ improves σ∗, we try to

generate a feasible solution out of σ′ using the repair method of Vidal et al. (2014). If σ′ remains infeasible

afterwards, no further efforts are taken to generate a feasible solution. We forward σ′ to σ∗f if it is feasible

1: i← 0, inoi ← 0
2: σ ← initialSolution()
3: while i ≤ imax and inoi ≤ imax

noi do
4: σ′ ← destroyAndRepairSolution(σ)
5: if λ(σ′) < (1 + δ)λ(σ∗) then
6: σ′ ← localSearch(σ′)

7: if λ(σ′) < λ(σ) then
8: σ ← σ′

9: if λ(σ′) < λ(σ∗) then
10: σ∗ ← σ′

11: σ′ ← makeFeasible(σ′)
12: if isFeasible(σ′) and λ(σ′) < λ(σ∗f ) then
13: σ∗f ← σ
14: inoi ← 0

15: if mod (i, ir) = 0 then
16: σ ← σ∗

17: if i = bgetFirstEntry(Iswitch) · imaxc then
18: switchTimeWindowAssignment()
19: removeFirstEntry(Iswitch)

20: i← i+ 1, inoi ← inoi + 1

Figure 1: Pseudocode of the LNS
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and yields an improvement. We reset σ to σ∗ every ir iterations. To accelerate our local search, we switch

between an optimal and a heuristic assignment of time windows to customers. We always start the search

using the heuristic assignment method in which we consider only lpath different combinations of time window

assignments (cf. Section 3.2). Then, we switch to the optimal assignment scheme and back every time the

number of passed iterations i matches a share of the total iterations imax that is stated in Iswitch. Note that

Iswitch is a vector that allows for a varying step width between these switches.

3.1.1 Preprocessing

To speed up the search, we limit neighborhoods by identifying infeasible arcs during preprocessing. An

arc (i, j) is infeasible if:

1. its demand exceeds the vehicle capacity, i.e.,

pi + pj > F (12)

2. it is impossible to arrive at vj before its last time window closes after visiting vi, i.e.,

e0
i + si + tij > l

θj
j (13)

3. it is impossible to visit vj after vi and arrive at the depot before its last time window closes, i.e.,

e0
i + si + tij + sj + tjn > lθnn . (14)

To avoid visiting solutions with less vehicles than necessary to fulfill freight capacity constraints, we calculate

a lower bound on the number of vehicles to fulfill all customer demands by⌈∑
v∈C pv

F

⌉
. (15)

3.1.2 Initial solution

To create an initial solution, we modify the basic savings algorithm (cf. Clarke and Wright 1964). First,

we calculate back-and-forth tours for all customers. Afterwards, we calculate all potential cost savings

from routes that can be merged without using an infeasible arc and sort them in decreasing order. Then,

we iteratively merge the two routes with the highest savings as long as the freight capacity constraint is

not violated. We drop merge moves that are no longer feasible due to previous moves and stop once all

merge moves with positive savings have been executed or dropped. Afterwards, we apply our local search

(Section 3.1.4) to improve the initial solution.

3.1.3 Destroy and repair

In the destroy and repair phase, we create a new temporal solution by first randomly choosing a destroy

operator that removes customers from the current solution. Then, we use a repair operator that reinserts

these customers to create a new temporal solution.

We use the following set of destroy operators: The worstRemove operator (Ropke and Pisinger 2006)

removes customers hierarchically according to their savings potential, starting with the highest savings. The

operator stops after removing a randomly chosen percentage share of customers out of the range [Γmin,Γmax].

Additionally, we use a routeRemove operator (Hemmelmayr et al. 2012) that removes a randomly chosen route

as long as more routes exist than necessary according to (15). Furthermore, we design a new relatedRemove

operator. The relatedRemove operator removes randomly chosen customers in a pairwise fashion. While the

first customer is always deleted, the second customer is deleted with a certain probability that correlates

with the relatedness between both customers (cf. Shaw 1998). While Shaw (1998) used a purely distance

based relatedness measure, we define a new measure that captures the complexity of the VRPMTW. Our
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relatedness Rij comprises four different components, considering spatial relatedness Rs
ij , demand relatedness

Rp
ij , time window relatedness Rt

ij , and route relatedness Rr
ij . We use a parameter β for each quantity to

adjust its influence.

Rij =βsRs
ij + βpRp

ij + βtRt
ij + βrRr

ij (16)

=βs · dij
dmax

+ βp · |pi − pj |
pmax − pmin

+ βt · ωij + βr · 1ij . (17)

The spatial relatedness results straightforwardly from the distance dij and the maximum distance between

two vertices (dmax), while the demand relatedness results from demand of i and j as well as the maximum and

minimum demand over all customers (pmax, pmin). The route relatedness is based on a boolean indicator (1ij)
that tells whether two customers are on the same route. Rt

ij depends on the relative time window overlap ωij
between i and j. We define this overlap for a finite union of disjoint intervals as

ωij =

∣∣∣(⋃w∈Θi
w
)
∩
(⋃

w∈Θj
w
)∣∣∣

max
{∣∣⋃

w∈Θi
w
∣∣ , ∣∣∣⋃w∈Θj

w
∣∣∣} , (18)

denoting the cumulated length of these intervals by |·|. We determine the number of pairs of vertices to be

removed randomly within a percentage range
[

Γmin

2 , Γmax

2

]
of the total number of vertices.

We use a sequentialInsertion repair operator (Hiermann et al. 2016) and insert vertices in the order in

which they have been removed randomly with a probability that is inverse to the cost of the respective inser-

tion. Additionally, we us a sequentialPertubatedInsertion operator that pertubates the calculated insertion

cost by up to 20%.

3.1.4 Local search

In our local search, we use a composite neighborhood that consists of four different neighborhood operators.

A relocate operator randomly removes and inserts a vertex into the same or a different route. The exchange

operator swaps two vertices in the same or between different routes. The 2-opt* operator (Potvin and

Rousseau 1995) removes two edges from the existing solution and introduces two new edges, connecting the

beginning of one tour with the end of the other tour and vice versa. The Or-opt operator (Or 1976) removes

a sequence of one, two, or three consecutive vertices from a route and reinserts this sequence between a pair

of consecutive vertices on another route.

We use a best improvement acceptance criterion because we found during the development of our algorithm

that a first improvement acceptance criterion significantly worsens the solution quality. Further, we use a

variable descent neighborhood evaluation scheme: in the beginning of the search, we limit the evaluated

neighborhood to the ηc closest vertices. If no further improvements are found, we allow search moves

with vertices within the ηm closest neighbors, before we finally allow searching the complete neighborhood.

This evaluation scheme helps to significantly reduce the computational time of the local search without

deteriorating its solution quality.

3.2 Generalized objective function

We use a generalized objective function that allows to handle infeasible solutions by incorporating penalty

terms for freight capacity and time window violations. We represent a solution σ = {r1, . . . , rl} as a set

of routes ri, and refer to a route r with kr − 1 customers as an ordered set of vertices r = 〈v0, . . . , vkr 〉 in

which v0 and vkr denote the depot vertices. With this notation, our generalized objective function is

λgen(σ) =
∑
r∈σ

(
cfr +

kr∑
i=1

cvi−1,vi

)
+ αfrFR(σ) + αtwTW (σ) (19)
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with fixed costs per route cfr, costs for each traversed arc cij , freight capacity violation FR(σ) and time

window violation TW (σ). To control the impact of these violations, we multiply them with αfr and αtw

respectively to obtain the final penalty term. We multiply (resp. divide) these factors by γ every ipLS local

search iterations if a violation (resp. no violation) arises in these iterations. This allows to overcome local

optima or to enforce a feasible solution by decreased (resp. increased) penalty terms. To limit the impact

of penalty terms, we limit αfr and αtw to αfr
min, αtw

min, and αfr
max, αtw

max. In the following, we describe how to

efficiently calculate FR(σ) and TW (σ).

3.2.1 Calculation of time window violations

For customers with a single time window, a time window violation occurs if a vehicle arrives at a customer

after its time window. For this case, computationally efficient penalty terms exist (cf. Nagata et al. 2010,

Schneider et al. 2013) that allow for an accurate calculation of violations by using the concept of time travel:

after each violation, the vehicle’s arrival time is shifted back to the latest feasible arrival time at a vertex to

avoid overpenalization.

While calculating time window violations and using the concept of time travel in the single time window

case is relatively simple and state-of-the-art, the multiple time window case adds additional complexity.

When evaluating a route, each time a vehicle arrives at a customer in between two time windows, one can

either decide to penalize the violation of the first time window or to proceed with using the second time

window. However, using the second time window may cause (higher) violations at succeeding customers.

Figure 2 shows this trade-off for a sequence of customers. While the matching of the late time window at

customer C1 results in a violation at customer C2, the penalizing of the early time window at C1 however

yields feasibility at C2 and results in an overall lower penalty. In case the violated time window is chosen,

the time window violation also denotes the required time travel that is necessary to shift the arrival time

back to the latest feasible point in time for succeeding evaluations.

In the following, we provide a notation to calculate time window violations in the multiple time window

case. This notation provides the formal foundation to develop an exact component that handles the time

window assignment in the best possible way in Sections 3.3 and 3.4. In the multiple time window case,

one time window [eiv, l
i
v], i ∈ {1, ..., θi} must be assigned to every customer v to allow for the evaluation of

violations. To keep track of the assigned time windows for an arbitrary (partial) route, we define a partial

time window assignment f i ∈ F i (r) = {1, . . . , θ0}×· · ·×{1, . . . , θi}, which denotes a vector with all assigned

time windows up to customer i on route r. We refer to the j-th entry of f i as f ij . Each f ij denotes the index

of the chosen time window. Analogously, f = f i=k ∈ F i=k (r) = F (r) denotes a complete time window

assignment for a given route. With this notation, we calculate the earliest start time of service af
i

j for each

customer j of a given (partial) time window assignment f i (Equations (20) and (21)) and its time travel

counterpart ãf
i

j (22) that avoids overpenalization.

Figure 2: Trade–off between penalizing early or matching late time windows
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af
i

0 = ãf
i

0 = e
fi0
0 (20)

af
i

j = ãf
i

j−1 + sj−1 + tj−1,j 1 ≤ j ≤ i (21)

ãf
i

j =


max

{
af

i

j , e
fij
j

}
if af

i

j ≤ l
fij
j

l
fij
j otherwise.

1 ≤ j ≤ i (22)

With these definitions, the time window violation for a fixed f i results to

−→
λ tw
i (r, f i) =

i∑
j=0

max

{
af

i

j − l
fij
j , 0

}
. (23)

For i = k we introduce TW (r, f) =
−→
λ tw
k (r, fk) to denote the time window violation for the entire route with

respect to fk. Without a given time window assignment, determining the minimum time window violation

along a route requires to solve a subsequent optimization problem of the form

TW (r) = min
f∈F (r)

TW (r, f), (24)

each time a route is evaluated. Here, the search space F (r) is of size
∏k
i=0 θi so that a simple enumera-

tion algorithm yields an exponential complexity. To efficiently solve this problem, we introduce a dynamic

programming algorithm in Sections 3.3 and 3.4.

3.2.2 Calculation of freight capacity violations

A freight capacity violation occurs if the cumulated demand of all customers on a route exceeds the vehicle

capacity. For a solution σ, the freight capacity violation results from the violation of each route:

FR(σ) =
∑
r∈σ

FR(r) =
∑
r∈σ

max{−F +

k∑
i=0

pvi , 0}.

By keeping track of forward and backward freight capacity violations, the freight capacity penalty can be

updated in O(1) for any search move (cf. Kindervater and Savelsbergh 1997).

3.3 A dynamic programming routine for optimal time window sequencing

In this section, we develop a dynamic programming algorithm to efficiently determine the optimal time

window assignment for a route r. We first introduce an adequate search tree representation (Section 3.3.1),

before we derive a dominance criterion to reduce the computational complexity (Section 3.3.2). Then, we

describe the resulting dynamic programming routine (Section 3.3.3). Finally, we prove the overall complexity

of the resulting algorithm by deriving bounds on the size of the search tree (Section 3.3.4).

3.3.1 Search tree representation

We define a search tree (cf. Example 1) in which edges represent the propagation of a partial time window

assignment from one to the next customer’s time windows so that each path from a node to the tree’s root

node represents a partial time window assignment. In this tree, we label each node with its corrected time

of arrival ãf
j

j and the cumulated time window violation up to this customer
−→
λ tw
j (r, f j). We always start at

the root level L0 with a single root node, labeled with (e0
0, 0) to construct this tree. Then, we develop each

subsequent level Li+1 by calculating the arrival time at vertex i+1 starting from the arrival time of each node

in level Li. For each time window at vertex i+1, we introduce a new node that contains the corrected arrival

time and the resulting total time window violation. Note that the resulting search tree grows exponentially.
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Example 1 (Exponential search tree) We consider a route r = 〈0, 1, 2, 3, 4〉 consisting of the three customer

vertices 1, 2, and 3 and two depot vertices 0 and 4. The travel time between each pair of consecutive vertices

is ti,i+1 = 2 and the service time is si = 0 for all vertices. Figure 3 depicts the time windows of the vertices.

Figure 4 shows the resulting fully enumerated search tree. Its size is exponential in the number of time

windows per customer.

Figure 3: Time window distribution for the route in Example 1

Figure 4: Exponential search tree

3.3.2 Dominance criterion

Because we need to determine optimal time window assignments in every search move, evaluating a fully

enumerated exponential search tree is computationally not tractable. Hence, we proof a dominance criterion

to cut redundant branches and limit the size of the search tree accordingly.

In the following, we refer to a time window assignment remainder as f̂ i ∈ {1, . . . , θi+1}×· · ·×{1, . . . , θk} =

F̂ i (r), and denote the concatenation of vectors a ∈ Rn and b ∈ Rm as a⊕ b ∈ Rn+m for m,n ∈ N. Further,

we use f̂ ij to denote the time window assignment decision at customer j, j > i, i.e., the (j − i)th entry in f̂ i.

With this notation, we derive a dominance criterion based on Definition 1 and Lemma 1.

Definition 1 (Dominant time window assignments) For a customer i ∈ {0, . . . , k} on a route r, a partial

time window assignment f i ∈ F i (r) dominates a partial time window assignment gi ∈ F i (r) if some (possibly

empty) time window assignment remainder f̂ i ∈ F̂ i (r) exists such that Equation (25) holds for all ĝi ∈ F̂ i (r).

TW (r, f i ⊕ f̂ i) ≤ TW (r, gi ⊕ ĝi) (25)
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Based on Definition 1, Lemma 1 states our dominance criterion.

Lemma 1 Let r be a route and let f i, gi ∈ F i (r) be partial time window assignments of the customers in r

up to customer i ∈ {0, . . . , k − 1}. If Equations (26) and (27) hold, f i dominates gi.

−→
λ tw
i (r, f i) ≤

−→
λ tw
i (r, gi) (26)

ãf
i

i − ã
gi

i ≤
−→
λ tw
i (r, gi)−

−→
λ tw
i (r, f i) (27)

Proof of Lemma 1. Let

ĝ∗ = argminĝi∈F̂i(r)TW (r, gi ⊕ ĝi) (28)

be a time window assignment remainder minimizing the time window violation if time windows are assigned

according to gi up to customer i. We show that extending f i by ĝ∗, i.e., f∗ = f i ⊕ ĝ∗, never yields a higher

total time window violation than g∗ = gi⊕ ĝ∗. As ĝ∗ denotes an optimal time window assignment remainder

for gi, this implies dominance of f i over gi. We introduce θ∗ as the time window assigned to customer i+ 1

by ĝ∗.

It is sufficient to prove Equations (29) and (30), i.e., that Equations (26) and (27) hold for i + 1 with

f i⊕(θ∗) and gi⊕(θ∗) instead of f i and gi, because either i+1 equals k and Equation (29) entails Equation (25),

or the proof follows by induction.

−→
λ tw
i+1(r, f i ⊕ (θ∗)) ≤

−→
λ tw
i+1(r, gi ⊕ (θ∗)) (29)

ã
fi⊕(θ∗)
i+1 − ãg

i⊕(θ∗)
i+1 ≤

−→
λ tw
i+1(r, gi ⊕ (θ∗))−

−→
λ tw
i+1(r, f i ⊕ (θ∗)) (30)

To prove equations (29) and (30), we distinguish six cases dependent on the relative position of θ∗ to the

earliest possible times of arrival a
fi⊕(θ∗)
i+1 and a

gi⊕(θ∗)
i+1 and refer to the earlier arrival time as

amini+1 = min
{
a
fi⊕(θ∗)
i+1 , a

gi⊕(θ∗)
i+1

}
and to the later arrival time as

amaxi+1 = max
{
a
fi⊕(θ∗)
i+1 , a

gi⊕(θ∗)
i+1

}
to keep the notation concise.

Case I) amini+1 > lθ
∗
i+1 (see Figure 5a)

We correct both earliest possible times of arrival to the assigned time window’s closing time because they

are larger than the time window’s closing time. An additional violation of ãf
i

i + si + ti,i+1 − lθ
∗
i+1 resp. ãg

i

i +

si + ti,i+1 − lθ
∗
i+1 results so that

−→
λ tw
i+1(r, f i ⊕ (θ∗)) =

−→
λ tw
i (r, f i) + ãf

i

i + si + ti,i+1 − lθ
∗
i+1

(27)

≤
−→
λ tw
i (r, gi) + ãg

i

i + si + ti,i+1 − lθ
∗
i+1

=
−→
λ tw
i+1(r, gi ⊕ (θ∗)).

Thus Equation (29) holds. Because ã
fi⊕(θ∗)
i+1 = ã

gi⊕(θ∗)
i+1 = lθ

∗
i+1 holds, Equations (29) and (30) coincide.

Case II) amaxi+1 < eθ
∗
i+1 (see Figure 5b)

Both earliest possible times of arrival are smaller than the assigned time window’s opening time. This implies

that ã
fi⊕(θ∗)
i+1 and ã

gi⊕(θ∗)
i+1 coincide at eθ

∗
i+1, and no additional violation occurs for both cases. Then, partial

time window violations in Equations (29) and (30) result directly from Equations (26) and (27).
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amini+1 amaxi+1

lθ
∗
i+1

(a) Case I

amini+1 amaxi+1

eθ
∗
i+1

(b) Case II

Figure 5: Possible positions of amini+1 and amaxi+1 in relation to the time window
[
eθ
∗
i+1, l

θ∗
i+1

]

Case III) amini+1 < eθ
∗
i+1 ≤ amaxi+1 ≤ lθ

∗
i+1 (see Figure 6a)

If amini+1 is smaller than the opening time of θ∗ and amaxi+1 lies within θ∗, no additional violation arises for

either of the partial time window assignments, and Equation (29) holds. Depending on whether amini+1 equals

a
fi⊕(θ∗)
i+1 or a

gi⊕(θ∗)
i+1 , the left-hand side of Equation (30) either decreases compared to Equation (27) or is

negative. Equation (29) implies non-negativity of the right-hand side of Equation (30), which guarantees

validity of Equation (30).

Case IV) eθ
∗
i+1 ≤ amini+1 ≤ lθ

∗
i+1 < amaxi+1 (see Figure 6b)

If amini+1 lies within θ∗ and amaxi+1 is greater than the closing time of θ∗, we correct amaxi+1 to lθ
∗
i+1 causing an

additional violation of δ = amaxi+1 − lθ
∗
i+1 . We consider two cases:

i) For amini+1 = a
gi⊕(θ∗)
i+1 and amaxi+1 = a

fi⊕(θ∗)
i+1 this yields

0 ≤ ãf
i⊕(θ∗)
i+1 − ãg

i⊕(θ∗)
i+1 = ãf

i

i + si + ti,i+1 − δ −
(
ãg

i

i + si + ti,i+1

)
= ãf

i

i − ã
gi

i − δ
(27)

≤
−→
λ tw
i (r, gi)−

−→
λ tw
i (r, f i)− δ

=
−→
λ tw
i (r, gi)−

(−→
λ tw
i (r, f i) + δ

)
=
−→
λ tw
i+1(r, gi ⊕ (θ∗))−

−→
λ tw
i+1(r, f i ⊕ (θ∗))

which establishes Equations (29) and (30).

ii) If amini+1 = a
fi⊕(θ∗)
i+1 and amaxi+1 = a

gi⊕(θ∗)
i+1 hold, the following inequality can be derived to prove Equa-

tion (30):

ã
fi⊕(θ∗)
i+1 − ãg

i⊕(θ∗)
i+1 = ãf

i

i + si + ti,i+1 −
(
ãg

i

i + si + ti,i+1 − δ
)

= ãf
i

i − ã
gi

i + δ

(27)

≤
−→
λ tw
i (r, gi)−

−→
λ tw
i (r, f i) + δ

=
(−→
λ tw
i (r, gi) + δ

)
−
−→
λ tw
i (r, f i)

=
−→
λ tw
i+1(r, gi ⊕ (θ∗))−

−→
λ tw
i+1(r, f i ⊕ (θ∗)).

Because an additional violation arises for a
gi⊕(θ∗)
i+1 , Equation (31) proves the validity of Equation (30)

−→
λ tw
i+1(r, f i ⊕ (θ∗)) =

−→
λ tw
i (r, f i) ≤

−→
λ tw
i (r, gi) ≤

−→
λ tw
i (r, gi) + δ =

−→
λ tw
i+1(r, gi ⊕ (θ∗)). (31)
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amini+1 amaxi+1

eθ
∗
i+1 lθ

∗
i+1

(a) Case III

amini+1 amaxi+1

eθ
∗
i+1 lθ

∗
i+1

(b) Case IV

Figure 6: Possible positions of amini+1 and amaxi+1 in relation to the time window
[
eθ
∗
i+1, l

θ∗
i+1

]

Case V) amini+1 < eθ
∗
i+1 ≤ lθ

∗
i+1 < amaxi+1 (see Figure 7a)

If amini+1 is smaller than the opening time and amaxi+1 is greater than the closing time of θ∗, we obtain Equa-

tions (29) and (30) by combining the reasoning of III and IV, i.e., first adjusting amini+1 to eθ
∗
i+1 and afterwards

amaxi+1 to lθ
∗
i+1.

Case VI) eθ
∗
i+1 ≤ amini+1 ≤ amaxi+1 ≤ lθ

∗
i+1 (cf. Figure 7b)

If amini+1 and amaxi+1 lie within θ∗, no violation results and no waiting time is needed. We derive the validity of

Equations (29) and (30) directly from Equations (26) and (27).

This concludes the proof.

Corollary 1 Let r be a route and let f i, gi ∈ F i (r) be partial time window assignments of the customers in r

up to customer i ∈ {0, . . . , k − 1}. If
−→
λ tw
i (r, f i) ≤

−→
λ tw
i (r, gi) and ãf

i

i = ãg
i

i hold, f i dominates gi.

Corollary 1 states a special case of Lemma 1 as many corrected earliest possible arrival times coincide because

all earliest possible arrival times that lie in between two time windows are corrected either to the opening

time of a later time window or to the closing time of an earlier time window.

To further reduce the size of the search tree, we proof that waiting for opening times of time windows

longer than necessary leads to dominated time window assignments by means of the following Lemmata 2

and 3 and Corollaries 2 and 3. The same holds for traveling back in time further than necessary.

Lemma 2 If for a given f i the earliest possible time of arrival at customer i+ 1 is greater than eji+1, f
i⊕ (j)

dominates f i ⊕ (j′) for all j′ ∈ {1, . . . , j − 1}.

Proof of Lemma 2. Let δ = max
{
ãf

i

i + si + ti,i+1 − lji+1, 0
}

and δ′ = ãf
i

i + si + ti,i+1 − lj
′

i+1 be the time

window violations to shift ãf
i

i + si + ti,i+1 to lji+1 resp. lj
′

i+1 (see Figure 8a). Then,

−→
λ tw
i+1(r, f i ⊕ (j′)) =

−→
λ tw
i+1(r, f i ⊕ (j)) + δ′ − δ (32)

and

ã
fi⊕(j′)
i+1 = ã

fi⊕(j)
i+1 − (δ′ − δ) (33)

hold and Equation (32) implies Equation (26). Combining Equations (32) and (33) implies Equation (27)

amini+1 amaxi+1

eθ
∗
i+1 lθ

∗
i+1

(a) Case V

amini+1 amaxi+1

eθ
∗
i+1 lθ

∗
i+1

(b) Case VI

Figure 7: Possible positions of amini+1 and amaxi+1 in relation to the time window
[
eθ
∗
i+1, l

θ∗
i+1

]
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so that according to Lemma 1, f i ⊕ (j) dominates f i ⊕ (j′).

Lemma 3 If for a given f i the earliest possible time of arrival at customer i + 1 is smaller than lji+1, then

f i ⊕ (j) dominates f i ⊕ (j′) for all j′ ∈ {j + 1, . . . , θi+1}.

Proof of Lemma 3. The time of arrival ãf
i

i +si+ti,i+1 is shifted to eji+1 resp. ej
′

i+1 (see Figure 8b). Violations

for f i⊕ (j) and f i⊕ (j′) are identical. Because ã
fi⊕(j)
i+1 is smaller than ã

fi⊕(j′)
i+1 , the validity of Equations (26)

and (27) is trivial. Applying Lemma 1 concludes the proof.

We combine Lemmata 2 and 3 to obtain Corollaries 2 and 3.

Corollary 2 If the earliest possible time of arrival at customer i + 1 with respect to f i lies within a time

window
[
eji+1, l

j
i+1

]
, then f i ⊕ (j) dominates f i ⊕ (j′) for all j′ ∈ {1, . . . , θi+1} \ {j}.

Corollary 3 If the earliest possible time of arrival at customer i + 1 with respect to f i lies in between two

time windows
[
eji+1, l

j
i+1

]
and

[
ej+1
i+1 , l

j+1
i+1

]
, then f i ⊕ (j) dominates f i ⊕ (j′) for all j′ ∈ {1, . . . , j − 1}, and

f i ⊕ (j + 1) dominates f i ⊕ (j′′) for all j′′ ∈ {j + 1, . . . , θi+1}.

With these dominance rules, we can significantly reduce the search tree as illustrated in Example 2.

Example 2 (Example 1 revisited) Revisiting Example 1, we can now cut dominated branches leaving us with

the search tree depicted in Figure 9. This reduces the size of the example search tree from 57 (see Figure 4)
to 13 nodes.

(a) (b)

Figure 8: Violation and waiting time for two different time windows

(a) Dominance-free search tree (b) Search tree in the instances

Figure 9: The dominance-free search tree and its visualization in the route
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3.3.3 Dynamic programming routine

The dominance criterion from Section 3.3.2 allows to design an efficient dynamic program that determines an

optimal time window assignment for a given route r = 〈v0, . . . , vk〉 with time windows [epi , l
p
i ] , p ∈ {1, . . . , θi}.

Figure 10 shows the pseudocode overview of our dynamic program while we detail pseudocodes for additional

subroutines in Appendix C. After initializing the root level L0 with the depot time window with a violation

of 0, we propagate all nodes from the previous level Li−1 to the new level Li by propagating the respective

arrival times (l. 5). If the new arrival time is larger than the last time window’s closing time, we create a new

label for the closing time of the affected time window (l. 6–9). Otherwise, the time of arrival is either enclosed

in a time window and we create a new label for the time of arrival (l. 12–15), or there is a subsequent time

window for which we create a new label for its opening time window (l. 17–19). If there is also a previous

time window, we create a label for the closing time of this time window as well (l. 21–23). For determining

the subsequent or the enclosing time window, we use the algorithm depicted in Figure 16. We insert every

non-dominated label into the list of labels for the considered customer using a constant time procedure as

detailed in Figure 17 (Appendix C). For the heuristic variant of the algorithm, we only consider the lpath

elements in Li−1 with the smallest time window violation.

3.3.4 Computational complexity

In this section, we prove that the worst-case complexity of our optimal time window sequencing routine is

in O(θmax log (θmax) · k2). We prove this complexity step-wise. First, we derive a bound on the size of our

search tree, before we discuss the complexity of propagating a single node in the search tree and derive the

overall complexity for determining an optimal time window assignment.

Size of the search Tree: In the creation of Li of the search tree, we apply the dominance criterion from

Section 3.3.2 such that Li only contains non-dominated nodes. Then, Lemma 4 denotes the maximum size

of Li.

1: L0 ←
[(
e00, (0), 0

)]
2: for i := 1 to k do
3: Li := [ ]

4: for
(
ãf
i−1

i−1 , f i−1, λi−1

)
∈ Li−1 do

5: ai := ãf
i−1

i−1 + si−1 + ti−1,i

6: if ai ≥ lθii then
7: f i := f i−1 ⊕ (θi)

8: λi := λi−1 + ai − lθii
9: smartAppend

(
Li, (l

θi
i , f

i, λi)
)

10: else
11:

[
epi , l

p
i

]
:= findSubsequentOrEnclosingTimeWindow

(
ai,
{[
e1i , l

1
i

]
, . . . ,

[
e
θi
i , l

θi
i

]})
12: if ai ∈

[
epi , l

p
i

]
then

13: f i := f i−1 ⊕ (θ)
14: λi := λi−1

15: smartAppend
(
Li, (ai, f

i, λi)
)

16: else
17: f i1 := f i−1 ⊕ (p)
18: λ1i := λi−1

19: smartAppend
(
Li,
(
epi , f

i
1, λ

1
i

))
20: if p− 1 ≥ 0 then
21: f i2 := f i−1 ⊕ (p− 1)

22: λ2i := λi−1 + ai − lp−1
i

23: smartAppend
(
Li,
(
lp−1
i , f i2, λ

2
i

))
24: Find (ã∗, f∗, λ∗) := argmin

(ã,f,λ)∈Ln
λ

Figure 10: Optimal time window assignment
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Lemma 4 The size of Li is bounded by

|Li| ≤ min {2 |Li−1| , |Li−1|+ θi − 1} ≤ 1 + i · (θmax − 1) . (34)

Proof of Lemma 4. Corollaries 2 and 3 imply that every node in Li−1 yields either zero, one or two nodes

in Li depending on whether the earliest possible time of arrival is in a time window or in between two time

windows and on whether the resulting paths are dominated so that

|Li| ≤ 2 |Li−1| . (35)

All earliest possible times of arrival at customer i that are in between the same two time windows
[
eji , l

j
i

]
and[

ej+1
i , lj+1

i

]
are corrected to either lji or ej+1

i . According to Corollary 1, only two of these arrival times (lji ,

ej+1
i ) are non-dominated. Hence, at most θi− 1 nodes in Li−1 (one for each gap between two time windows)

account for two nodes in Li such that

|Li| ≤ |Li−1|+ θi − 1. (36)

Combining Equations (35) and (36) yields the first inequality in Equation (34). We obtain the second

inequality by utilizing θi ≤ θmax and inductively applying Equation (36) i times.

With Lemma 5, we derive a bound on the total number of nodes in the search tree.

Lemma 5 The number of nodes in the search tree does not exceed (θmax − 1)k(k+1)
2 + k + 1.

Proof of Lemma 5. The number of nodes in the search tree is the cumulated number of nodes per level, i.e.,∑k
i=0 |Li|. Applying Lemma 4 with |L0| = 1 yields

k∑
i=0

|Li| = |L0|+
k∑
i=1

|Li| ≤ |L0|+
k∑
i=1

(|L0|+ i · (θmax − 1)) . (37)

k∑
i=0

|Li| ≤ (k + 1) · |L0|+ (θmax − 1)

k∑
i=1

i = k + 1 + (θmax − 1)
k(k + 1)

2
. (38)

This concludes the proof.

Node propagation: To keep this paper concise, we provide pseudocodes for the following discussion in

Appendix C. In general, the complexity for propagating a node depends on the complexity of i) identifying

non-dominated branches and of ii) checking whether these branches dominate other branches with a different

parent node. Given Corollaries 2 and 3, we can use a binary search (see Figure 16) to find the time window(s)

that enclose a node’s earliest time of arrival such that the complexity of identifying non-dominated branches

results to O(log(θmax)). Applying a dominance check is possible in constant time (see Figure 17) such that

the overall complexity of propagating nodes remains in O(log(θmax)).

Overall complexity: Synthesizing Lemma 5 with the node propagation complexity yields Lemma 6 which

denotes the overall complexity of our optimal time window sequencing.

Lemma 6 An optimal time window assignment can be found in O(θmax log (θmax) · k2).

Proof of Lemma 6. According to Lemma 5 the number of nodes in the search tree is bounded by

(θmax − 1)
k(k + 1)

2
+ k + 1 ∈ O(θmax · k2). (39)
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Recall that the complexity to evaluate a single node is in O(log(θmax)). By multiplying the total number of

nodes with the runtime for evaluating a single node, we obtain a total runtime of

log(θmax) ·
(

(θmax − 1)k(k+1)
2 + k + 1

)
∈ O(θmax log (θmax) · k2). (40)

This concludes the proof.

3.4 Time window violation update

Analogously to the logic of backward violation terms in the single time window case (cf. Nagata et al. 2010),

we introduce backward violation terms for the multiple time window case to speed up the evaluation of search

moves. We introduce a latest possible start time of the service zf̂
i

j at customer j such that the backward

violation terms result as follows:

zf̂
i

n = z̃f̂
i

n = l
f̂iθn
n (41)

zf̂
i

j = z̃f̂
i

j+1 − sj − tj,j+1 i ≤ j ≤ n (42)

z̃f̂
i

j =


min

{
zf̂

i

j , l
f̂ij
j

}
if zf̂

i

j ≥ e
f̂ij
j

e
f̂ij
j otherwise

i+ 1 ≤ j ≤ n. (43)

With this notation, the backward time window violation on r with respect to f̂ i results to

←−
λ tw
i (r, f̂ i) =

k∑
j=i+1

max

{
e
f̂ij
j − z

f̂i

j , 0

}
. (44)

With (23) and (44) we can calculate the overall time window violation for a route r = 〈0, . . . , vi, vi+1, . . . , n〉 by

TW (r, f i ⊕ f̂ i) =
−→
λ tw
i (r1, f

i) +
←−
λ tw
i (r2, f̂

i) + max
{
ãf

i

i − z
f̂i

i , 0
}
, (45)

when r is generated from concatenating two partial routes r1 = 〈0, . . . , vi〉 and r2 = 〈vi+1, . . . , n〉 with a fixed

time window assignment f i (for r1) and a fixed time window assignment remainder f̂ i (for r2) .

Similar to the forward notation, we introduce a backwards search tree with L̂i being its i-th level such

that Equation 45 generalizes to

TW (r) = min
(ãf

i

i ,f
i,
−→
λ tw
i )∈Li

(z̃f̂
i

i ,f̂i,
←−
λ tw
i )∈L̂i

−→
λ tw
i +

←−
λ tw
i + max

{
ãf

i

i − z
f̂i

i , 0
}
. (46)

Note that all theoretical concepts and results developed for the forward evaluation hold for the backward

evaluation as well because both can be transformed into each other by defining a reversed instance (see

Appendix A).

According to Lemma 4 we have up to 1+i·(θmax − 1) non-dominated time window assignments at level Li
as well as 1 + (k− i) · (θmax − 1) non-dominated time window assignment remainders in L̂i. Hence, a trivial

algorithm that solves (46) by updating the time window violation via pairwise comparison yields a complexity

of O(k2θ2
max) depending on the number of customers k on route r. To allow for more efficient search move

evaluations, we prove that O(kθmax) comparisons are sufficient to evaluate a concatenation correctly.

Lemma 7 Let f i be a non-dominated time window assignment, and let f̂ i, ĝi be two non-dominated time

window assignment remainders. In this case, if Equation (47) holds, Equation (48) follows.

z̃ĝ
i

i+1 − si − ti,i+1 ≤ z̃f̂
i

i+1 − si − ti,i+1 ≤ ãf
i

i (47)

TW (r, f i ⊕ f̂ i) < TW (r, f i ⊕ ĝi) (48)
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Proof of Lemma 7. With (47) we simplify Equation (45)

TW (r, f i ⊕ f̂ i) =
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, f̂ i) + max

{
0, ãf

i

i −
(
z̃f̂

i

i+1 − si − ti,i+1

)}
(49)

to

=
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, f̂ i) + ãf

i

i − z̃
f̂i

i+1 + si + ti,i+1

Because ĝi does not dominate f̂ i and z̃f̂
i

i+1 ≥ z̃
ĝi

i+1, we estimate

(49) <
−→
λ tw
i (r, f i) +

(←−
λ tw
i (r, ĝi) + z̃f̂

i

i+1 − z̃
ĝi

i+1

)
+ ãf

i

i − z̃
f̂i

i+1 + si + ti,i+1 (50)

=
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, ĝi) + ãf

i

i −
(
z̃ĝ
i

i+1 − si − ti,i+1

)
(51)

from Equation (55) (see Appendix A). Because Equation (51) equals TW (r, f i⊕ ĝi) this concludes the proof:

=
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, ĝi) + max

{
0, ãf

i

i −
(
z̃ĝ
i

i+1 − si − ti,i+1

)}
= TW (r, f i ⊕ ĝi).

Lemma 8 Let f i be a non-dominated time window assignment, and let f̂ i, ĝi be two non-dominated time

window assignment remainders . In this case, if Equation (52) holds, (53) follows.

ãf
i

i ≤ z̃
f̂i

i+1 − si − ti,i+1 ≤ z̃ĝ
i

i+1 − si − ti,i+1, (52)

TW (r, f i ⊕ f̂ i) ≤ TW (r, f i ⊕ ĝi) (53)

Proof of Lemma 8. In analogy to Lemma 7, see Appendix B.

Lemmata 7 and 8 imply that for each partial time window assignment in Li only the two neighboring

partial time window remainders in L̂i must be considered to update the time window violation of a route

and vice versa. In the worst case, the corrected earliest arrival times and the latest possible start times

at customer i alternate such that 1 + i · (θmax − 1) + 1 + (k − i) · (θmax − 1) ∈ O(kθmax) comparisons are

necessary. Figure 11 shows a pseudo code of this evaluation scheme.

Note that these results also hold for search operators which insert a vertex instead of concatenating two

partial routes because we can replace each vertex insertion by combining a forward propagation and a partial

route concatenation (see Appendix E, Table 6).

1: Input : Li =
[
f i0, . . . , f

i
l

]
with ã

fi0
i < · · · < ã

fil
i and level L̂i =

[
f̂ i0, . . . , f̂

i
l̂

]
with z

f̂i0
i < · · · < z

f̂i
l̂
i

2: Initialization :
3: g := f i0, ĝ := f̂ i0, λ∗ :=∞
4: Iteration :
5: while true do
6: λ :=

−→
λ tw
i (r, g) +

←−
λ tw
i (r, ĝ) + max

{
0, ãgi −

(
z̃ĝi+1 − si − ti,i+1

)}
7: if λ < λ∗ then
8: λ∗ := λ
9: if ãgi == zĝi then

10: g := successor(g), ĝ := successor(ĝ)

11: else if ãgi < zĝi then
12: g := successor(g)
13: else
14: ĝ := successor(ĝ)

15: if g == f il or ĝ == f̂ i
l̂
then

16: break
17: Output : λ∗

Figure 11: Linear time window update



Les Cahiers du GERAD G–2019–39 17

4 Results

We implemented the LNS as a single thread code in C++ and ran all experiments on a desktop computer

with an Intel Core i7 3.7 GHz and 32 GB RAM, running Ubuntu 16.04. For future research, we provide

all benchmark instances including solutions at https://rwth-aachen.sciebo.de/s/KzIKxP5nmxtzMDc. Be-

cause the single components of our algorithm depend on various parameters, we first describe our parameter

fitting in Section 4.1. Section 4.2 details computational studies to evaluate the performance of our algorithm.

Finally, we present new benchmark instances that reflect planning tasks in user-centered last mile logistics

in Section 4.3. Based on these, we discuss results that show the benefit of our algorithm and allow to gain

managerial insights on strategies to offer multiple time windows in practice.

4.1 Parameter fitting

We base our parameter fitting on the method described in Ropke and Pisinger (2006). Starting with a

parameter setting that we found while developing the algorithm, we vary a single parameter while leaving

all other parameters fixed. We evaluate each setting based on its solution quality according to the best

objective value out of 20 runs on a set of tuning instances (cm101, cm201, rm101, rm201, rcm101, rcm201)

from the instance set of Belhaiza et al. (2014). After fixing a parameter to its best performing setting, we

proceed with the next one until all parameters are fixed. Table 2 details our final parameter setting for the

minimum and maximum percentage of removed customers in destroy operators (Γmin,Γmax), the number of

paths considered in the heuristic propagation of the time window violation (lpath), the iterations (relative

to imax) after which the time window violation propagation method swaps between optimal and heuristic

evaluations (Iswitch), the weight of the spatial, freight, time window, and route relatedness component in

Rij (βS, βF, βT, βR), the number of closest relatives to be considered in a removal step (lrelative), the number

of insertion positions considered in a repair step (linsert), the initial value and the lower and upper bound

for penalty weights(αfr
min, α

fr
start, α

fr
max, α

tw
min, α

tw
start, α

tw
max), the penalty update factor (γ), the number of local

search iterations after which penalty weights are updated (ipLS), the maximum number of iterations without

improvement (imax
noi ), the number of iterations before the current solution is set back to the best known

solution (ir), the deviation factor for the local search corridor (δ), the percentage of customers contained in

the descending neighborhoods (ηc, ηm), and the maximum number of iterations (imax). We highlight the final

setting in bold and state for each parameter the deviation ∆λ between the best and the other settings.

4.2 Computational studies

We present results on 48 benchmark instances introduced by Belhaiza et al. (2014). These instances are

based on the VRPTW instances from Solomon (1987). While customer locations, demands and service times

Table 2: Parameter setting for the LNS

(Γmin,Γmax) (0.1, 0.15) (0.1, 0.20) (0.1, 0.25) γ 1.05 1.15 1.3

∆λ 0.01 0 0.04 ∆λ 0 0.06 0.07
lpath 2 3 5 ipLS 1 3 5

∆λ 0.06 0 0.04 ∆λ 0 0.02 0.04
Iswitch [0.5] [0.3, 0.5, 0.7] [0.4, 0.5, 0.9] imax

noi 300 525 750

∆λ 0 0.02 0.05 ∆λ 0.44 0.25 0
(βS, βF, βT, βR) (6, 3, 5, 8) (6, 3, 5, 5) (8, 3, 6, 8) ir 75 150 225

∆λ 0 0 0.07 ∆λ 0 0.19 0.35
lrelative 1 3 5 δ 1.15 1.3 2

∆λ 0.11 0.23 0 ∆λ 0.07 0.03 0
linsert 1 3 5 (ηc, ηm) (0.05, 0.2) (0.1, 0.3) (0.1, 0.5)

∆λ 0.1 0 0.14 ∆λ 0.09 0 0.03(
α
fr/tw
min , α

fr/tw
start , α

fr/tw
max

)
(0.1, 10, 1000) (0.5, 50, 5000) (0.1, 102, 105) imax 1000 2000 3000

∆λ 0.23 0.31 0 ∆λ 0.27 0.06 0

The table shows the results on the tested parameter settings. The final setting used for numerical studies is printed in bold. We fitted
the parameters in the order displayed in the table, beginning at its upper left.

https://rwth-aachen.sciebo.de/s/KzIKxP5nmxtzMDc
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as well as the vehicles’ capacities remain as in their original counterparts, the instances have multiple time

windows based on different distributions. Table 7 (see Appendix E) details these time window distributions.

To compare our algorithm to the MIP from Section 2, we created additional small instances by taking the

first 10, 15, 20 and 25 customers of the instances cm101, cm105, cm201, cm205, rm101, rm105, rm201, rm205,

rcm101, rcm105, rcm201, and rcm205.

Table 3 compares our LNS to our MIP formulation which was run with Gurobi 8.1.0 on the same desktop

computer. For the MIP, we state the objective value λ and its computational time t. We used a time limit of

7200 seconds such that instances that show a runtime of 7200 seconds might not be solved to optimality yet.

For our LNS, we state the best λb and average λa objective value out of ten runs, the deviation between λb

and the MIP solution ∆b, as well as between λa and the MIP solution ∆a, and the average runtime ta. As

can be seen, our LNS provides stable results, matching or improving the solution for all instances within

runtimes of a few seconds, while the MIP already fails to solve even some instances with 15 customers to

optimality.

Table 4 compares the results of our algorithm to the results of Belhaiza et al. (2014) and Belhaiza et al.

(2017) on larger instances. We state for each instance its so far best known solution (BKS); and for each

algorithm the number of vehicles in the best solution rb, the solution value of the best (λb) and the average

solution (λa) out of ten runs, the gap between the so far BKS and the best (∆b) or average (∆a) solution,

and the average computational time ta. As can be seen, our algorithms vastly outperforms the algorithms of

Belhaiza et al. (2014) and Belhaiza et al. (2017) in terms of solution quality. We find new BKSs for 26 out

of 48 instances. On average, we improve the solution quality over all instances by 1.5%. For some instances

that show challenging time window configurations, we find improvements of 23.6% or 25.3%. For 5 instances,

we do not only reduce the objective function value but also the number of necessary vehicles. However, the

superiority in solution quality comes with a price in terms of computational time because the exact evaluation

of time window assignments allows to find better solutions (especially on difficult instances) but bears an

Table 3: Comparison of MIP implementation and LNS

MIP LNS MIP LNS

Instance |C| λ t λb ∆b λa ∆a ta Instance |C| λ t λb ∆b λa ∆a ta

cm101 10 485.3 1345 485.3 0 485.3 0 < 1 cm101 20 825.9 7200 801.7 -2.9 801.7 -2.9 3
cm105 10 486.0 114 486.0 0 486.0 0 < 1 cm105 20 801.3 7200 801.1 -0.3 801.1 -0.3 2
cm201 10 833.1 < 1 833.1 0 833.1 0 < 1 cm201 20 1599.0 7200 1599.0 0 1599.0 0 2
cm205 10 834.9 < 1 834.9 0 834.9 0 < 1 cm205 20 1614.9 7200 948.7 -41.3 948.7 -41.3 2
rcm101 10 566.0 2 566.0 0 566.0 0 < 1 rcm101 20 883.7 168 883.7 0 883.7 0 3
rcm105 10 566.8 < 1 566.8 0 566.8 0 < 1 rcm105 20 885.3 376 885.2 0 885.2 0 2
rcm201 10 1137.8 6 1137.8 0 1137.8 0 < 1 rcm201 20 1219.4 66 1219.4 0 1219.4 0 2
rcm205 10 1137.8 4 1137.8 0 1137.8 0 < 1 rcm205 20 1219.4 1482 1219.4 0 1219.4 0 1
rm101 10 598.2 63 598.2 0 598.2 0 < 1 rm101 20 922.4 7200 922.4 0 922.8 0 3
rm105 10 595.4 161 595.4 0 597.4 0 < 1 rm105 20 906.3 7200 906.2 0 908.2 0.2 1
rm201 10 1173.0 < 1 1173.0 0 1173.0 0 < 1 rm201 20 1262.3 5 1262.3 0 1262.3 0 3
rm205 10 1173.0 < 1 1173.0 0 1173.0 0 < 1 rm205 20 1262.3 11 1262.3 0 1262.3 0 1

cm101 15 537.8 38 537.8 0 537.8 0 1 cm101 25 1054.9 7200 825.2 -21.8 825.2 -21.8 5
cm105 15 538.1 70 538.1 0 538.1 0 < 1 cm105 25 1026.6 7200 823.6 -19.8 823.6 -19.8 3
cm201 15 870.6 8 870.6 0 870.6 0 < 1 cm201 25 1626.9 7200 1626.9 0 1626.9 0 4
cm205 15 883.2 41 883.2 0 883.2 0 < 1 cm205 25 1619.7 7200 1619.7 0 1619.7 0 3
rcm101 15 586.9 5 586.9 0 586.9 0 < 1 rcm101 25 895.0 725 895.0 0 895.0 0 4
rcm105 15 588.5 4 588.5 0 588.5 0 < 1 rcm105 25 898.4 1246 898.3 0 898.3 0 3
rcm201 15 1153.6 641 1153.6 0 1153.6 0 < 1 rcm201 25 1226.1 7200 1226.1 0 1226.1 0 3
rcm205 15 1153.6 1094 1153.6 0 1153.6 0 < 1 rcm205 25 1226.1 7200 1226.1 0 1226.1 0 3
rm101 15 878.2 7200 878.2 0 878.2 0 < 1 rm101 25 1185.8 7200 1185.8 0 1185.8 0 4
rm105 15 661.5 7200 661.5 0 661.5 0 < 1 rm105 25 960.1 7200 960.1 0 960.1 0 4
rm201 15 1229.2 < 1 1229.2 0 1229.2 0 < 1 rm201 25 1316.9 14 1316.9 0 1316.9 0 4
rm205 15 1229.2 < 1 1229.2 0 1229.2 0 < 1 rm205 25 1313.3 19 1313.3 0 1313.3 0 2

Abbreviations hold as follows: |C| - number of customers considered, λ - objective value found by MIP, t - runtime unsing
MIP in seconds, λb - best objective value out of ten runs, ∆b - gap between solution found using MIP and λb in percent,
λa - average objective value out of ten runs, ∆a - gap between solution found using MIP and λa in percent,ta - average runtime
out of ten runs in seconds.
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Table 4: Results on benchmark instances RM1, RM2, CM1, CM2, RCM1 and RCM2

Belhaiza et al. (2014) Belhaiza et al. (2017) Schaap et al.

Instance BKS λb rb tb λa ∆a λb rb tb λb rb ∆b tb λa ra ∆a ta

cm101 3089.2 3089.2 10 102 3102.4 0.4 3101.2 10 62 3126.7 10 1.2 327 3172.6 10.2 2.7 259
cm102 3339.7 3426.9 12 97 3426.9 2.6 3339.7 11 86 3467.8 12 3.8 307 3481.7 12.0 4.3 309
cm103 3520.5 3532.7 12 91 3572.7 1.5 3520.5 12 99 3436.8 11 -2.4 260 3471.9 11.0 -1.4 257
cm104 4048.0 4051.3 14 69 4058.0 0.2 4048 14 79 3870.8 13 -4.4 209 3893.5 13.0 -3.8 215
cm105 3010.2 3060.6 11 67 3077.3 2.2 3010.2 10 62 3018.8 10 0.3 213 3061.7 10.0 1.7 191
cm106 2982.2 2992.4 10 65 3020.2 1.3 2982.2 10 69 2982.9 10 0.0 193 2999.8 10.0 0.6 172
cm107 3256.5 3256.5 11 38 3292.3 1.1 3256.5 11 63 3077.9 10 -5.5 102 3080.9 10.0 -5.4 107
cm108 2967.3 2968.7 10 32 2973.1 0.2 2967.3 10 70 2965.6 10 -0.1 65 2968.6 10.0 0.0 107
cm201 4390.3 4436.6 5 92 4452.5 1.4 4390.3 5 96 4392.2 5 0.0 276 4419.6 5.0 0.7 260
cm202 4990.8 4998.8 6 90 5024.9 0.7 4990.8 6 73 4996.5 6 0.1 185 5005.6 6.0 0.3 194
cm203 4445.8 4445.8 5 94 4484.6 0.9 4446.7 5 64 4445.5 5 0.0 230 4463.8 5.0 0.4 219
cm204 4332.2 4335.2 5 92 4372.4 0.9 4332.2 5 79 4321.5 5 -0.2 224 4335.7 5.0 0.1 220
cm205 3819.1 3863.5 4 99 3883.2 1.7 3819.1 4 99 3818.7 4 0.0 240 3838.4 4.0 0.5 241
cm206 3709.4 3722 4 84 3743.2 0.9 3709.4 4 97 3699.0 4 -0.3 221 3713.1 4.0 0.1 192
cm207 3933.1 3968.4 4 60 3977.8 1.1 3933.1 4 84 3921.9 4 -0.3 179 3941.7 4.0 0.2 186
cm208 3730.5 3771.1 4 65 3793.2 1.7 3730.5 4 98 3716.1 4 -0.4 209 3738.3 4.0 0.2 214
rcm101 3062.0 3062 10 77 3086.6 0.8 3063.5 10 94 3067.7 10 0.2 137 3070.8 10.0 0.3 152
rcm102 3127.7 3132.2 10 60 3142.3 0.5 3127.7 10 94 3110.8 10 -0.5 150 3157.2 10.1 0.9 130
rcm103 3131.8 3152.9 10 75 3163.8 1.0 3131.8 10 62 3124.9 10 -0.2 138 3138.9 10.0 0.2 129
rcm104 3111.8 3119.6 10 64 3134.6 0.7 3111.8 10 60 3111.2 10 0.0 135 3124.1 10.0 0.4 129
rcm105 3185.9 3187.9 10 65 3210.7 0.8 3185.9 10 84 3172.8 10 -0.4 94 3203.8 10.1 0.6 99
rcm106 3193.4 3218.9 10 55 3218.9 0.8 3193.4 10 96 3173.1 10 -0.6 118 3191.4 10.0 -0.1 116
rcm107 3487.7 3488.9 11 35 3514.0 0.8 3487.7 11 77 3487.7 11 0.0 44 3497.3 11.0 0.3 67
rcm108 3532.6 3592.7 11 36 3592.7 1.7 3532.6 11 82 3532.5 11 0.0 75 3544.7 11.0 0.3 71
rcm201 2778.7 2804 2 69 2827.8 1.8 2778.7 2 88 2701.7 2 -2.8 367 2736.4 2.0 -1.5 313
rcm202 2815.9 2836.9 2 79 2846.8 1.1 2815.9 2 61 2722.3 2 -3.3 241 2749.1 2.0 -2.4 294
rcm203 2721.9 2721.9 2 92 2725.4 0.1 2722 2 60 2707.3 2 -0.5 201 2736.2 2.0 0.5 271
rcm204 2698.4 2726.5 2 76 2743.1 1.7 2698.4 2 78 2696.5 2 -0.1 191 2703.9 2.0 0.2 244
rcm205 2754.5 2754.5 2 72 2775.7 0.8 2754.5 2 76 2721.2 2 -1.2 241 2733.3 2.0 -0.8 204
rcm206 2769.6 2812.7 2 22 2830.6 2.2 2769.6 2 93 2725.9 2 -1.6 200 2764.1 2.0 -0.2 211
rcm207 3749.8 3749.8 3 68 3786.8 1.0 3749.8 3 90 2863.4 2 -23.6 127 3585.4 2.8 -4.4 32
rcm208 2742.7 2791.4 2 21 2817.2 2.7 2742.7 2 72 2722.7 2 -0.7 148 2755.1 2.0 0.5 176
rm101 2970.2 2977.2 10 66 3005.0 1.2 2970.2 10 81 2977.2 10 0.2 157 2991.9 10.0 0.7 154
rm102 2725.3 2759.4 9 58 2759.4 1.3 2725.3 9 90 2730.0 9 0.2 139 2897.9 9.8 6.3 29
rm103 2681.5 2692.5 9 47 2710.5 1.1 2681.5 9 97 2693.4 9 0.4 153 2702.8 9.0 0.8 143
rm104 2691.8 2696.6 9 74 2719.2 1.0 2691.8 9 83 2697.6 9 0.2 135 2701.4 9.0 0.4 129
rm105 2687.2 2688.8 9 84 2711.0 0.9 2687.2 9 87 2689.7 9 0.1 124 2699.9 9.0 0.5 130
rm106 2691.9 2691.9 9 75 2691.9 0.0 2700.9 9 95 2707.1 9 0.6 124 2717.5 9.0 1.0 118
rm107 2685.1 2690.8 9 44 2714.7 1.1 2685.1 9 92 2686.0 9 0.0 122 2700.4 9.0 0.6 117
rm108 2716.0 2729.1 9 53 2729.1 0.5 2716 9 91 2727.6 9 0.4 110 2774.8 9.2 2.2 89
rm201 3686.4 3711.4 3 43 3720.5 0.9 3686.4 3 71 2753.3 2 -25.3 385 2780.6 2.0 -24.6 357
rm202 2681.0 2698.1 2 40 2717.3 1.4 2681 2 79 2691.3 2 0.4 361 2703.6 2.0 0.8 330
rm203 2673.6 2686.1 2 47 2702.0 1.1 2673.6 2 66 2684.4 2 0.4 228 2693.6 2.0 0.7 285
rm204 2664.9 2680.5 2 48 2691.2 1.0 2664.9 2 83 2678.4 2 0.5 251 2683.4 2.0 0.7 243
rm205 2651.3 2671 2 44 2688.2 1.4 2651.3 2 92 2671.0 2 0.7 163 2678.8 2.0 1.0 178
rm206 2672.8 2686.3 2 32 2704.9 1.2 2672.8 2 61 2688.3 2 0.6 192 2697.2 2.0 0.9 216
rm207 2657.3 2678.2 2 52 2696.2 1.5 2657.3 2 69 2682.4 2 0.9 215 2693.8 2.0 1.4 212
rm208 2663.6 2673.9 2 43 2690.7 1.0 2663.6 2 88 2678.6 2 0.6 154 2686.0 2.0 0.8 190

Tot. Avrg. 3179.8 3197.6 6.58 64 3215.1 1.1 3180.3 6.54 81 3132.0 6.46 -1.5 189 3168.4 6.50 -0.36 185

Abbreviations hold as follows: BKS - previous best known solution, rb - number of vehicles in best solution out of ten runs,
tb - runtime to best solution in seconds, λb - best objective value out of ten runs, λa - average objective value out of ten runs,
ta - average runtime out of ten runs in seconds, ra - average number of vehicles in ten runs, ∆b - gap between the previous BKS
and λb in percent, ∆a - average gap between the average solution in Belhaiza et al. (2014) and λa in percent.

inherently higher computational complexity. Nevertheless, our computational times are still sufficient to

allow for a day-ahead computation of routes in practice, which is a common application for the VRPMTW.

Here, practitioners would certainly value a superior solution quality that gains improvements of up to 25%

over a decreased computational time as long as computational times remain tractable for operations.
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4.3 Managerial studies

Especially in e-commerce and grocery home deliveries, customer-driven logistics services are gaining impor-

tance. As a new service, customers can often choose one or multiple potential delivery time windows to

receive their deliveries. In this section, we aim at deriving insights into the impact of different time window

offering strategies, and whether or not a competitive algorithm helps to stabilize the operations for different

customer demands and preferences. In the following, we create new instances (Section 4.3.1) to conduct these

analyses and discuss their results in Section 4.3.2.

4.3.1 Experimental design

For our studies, we use the c100, r100, and rc100 VRPTW instances of Solomon (1987) as base instances

because they cover different customer patterns. We consider a global service time window of eight hours

in which customers must be served, and we choose a ten hour planning horizon for the depot. Within this

general setting, we generate instances that reflect the following characteristics:

LSP strategies to offer time windows: In our basic scenario, the LSP offers only a single eight-hour

time window (1x8h), i.e., the customer can only select the delivery day and has to be available the

complete day. In all other scenarios, the LSP offers the customer to choose a specific time window or a

selection of time windows with a shorter width. Specifically, we consider scenarios in which customers

choose one out of two four-hour time windows (1x4h), two out of four two-hour time windows (2x2h),

one out of four two-hour time windows (1x2h), four out of eight one-hour time windows (4x1h), three

of eight one-hour (3x1h), two out of eight one-hour (2x1h), and one out of eight one hour (1x1h) time

windows.

Customer time window selection behaviour: To account for different customer preferences, we create

instances in which customers select time windows either i) uniformly distributed, or twice more likely

ii) in the first 4 hours (morning delivery), iii) in the last 4 hours (afternoon delivery), iv) in the first or

last quarter (early-or-late delivery), or v) after the first and before the last quarter (midday delivery).

The 1x8h scenario represents our baseline to assess the different time window offering strategies. It is not

affected by the customer selection behavior because all customers have to remain available for deliveries the

whole day. We consider a full factorial design in all influence factors such that we have 34 instance types

for each customer pattern and 102 different instance types in total. To avoid a statistical bias, we create 20

instances for each instance type but the baseline, which is not affected by randomness. Thus, in total we

obtain 1983 instances for our studies.

4.3.2 Results

In the following, we describe the results of the experiments described in 4.3.1. To keep this paper concise

but secure scientific rigor, we provide extensive results that give numerical proof to our findings at https:

//rwth-aachen.sciebo.de/s/KzIKxP5nmxtzMDc.

Figures 12–14 detail the average cost increase for each time window offering strategy and customer

time window selection behavior compared to our baseline scenario (1x8h) for spatially random (Figure 12),

randomly clustered (Figure 13) and clustered (Figure 14) customer distributions. As can be seen, the cost

increases vary significantly between 0.17% and 8.99% with respect to the time window offering strategy and

the spatial customer distribution, but appear to be nearly robust on customer selection behaviors. From

these results, we synthesize the following three managerial insights:

Spatially clustered customer distributions reduce the cost increase that result from multiple time window
offering: As can be seen, for any time window offering strategy and customer time window selection behavior,

the average cost increase for clustered customer distributions is up to 3.86% lower than for random spatial

customer distributions. This shows that having a clustered customer set helps to reduce the cost increase of

offering multiple time windows. In real-world applications, LSPs can aim at such a customer distribution by
strategically increasing their market share in certain areas or by exchanging demands with competitors.

 https://rwth-aachen.sciebo.de/s/KzIKxP5nmxtzMDc
 https://rwth-aachen.sciebo.de/s/KzIKxP5nmxtzMDc
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Figure 12: Average cost increase for different time window offering strategies and customer selection scenarios compared to the
baselien scenario (1x8h) on random customer distributions
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Figure 13: Average cost increase for different time window offering strategies and customer selection scenarios compared to the
baselien scenario (1x8h) on randomly clustered customer distributions

The time window offering strategies show a robust hierarchy with respect to the customer distribution and
the customer selection behavior: The customer selection strategy causes only minimal changes in the cost

increase. Furthermore, for all spatial customer distributions, the largest cost increase results for the (1x1h)

strategy and the relation between cost increases for other strategies remains consistent, too. Apparently,

allowing the customer to choose a single time window limits the operational flexibility of the LSP the most

and results in the highest cost increase. This cost increase is the lower, the wider the time window is.

Enforcing a customer preference selection of more than one time window helps to decrease additional
costs significantly, independent of the time window width: On the contrary, enforcing multiple delivery

time windows decreases the additional costs for the LSP significantly. Herein, offering a 2x2h strategy appears

to be a good trade-off between cost increase and customer satisfaction. As customers can design two 2x2h

time windows out of the 4x1h strategy, an LSP could even use a 4x1h strategy to reduce its costs even further.
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Figure 15 exemplary shows a box-whisker-plot for the cost increase for each time window offering strategy

and customer selection behavior for the instances with a random customer distribution. The characteristics

for box-whisker plots for randomly clustered or clustered instances show similar characteristics and scale

only in its amplitude. As can be seen, the single time window selection strategies which perform worst with

respect to average cost increase also show the largest spread that may result in even higher cost increases

for certain realizations. Contrary, the cost increase for the other strategies remains nearly stable with only a

small spread in its realizations.
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Figure 14: Average cost increase for different time window offering strategies and customer selection scenarios compared to the
baselien scenario (1x8h) on clustered customer distributions
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Figure 15: Box-whisker plots of increase of cost for R instances when compared to service provider strategy 1
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5 Conclusion

In this paper, we presented a LNS based metaheuristic for the VRPMTW. Enhanced with a dynamic pro-

gramming component that allows to efficiently assign delivery time windows to customers when evaluating a

route, this algorithm presents a new state of the art in terms of solution quality for the VRPMTW. Besides a

rigorous mathematical proof of this component and its computational complexity, we presented 26 new best

known solutions for the instance set of Belhaiza et al. (2014), some improving the so far best known solutions

up to 25.3%. Besides, we derived new benchmark sets to evaluate the impact of different time window offering

strategies in the course of customer-centered logistics. We showed that time window offering strategies that

leave a minimum choice between delivery time windows to the LSP may reduce the cost increase significantly

while keeping the customer satisfaction at a high level.

Appendix A Graph transformation for backward-forward evaluation

In the following we describe how backward time window violations can be calculated by evaluating forward

time window violations on a reversed route. This extends the theoretical results presented in Section 3 to

the backward time window violation. For the sake of simplicity, we consider only a single time window and

omit notational details from the multiple time window case.

The calculation of the backward time window violation of a route r = 〈v0, . . . , vk〉 coincides with the

calculation of the forward time window violation of a reversed route r′ that is defined as follows:

Route: r′ = 〈v′0, . . . , v′k〉 := 〈vk, . . . , v0〉

Time windows:
[
e′v′i , l

′
v′i

]
:=
[
−lvk−i ,−evk−i

]
∀i = 0, . . . , k, j = 1, . . . , θvi

Sevice time: s′v′i
:= svk−i−1

∀i = 0, . . . , k − 1

s′v′k
:= sv0

This transformation inverts the route direction, mirrors its time windows, and shifts service times to the

succeeding customer. For the forward violation calculation this yields

av′0 = ãv′0 = e′v′0 = −lvk
av′j = ãv′j−1

+ s′v′j−1
+ tv′j−1,v

′
j

= ãvk−j+1
+ svk−j + tvk−j+1,vk−j 1 ≤ j ≤ k

ãv′j =

max
{
av′j , ev′j

}
if av′j ≤ lv′j

lv′j
otherwise

=

max
{
avk−j ,−lvk−j

}
if avk−j ≤ −evk−j

−evk−j otherwise.
1 ≤ j ≤ k

To transform results back to the original route, we replace any av′j by −zvk−j and any ãv′j by −z̃vk−j respec-

tively.

−zvk = −z̃vk = −lvk
−zvk−j = −z̃vk−j+1

+ svk−j + tvk−j+1,vk−j 1 ≤ j ≤ k

−z̃vk−j =

max
{
−zvk−j ,−lvk−j

}
if −zvk−j ≤ −evk−j

−evk−j otherwise.
1 ≤ j ≤ k

Additionally, we switch the order of enumeration from k− j to j and multiply every equation by −1 to attain

the formulation of the backward time window violation.

zvk = z̃vk = lvk
zvj = z̃vj+1

− svj − tvj+1,vj 0 ≤ j ≤ k − 1
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z̃vj =

min
{
zvj , lvj

}
if zvj ≥ evj

evj otherwise.
0 ≤ j ≤ k − 1

In the following lemma, we state the dominance criterion for the backward violation remainder. Note that

the transformation described above induces a switch of the roles of z̃g
i

i and z̃f
i

i in Equation (55).

Lemma 9 Let r be a route and let f̂ i, ĝi ∈ F̂ i (r) be partial time window assignments on r up to customer

i ∈ {0, . . . , k − 1}. If Equations (54) and (55) hold, f̂ i dominates ĝi.

−→
λ tw
i (r, f i) ≤

−→
λ tw
i (r, gi) (54)

z̃g
i

i − z̃
fi

i ≤
−→
λ tw
i (r, gi)−

−→
λ tw
i (r, f i) (55)

Appendix B Proof of Lemma 8

Proof of Lemma 8. Adapted from the single time window case (cf. Schneider et al. (2013))

TW (r, f i ⊕ f̂ i) =
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, f̂ i) + max

{
0, ãf

i

i −
(
z̃f̂

i

i+1 − si − ti,i+1

)}
holds and can be simplified to

TW (r, f i ⊕ f̂ i) =
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, f̂ i)

because of Equation (52). Because ĝi does not dominate f̂ i and because Equation(52) implies z̃f̂
i

i+1 ≥ z̃ĝ
i

i+1,

we conclude

TW (r, f i ⊕ f̂ i) <
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, ĝi). (56)

Because Equation (56) equals TW (r, f i ⊕ ĝi) this concludes the proof:

TW (r, f i ⊕ f̂ i) =
−→
λ tw
i (r, f i) +

←−
λ tw
i (r, ĝi) + max

{
0, ãf

i

i −
(
z̃ĝ
i

i+1 − si − ti,i+1

)}
= TW (r, f i ⊕ ĝi).

Appendix C Pseudo codes

In this section, we detail pseudo codes for subroutines of our algorithm. Figure 16 details a binary search

to identify a customer’s earliest time window which closes after the arrival time at this customer. If no time

window closes after the arrival time, the first time window that opens after the arrival time is returned.

Figure 17 details the pseudo code to integrate a tree label into a list of non-dominated labels in constant

time. Newly generated labels are only inserted if their time window assignment is not dominated by the time

window assignment of any previously added label. Labels are removed from the list of labels if their time

window assignment is dominated by the new label’s time window assignment.
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1: Input : Time of arrival a, sorted list of time windows Θ =
[[
e1, l1

]
, . . . ,

[
eθ, lθ

]]
2: Initialization :
3: low := 1
4: high := θ
5: l0 := −∞
6: Iteration :
7: while True do
8: mid = low + b high−low

2
c

9: if a ≤ lmid−1 then
10: high := mid− 1
11: else if a > lmid then
12: low := mid + 1
13: else
14: break
15: Output :

[
emid, lmid

]
Figure 16: Pseudo code for the findSubsequentOrEnclosingTimeWindow subroutine

1: Input :
2: List L =

[
(ã0, f0, λ0) , . . . ,

(
ã|L|, f|L|, λ|L|

)]
with ã0 < · · · < ã|L|, element (ã∗, f∗, λ∗)

3: Iteration :
4: i := |L| − 1
5: if ãi > ã∗ then
6: i := i− 1

7: if f i dominates f∗ then
8: Discard f∗

9: else if f∗ dominates f i then
10: L [i] := (ã∗, f∗, λ∗)
11: else
12: Insert (ã∗, f∗, λ∗) into L between i and i+ 1

13: Output : L

Figure 17: Pseudo code for the smartAppend subroutine

Appendix D Algorithmic component analysis

To evaluate the contribution of single components of the algorithm on the solution quality, we conducted an

algorithmic component analysis. We present the results in Table 5. In the analysis, we tentatively removed

every single component of our algorithm and assessed the impact of the removal, i.e., whether or not a

benchmark value was improved or impaired. As benchmark value we took the average solution value of the

best solutions out of ten runs for the instances used for parameter fitting (cf. Section 4.1). We provide the

deviation ∆λ between the reference value and the value derived with the respective component configuration.

If the solution quality decreased (∆λ > 0), we kept this component in our algorithm, since it contributes to

solution quality. If removing a component resulted in better results (∆λ > 0) or the results were equal but

the computation time decreased, we removed this component from our algorithm. We tested all components

in certain steps (from now on referred to as blocks), investigating the basic algorithmic components (A) first.

Afterwards, we tested the local search operators (B) and the variable descent neighborhood component (C) (cf.

Section 3.1.4). Finally, we tested the destroy operators (D) and the repair operators (E) (cf. Section 3.1.3).

Results for the single blocks are reported below:

A: We tested the basic algorithmic components, i.e., the local search component (A1), the restart compo-

nent (A2), the time window evaluation mechanism, i.e., switching between heuristic and optimal time window

evaluation (A3), an adaptive destroy and repair operator selection where we adjust the probability for chosing

destroy and repair operators depending on their success in finding improving solutions (A4), and the best-

improvement acceptance criterion (by replacing it with a first-improvement acceptance criterion) (A5). We

found that the adaptive component (A4) impairs the solution quality and all other components contribute

to the quality of the solution.
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B: We tested the local search operators, i.e., the relocate operator (B1), the exchange operator (B2), the

2-opt* operator (B3), and the Or-opt operator (B4). All four local search operators contribute to the quality

of the solution.

C: We tested the variable descent neighborhood component for all operators, i.e., for the relocate opera-

tor (C1), for the exchange operator (C2), for the 2-opt* operator (C3), and for the Or-opt operator (C4).

All four variable descent neighborhood components contribute to the quality of the solution.

D: We tested the destroy operators, i.e., the worstRemove operator (D1), the relatedRemove operator (D2),

and the routeRemove operator (D3). All three components contribute to the quality of the solution.

E: We tested the repair operators, i.e., the sequentialInsertion operator (E1), the sequentialPertubatedIn-

sertion operator (E2), and the randomInsertion operator. Because the sequentialPertubatedInsertion and

the randomInsertion operator impair the soltuon quality, we ran additional tests with both components re-

moved (E4). This improves the solution quality even further so we only kept the sequentialInsertion operator.

Table 5: Algorithmic component analysis

A0 A1 A2 A3 A4 A5 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 E1 E2 E3 E4

A
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � �
� � � � � � � � � � � � � � � � � � � �

B
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

C
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � �

D
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

E
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

∆λ0.00 55.91 0.57 0.01 -0.16 0.59 0.28 0.92 0.59 0.83 0.18 0.14 0.04 0.18 0.14 0.07 13.65 0.2 -0.13 -0.02 -0.17

Appendix E Supplementary tables

In the following, we present additional tables.

Table 6 depicts how the time window violation can be updated for different local search operators by

combining propagation and concatenation.

Table 7 details these time window distributions, denoting the minimum and maximum number of time

windows (p, p), temporal distance between two consecutive time windows (d, d), and the minimum and

maximum time window width (w, w).
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Table 6: Time window violation update in local search

Operator Route(s) before and after move Recalculation steps

relocate
(Intra route)

〈0, . . . , vx−1,vx, . . . , vy , vy+1, . . . , n〉
↓

〈0, . . . , vx−1, . . . , vy ,vx, vy+1, . . . , n〉

• forward propagation from vx−1 to vx

• concatenate 〈0, . . . ,vx〉 and 〈vy+1, . . . , n〉

relocate
(Inter route)

〈0, . . . , vx−1,vx, vx+1, . . . , n〉
〈0, . . . , vy−1, vy , . . . , n〉

↓
〈0, . . . , vx−1, vx+1, . . . , n〉
〈0, . . . , vy−1,vx, vy , . . . , n〉

• concatenate 〈0, . . . , vx−1〉 and 〈vx+1, . . . , n〉
• forward propagation from vy−1 to vx

• concatenate 〈0, . . . ,vx〉 and 〈vy , . . . , n〉

exchange
(Intra route)

〈0, . . . , vx−1,vx, . . . ,vy , vy+1, . . . , n〉
↓

〈0, . . . , vx−1,vy , . . . ,vx, vy+1, . . . , n〉

• forward propagation from vx−1 to vx

• concatenate 〈0, . . . ,vx〉 and 〈vy+1, . . . , n〉

exchange
(Inter route)

〈0, . . . , vx−1,vx, vx+1, . . . , n〉
〈0, . . . , vy−1,vy , vy+1, . . . , n〉

↓
〈0, . . . , vx−1,vy , vx+1, . . . , n〉
〈0, . . . , vy−1,vx, vy+1, . . . , n〉

• forward propagation from vx−1 to vy

• concatenate 〈0, . . . ,vy〉 and 〈vx+1, . . . , n〉
• forward propagation from vy−1 to vx

• concatenate 〈0, . . . ,vx〉 and 〈vy+1, . . . , n〉

2-opt*
〈
0, . . . , vx−1,vx,vx+1, vx+2, . . . , n

〉〈
0, . . . , vy−1,vy ,vy+1, vy+2, . . . , n

〉
↓〈

0, . . . , vx−1,vx,vy+1, vy+2, . . . , n
〉〈

0, . . . , vy−1,vy ,vx+1, vx+2, . . . , n
〉

• concatenate 〈0, . . . ,vx〉 and 〈vy+1, . . . , n〉
• concatenate 〈0, . . . ,vy〉 and 〈vx+1, . . . , n〉

Or-opt*
(sequence length r)

〈
0, . . . , vx−1,vx, . . . ,vx+r , vx+r+1, . . . , n

〉
〈0, . . . , vy , vy+1, . . . , n〉

↓
〈0, . . . , vx−1, vx+r+1, . . . , n〉〈
0, . . . , vy ,vx, . . . ,vx+r , vy+1, . . . , n

〉
• concatenate 〈0, . . . , vx−1〉 and 〈vx+r+1, . . . , n〉
• forward propagation from vy to vx+r

• concatenate
〈
0, . . . ,vx+r

〉
and 〈vy+1, . . . , n〉

Table 7: Distribution of time windows in instances

Inst. p p d d w w Inst. p p d d w w Inst. p p d d w w

rm101 5 9 10 10 10 30 cm101 5 10 10 50 50 100 rcm101 5 10 10 30 10 30
rm102 5 7 10 30 10 30 cm102 5 7 10 70 50 100 rcm102 5 7 10 30 10 50
rm103 4 7 10 50 10 30 cm103 3 7 10 100 50 100 rcm103 3 7 10 50 10 50
rm104 3 6 10 70 10 30 cm104 3 5 10 100 50 100 rcm104 3 5 10 50 10 50
rm105 2 6 10 100 10 30 cm105 2 5 50 200 50 100 rcm105 2 5 10 70 10 70
rm106 2 3 50 100 30 50 cm106 2 4 50 200 100 200 rcm106 2 4 30 70 30 70
rm107 1 3 50 150 30 50 cm107 1 3 100 300 100 200 rcm107 1 3 30 100 30 70
rm108 1 2 100 200 50 100 cm108 1 3 100 500 100 500 rcm108 1 3 30 100 30 100
rm201 5 8 50 100 50 100 cm201 5 10 100 150 50 100 rcm201 5 10 100 150 50 100

rm202 3 5 50 300 50 100 cm202 5 7 100 200 50 100 rcm202 5 7 100 200 50 100
rm203 2 5 50 500 50 100 cm203 3 7 100 300 50 100 rcm203 3 7 100 300 50 100
rm204 2 4 50 700 50 100 cm204 3 5 100 500 50 100 rcm204 3 5 100 500 50 100
rm205 1 4 50 1000 50 100 cm205 2 5 200 500 100 200 rcm205 2 5 200 500 100 200
rm206 1 3 100 1000 100 200 cm206 2 4 200 700 100 200 rcm206 2 4 200 700 100 200
rm207 1 3 200 1000 100 200 cm207 1 3 200 1000 100 300 rcm207 1 3 200 1000 100 300
rm208 1 5 500 1000 100 200 cm208 1 3 500 1000 100 500 rcm208 1 3 500 1000 100 500

Abbreviations hold as follows: p - minimum number of time windows per customer, p - maximum number of time windows

per customer, d - minimum distance between time windows, d - maximum distance between time windows, w - minimum
width of time windows, w - maximum width of time windows.
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