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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2019-32) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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l’accès au travail et enquêterons sur votre demande.
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Abstract: We consider three colouring problems which are variations of the basic vertex-colouring
problem, and are motivated by applications from various domains. We give pointers to theoretical and
algorithmic developments for each of these variations.
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1 Introduction

A k-colouring of a graph G is an assignment of one of k integers, called its colour, to each vertex of G

so that adjacent vertices receive different colours. The basic vertex-colouring problem is to determine

the smallest integer k, called the chromatic number of G, for which G admits a k-colouring.

Graph colouring has been the subject of many articles and books. For example, the recent book

edited by Beineke and Wilson [3] covers many topics related to graph colouring and shows its links

with areas such as topology, algebra, geometry, and computer networks.

Graph colouring has many practical applications, where the vertices represent items to which a

resource has to be assigned, and the edges correspond to incompatibility constraints. The aim of

this chapter is to study three variations of this basic model that are motivated by situations where

additional requirements are imposed. We give pointers to theoretical and algorithmic developments

for each of these variations.

We first analyse the selective graph colouring problem which, given a graph with a partition of its

vertex-set into clusters, asks us to select exactly one vertex per cluster so that the chromatic number

of the subgraph induced by the selected vertices is minimum.

We then consider situations in which the vertices of the graph to be coloured are revealed one by

one, together with the edges linking them to previously revealed vertices. An online algorithm must

then irrevocably assign a colour to the vertices as they arrive, without knowing how the next ones will

be linked to the revealed ones.

Scheduling problems involving precedence constraints can be modelled as a mixed graph colouring

problem: the vertices that have to be coloured are linked not only by edges which represent the incom-

patibility constraints, but also by arcs (oriented edges) which represent the precedence constraints.

While adjacent vertices must receive different colours, an arc linking a vertex v to a vertex w implies

that the colour of v should be strictly smaller that the colour of w.

We recall that for arbitrary graphs, the basic vertex-colouring problem is NP-hard (see [14]).

2 Selective graph colouring

In this section, we consider a generalisation of the standard vertex-colouring problem, which is known

in the literature as the selective graph colouring problem or partition colouring problem and is defined

as follows. Let G = (V,E) be an undirected graph and let V = {V1, V2, · · · , Vp} be a partition of its

vertex-set V . The sets of V are called clusters. We define a selection as a subset of vertices V ′ ⊆ V such

that |V ′ ∩ Vi| = 1 for all i ∈ {1, 2, · · · , p}. A selective k-colouring of G with respect to the partition

V is defined by (V ′, c), where V ′ is a selection and c is a k-colouring of G[V ′] – that is, the graph

induced by the selection V ′. As for many other graph colouring problems, we may define a chromatic

number related to the selective graph colouring problem. Indeed, the smallest integer k for which a

graph G admits a selective k-colouring with respect to V is called the selective chromatic number, and

is denoted by χSEL(G).

The selective graph colouring problem, in its optimisation version, takes as input a graphG = (V,E)

and a partition V, and outputs a selection V ∗ such that χ(G[V ∗]) is minimum. This problem is denoted

by SEL-COL. The decision version of it, denoted by k-SEL-COL, where k ≥ 1 is a fixed integer, takes

the same input and asks whether there exists a selection V ′ such that χ(G[V ′]) ≤ k.

Clearly, SEL-COL generalises the standard graph colouring problem. Indeed, when each cluster

has size 1, we obtain the standard graph colouring problem. Also, it is straightforward to see that

χSEL(G) ≤ χ(G).

As for many other graph colouring problems, the selective graph colouring problem arises from an

application. Indeed, it was introduced in [30], under the name partition colouring problem, and was
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used to model the wavelength routing and assignment problem in optical networks (see also [31], [36]).

In this problem, we are given a set of source-destination pairs in a network, and are required to find

a path between each such pair and assign a wavelength to it, in such a way that any two paths which

share an edge get different wavelengths. The goal consists in using a minimum number of different

wavelengths.

One way of dealing with this wavelength routing and assignment problem is the so-called path-

colouring, which consists in two steps. In Step 1, we determine a set of paths between each pair, and

in Step 2, we choose one path from each set, in such a way that the number of wavelengths needed is

minimised. This second step may be modelled as a selective colouring problem. Indeed, we associate a

vertex with each path that we have previously determined; we add an edge between two vertices if the

corresponding paths share at least one edge; and finally, we define a cluster to be the set of vertices

that correspond to paths between the same source-destination pair. It is easy to see that SEL-COL

in this new graph gives an optimal solution to the second step of the path-colouring approach. But

the selective graph colouring problem has many other applications, as shown in [8]: dichotomy-based

constraint encoding, frequency assignment, timetabling, quality test scheduling, berth allocation and

vehicle routing with multiple stacks.

Before presenting complexity results regarding the selective colouring problem, we start with an

important observation. SEL-COL asks us to find a selection V ∗ for which χ(G[V ∗]) = χSEL(G).

Clearly, the value of the selective chromatic number may be hard to determine, even if an optimal

selection V ∗ is known. So, even if we can determine an optimal solution for SEL-COL, it may still

be difficult to compute the value of the selective chromatic number. Indeed, consider the case where

each cluster has size 1 (which is exactly the standard colouring problem). Then finding an optimal

selection is trivial, but computing the corresponding chromatic number is difficult. Note that, on the

other hand, 1-SEL-COL is NP-complete even when each cluster has size 3 (see [8]). But this time,

finding a partition is difficult while verifying whether the graph induced by a selection is 1-colourable

is trivial.

Since SEL-COL and k-SEL-COL are difficult problems in general, there has been some interest

in determining their complexities in special graph classes (see for instance [6], [7],[8]). The following

result of Demange et al. [7] gives a list of graph classes for which both problems can be solved in

polynomial time (with sometimes additional constraints).

Theorem 1 Let G = (V,E) be a graph, and let V = {V1, V2, · · · , Vp} be a partition of its vertex-set.

Then SEL-COL and k-SEL-COL can both be solved in polynomial time in the following cases:

(i) G is a threshold graph;

(ii) G is a bipartite graph and |Vi| ≤ 2, for i = 1, 2, · · · , p;

(iii) G is isomorphic to nC4 and |Vi| ≥ 4, for i = 1, 2, · · · , p;

(iv) G is isomorphic to nP3 and |Vi| ≥ 3, for i = 1, 2, · · · , p;

(v) G is a disjoint union of cliques;

(vi) G has stability number at most 2.

Let us briefly analyse the cases above.

(i) Let (K,S) be a split partition of G with K being maximal, and let v1, v2, · · · , vn be the vertices

in G with v1, v2, · · · vj ∈ S and vj+1, vj+2, · · · , vn ∈ K. Since G is a threshold graph, we may

suppose, without loss of generality, that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(vj).

First notice that we may assume that each cluster Vi, i = 1, 2, · · · , p, is either contained in K or

in S. Indeed, suppose that there exists a cluster Vi that intersects both K and S. If there exists

a selection V ∗ for which V ∗ ∩ Vi = {v} ⊆ K and w ∈ Vi ∩ S, then V ∗
′

= (V ∗ − {v}) ∪ {w} is a

selection with χ(G[V ∗
′
]) ≤ χ(G[V ∗]). Now, suppose that clusters V1, V2, · · · , Vq are contained in
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K and clusters Vq+1, Vq+2, · · · , Vp are contained in S. It is not difficult to see that χSEL(G) = q,

since K is maximal and so, there exists a vertex in K which is not adjacent to any vertex in S.

(ii) First notice that χSEL(G) = 1 or 2. If we know that χSEL(G) = 2, then we arbitrarily choose

one vertex in each cluster, and this clearly gives us a selection V ∗ for which χ(G[V ∗]) = 2, since

G is bipartite. Thus, we only need to be able to check whether χSEL(G) = 1. This can be

done using 2-SAT. Indeed, from an instance of SEL-COL in a bipartite graph G with a partition

V = {V1, V2, · · · , Vp} for which |Vi| ≤ 2, for i = 1, 2, · · · , p, we construct an instance of 2-SAT as

follows:

– we associate a variable xj with each vertex vj , j = 1, 2, · · · , n;

– we associate a clause Ci = xj with each cluster Vi, i ∈ {1, 2, · · · , p} for which Vi = {vj};
– we associate two clauses C1

i = xj∨xk and C2
i = xj∨xk with each cluster Vi, i ∈ {1, 2, · · · , p}

for which Vi = {vj , vk};
– finally, we associate a clause C = xj ∨ xk with each edge vjvk for which vj , vk belong to

different clusters.

Now it is easy to see that if there exists a truth assignment such that each clause contains at

least one literal that is true, then we obtain a selection V ∗ for which χ(G[V ∗]) = 1 by choosing

those vertices whose corresponding variables are true. Conversely, if there exists a selection V ∗

for which χ(G[V ∗]) = 1 – that is, V ∗ is a stable set – then we simply set to ‘true’ the variables

corresponding to the vertices in V ∗. This gives us a truth assignment for which each clause

contains at least one literal that is true.

(iii) Notice that if G is isomorphic to nC4 and |Vi| ≥ 4 for i = 1, 2, · · · , p, then χSEL(G) = 1. Indeed,

let C1
4 , C

2
4 , · · · , Cn4 be the n cycles ofG. Construct an auxiliary bipartite graphH = (VX , VY , EH)

by associating a vertex xi ∈ VX with each cluster Vi, for i = 1, 2, · · · , p, by associating a vertex

yj ∈ VY with each cycle Cj4 , for j = 1, 2, · · · , n, and by adding |Vi ∩ Cj4 | parallel edges between

vertex xi and vertex yj for i = 1, 2, · · · , p and j = 1, 2, · · · , n. It follows from the construction of

H that d(xi) ≥ 4 and d(yj) = 4 for i = 1, 2, · · · , p and j = 1, 2, · · · , n. So, there exists a matching

M in H saturating VX . It is easy to see that such a matching corresponds to a selection V ∗ such

that χ(G[V ∗]) = 1.

(iv) If G is isomorphic to nP3 and |Vi| ≥ 3 for i = 1, 2, · · · , p, then, as in the previous case, we can

prove that χSEL(G) = 1.

(v) Let K1,K2, · · · ,Kq be the cliques in G. First notice that we may assume, without loss of

generality, that |Vi ∩Kj | ≤ 1 for i = 1, 2, · · · , p and j = 1, 2, · · · , q. Also, we clearly have 1 ≤
χSEL(G) ≤ maxj=1,··· ,q{|Kj |}. Hence, we only need to be able to check whether χSEL(G) ≤ k

for each k = 1, 2, · · · ,maxj=1,··· ,q{|Kj |}. This can be done by solving maximum-flow problems

in a network N defined as follows :

– we associate a vertex vi with each Vi, i = 1, 2, · · · , p;
– we associate a vertex wj with each Kj , j = 1, 2, · · · , q;
– we add a source s and an arc svi of capacity 1 for i = 1, 2, · · · , p;
– we add a sink t and an arc wjt of capacity k for j = 1, 2, · · · , q;
– we add an arc viwj of capacity 1 for each i ∈ {1, 2, · · · , p} and j ∈ {1, 2, · · · , q} for which

Vi ∩Kj 6= ∅.

Now χSEL(G) ≤ k if and only if there is a maximum flow in N of value p. Indeed, suppose

that there is a selection V ∗ in G for which χ(G[V ∗]) ≤ k. Then, for each vertex v ∈ V ∗ for

which v ∈ Vi ∩Kj (i ∈ {1, 2, · · · , p}, j ∈ {1, 2, · · · , q}), we add one unit of flow along the path

sviwjt. Since G([V ∗]) is k-colourable, V ∗ must contain at most k vertices from each clique Kj ,

j ∈ {1, 2, · · · , q}, so there exists a flow of value p in N . Conversely, if such a flow exists, then

each arc svi, i = 1, 2, · · · , p is used by exactly one flow unit. We now obtain a selection by

choosing the vertex in Vi ∩Kj , for each arc viwj along which there is a flow unit. Furthermore,
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since we have a capacity of k on each arc incident to t, it follows that |V ∗ ∩Kj | ≤ k. So, G[V ∗]

is k-colourable.

(vi) If G has stability number 1 (and so is a clique), we immediately have χSEL(G) = p. So we may

assume that α(G) = 2. We can then solve the problem by reducing it to a maximum matching

problem in an auxiliary graph G′ = (V ′, E′) defined as follows:

– we associate a vertex vi with each cluster Vi, i = 1, 2, · · · , p;
– we add an edge between two vertices vi and vj if there exists a vertex x ∈ Vi which is not

adjacent to a vertex y ∈ Vj .

Suppose now that G admits a selective (p − q)-colouring, and denote by V ∗ the corresponding

selection. Since α(G) = 2, it follows that each colour class has size at most 2, and so, q corre-

sponds to the number of colour classes whose size is exactly 2. We now construct a matching

M of size q in G′ as follows: for each pair x, y ∈ V ∗ for which x ∈ Vi and y ∈ Vj have the same

colour, we add the edge vivj to M . This gives us the desired matching. Conversely, if we can

find a matching M of size q in G′, then we may find a selection V ∗ in G inducing a selective

(p − q)-colouring. Indeed, for each edge vivj ∈ M , we add the corresponding non-adjacent ver-

tices x ∈ Vi and y ∈ Vj to V ∗ and give them the same colour. There then remain p− q clusters

for which no vertex has been selected. We arbitrarily choose one vertex in each such cluster and

colour it with a new colour. This gives us the desired selective colouring.

Notice that if in (iii) and (iv) the constraints regarding the size of the clusters in V are relaxed,

both problems become difficult, as shown by Demange et al. [7].

Theorem 2 Let G = (V,E) be a graph and let V = {V1, V2, · · · , Vp} be a partition of its vertex set.

Then SEL-COL is NP-hard and 1-SEL-COL is NP-complete if, for i = 1, 2, · · · , p, G is isomorphic to

nC4 and |Vi| = 3, or G is isomorphic to nP3 and |Vi| = 2 or 3.

From Theorem 2, we can easily show that both problems remain difficult in paths and cycles (see

also Demange et al. [7]).

Theorem 3 Let G = (V,E) be a graph, and let V = {V1, V2, · · · , Vp} be a partition of its vertex-set.

Then SEL-COL is NP-hard and k-SEL-COL is NP-complete if G is a cycle or a path and |Vi| = 2 or 3

for i = 1, 2, · · · , p.

As mentioned in Theorem 1, SEL-COL and k-SEL-COL are polynomial-time solvable in threshold

graphs. It is therefore natural to ask for the computational complexity of both problems in a superclass

of threshold graphs – namely, split graphs. It turns out that SEL-COL is difficult in this graph class,

even when each cluster has size at most 2. On the other hand, it was shown in [7] that SEL-COL admits

a polynomial time approximation scheme (PTAS) for split graphs, which implies that k-SEL-COL can

be solved in polynomial time.

There has also been an increasing interest in exact algorithms to solve the selective graph colouring

problem (see, for instance, [11], [12], [24],[41]). In a recent paper [41], the authors provide an exact

cutting plane algorithm which they test on randomly generated perfect graphs, with different densities

and different sizes of the clusters, and compare its performances to those of an integer programming

formulation and a branch-and-price algorithm given in [12].

3. Online colouring

In real-world applications that can be modelled using a graph colouring problem, it may happen

that the graph to be coloured is not known from the beginning – in other words, the input graph is

only partially available, because some relevant input arrives only in the future. This is the case, for

example, in dynamic storage allocation [40], or when assigning channels (colours) to users (vertices)

in a telecommunication network [23]. In such situations, the vertices arrive one by one, together with
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the edges linking them to previously revealed vertices. An online algorithm irrevocably colours the

vertices as they arrive, and the online colouring problem is to determine such an algorithm with best

possible performance. The most standard performance measures are defined and analysed below.

Online graph colouring can be viewed as a two-person game, where one of the players is the online

algorithm, while the other player, called the spoiler, reveals the vertices and the edges of the graph.

The game is played in rounds. In each round, the spoiler reveals a new vertex v and all edges joining

it to previous vertices, and the online algorithm has to choose a colour for v that does not appear

at a known neighbour of v. We emphasise that the considered online algorithms are restricted to

be deterministic, unless otherwise stated. We suggest the work of Vishwanathan [46] for a good

introduction to randomised online algorithms.

3.1 Competitive analysis

The performance of an online colouring algorithm is typically measured using worst case analysis.

More precisely, for an online algorithm A and a given graph G, we are interested in how well A does,

with the worst possible ordering of the vertices. In other words, let A(G, σ) be the number of colours

that A uses to colour G when the vertices are revealed in the order σ, and let

A(G) = max
σ

A(G, σ).

A traditional measure of the quality of A on G is the performance ratio ρA(G), defined by

ρA(G) =
A(G)

χ(G)
,

where χ(G) is the standard chromatic number of G, which can be computed by an offline algorithm.

One of the simplest and most natural online colouring algorithms is the First-Fit algorithm (FF

for short) which, given an arbitrary ordering of the vertices and the set of positive integers as its

colour-set, assigns to each successive vertex the smallest feasible colour. Such an algorithm can never

use more than ∆(G) + 1 colours, where ∆(G) is the maximum degree in G. So, for example, FF needs

at most three colours for paths, which implies that ρFF (G) ≤ 3
2 on each path G.

Note that the graph to be coloured may be known beforehand, but in such a case the online

algorithm receives no knowledge of which vertex in the graph each revealed vertex corresponds to.

For example, suppose it is known that the graph to be coloured is a path on four vertices, a, b, c, d,

with edges ab, bc and cd. If the first two vertices v, w to be coloured are not adjacent, then the online

algorithm has two choices: if it assigns different colours to v and w, then the spoiler can decide that

v = a and w = c, and if it assigns the same colour to v and w, then the spoiler can set v = a and w = d.

In both cases, three colours are needed to colour the path. This example shows that ρFF (G) = 3
2 for

all paths G of order at least 4, and no online colouring algorithm can perform better than FF on

such paths.

The situation is different for other classes of graphs. For example, there are bipartite graphs with

2n vertices for which FF requires n colours. Indeed, let G = (V ∪W,E) be a bipartite graph with

V = {v1, v2 . . . , vn}, W = {w1, w2 . . . , wn}, and E = {viwj : i 6= j}. If the vertices are revealed in the

order v1, w1, v2, w2, . . . , vn, wn, then FF assigns colour i to vi and wi for each i = 1, 2, · · · , n. Hence,

there are bipartite graphs G of order n for which FF (G) ≥ dn/2e. A better performance is easily

achievable, for example by using the online colouring algorithm proposed by Lovász et al. [33] that

uses at most 2 log n+1 colours on all bipartite graphs of order n. This is the best possible performance

up to an additive constant, since Gutowski et al. [15] have shown that there are bipartite graphs G of

order n for which A(G) ≥ 2 log n− 10 for all online algorithms A.

We emphasise that the above analysis is for the worst case. While we have observed that FF can

require three colours on paths and n colours on bipartite graphs of order 2n, it is clear that no more

than two colours are used by FF if the graph to be coloured is bipartite, and if the set of revealed
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vertices always induces a connected graph. An online algorithm A is competitive on a graph class C if

there is a function f such that A(G) ≤ f(χ(G)) for all graphs G ∈ C.

As shown by Bean [2], there is no competitive algorithm for forests, since some of them require at

least 1 + log n colours, whereas χ(G) ≤ 2 for all forests G of order n. But there are classes of graphs

for which online algorithms might be competitive:

• Kierstead and Trotter [26] have proved that for the class of interval graphs, there is an online

colouring algorithm A for which A(G) ≤ 3χ(G)− 2;

• Gyárfás and Lehel [16] have shown that FF (G) ≤ χ(G)+1 for split graphs, FF (G) ≤ 3
2χ(G) for

the complements of bipartite graphs, and FF (G) ≤ 2χ(G) − 1 for the complements of chordal

graphs;

• P4-free graphs are coloured optimally by the FF algorithm (that is, FF (G) = χ(G)), whatever

the order in which the vertices are revealed. Moreover, Kierstead et al. [27] have shown that

there is an online algorithm that colours all P5-free graphs with at most (4χ(G) − 1)/3 colours,

while Gyárfás and Lehel [16] have proved that there is no competitive online colouring algorithm

for P6-free graphs.

The performance function ρA(n) of an online algorithm A is the maximum value of ρA(G) over all

graphs G of order n. Halldórson and Szegedy [20] have proved that ρA(n) ≥ 2n/ log2 n for all online

colouring algorithms A, while Lovász, Saks and Trotter [33] have designed an online algorithm A with

performance function ρA(n) ∈ O(n/ log∗ n), where log∗ n is the least integer k for which the kth iterated

logarithm function log(k) satisfies log(k)(n) < 1. This was later improved to O(n log log log n/ log log n)

by Kierstead [25]. As already mentioned, all these results are for deterministic online algorithms.

Better performances can be achieved for randomised algorithms. For example, Halldorsson [19] has

devised a randomised algorithm that attains a performance function ρA(n) ∈ O(n/ log n).

3.2 Online competitive analysis

So far, we have considered the standard competitive analysis, where the performance of an online

algorithm is compared with the best existing colouring, which can be obtained offline. There is

however another type of analysis, called online competitive analysis, where the performance of an

online algorithm is compared with the best possible performance that an online algorithm can achieve.

The online chromatic number χo(G) of a graph G is defined as the smallest number k for which there

is an online algorithm that can colour G with k colours, for any incoming ordering of the vertices.

The above definition implies that

χo(G) = inf
A
A(G),

where the infimum is taken over all online colouring algorithms A; for example, we have observed that

χo(P4) = 3. When viewing online colouring as a two-person game, we see that the online chromatic

number is exactly the number of colours that is used if both players (the online algorithm and the

spoiler) play optimally.

An online algorithm A is online competitive on a graph class C if there is a function f such that

A(G) ≤ f(χo(G)), for all graphs G ∈ C.

We have observed that there are no competitive online algorithms for the class C of forests, but

Gyárfás and Lehel [17] have proved that FF is online competitive for forests, since FF (G) = χo(G)

for all forests G.

It may be true that there is an online competitive algorithm for all graphs, but this is an open

question, even for bipartite graphs. Micek and Wiechert [34], [35] have shown that there are online

algorithms that colour P7-free bipartite graphs with at most 4χo(G)−2 colours, P8-free bipartite graphs

with at most 3(χo(G) + 1)2 colours, and P9-free bipartite graphs with at most 6(χo(G) + 1)2 colours.
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Böhm and Veselý [4] have shown that the problem of deciding whether χo(G) ≤ k for a given

graph G and a given integer k is PSPACE-complete. However, as proved in [18], the following problems

can be solved in polynomial time:

• determine the online chromatic number χo(T ) of a tree T ;

• determine whether χo(G) ≤ 3 when G is bipartite or triangle-free or connected.

3.3 Maximum k-colourable subgraph

The maximum k-colourable subgraph problem consists in colouring as many vertices of a given graph

as possible with at most k colours. The number of vertices in such a maximum k-colourable subgraph

is denoted by αk(G); for k = 1, this is equivalent to determining a maximum stable set. Also, the

chromatic number of G is the smallest integer k such that the maximum k-colourable subgraph of G

is G itself.

Here also we can consider an online version of the problem, the difference from the previous online

colouring problem being that only k colours are available, and we can decide (or be forced) not to

colour a revealed vertex. Also, the objective does not consist in using as few colours as possible (since

all k colours are available), but rather to colour as many vertices as we can.

Let nA(G, σ, k) be the number of vertices coloured by A, when there are k available colours and

the vertices of G are revealed in the order σ. Also, let

nA(G, k) = min
σ
nA(G, σ, k).

The competitive ratio of an online algorithm A on G is then defined as

qA(G, k) =
nA(G, k)

αk(G)
.

In what follows, we assume that the vertices are revealed by sets of size t ≥ 1. The following result

is proved in [23].

Theorem 4 If the vertices of a graph G of order n are revealed by sets of size t < n, then

qA(G, k) ≤ kt/(n− t),

for all online colouring algorithms A.

In particular, for t = 1 and k = 1 (that is, the vertices are revealed one by one, and we are looking

for a maximum stable set), we obtain qA(G, 1) ≤ 1/(n − 1); this was also proved by Escoffier and

Thomas [9]. For t = 1, Theorem 4 shows that qA(G, k) ∈ O(k/n). It is not difficult to design online

algorithms that achieve such an asymptotic competitive ratio. We can, for example, colour the first k

revealed vertices with a different colour. It then follows that such an algorithm has a competitive ratio

qA(G, k) ≥ k/n.

Suppose that an online colouring algorithm A cannot leave a revealed vertex uncoloured when

at least one of the k available colours does not appear on one of its revealed neighbours. Then

all vertices that remain uncoloured by A have at least k coloured neighbours. It follows that the

number n − nA(G, k) of uncoloured vertices is at most equal to ∆(G)nA(G, k)/k, which implies that

nA(G, k) ≥ kn/(∆(G) + k). Since αk(G) ≤ n, we obtain the following lower bound on the competitive

ratio of an online algorithm:

qA(G, k) ≥ kn/(∆(G) + k)

n
=

k

∆(G) + k
.

Assume now that we are allowed to delay the colouring of the revealed vertices, but at some cost.

More precisely, let p ≥ 1 and let pi−j be the profit of colouring a vertex at iteration j if it was revealed



8 G–2019–32 Les Cahiers du GERAD

at iteration i ≤ j. The problem to be solved is then to determine a colouring with maximum total

profit. For example, if p = 2, then the profit of colouring a vertex v one iteration after it was revealed

is 1
2 , whereas it is equal to 1 if v is coloured immediately. The competitive ratio qA(G, k) considered

above can be extended to this case by defining it as the ratio of the profit resulting from A to the

maximum profit αk(G). The following result appears in [23].

Theorem 5 If the vertices of a graph G of order n are revealed by sets of size t < n, and if the profit

of colouring a vertex at iteration j which is revealed at iteration i ≤ j is pi−j, then

qA(G, k) ≤ kt

n− t
+
n− t(k + 1)

p(n− t)
,

for all online colouring algorithms A.

Note that if p→∞, then the ratio kt/(n− t) of Theorem 4 is reached, but if p = 1 (that is, there

is no penalty for waiting), then the algorithm can be considered as offline and the ratio is 1.

An online algorithm cannot decide in which order the vertices are revealed. It can only choose

which colour (if any) to assign to a revealed vertex. It has been observed that the FF algorithm

has a tendency to create unbalanced colour classes, since small colours in {1, 2, . . . , k} are preferred

to large ones. A possible strategy to try to avoid such imbalance is to choose a colour for the next

revealed vertex on the basis of the last colour used. More precisely, if the last coloured vertex received

colour i ∈ {1, 2, . . . , k}, then the next one will receive the first available colour in the ordered sequence

(i+ 1, i+ 2, . . . , k, 1, 2, . . . , i). Such a strategy is called Next-Fit (NF for short).

Note that, whereas we have nFF (G, k) ≤ nFF (G, k + 1) for all graphs G and all k ≥ 1, it may

happen that nNF (G, k) > nNF (G, k + 1). For example, consider the graph G in Figure 1. If vi
is revealed before vj , for i < j, then nNF (G, 2) = 6, since vertices v1, v3, v5 receive colour 1 while

v2, v4, v6 receive colour 2. With k = 3, v1, v2 and v3 first receive colours 1,2 and 3, respectively. Then,

v4 receives colour 1 and v5 receives colour 2. This means that none of the 3 colours is available for v6,

and we have nNF (G, 3) = 5 < nNF (G, 2).

v1

v4 v2

v6

v3

v5

Figure 1: A graph G for which nNF (G, 2) > nNF (G, 3).

We can colour the edges instead of the vertices of a graph, where the goal is to colour as many

edges as possible using only a given number k of available colours. Favrholdt and Mikkelsen [10] have

shown that NF has a competitive ratio of 1
2 on paths, and of 2

√
3− 3 on trees. For vertex-colouring

on general graphs, experiments reported in [23] show that FF outperforms NF .

4 Mixed graph colouring

The standard vertex-colouring problem is often used to solve scheduling problems involving incompati-

bility constraints. Indeed, each vertex corresponds to a job and two vertices are joined by an edge if the

corresponding jobs cannot be processed at the same time. A vertex-colouring of the graph then gives

a possible schedule respecting the constraints. In more general scheduling problems, there are often

more requirements than just incompatibility constraints. It follows that the standard vertex-colouring

model is too limited to be useful in many scheduling applications.

In this section, we discuss a graph colouring problem, that generalises the standard vertex-colouring

problem and which takes into account both the incompatibility constraints and also precedence con-

straints. It is called the mixed graph colouring problem.
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A mixed graph Gmix = (V,A,E) is a graph that contains edges (set E) and arcs (set A). A

colouring of a mixed graph Gmix is a mapping c : V → N for which c(v) 6= c(w) for each edge vw ∈ E,

and c(v) < c(w) for each arc vw ∈ A. If at most k distinct colours are used, then c is a k-colouring

of a mixed graph. The minimum number of colours needed to colour the vertices of a mixed graph

Gmix is called the mixed chromatic number, and is denoted by χM (Gmix). In its decision version, the

mixed graph colouring problem (MGCP) asks whether a given mixed graph Gmix can be coloured with

at most k colours. Notice that Gmix must contain no directed circuits, for otherwise there exists no

vertex-colouring.

How can this problem handle precedence constraints? Imagine a scheduling problem with the usual

incompatibility constraints and also precedence constraints – that is, for some pairs of tasks t1, t2, we

know that t1 has to be executed before t2. Assume that the execution time of each task is one time

unit. The goal is then to execute all tasks within a minimum amount of time, taking into account the

incompatibility and precedence constraints. We build a mixed graph Gmix as follows:

• we associate a vertex with every task;

• we add an edge between any two vertices that correspond to incompatible tasks;

• we add an arc from some vertex v to a vertex w if the task corresponding to v must be executed

before the task corresponding to w.

A k-colouring of Gmix then corresponds to a schedule of all tasks within k time units.

Mixed graphs were first introduced in [42], and the mixed graph colouring problem has been

considered by many authors – see, for instance, [1], [21], [28], [37], [44]. In what follows, we first

present some bounds on the mixed chromatic number and some complexity results regarding the

MGCP in special graph classes. We then discuss the precedence-constrained class sequencing problem

(PCCSP), which can be modelled as a mixed graph colouring problem.

4.1 Bounds and complexity results

Consider a mixed graph Gmix = (V,A,E). Let VA be the set of vertices that are incident to at least one

arc, and let ` be the length of a longest directed path in the directed partial graph GA = (VA, A,∅).

Then `+ 1 ≤ χM (Gmix). In [21], the authors considered the MGCP for the first time, and presented

upper bounds on the mixed chromatic number. Denote by G′ the graph induced by VA, but where we

consider all arcs as edges. Finally, let G be the undirected graph obtained from Gmix by considering
all arcs as edges. The following two theorems are proved in [21].

Theorem 6 Let Gmix = (V,A,E) be a mixed graph. Then

χM (Gmix) ≤ χ(G) + |VA| − χ(G′).

The upper bound in Theorem 6 is best possible. Indeed, consider a directed path on n vertices.

Then χM (Gmix) = n, χ(G) = 2, |VA| = n and χ(G′) = 2, and so χM (Gmix) = χ(G) + |VA| − χ(G′).

Theorem 7 Let Gmix = (V,A,E) be a mixed graph with A 6= ∅. Then

χM (Gmix) ≤ (`+ 1)(χ(G)− 1) + 1.

Again, the upper bound in Theorem 7 is best possible. Indeed, consider p copies K1,K2, · · · ,Kp

of an undirected clique of size q and let xij be the vertices of Kj for i = 1, 2, · · · , q and j = 1, 2, · · · , p.
Then add the arcs (xik, xj(k+1)) for i 6= j and k = 1, 2, · · · , p − 1. Clearly, ` + 1 = p and χ(G) = q.

Furthermore,

χM (Gmix) = q + (q − 1)(p− 1) = p(q − 1) + 1.

We thus obtain the upper bound.
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It immediately follows from Theorem 7 and from the lower bound on χM (Gmix) that the mixed

chromatic number of a mixed bipartite graph can take only two possible values: ` + 1 or ` + 2. But

deciding which is the right value is difficult, as was shown in [38].

Theorem 8 The MGCP is NP-complete for cubic planar mixed bipartite graphs and k = 3.

In [21], the authors also considered mixed trees, and showed that the MGCP can be solved in

quadratic time on these graphs. This was then improved in [13], where a linear-time algorithm was

given to solve the MGCP for mixed trees. This result was then generalised in [39] to graphs of bounded

treewidth.

Theorem 9 The MGCP is polynomial-time solvable for graphs of bounded treewidth.

In [43] the authors presented some further complexity result, under the assumptions that the

directed partial graph GA = (VA, A,∅) is a disjoint union of paths and the graph GE = (V,∅, E) is a

disjoint union of cliques. This setting corresponds exactly to the unit-time, minimum-length job shop

scheduling problem.

Theorem 10 Let Gmix = (V,A,E) be a mixed graph for which GA = (VA, A,∅) is a disjoint union of

paths and GE = (V,∅, E) is a disjoint union of cliques. Then the MGCP is linear-time solvable for

k = 3.

If we now consider the case k = 4, then the problem becomes NP-complete even in this very

particular setting, as shown in [47].

Theorem 11 Let Gmix = (V,A,E) be a mixed graph for which GA = (VA, A,∅) is a disjoint union of

paths and GE = (V,∅, E) is a disjoint union of cliques. Then the MGCP is NP-complete for k = 4.

In addition to the two assumptions mentioned above, assume now that, for each clique in GE =

(V,∅, E), no two vertices belong to the same directed path. In terms of scheduling theory, this

additional constraint corresponds to the restriction that no two operations of the same job can be

executed on a same machine. The following result appears in [22].

Theorem 12 Let Gmix = (V,A,E) be a mixed graph for which GA = (VA, A,∅) is a disjoint union of

paths, GE = (V,∅, E) is a disjoint union of two cliques, and for each clique in GE = (V,∅, E), no

two vertices belong to the same directed path. Then the MGCP is linear-time solvable.

If our mixed graph has exactly three cliques, then the problem becomes NP-complete (see [29]).

Theorem 13 Let Gmix = (V,A,E) be a mixed graph for which GA = (VA, A,∅) is a disjoint union of

paths, GE = (V,∅, E) is a disjoint union of three cliques, and for each clique in GE = (V,∅, E), no

two vertices belong to the same directed path. Then the MGCP is NP-complete.

4.2 A precedence-constrained sequencing problem

In this section we present the precedence-constrained class sequencing problem (PCCSP), which can

be modelled as a colouring problem in a special mixed graph. Consider a set V of operations, a set C
of classes, and a set P ⊆ V × V of precedence constraints – that is, for some pairs of operations

v, w, we know that v has to be executed before w. Each operation v ∈ V belongs to exactly one

class γv ∈ C. The operations in V must be performed sequentially in a one-machine environment, and

a set-up is required between the execution of two consecutive operations if they belong to different

classes. The PCCSP asks for a sequence of operations that minimises the number of set-ups while

respecting precedence constraints.

As mentioned by Tovey [45], the PCCSP is a fundamental scheduling problem in systems where

processors have the flexibility to perform more than one operation. For example, Lofgren, McGinnis
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and Tovey [32] consider a circuit card assembly problem, where each operation inserts an electronic

component on a card at one of the assembly stations, and each component required by a card is

available at exactly one assembly station. Two insertions belong to the same class if they are to be

performed at the same assembly station, and a set-up therefore corresponds to moving from one station

to another.

Consider the directed graph GA = (V,A), where each operation is represented by a vertex v ∈ V ,

and whenever (v, w) ∈ P , we introduce an arc vw. We may assume that A is acyclic and transitive.

We obtain a mixed graph Gmix from GA by removing all arcs vw that link two vertices v and w of the

same class (so, γv = γw), and by adding all edges vw between vertices v, w with γv 6= γw. Observe that

the undirected part of Gmix has a special structure: it is a complete q-partite graph, where q = |C| is

the number of classes.

For each vertex v ∈ V , let pred(v)= {w ∈ V : γw 6=γv and wv ∈ A} be the set of predecessors of v

in Gmix belonging to a class different from γv, and let succ(v)à = {w ∈ V : γw 6= γv and vw ∈ A} be

the set of successors of v in Gmix belonging to a class different from γv. Note that if (v, w) ∈ P for

any two vertices v, w of the same class γv = γw, then pred(v) ⊆ pred(w) and succ(w) ⊆ succ(v).

Each solution to the PCCSP with k − 1 set-ups corresponds to a k-colouring of Gmix, where two

operations executed without any intermediate set-up have the same colour. Conversely, consider a

k-colouring c of Gmix, and let v, w be two vertices with (v, w) ∈ P . If γv 6= γw, then vw is an arc in

Gmix, which implies that c(v) < c(w). If γv = γw and c(v) > c(w), then pred(v) ⊆ pred(w), which

implies that c(u) < c(w) for all u ∈ pred(v). Hence, by assigning the colour c(w) to v (instead of c(v)),

we obtain another k-colouring of Gmix. We can therefore assume that c(v) ≤ c(w) for all (v, w) ∈ P .

A solution to the PCCSP can then be obtained as follows. We first execute all operations whose

corresponding vertices v satisfy c(v) = 1, then all operations whose corresponding vertices v satisfy

c(v) = 2, and continue this process until all operations are executed. For any group of operations

whose corresponding vertices have the same colour, we execute them in an order that respects the

precedence constraints P . The resulting total ordering of the operations is a solution to the PCCSP,

and the number of set-ups corresponds to one less than the number of colours used in c. Indeed, all

operations whose corresponding vertices have the same colour belong to the same class. As a result, a

colouring of Gmix with a minimum number of colours corresponds to a solution of the PCCSP with a

minimum number of set-ups.

It is shown in [5] that preprocessing procedures can help to simplify instances of the PCCSP.

We describe some of these here. Consider two distinct vertices v and w for which γv = γw. If

pred(v) = pred(w) or succ(v) = succ(w), or pred(v) ⊂ pred(w) and succ(v) ⊂ succ(w), then v and

w can be merged into a single vertex because there is an optimal solution to the PCCSP where v

and w have the same colour. This is illustrated by the example of Figure 2(a) which contains 17

operations and three classes, represented by the colours white, gray and black. Only the arcs of GA
that belong to the transitive reduction of the precedence constraints are represented – that is, uw

is not represented if u precedes v and v precedes w. We can merge 1 with 6, 2 with 10, 8 with

12, 7 with 16, and 5 with 11 and 17, because pred(1) = pred(6) = ∅, pred(2) = pred(10) = {9},
pred(8) = pred(12) = {9}, succ(7) = succ(16) = ∅, and succ(5) = succ(11) = succ(17) = ∅. The

graph resulting from these merge operations is shown in Figure 2(b).

Furthermore, a lower bound on the number of colours needed to colour the vertices of Gmix can

be obtained as follows. For each class γ ∈ C, we construct a directed graph Gγ , obtained from GA by

adding a source s, adding an arc sv of length 1 for each vertex v for which γv = γ, associating a length

of 1 with each arc wv for which γw 6= γ and γv = γ, and associating a length of 0 with each other arc.

Here, the length of an arc wv for which γw 6= γ and γv = γ corresponds to the one set-up that is

needed when we switch from an operation w of class γw 6= γ to an operation v of class γ. Furthermore,

the length of the arcs sv for which γv = γ accounts for the first execution of operations within the

class γ. It is now easy to see that the length of a longest path in Gγ starting at s corresponds to a lower

bound on the number of colours that are needed to colour the vertices whose corresponding operations
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1 2 3 4 5 6 7
└─┘└─────┘└─┘└┘└────┘ └─┘└┘

colours

optimal
sequence

(d)

Figure 2: Preprocessing reduction procedures for the PCCSP.

belong to class γ. If rγ is this length, then
∑
γ∈C rγ is a lower bound on the mixed chromatic number.

For the graph depicted in Figure 2 (b), the lower bound rγ is 2 for the white vertices, 2 for the gray

ones, and 3 for the black ones. This gives a total of
∑
γ∈C rγ = 2 + 2 + 3 = 7.

Consider any upper bound UB for the optimum number of colours needed to colour the vertices of

Gmix. The next procedure tries to add precedence constraints that must be satisfied by any solution

that uses fewer colours than UB. For each pair v, w of distinct vertices in Gmix with vw /∈ A and

wv /∈ A, we compute the above lower bound LB for the graph obtained from Gmix by adding the arc

vw in A. If LB ≥ UB, then w is executed not later than v in any feasible solution with value at most

UB − 1. Therefore, wv can be added to A, forbidding w to be performed later than v. Similarly, if a

lower bound LB is obtained after wv is added to A is at least UB, then we add vw to A to avoid w

being processed before v.

For an illustration, consider again the graph depicted in Figure 2(b), and assume that we have

already found a colouring with UB = 8 colours. We check whether we can insist that operation 4

precedes operation 15. For this purpose we temporarily add an arc from 15 to 4 to A and calculate

the above lower bound; this is now equal to 8, because the longest paths have lengths 2, 3, and 3

for the white, gray, and black vertices. So,
∑
γ∈C rγ = UB, and we can add the arc from 4 to 15

to A, since, in any solution with at most 7 colours, operation 4 is executed before operation 15. We

can similarly impose other additional precedence constraints to obtain the graph in Figure 2(c). An

optimal sequence is then easy to obtain. Indeed, operation 9 is the only one with no predecessors, so

it should be performed first. Operations 8 and 12 are the next ones, and we can proceed in this way,

with no choice at each stage, to get a sequence that corresponds to a colouring with 7 colours. This

sequence is represented in Figure 2(d).
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[16] A. Gyárfás and J. Lehel, On-line and first fit colorings of graphs, J. Graph Theory 12 (1988),
217–227.
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[18] A. Gyárfás, Z. Király and J. Lehel, On-line graph coloring and finite basis problems, Combina-
torics, Paul Erdös is Eighty 1 (1993), 207–214.
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[23] A. Hertz, R. Montagné and F. Gagnon, Online algorithms for the maximum k-colorable subgraph
problem, Computers & Operations Research 91 (2018), 209–224.

[24] E. A. Hoshino, Y. A. Frota and C. C. de Souza, A branch-and-price approach for the partition
coloring problem, Operations Research Letters 39 (2011), 132–137.

[25] H. A. Kierstead, On-line coloringk-colorable graphs, Israel J. Math. 105 (1998), 93–104.

[26] H. A. Kierstead and W. T. Trotter, An extremal problem in recursive combinatorics, Congr.
Numer. 33 (1981), 143–153.

[27] H. A. Kierstead, S. G. Penrice and W. T. Trotter, On-line and first-fit coloring of graphs that do
not induce p5, SIAM J. Discrete Math. 8 (1995), 485–498.



14 G–2019–32 Les Cahiers du GERAD

[28] A. Kouider, H. Ait Haddadène, S. Ourari and A. Oulamara, Mixed graph colouring for unit-time
scheduling, International J. Production Research 55 (2017), 1720–1729.

[29] J. K. Lenstra and A. H. G. Rinnooy Kan, Computational complexity of discrete optimization
problems, Annals of Discrete Math. 4 (1979), 121–140.

[30] G. Li and R. Simha, The partition coloring problem and its application to wavelength routing
and assignment, Proceedings of the First Workshop on Optical Networks, Dallas, 2000.

[31] Z. Liu, W. Guo, Q. Shi, W. Hu and M. Xia, Sliding scheduled lightpath provisioning by mixed
partition coloring in wdm optical networks, Optical Switching and Networking 10 (2013), 44–53.

[32] Ch. B. Lofgren, L. F. McGinnis and C. A. Tovey, Routing printed circuit cards through an
assembly cell, Operations Research 39 (1991), 992–1004.

[33] L. Lovász, M. Saks and W. T. Trotter, An on-line graph coloring algorithm with sublinear
performance ratio, Discrete Math. 75 (1989), 319–325.

[34] P. Micek and V. Wiechert, An on-line competitive algorithm for coloring p8-free bipartite graphs,
In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation, 516–527, 2014.

[35] P. Micek and V. Wiechert, An on-line competitive algorithm for coloring bipartite graphs without
long induced paths, Algorithmica 77 (2017), 1060–1070.

[36] T. F. Noronha and C. C. Ribeiro, Routing and wavelength assignment by partition colouring,
European J. Operational Research 171 (2006), 797–810.

[37] B. Ries, Coloring some classes of mixed graphs, Discrete Appl. Math. 155 (2007), 1–6.

[38] B. Ries, Complexity of two coloring problems in cubic planar bipartite mixed graphs, Discrete
Appl. Math. 158 (2010), 592–596.

[39] B. Ries and D. de Werra, On two coloring problems in mixed graphs, European J. Combinatorics
29 (2008), 712–725.

[40] J. M. Robson, An estimate of the store size necessary for dynamic storage allocation, J. ACM 18
416–423.
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