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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: B. N. Rémillard, J. Vaillancourt (March 2019).
Detecting periodicity from the trajectory of a random walk in random
environment, Technical report, Les Cahiers du GERAD G–2019–23,
GERAD, HEC Montréal, Canada.
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract: For nearest neighbor univariate random walks in a periodic environment, where the proba-
bility of moving depends on a periodic function, we show how to estimate the period and the function.
For random walks in non-periodic environments, we find that the asymptotic limit of the estimator is
constant in the ballistic case, when the random walk is transient and the law of large numbers holds
with a non zero limit. Numerical examples are given in the recurrent case, and the sub-ballistic case,
where the random walk is transient but the law of large numbers yields a zero limit.
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1 Introduction

Given no other information than the trajectory of a random walk in random environment (RWRE), one

would like to estimate the law of the environment. While this is usually not feasible, there are simple

instances where various modeling choices will generate the full distribution, at least asymptotically in

some sense. Our purpose is solely to detect periodicity from observing a single trajectory of an RWRE.

All random variables are built on an ambient complete probability space (E, E , P ). A random

environment is a measurable two-sided sequence α(e) = α(·, e) ∈ (0, 1)Z indexed by e ∈ E and we

write µ = P ◦ α−1 for its distribution on the Borel subsets of [0, 1]Z. It will be convenient to write

ρi(e) = 1−α(i,e)
α(i,e) and we will occasionally drop parameter e whenever there is no ambiguity in doing

so. Let X = {Xt}t≥0 be a (nearest neighbor) RWRE on Z, to wit

Pe (∆Xt = Xt −Xt−1 = 1| Xt−1 = i) = P (Xt = i+ 1| Xt−1 = i, E) (e) = α(i, e), (1)

with Pe(∆Xt = −1| Xt−1 = i) = 1 − α(i, e), for every choice of i ∈ Z and positive integer t. This

simply means that given a realization e of the environment and a starting point X0 for the walk, the

successive locations {Xt : t ≥ 1} form a time homogeneous irreducible Markov chain on Z under Pe
and the conditional law of the whole walk is a probability Pe on the power set over ZN known as

the quenched law for the RWRE. The whole process is therefore encapsulated in the family of joint

probability laws Pµ defined by Pµ(F ×A) =
∫
A
Pe(F ) µ(de), and its first marginal on ZN is known as

the annealed law for the RWRE. Note that X is not in general a Markov process under Pµ.

In order to use such models, it is necessary to be able to estimate the process A = {α(i)}i∈Z. Of

course, this is not possible in general, but if there is some sort of parametric structure, estimation is

possible. For instance Comets et al. (2014) study the asymptotic distributions for an M -estimator of

their choice that is very close to the MLE for the solution to (1) above. The authors consider that

{α(i)}i∈Z are independent and identically distributed (iid) with a parameterized marginal distribution,

in the so-called ballistic right-transient case E(log ρ0) < 0 and E(ρ0) < 1. The parameter of interest

is estimated via a M-estimator of the sequence X0, . . . , Xτn , where τn is the time of the first visit

to n. The corresponding sub-ballistic case, i.e., E(log ρ0) < 0 and E(ρ0) ≥ 1, was studied in Falconnet

et al. (2014), while the recurrent case E(log ρ0) = 0 is examined in Comets et al. (2016), when the

distribution of the iid sequence {α(i)}i∈Z has finite support. Further generalization was achieved in the

ballistic case by Andreoletti et al. (2015) where a tractable class of hidden Markov models is assumed

for {α(i)}i∈Z. An alternative estimation procedure based on the moments of the random environment

was proposed earlier on by Adelman and Enriquez (2004), which also applies in more general contexts

than those considered here. Even in these examples, where in each case {α(i)}i∈Z itself is a very simple

stochastic process, the resulting RWRE X in (1) is still not a Markov process.

In the present paper, we shall first analyze the MLE for the unobserved environment A = {α(i)}i∈Z
in (1) under the restricted context where this environment is known to be spatially periodic. We shall

then investigate conditions on A under which the MLE obtained in the periodic case, allows for the

detection of absence of periodicity.

2 Estimation of a periodic environment

Let Pd be the set of all periodic functions on Z with values in (0, 1) and period d. For a given p ∈ Pd,
set Ep = {ej = p(· + j); 1 ≤ j ≤ d}. The resulting environment {α(·, ej) = p(· + j); j ≥ 0} is a

deterministic sequence (save for the possibly random starting point e0 ∈ Ep) with a unique invariant

probability, namely the uniform distribution over the finite set Ep, meaning that the probability of

ej is 1/d, for every j ∈ Sd = {1, . . . , d}. This particular case of a random environment leads to the

definition of a random walk in a periodic environment (RWPE for short) introduced in Pyke (2003).

We say that X is a RWPE if there exists p ∈ Pd, for some d ∈ N, so that X = {Xt}t≥0 is the (nearest

neighbor) random walk defined by

P (∆Xt = 1| Xt−1 = i) = p(i), i ∈ Z, t ≥ 1. (2)
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Of course, if p ∈ Pd, then p ∈ Pkd, for any k ∈ N. Clearly X is an irreducible Markov chain. The

main aim of this section is to estimate the associated periodic function p and the smallest d0 so that

p ∈ Pd0 , using a single trajectory X0, . . . , Xn of the RWPE X. The justification of using the class of

RWPE instead of the more general RWRE models defined by (1) comes from a celebrated result due to

Parthasarathy (1961) which says that the law µ of the stationary ergodic process A = {α(i)}i∈Z is the

limit in distribution of a sequence of processes {αn(i) = pn(i+ ·)}i∈Z, where pn ∈
⋃
d≥1

Pd. Henceforth

we use the notation (x)d = i to mean that x = i mod (d), the residual class modulo d. Note that the

stochastic process {(Xt)d}t≥0 valued in Sd is a Markov chain only when d is a multiple of d0. It is this

fact which requires some extra care in the treatment of periodic environments.

2.1 Estimation of p with d known

If p ∈ Pd then, assuming (Xt)
n
t=0 satisfies (2), the maximum likelihood estimator (MLE) p

(d)
n of p is

given by

p(d)n (j) = A
(d)
n,j/

(
A

(d)
n,j +B

(d)
n,j

)
, j ∈ {1, . . . , d}, (3)

where A
(d)
n,j =

∑n
t=1 I{(Xt−1)d = j,∆Xt = 1}, B(d)

n,j =
∑n
t=1 I{(Xt−1)d = j,∆Xt = −1}, and A

(d)
n,j +

B
(d)
n,j =

∑n
t=1 I{(Xt−1)d = j}. The associated log-likelihood is given by

Ln,d =

d∑
j=1

[
A

(d)
n,j log{p(d)n (j)}+B

(d)
n,j log{1− p(d)n (j)}

]
= −

d∑
j=1

(
A

(d)
n,j +B

(d)
n,j

)
H
{
p(d)n (j)

}
, (4)

where for any x ∈ (0, 1), H(x) = −x log x− (1−x) log(1−x) ≥ 0 is the well-known Boltzmann entropy

function for the Bernoulli distribution with parameter x. Note that for any multiple of d, one should

get a consistent estimator as well, since p ∈ Pd entails that p ∈ Pkd, for any k ∈ N. The following

result, proven in A.1, shows that the MLE is consistent.

Proposition 1 Suppose p ∈ Pd and let π be the unique invariant probability measure of the irre-

ducible Markov chain (Xt)d on Sd, associated with p. Then, as n → ∞, for any j ∈ Sd, µ al-

most surely, A
(d)
n,j

/
n → πjp(j), B

(d)
n,j

/
n → πj{1 − p(j)} , so p

(d)
n (j) → p(j), and Ln,d

/
n → Ld =

−
∑d
j=1 πjH{p(j)}.

The problem is to find d. The following example illustrates what one can expect.

Example 1 We generated a random walk of length n = 10000 satisfying (2), starting from X0 = 100,

with p = (0.099, 0.749, 0.749). The results of the estimation for d = 3 are pn = (0.0954, 0.7593, 0.7430)

∈ P3, with a log-likelihood of −4.6976×103. Figure 1 shows the behavior of the log-likelihood for periods

d ∈ {1, . . . , 10}. As expected, the first local maximum is reached at d = 3, with other local maxima

at 6, 9, which are multiples of d = 3.

2.2 Estimation of the least period

First, assume that p ∈ Pd0 . We need to know what happens to p
(d)
n when d 6= d0. The following result

is proven in A.2.

Proposition 2 Suppose p ∈ Pd0 with minimal d0 and let π be the unique invariant probability mea-

sure of the Markov chain (Xt)d0 associated with p. If m = (d, d0) is the largest common divi-

sor between d and d0, then, as n → ∞, for any i ∈ Sd, A
(d)
n,i

/
n

a.s.→ m
d

∑
j∈Sd0

, (j)m=(i)m
πjp(j),

B
(d)
n,i

/
n
a.s.→ m

d

∑
j∈Sd0

, (j)m=(i)m
πj{1− p(j)},

p(d)n (i)
a.s.→p(d)(i) =

∑
j∈Sd0

, (j)m=(i)m

πjp(j)
/ ∑
j∈Sd0

, (j)m=(i)m

πj , (5)
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Ln,d

/
n
a.s.→Ld = −m

d

d∑
i=1

∑
j∈Sd0

, (j)m=(i)m

πjH
{
p(d)(i)

}
. (6)

In particular, if m = 1, then A
(d)
n,i

/
n converges almost surely to 1

d

∑d0
j=1 πjp(j) and p

(d)
n (i) converges

almost surely to
∑d0
j=1 πjp(j), which are both independent of i ∈ Sd.

1 2 3 4 5 6 7 8 9 10
-7000

-6500

-6000

-5500

-5000

-4500

Figure 1: Log-likelihoods corresponding to estimated probabilities of period d ∈ {1, . . . , 10}.

For the estimation of d0, we propose the following method: for d = 1, . . ., assume that the model

defined by (2) holds with d0 = d and estimate p(d) and Ld according to (3)–(4). d̂0 is then the first

local maximum of Ld. Then we set pn = p̂d̂0 . We prove in A.3 that this method works.

Theorem 1 Suppose p ∈ Pd0 and d0 is minimal. Then for any d ∈ N, Ld < Ld0 whenever (d, d0) < d0.

If (d, d0) = d0, then Ld = Ld0 .

3 Behavior under non-periodic environments

What if the model is not a RWPE? From now on X = (Xt)t≥0 is a full fledged RWRE satisfying (1).

We investigate next how our estimator behaves when the environment is no longer periodic. Henceforth

the right shift operator on (0, 1)Z is denoted by T .

3.1 Fixed environments

For a fixed environment e, the asymptotic behavior for X is well-known (Chung, 1960). For the sake

of completeness, we formulate them in the following lemma. Recall that ρk(e) = 1−α(k,e)
α(k,e) and define

S(e) = 1 +
∑∞
j=1

∏j
k=1 ρk(e), F (e) = 1 +

∑∞
j=1

∏j
k=1

1
ρ−k(e)

, C0(e) ≡ 1, and

Cj(e) =


α(0,e)
α(j,e)

∏j
k=1

1
ρk(e)

for j > 0,

1−α(0,e)
1−α(j,e)

∏−j
k=1 ρ−k(e) for j < 0.

(7)

Lemma 1 Let X = (Xt)t≥0 satisfy (1) for some fixed environment α(·, e) ∈ (0, 1)Z. For any starting

point X0, one and only one of the following four statements holds. If S(e) < ∞ and F (e) < ∞
then Pe

(
lim inf
n→∞

|Xn| = +∞
)

= 1. If S(e) < ∞ and F (e) = ∞ then Pe
(

lim
n→∞

Xn = +∞
)

= 1.

If S(e) = ∞ and F (e) < ∞ then Pe
(

lim
n→∞

Xn = −∞
)

= 1. If S(e) = ∞ and F (e) = ∞ then

Pe
(

lim inf
n→∞

Xn = −∞, lim sup
n→∞

Xn = +∞
)

= 1. Further, if
∑
j∈Z Cj(e) < ∞, then S(e) = ∞, F (e) =

∞ and X has a unique invariant measure πj(e) = Cj(e)π0(e), with π0(e) = 1/
∑
j∈Z Cj(e).
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In the case where X is positive recurrent, prescribed by the finiteness of
∑
j∈Z Cj(e) < ∞, the

ergodic theorem for Markov chain (Xt, Xt+1)t≥0, which is also irreducible on {(j, k) ∈ Z2; k− j = ±1},
and positive recurrent as well, directly implies the following result, proven is given in A.4.

Proposition 3 Let π be the unique invariant probability measure of the Markov chain X associated

with an arbitrary but fixed environment α satisfying
∑
j∈Z Cj(e) <∞ in (7). As n→∞, there holds,

for every integer pair 1 ≤ i ≤ d <∞ and any starting point X0,

p(d)n (i, e)
a.s.→ α(d)(i, e) =

∑
j∈Z, (j)d=i

πj(e)α(j, e)
/ ∑
j∈Z, (j)d=i

πj(e), (8)

Ln,d(e)
/
n

a.s.→ Ld(e) = −
d∑
i=1

∑
j∈Z, (j)d=i

πj(e)H
{
α(d)(i, e)

}
. (9)

Furthermore, for any d ≥ 1 and k > 1, we have

− log 2 = L1(e) ≤ Ld(e) ≤ Lkd(e) ≤ L∞(e) = −
∑
j∈Z

πj(e)H {α(j, e)} ≤ 0. (10)

Remark 1 Comparing these results with Proposition 2 and Theorem 1 shows that the sequence of log-

likelihoods for large sample estimates {p(d)n ; d ≥ 1}, which exhibits a telltale seesaw motion under the

hypothesis of periodicity, as shown in Figure 1, will instead display a tendency to increase in d from

approximately − log 2 ∼ −.693 to an upper bound L∞ when the environment in no longer periodic but

such that the simple random walk X on the whole line is positive recurrent. The convexity of −H
yields the inequalities Ln,1 ≤ Ln,d ≤ Ln,kd for any n ≥ 1, d ≥ 1, k > 1 and all environments, recurrent

or not, hence any departure from periodicity in the environment is likely to be detected through this

tendency to increase, simply by graphing the empirical log-likelihoods (Ln,kd)k≥1, for a fixed d.

3.2 Random environments

From now on, assume that the sequence α(i, ·) is stationary and ergodic with respect to the mea-

sure µ and T is a µ measure preserving transformation. The asymptotic behavior of X is completely

determined by the expectation of log ρ0, as proven in (Alili, 1999, Theorem 2.1).

Theorem 2 Suppose that u = E (log ρ0) is well defined, with u ∈ [−∞,+∞]. If u > 0, then µ a.s.,

F (e) <∞, S(e) =∞, and for any i ∈ Z, Pei (limn→∞Xn = −∞) = 1. If u < 0, then µ a.s., S(e) <∞,

F (e) =∞, and for any i ∈ Z, Pei (limn→∞Xn = +∞) = 1. Finally, if u = 0, then µ a.s., F (e) =∞,

S(e) =∞, and for any i ∈ Z, Pei (lim infn→∞Xn = −∞, lim supn→∞Xn = +∞) = 1.

Let us return to (1) and write Xn =
∑n
t=1{∆Xt − 2α(Xt−1) + 1} − n + 2

∑n
t=1 α(Xt−1). Now,

ξt = ∆Xt − 2α(Xt−1) + 1 is a bounded martingale difference sequence, so 1
n

∑n
t=1 ξt converges to 0

almost surely, as n → ∞. Hence the limiting behavior of X̄n = Xn/n is the same as the limiting

behavior of −1 +
2

n

n∑
t=1

α(Xt). It is shown in Alili (1999, Theorem 4.1) that X̄n converges µ almost

surely, an extension of the original iid case due to Solomon (1975).

3.2.1 Invariant measure for TXte

In order to find the limit of
∑n
t=1 α(Xt)

/
n, consider the Markov chain TXte on E. Its Markov

operator T is given by

T h(e) = α(0, e)h(Te) + {1− α(0, e)}h(T−1e), (11)

for any bounded measurable function h. Setting Xx
t (e) for the chain starting at x from environment e,

then Xx
t (e) = x+X0

t (T xe), so α(Xx
t , e) = α(X0

t (T xe), T xe). The associated Markov operator, denoted

Tx, satisfies Txh(e) = E
{
h(TX

x
1 e)
}

= T h(T xe). If λ is an invariant measure for T , the invariant

measure λx for Tx is λx(A) = λ(T xA). Hence 1
n

∑n
t=1 α(Xx

t−1, e) should converge to Eλx
{α(x)} =



Les Cahiers du GERAD G–2019–23 5

Eλ{α(0)}. Hence the limit is independent of x even if α(x) is not necessarily stationary with respect

to λ. If λ is a stationary distribution for this Markov chain that is absolutely continuous with respect

to µ, its density φ satisfies φ = T ?φ, where T ? is the adjoint operator of T on L1(µ) given by

T ?φ(e) = α(0, T−1e)φ(T−1e) + {1− α(0, T e)}φ(Te). (12)

Suppose that E(S) <∞. Then dλ = v{1 + ρ0(e)}S(e)dµ is an invariant ergodic measure for TXte, so

in this case X̄n converges almost surely to −1 + 2Eλ(α0) = −1 + 2vE(S) = v, where α0(e) = α(0, e).

Next, if E(F ) < ∞, dλ̃ = ṽ{1 + ρ−10 (e)}F (e)dµ is an invariant ergodic measure for TXte, so in this

case X̄n converges almost surely to −1 + 2Eλ̃(α0) = 1 − 2ṽE(F ) = −ṽ. If E(S) = E(F ) = +∞, then

X̄n converges almost surely to 0, which is equivalent to
1

n

n∑
t=1

α(Xt) converging almost surely to 1/2.

That T is an ergodic operator goes back to Kozlov (1985), where a proof is sketched. We prove it

in A.5.

The following section will be used for computing some important limiting values such as Eλ(α0).

3.2.2 Distribution of α0 under the invariant measure λ in the ballistic case

Suppose we are in the right ballistic case, i.e., E(S) <∞. Then, the (unique) invariant measure λ has

density vS/α0 with respect to µ, and v = 1
2E(S)−1 . It follows that Eλ(α0) = vE(S) = 1

1+ρ . What is

the distribution of α0 under λ? In the iid case, S is independent of α0 and E(S) = 1
1−ρ , so v = 1−ρ

1+ρ ,

and E(1 + ρ0) = E(1/α0) = 1 + ρ. Note also that E(log ρ0) < 0 and E(ρ0) = ρ < 1. For any bounded

measurable function H on (0, 1),

Eλ{H(α0)} = vE {H(α0)(1 + ρ0)S} = vE(S)E
{
H(α0)

α0

}
=

1

1 + ρ
E
{
H(α0)

α0

}
.

Hence the density of the distribution of α0 under λ, with respect to the distribution of α0 under µ

is 1
(1+ρ)x . In particular, if α0 has density g(x) under µ, then it has density g(x)

(1+ρ)x under λ. Suppose

now that we are in the left ballistic case, i.e., E(F ) < ∞. Then, the (unique) invariant measure λ̃

has density vF/(1 − α0) with respect to µ, and ṽ = 1
2E(F )−1 . In the iid case, i.e., E(log ρ0) > 0 and

E(1/ρ0) = ρ̃ < 1. Then under the (unique) invariant measure λ̃, Eλ̃(α0) = ρ̃
1+ρ̃ . Also, F is independent

of α0 and E(F ) = 1
1−ρ̃ , so ṽ = 1−ρ̃

1+ρ̃ , and E(1+1/ρ0) = E
(

1
1−α0

)
= 1+ ρ̃. For any bounded measurable

function H on (0, 1), Eλ{H(α0)} = ṽE {H(α0)(1 + 1/ρ0)F} = ṽE(F )E
{
H(α0)
1−α0

}
= 1

1+ρ̃E
{
H(α0)
1−α0

}
.

Hence the density of the distribution of α0 under λ̃, with respect to the distribution of α0 under µ is
1

(1+ρ̃)(1−x) . In particular, if α0 has density g(x) under µ, then it has density g(x)
(1+ρ̃)(1−x) under λ̃. In

this case, X̄n converges also surely to 2Eλ̃(α0)− 1 = ρ̃−1
ρ̃+1 = −ṽ.

One can ask now if there is an invariant measure when E(S) = E(F ) = +∞ which is not treated

by Alili (1999). We can give a complete answer to this question in the periodic case.

3.3 Invariant measure in the periodic case

Suppose that Ep = {T kp; k ∈ Sd}, for some p ∈ Pd. We noted earlier that (Xt)d forms an irreducible

Markov chain with a unique ergodic distribution π = π(p,X0), one for each fixed e ∈ Ep. The unique

solution of (12) is φ(T ke) = dπk(e), where π(e) is the unique stationary distribution of (Xt)d. As a

result, Eλ(α0) =
∑d
k=1 πk(p)α(k, p). In fact the density of λ with respect to µ should be cφ(e), where

φ(e) = {1+ρ0(e)} {1 + ρ1(e) + · · ·+ ρ1(e) · · · ρd−1(e)}, and one gets that c = d/
{∑d

k=1 φ(T ke)
}

. This

means that we have a closed-form expression for the invariant measure π, namely, for any k ∈ {1, . . . , d},
πk(e) = φ(T ke)/

{∑d
j=1 φ(T je)

}
. Note that the invariant measure exists even in the recurrent case,

i.e., if E(S) = E(F ) = +∞. In this case, E(log ρ0) = 0 means that 1
d

∑d
k=1 log(ρk) = 0, so ρ1 · · · ρd = 1.



6 G–2019–23 Les Cahiers du GERAD

4 Convergence of the estimator in the ballistic case

Next, consider the Markov chain Xt = ((Xt)d, T
Xte) on Sd × E, and suppose that there are m closed

classes E1, . . . ,Em. Its Markov operator Ť is given, for any bounded measurable h on Sd × E , by

Ť h(j, e) = α(0, e)h(j + 1, T e) + {1− α(0, e)}h(j − 1, T−1e). (13)

Let ud be the uniform distribution on {1, . . . , d}. It is then easy to check that if λ̌(k) is a stationary

distribution for this Markov chain on Ek which is absolutely continuous with respect to ud⊗µ, then its

density ϕk satisfies, for any (j, e) ∈ Ek, ϕk = Ť ?ϕk, where Ť ? is the adjoint operator of Ť defined by

Ť ?ϕk(j, e) = α(0, T−1e)ϕk(j − 1, T−1e) + {1− α(0, T e)}ϕk(j + 1, T e), µ a.s., (14)

and
1

d

d∑
j=1

∫
ϕk(j, e)µ(de) = 1. Here it is assumed that ϕk(j, e) = 0 whenever (j, e) 6∈ Ek. If φ

solves (12), then ϕk(j, e) = φ(e)IEk
(j, e) satisfies (14). In particular, if m = 1, i.e., the Markov chain

X is irreducible, then ϕ(j, e) = φ(e) solves (13) if φ solves (12). We can also proves uniqueness in

this case.

Theorem 3 Assume X is irreducible and that all powers of T are ergodic. Then ϕ(j, e) = φ(e)

solves (13) if φ solves (12) and it is the unique invariant ergodic measure for the Markov chain X.

Remark 2 A sufficient condition for all powers of T to be ergodic is that T is weak mixing (Brown,

1976, p. 16), i.e., for any measurable sets A,B, limn→∞
1
n

∑n−1
k=1

∣∣µ (A ∩ T−kB)− µ(A)µ(B)
∣∣ = 0. If

T is weak mixing then T k is also weak mixing for any k, yielding that T k is ergodic.

Using the ergodic theorem, we have the following interesting result.

Corollary 1 Under the conditions of Theorem 3, for any (j, e), A
(d)
n,j

/
n
a.s.→ 1

dE{ϕ(j, ·)α0} = 1
dEλ(α0),

B
(d)
n,j

/
n
a.s.→ 1

dE {ϕ(j, ·)(1− α0)} = 1
dEλ(1−α0), so p

(d)
n (j)

a.s.→ Eλ(α0). Also, Ln,d/n
a.s.→ −H {Eλ(α0)}.

Remark 3 Suppose that d0 is the least k so that T k = I. Then we are in the periodic case, and it

follows from the proof of the theorem that any harmonic function is constant on the closed classes

Ei =
{

(j, T i+j−1+`dp); j ∈ Sd, ` = 0, . . . , (d0/m− 1)
}

=
{

(j, T i+j−1+`mp); j ∈ Sd, ` = 0, . . . , (d0/m− 1)
}
,

i ∈ {1, . . . ,m}, with m = (d, d0). In this case the Markov chain is ergodic on each class Ei,

with invariant density proportional to φ. Let φ be defined as in Section 3.3. Set d̃ = d0 × d/m.

Then p ∈ Pd̃. As a result, since µ is the uniform measure on Ep = {Tp, . . . , T d0p}, one gets for

(j, e) =
(
j, T i+j−1+`mp

)
∈ Ci, ϕi(j, e) = md0

φ(e)∑d0
r=1 φ(T

rp)
= md0πi+j−1+`m, where πk = πk(p) is the

unique invariant measure of the Markov chain (Xt)d0 defined by (2). One then recovers the results of

Proposition 2 using the ergodic theorem for the Markov chain X on Ei, i ∈ Sd.

4.1 Numerical experiments

We provide three illustrations when the α(i) are iid with uniform distribution on [a, b]. First, we

consider a right-ballistic case, where the assumptions of Theorem 3 are met. In the other two cases,

we consider a sub-ballistic case, and a recurrent case. In the latter, the assumptions of Theorem 3 are

not met.

4.1.1 Right-ballistic iid case

Suppose the α(i) are iid, with a uniform distribution over the interval (a, b). Then E(ρk) = ρ =

−1 + log(b/a)
b−a < 1 is required for the right-ballistic case. Using the results of Section 3.2.2, the density
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of α0 under λ is then 1
x log(b/a) I(a < x < b). The density of the invariant measure λ for T is φ(e) =(

1−ρ
1+ρ

)
S(e)
α(0,e) , where S(e) = 1 +

∑∞
n=1

∏n
k=1 ρk(e). In particular Eλ[α(0)] = 1

1+ρ . As an example, take

a = .55, b = .65. Hence, ρ = −1 + 10 log (65/55) ≈ .6705, so 1
1+ρ = .1

log (13/11) ≈ 0.5986085. Choosing

estimator p
(d)
n with d ∈ {1, . . . , 5}, and using a simulated trajectory of length 107, one obtains that

p
(d)
n (i) = .5954 ± .0005 for all i ∈ {1, . . . , d}. These results are coherent with Corollary 1. The

estimation of the distribution of α0 and the graph of the log-likelihoods are displayed in Figure 2.

The graphs of the likelihoods seems to vary but if we look closely at the scale, there is no significant

variability.
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Figure 2: Estimation of the distribution of α0 (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right
panel).

4.1.2 Sub-ballistic iid case

Suppose again that the α(i) are iid, with a uniform distribution over the interval (a, b). It then follows

that E(log ρ0) = 1
b−a {a log a+ (1− a) log(1− a)− b log b− (1− b) log(1− b)}. Also, E(S) < ∞ iff

ρ = E(ρ0) = −1 + log(b/a)
b−a < 1. In the latter case, Eλ(α0) = 1

1+ρ . By taking a = .4, b = .61,

we are in the (right) sub-ballistic case. Indeed, ρ = 1.0095, so E(S) = +∞ but S < ∞ a.s. since

E(log ρ0) = −0.0203. We simulated a trajectory of 107 points. The trajectory and the graph of the
log-likelihoods are displayed in Figure 3. According to Alili’s result, the RWRE is transient with

Xn → +∞, but X̄n → 0 as n → ∞, explaining the slow convergence of Xn. Here we see that the

log-likelihoods behave erratically, showing that we are not in the periodic case, nor the ballistic case.
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Figure 3: Trajectory of the RWRE (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right panel).
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4.1.3 Recurrent iid case

Here we generated the so-called Sinai’s random walk of length 107 satisfying (1), starting from X0 = 0,

with iid uniform probabilities over (0, 1). We are the recurrent case. The trajectory and the graph of

the log-likelihoods are displayed in Figure 4. Clearly the RWRE X in (1) is not a stationary process

in this case. For more on those recurrent cases affording tractability, see Andreoletti (2011) and the

references therein. Here we see that the log-likelihoods behave erratically, showing that we are not in

the periodic case, nor the ballistic case.
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Figure 4: Trajectory of the RWRE (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right panel).

5 Conclusion

For a RWPE, we can detect the period and estimate the associated probabilities, while in the ballistic

non-periodic case, the limiting distribution of the probability estimators is constant, as well as the

log-likelihoods, providing a way to detect that we are indeed in the ballistic non-periodic case. Finally,

in the sub-ballistic and recurrent cases, the graphs of the log-likelihoods behave almost randomly.

A Proofs of the main results

A.1 Proof of Proposition 1

Suppose j ∈ Sd0 is given. Then

A
(d0)
n,j

n
=

1

n

n∑
t=1

I{(Xt−1)d0 = j,∆Xt = 1}

=
1

n

n∑
t=1

I{(Xt−1)d0 = j}{I(∆Xt = 1)− α(Xt−1)}+
1

n

n∑
t=1

I{(Xt−1)d0 = j}α(Xt−1).

Now, ξt = I{(Xt−1)d0 = j}{I(∆Xt = 1) − α(Xt−1)} is a bounded martingale difference sequence, so
1
n

∑n
t=1 ξt converges to 0 almost surely, as n→∞. Hence the limiting behavior of A

(d0)
n,j /n is the same

as the limiting behavior of
Ã

(d0)
n,j

n = 1
n

∑n
t=1 I{(Xt−1)d0 = j}α(Xt−1). Similarly, the limiting behavior

of B
(d0)
n,j /n is the same as the limiting behavior of

B̃
(d0)
n,j

n = 1
n

∑n
t=1 I{(Xt−1)d0 = j}{1−α(Xt−1)}. Now,

by hypothesis, α(Xt−1) = p(j) whenever (Xt−1)d0 = j. As a result,
Ã

(d0)
n,j

n = p(j) 1
n

∑n
t=1 I{(Xt−1)d0 =

j} a.s.→ p(j)π(j). Similarly,
B̃

(d0)
n,j

n = {1−p(j)} 1n
∑n
t=1 I{(Xt−1)d0 = j} a.s.→ {1−p(j)}π(j). Thus p

(d0)
n (j)

converges almost surely to p(j). The almost sure convergence of Ln,d0/n follows.
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A.2 Proof of Proposition 2

Recall that m = (d, d0) and set d̃ = d0×d/m. If m = 1, for any i ∈ {1, . . . , d} and any j ∈ {1, . . . , d0},
there is a unique T (i, j) ∈ {1, . . . , d̃} so that x = T (i, j) mod (d̃). If m > 1, for any i ∈ {1, . . . , d}
and any j ∈ {1, . . . , d0} such that i = j mod (m), then there is a unique T (i, j) ∈ {1, . . . , d̃} so

that x = T (i, j) mod (d̃). If (j − i)m 6= 0, then there is no solution T (i, j). Set a = d/m and

b = d0/m. Then (a, b) = 1. For a given i ∈ {1, . . . , d} such that (i)m = β ∈ {1, . . . ,m}, then for any

j = (l − 1)m+ β, l ∈ {1, . . . , b}, there is a solution T (i, j). As a result, for any i ∈ {1, . . . , d},

A
(d)
n,i =

n∑
t=1

∑
j∈Sd0

, (j)m=(i)m

I {(Xt−1)d = i, (Xt−1)d0 = j,∆Xt = 1} =
∑

j∈Sd0
, (j)m=(i)m

A
(d̃)
n,T (i,j).

Now, as n→∞, it follows from Proposition 1 that A
(d̃)
n,T (i,j)/n

a.s.→ πjp(j), since the invariant measure

for the Markov chain {(Xt)d̃ : t ≥ 0} satisfies π̃l = π̃j = πj/a whenever l = j mod (d0). As result,

A
(d)
n,i

a.s.→ 1
a

∑
j∈Sd0

, (j)m=(i)m
πjp(j). Similarly, B

(d)
n,i

a.s.→ 1
a

∑
j∈Sd0

, (j)m=(i)m
πj{1 − p(j)}. The almost

sure convergence of p
(d)
n (i) and Ln,d/n then follows. Finally, to complete the proof, note that for any

i, {j ∈ Sd0 , (j)1 = (i)1} = Sd0 .

A.3 Proof of Theorem 1

From Proposition 1, Ln,d0/n
a.s.→ Ld0 = −

∑d0
j=1 πjH{p(j)}. Introduce the following notation for the

relative entropy. For any x, y ∈ (0, 1), set h(x|y) = x log(x/y) + (1 − x) log{(1 − x)/(1 − y)}. Then

h(x|y) ≥ 0 with equality iff x = y. We will show that Ld0 > Ld if m = (d, d0) < d0. Set a = d/m and

b = d0/m. It follows from (5) that for any i = β + lm, with β ∈ {1, . . . ,m} and l ∈ {0, . . . , a − 1},
p(d)(β + lm) = p(d)(β) =

∑b−1
k=0 πkm+β p(km + β)

/∑b−1
k=0 πkm+β . It then follows from the previous

equation and (6) that

Ld =
1

a

m∑
β=1

a−1∑
l=0

b−1∑
k=0

πkm+β

[
p(d)(β) log

{
p(d)(β)

}
+
{

1− p(d)(β)
}

log
{

1− p(d)(β)
}]

=

m∑
β=1

b−1∑
k=0

πkm+β

[
p(d)(β) log

{
p(d)(β)

}
+
{

1− p(d)(β)
}

log
{

1− p(d)(β)
}]

.

Using the previous computations, one gets

Ld0 =
∑m
β=1

∑b−1
k=0 πkm+β [p(km+ β) log {p(km+ β)}+ {1− p(km+ β)} log {1− p(km+ β)}]. Hence,

Ld0 − Ld =

m∑
β=1

b−1∑
l=0

πlm+β p(lm+ β)
[
log{p(lm+ β)} − log

{
p(d)(β)

}]

+

m∑
β=1

b−1∑
l=0

πlm+β {1− p(lm+ β)} ×
[
log{1− p(lm+ β)} − log

{
1− p(d)(β)

}]

=

m∑
β=1

b−1∑
l=0

πlm+β h
{
p(lm+ β)|p(d)(β)

}
≥ 0,

with equality iff m = d0. This shows that Ld < Ld0 for all d ∈ {1, . . . , 2d0 − 1} \ {d0}. Hence, if n is

large enough, it follows from Proposition 2 that Ln,d < Ln,d0 for all d ∈ {1, . . . , 2d0 − 1} \ {d0}. This

also explains the local maxima pictured in Figure 1. Note that d0,n → d0 implies d0,n = d0 when n is

large enough so p
(d0,n)
n (j) = p

(d0)
n (j). Hence the “randomness” of d0,n is not important in the limit.

A.4 Proof of Proposition 3

Irreducible Markov chain X = (Xt)t≥0 satisfies (1) for some arbitrary deterministic environment

α(·, e) ∈ (0, 1)Z, periodic or not. By definition any invariant positive measure π will satisfy the usual
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balance equation, which is written, for all j ∈ Z, as πj+1 = πj+1α(j + 1, e) + πjα(j, e), from which

there ensues
∑
j∈Z πjα(j, e) = 1

2

∑
j∈Z πj as soon as either sum converges. This also implies both

L1 = − log 2 and the validity of (7) since
∑
j∈Z

Cj(e) < ∞ holds. The convergence of
∑
j∈Z

Cj(e) < ∞

ensures that the Markov chain (Xt, Xt+1)t≥0 on {(j, k) ∈ Z2; k − j = ±1} is also irreducible and

positive recurrent with unique invariant probability measure Π = (Πj,k) given by

Πj,k =

 πjα(j, e) = πj+1{1− α(j + 1, e)} for k = j + 1,

πj{1− α(j, e)} = πj−1α(j − 1, e) for k = j − 1.
(15)

The ergodic theorem for irreducible Markov chain (Xt, Xt+1)t≥0 immediately yields the asymptotic

behavior provided in (8) for the sequence of statistics p
(d)
n and in (9) for the sequence of likelihoods

Ln,d defined by (4). The convexity of −H successively yields the inequalities Ld ≤ Lkd and L1 ≤ Ld,
for all d ≥ 1 and k > 1, through an application of Jensen’s inequality:

−H
{
α(d)(i, e)

}
≤ −

k−1∑
`=0

H
{
α(kd)(i+ `d, e)

} ∑
j∈Z, (j)kd=(i+`d)kd

πj∑
j∈Z, (j)d=(i)d

πj
,

which implies

Ld ≤ −
d∑
i=1

k−1∑
`=0

∑
j∈Z, (j)kd=(i+`d)kd

πjH
{
α(kd)(i+ `d, e)

}
= Lkd.

The convergence of
∑
j∈Z Cj <∞ implies limd→∞ Ld = L∞, completing the proof.

A.5 Proof of the ergodicity of T

Let h be a bounded harmonic function for T defined by (11). Since T h = h and T ?φ = φ, one gets∫
φ(e)α(0, e) {h(Te)− h(e)}2 µ(de) +

∫
φ(e){1− α(0, e)}

{
h(T−1e)− h(e)

}2
µ(de)

=

∫
φ(e)α(0, e)

{
h2(Te)− 2h(e)h(Te) + h2(e)

}
µ(de)

+

∫
φ(e){1− α(0, e)}

{
h2(T−1e)− 2h(e)h(T−1e) + h2(e)

}
µ(de)

=

∫
φ(e)

[
α(0, e)h2(Te) + {1− α(0, e)}h2(T−1e)

]
µ(de)

− 2

∫
φ(e)h(e)

[
α(0, e)h(Te) + {1− α(0, e)}h(T−1e)

]
µ(de) +

∫
φ(e)h2(e)µ(de)

=

∫
φ(e)T h2(e)µ(de)− 2

∫
φ(e)h(e)T h(e)µ(de) +

∫
φ(e)h2(e)µ(de)

=

∫
T ?φ(e)h2(e)µ(de)−

∫
φ(e)h2(e)µ(de)

=

∫
φ(e)h2(e)µ(de)−

∫
φ(e)h2(e)µ(de) = 0. (16)

Hence h(Te) = h(e) µ a.-s. so h is constant by the ergodic property of T . This is a necessary and

sufficient condition for a Markov chain to be ergodic (Brown, 1976, p. 14).
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A.6 Proof of Theorem 3

Suppose h is a bounded harmonic function for Ť . Then we have the analog of (16).

d∑
j=1

∫
φ(e)α(0, e) {h(j + 1, T e)− h(j, e)}2 µ(de)

+

∫
φ(e){1− α(0, e)}

{
h(j − 1, T−1e)− h(e)

}2
µ(de) = 0. (17)

As a result, h(j + 1, T e) = h(j, e) µ-a.-s. Moreover,
∑d
j=1 h(j, e) is a bounded harmonic function

for T so it is constant. Next, set z(e) = (h(1, e), . . . , h(d, e))
>

. Then Az(Te) = z(e), where A is a

permutation matrix on {1, . . . , d}, with Aij = 1 iff j = i + 1 mod d, while A−1ij = 1 iff j = i − 1

mod d, i, j ∈ {1, . . . , d}. In particular, Ad = I. It then follows that z(T de) = z(e). Since T d is ergodic,

it follows that z is constant so h is constant as well. It then follows from Brown (1976, p.14) that the

Markov chain X is ergodic with unique invariant measure having density φ with respect to md × µ.
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