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Dynamic improvements of static surrogates in direct search opti-
mization, Rapport technique, Les Cahiers du GERAD G–2019–10,
GERAD, HEC Montréal, Canada.
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2019). Dynamic improvements of static surrogates in direct search
optimization, Technical report, Les Cahiers du GERAD G–2019–10,
GERAD, HEC Montréal, Canada.
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recherche du Québec – Nature et technologies.
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract: The present work is in a context of derivative-free optimization involving direct search
algorithms guided by surrogate models of the original problem. These models are classified into two
categories: static surrogates and dynamic models. This work introduces the quadratic hybrid model
(HQM), that dynamically corrects information from a static surrogate. Instead of bringing an additive
or multiplicative correction, the HQM generalizes these two types of corrections by considering the
static model as an input variable of the quadratic model. Numerical tests are performed with the Mads
algorithm on three multidisciplinary and one simulation-based engineering problems. The results show
that the contribution of the HQM to the Mads algorithm is to solve problems at greater precision for
the same computational budget.

Keywords: Surrogate-assisted optimization, Static surrogate, Quadratic model, Mesh Adaptive Direct
Search
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1 Introduction

The surrogate management framework [13] proposes ways to use a surrogate of an optimization prob-

lem as a tool to guide a direct search optimization algorithm. This framework has been used in

many contexts [1, 21, 25, 35, 38]. A key feature of a surrogate is that it evaluates much faster than

the true problem. Surrogates can be classified into two categories [7]. Static surrogates are usually

simplifications of the true optimization problem, they include simplified physic models, or models in

which internal tolerances are relaxed. Static surrogates are not required to be good approximations of

the true problem in order to be useful to the optimization process. The second category are models,

including quadratic, RBF and Gaussian models among others. These models can be updated when

new information is available, and are designed to be used as approximation of the true function. These

models are functions of the n optimization variables.

The Mesh Adaptive Direct Search (Mads) algorithm [5] is an example of a direct search method

that exploits surrogates to solve an optimization problem. It has been shown that Mads is generally

more efficient when assisted by a surrogate [4, 8, 9, 16, 37].

Research on surrogate-assisted direct search optimization usually involves the use of either the static

surrogate or the dynamic models. Some authors have studied combination of both. For example, [24]

propose additive and multiplicative ways of combining static surrogates with dynamic models. The

objective of the present research is to propose an hybrid strategy to build a quadratic model whose

input is not only the n optimization variables, but also a supplementary variable taking the value of

the static surrogate. This yields flexible models that inherit from the global properties of the static

surrogate and the local precision of quadratic model.

The paper is structured as follows. Section 2 brushes a picture of existing local and global tools in

surrogate-assisted optimization. Section 3 proposes an hybrid strategy that builds a quadratic model in

which one of its input is the static surrogate value. Numerical experiments are conducted in Section 4,

and the proposed approach is compared with those that use either the static or dynamic model, and

with the one that uses neither. Concluding remarks close the paper.

2 Surrogate-assisted optimization

This work target general optimization problems of the form :

min
x∈Ω

f(x), (1)

where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn denotes the feasible region and where the functions

f, cj : X → R := R ∪ {±∞} for j ∈ J = {1, 2, . . . ,m} are costly to evaluate, only computable

through a simulation and whose derivatives are not accessible. The set X is a subset of Rn, typically

of the form X = {x : ` ≤ x ≤ u} where ` and u are in Rn. The simulation cannot be launched at

points outside of the set X. The contraints cj , j ∈ J can be violated, and the simulation output is

valid. These constraints must be satisfied at the final solution produced by the optimization algorithm.

Detailed descriptions of this class of problems as well as algorithms to solve them are found in the

textbooks [7, 17]. One efficient way to solve problems from this class is through surrogate-assisted

optimization.

2.1 Surrogates and models

Launching the simulation to evaluate the functions defining Problem (1) may be time-consumming.

There are situations where each call to the simulation requires seconds [15] (valve train design), min-

utes [3] (spent potliner treatment), hours [10] (parameter tuning) or even days [26] (trailing-edge noise

reduction). One way to deal with such problem is to use a simplified formulation called a surrogate

problem.
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Surrogates can be constructed by using simplified physics, or by relaxing internal tolerances within

the blackbox simulation. These surrogates are often provided by the designer of the simulation. We

refer to these as static surrogates. Surrogates can also be built and updated as the optimization

process is deployed. Interpolation or regression methods can be applied to mimic the output of the

simulation using quadratic [19, 16] or polynomial [30] approximations, DACE Kriging [12, 23, 36, 18],

treed Gaussian processes [21], LOWESS models [37], radial basis functions [11, 31, 34, 41] or even

ensembles of surrogates [9]. We refer to these as dynamic models.

The surrogate management framework [13] details how to exploit a surrogate problem to reduce

the overall computational optimization time. It is summarized in Algorithm 1, where the surrogate

functions are denoted by f̃ and c̃.

Algorithm 1: Surrogate management framework in Mads (adapted from [7, 13])

Given the true functions f, cj : Rn 7→ R, j ∈ J, and their surrogates f̃ , c̃j : Rn 7→ R, j ∈ J,
1. Search step (optional)

use the surrogate problem to generate a list L of trial points
evaluate the true problem functions at points in L in an opportunistic way
proceed to 3 if a new incumbent solution is generated, otherwise go to 2

2. Poll step
generate a set of poll points P , and order them using the surrogate problem
evaluate the true problem functions at points in P in an opportunistic way

3. Update optimization algorithm
update all algorithmic parameters and check stopping criteria
terminate or go to 4

4. Calibration of the surrogate (for dynamic surrogates)
recalibrate the surrogate functions using the new function values obtained in Steps 1 and 2

There are other types of surrogates. Polyak and Wetter [32] propose a framework to automatically

select the precision of an adaptative surrogate. Chen and Kelley [14] propose a framework in which the

true optimization cannot be evaluated, and only Monte-Carlo simulations estimations are available.

Previous studies inclue additive (g(x) ≈ g̃(x) + A(x), A : Rn 7→ R) and multiplicative (g(x) ≈
M(x)g̃(x), M : Rn 7→ R) [2, 20, 24] corrections to the function g̃. We propose to dynamically correct

a static surrogate. More precisely, we extend a quadratic model so that in addition to taking the

n problem variables as input, it also takes the static surrogate value as input. The next subsection

presents quadratic models.

2.2 Quadratic models

Let g : Rn 7→ R be a generic function, that we wish to approximate. In what follows, g can be any

function f or cj from Problem (1). The contents of this section is covered into depth in [7, 16, 17, 19].

The general form of a quadratic model of the function g is Q(x) = α0 +α>x+ 1
2x
>Hx where α0 ∈ R,

α ∈ Rn, H = H> ∈ Rn×n. This model depends on a total of q + 1 = (n + 1)(n + 2)/2 parameters

because H is symmetric. Using a basis of the space of degree 2 polynomials, the quadratic function

may be compactly rewritten as Q(x) = α>ρ(x), where

ρ(x)> = (ρ0(x), ρ1(x), . . . , ρq(x)) =
(

1, x1, x2, . . . , xn,
x2
1

2 ,
x2
2

2 , . . . ,
x2
n

2 , x1x2, x1x3, . . . , xn−1xn

)
and where α ∈ Rq+1 is redefined. The next definitions ensure existence and unicity of a quadratic

model.

Definition 1 (Poised for quadratic regression) The set of points points Y = {y0, y1, . . . , yp} ⊂ Rn
with p ≥ q , q + 1 = (n+ 1)(n+ 2)/2 is poised for quadratic regression if the matrix

M(ρ,Y) =


ρ0(y0) ρ1(y0) . . . ρq(y

0)
ρ0(y1) ρ1(y1) . . . ρq(y

1)
...

...
...

...
ρ0(yp) ρ1(yp) . . . ρq(y

p)

 ∈ R(p+1)×(q+1)

has rank equal to q + 1.
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The minimum Frobenius norm model [19, 33] is an alternative when there are fewer than q + 1 points

available to construct the model.

Definition 2 (Poised for minimum Frobenius norm modelling) Let g : Rn 7→ R, ρL(x) =

(1, x1, x2, . . . , xn)
>

and ρQ(x) = (
x2
1

2 ,
x2
2

2 , . . . ,
x2
n

2 , x1x2, x1x3, . . . , xn−1xn)>. The set of points Y =

{y0, y1, . . . , yp} ⊂ Rn with n + 1 < p + 1 < (n + 1)(n + 2)/2 is poised for minimum Frobenius norm

modelling if there is a unique optimal solution to:

min
αL,αQ

1
2‖αQ‖

2

s.t. g(yi) = ρL(yi)αL + ρQ(yi)αQ for i = 0, 1, . . . , p ,

where αL ∈ Rn+1, αQ ∈ RN and N = n(n+ 1)/2.

To construct the quadratic function Q(x), it suffices to identify α = [αL αQ]>. If n < p < q

and Y is poised for minimum Frobenius norm modelling, then α is the unique solution to the problem

in Definition 2. Otherwise, if p ≥ q et Y is poised for quadratic regression, then α ∈ Rq+1 is the

solution that minimizes ‖M(ρ,Y)α− g(Y)‖2 where M(ρ,Y) is the matrix from Definition 1 and g(Y) =(
g(y0), g(y1), . . . , g(yp)

)>
.

3 A quadratic model involving a static surrogate

The objective of the present work is to derive a methodology exploiting the information contained in

a static surrogate, and to improve it through the construction of a dynamic model.

Definition 3 (Hybrid Model) Let g̃ : Rn 7→ R, g̃ 6= 0, be a static surrogate of the function g : Rn 7→ R.
An hybrid model ĝ : Rn 7→ R of g is a dynamic model of that takes into account the static model g̃: ĝ

depends on x = [x1, x2, . . . , xn]>, as well as on x0 := g̃(x) ∈ R.

Instead of simply applying an additive or multiplicative correction, the hybrid model treats the

static model as an input. Thus, no information or approximation of the derivatives of the static

model is necessary for the construction of the hybrid model, which is well suited in a derivative-free

optimization context. A hybrid model can only be built if the static model g̃ is non-trivial. Indeed,

in the trivial case g̃ = 0, the static model would not bring any new information on g and would be

detrimental to the construction of the hybrid model.

3.1 A Hybrid quadratic model

We introduce the Hybrid Quadratic Model (HQM) that takes advantage of the information contained

in a static surrogate and of the local properties of a quadratic model. In order to achieve this, we

revisit the principle of the quadratic model presented in section 2.1, by introducing a variable labelled x0

representing the value of the static model. The HQM is constructed on a space of dimension n+1, where

n is the number of variables in Problem (1). Formally, we consider the static surrogate g̃ : Rn 7→ R of

the function g : Rn 7→ R and

φ(x)> = (φ0(x), φ1(x), . . . , φt(x)) =
(

1, x0, x1, . . . , xn,
x2
0

2 ,
x2
1

2 , . . . ,
x2
n

2 , x0x1, x0x2, . . . , xn−1xn

)
where x0 = g̃(x) and t+ 1 = (n+ 2)(n+ 3)/2. The HQM of g(x) is

ĝ(x) = β>φ(x), (2)

for some β ∈ Rt+1. This construction requires a set of interpolation points Y = {y0, y1, . . . , yp} ⊂ Rn,

p ∈ N. The model is obtained by solving the least-square minimization problem

min
β∈Rt+1

∑
y∈Y

(g(y)− ĝ(y))2. (3)
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The following definitions are needed to characterize the HQM, to ensure the existence and unique-

ness of a HQM. They are similar to those from Section 2.1.

Definition 4 (Poised for hybrid quadratic regression) The set of points Y = {y0, y1, . . . , yp} ⊂ Rn

with p ≥ t , t+ 1 = (n+ 2)(n+ 3)/2 and g(Y) =
(
g(y0), g(y1), . . . , g(yp)

)>
with g : Rn 7→ R is said to

be poised for hybrid quadratic regression if the matrix

M(φ,Y) =


φ0(y0) φ1(y0) . . . φt(y

0)
φ0(y1) φ1(y1) . . . φt(y

1)
...

...
...

...
φ0(yp) φ1(yp) . . . φt(y

p)

 ∈ R(p+1)×(t+1)

is of rank t+ 1 and if g(Y) ∈ Rp+1.

As with the quadratic model, we can use the Frobenius norm for cases with less than t+ 1 points.

Definition 5 (Poised for minimum Frobenius norm hybrid modelling) Let g̃ : Rn 7→ R be a static

model of g : Rn 7→ R, φL(x) = (1, x0, x1, . . . , xn)
>

and φQ(x) = (
x2
0

2 ,
x2
1

2 , . . . ,
x2
n

2 , x0x1, x0x2, . . . ,

xn−1xn)>, where x0 = g̃(x). The set of points Y = {y0, y1, . . . , yp} ⊂ Rn, n+ 2 < p+ 1 < (n+ 2)(n+

3)/2 is poised for minimum Frobenius norm hybrid modelling if there is a unique optimal solution to

min
βQ∈RN

1
2 ‖βQ‖

2

s.t. g(yi) = φL(yi)βL + φQ(yi)βQ for i = 0, 1, . . . , p, (4)

where βL ∈ Rn+2 and N = (n+ 1)(n+ 2)/2.

We next analyze into more detail the HQM specificities. Consider a set of p+1 interpolation points

Y = {y0, y1, . . . , yp}. The analysis leading to the computation of β = [βL βQ]> is partitioned into

five cases.

Case I : p = t and the set Y is poised for hybrid quadratic regression. Problem (3) reduces to solving

M(φ,Y)β = g(Y) = (g(y0), g(y1), . . . , g(yp)). (5)

The system has a unique solution, because the matrix M(φ,Y) nonsingular.

Case II : p > t and the set Y is poised for hybrid quadratic regression. The system (5) is

over-determined, but the solution β is obtained using the pseudo-inverse matrix

β = [M(φ,Y)>M(φ,Y)]−1M(φ,Y)>g(Y).

Case III : n + 1 < p < t and the set Y is poised for Frobenius HQM. The system (5) is under-

determined. It is however possible to find the unique solution β using the Frobenius quadratic model to

the HQM by minimizing the norm of the quadratic coefficients of Equation (2). Writing β = [βL βQ]>

with βL ∈ Rn+2, βQ ∈ RN andN = (n+1)(n+2)/2 allows us to write Equation (2) as ĝ(x) = φL(x)βL+

φQ(x)βQ, where φL(x) = (1, x0, x1, x2, . . . , xn)
>

, φQ(x) = (
x2
0

2 ,
x2
1

2 ,
x2
2

2 , . . . ,
x2
n

2 , x0x1, x0x2, . . . , xn−1xn)>

and x0 = g̃(x). The vector βQ is found by solving

min
βQ∈RN

1
2 ‖βQ‖

2

s.t. g(Y) = M(φL,Y)βL +M(φQ,Y)βQ, (6)

where M(φL,Y) and M(φQ,Y) are matrices of from Definition (4), but relative to the bases φL and φQ,

respectively. The hypothesis on Y ensures a unique solution. Let L(β, λ) = 1
2 ‖βQ‖

2−λ>(M(φL,Y)βL+

M(φQ,Y)βQ − g(Y)) be the Lagrangean function of Problem (6), where λ = [λ0, λ1, . . . , λp]
>. The
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minimizer is found by solving the system of three equations g(Y) = M(φL,Y)βL + M(φQ,Y)βQ,

0 = λ>M(φL,Y) and βQ = λ>M(φQ,Y) that are compactly written as

F (φ,Y)

[
λ
βL

]
=

[
M(φQ,Y)M(φQ,Y)> M(φL,Y)

M(φL,Y)> 0

] [
λ
βL

]
=

[
g(Y)

0

]
, (7)

where F (φ,Y) ∈ R(p+n+3)×(p+n+3). The next proposition summarizes how to validate that a set is

poised for minimum Frobenius norm hybrid modelling.

Proposition 1 A set of points Y = {y0, y1, . . . , yp} ⊂ Rn, n+ 2 < p+ 1 < (n+ 2)(n+ 3)/2, is poised

for minimum Frobenius norm hybrid modelling if and only if the system (7) has a unique solution, i.e.,

F (φ,Y) is nonsingular.

Proof. Let Y = {y0, y1, . . . , yp} ⊂ Rn, n+ 2 < p+ 1 < (n+ 2)(n+ 3)/2 be poised for Frobenius HQM.

The proof follows from the equivalent statements:

Y is poised for Frobenius HQM⇐⇒ (4) has a unique solution⇐⇒ (7) has a unique solution.

It follows that λ and βL are obtained by solving Equation (7), and the remaining term is βQ =

λ>M(φQ,Y).

Case IV : p > n+ 1 but the set Y is not poised for any Frobenius HQM. There are infinitely many

solutions to (5) or to (7). We select the one with least norm.

Case V : p ≤ n+ 1. Not enough information is collected to build a quadratic model.

We conclude this subsection with an example illustrating the motivation for building hybrid models.

Let g̃ be a static surrogate that captures the discontinuity of a function g : R 7→ R, defined as the step

function g̃(x) = 0 if x < 1 anf g̃(x) = 1 otherwise. Suppose now that five function values are known

for g, as illustrated by the dots in Figure 1. The plot on the left shows the static model, the central

one shows the Frobenius norm model from Definition 2 and the plot on the right shows the hybrid

HQM. This last model is the only one that captures both the discontinuity from the static model and

the curvature from the quadratic model.

(a) Static surrogate g̃ (b) Quadratic model Q (c) Hybrid model ĝ

Figure 1: A static, quadratic and hybrid model of a function g(x)
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3.2 Algorithmic approach

Consider the situation where we are given the static surrogate of Problem (1):

min
x∈Ω̃

f̃(x), (8)

with Ω̃ = {x ∈ X : c̃j(x) ≤ 0, j ∈ J} ⊂ Rn and f̃ , c̃j : X → R for j ∈ J . Problem (1) is referred

to as the real problem and (8) as the static surrogate. Using the methodology from Section 3.1, we

create m + 1 local HQM models f̂k ≈ f, ĉk1 ≈ c1, . . . , ĉ
k
m−1 ≈ cm−1 and ĉkm ≈ cm to be used in the

poll step of Mads. More specifically, consider the poll set P k at iteration k around the incumbent

solution xk. The static surrogate functions are evaluated at all points in P k. The bounds maxi and

mini, i ∈ {1, 2, . . . , n}, as well as center µi and radius ri are then computed for each i ∈ {1, 2, . . . , n}:

maxi = max{yi : y ∈ P k}, mini = min{yi : y ∈ P k}, µi = 1
2 (maxi + mini), ri = 1

2 (maxi−mini). (9)

Let B∞(µ; r) = {x ∈ Rn : |xi − µi| ≤ ri, i ∈ {1, 2, . . . , n}} be the smallest box containing P k. We

introduce a scalar ρ ∈ (0,∞) that may be provided by the user to delimit the region containing the

trial points used to build the HQM. The interpolation points Y = {y0, y1, . . . , yp} will be selected from

B∞(µ; ρr) as well as from the cache V k (i.e. the set of points for which both the true and surrogate

problem were evaluated by the start of iteration k).

The trial points in P k are then ordered according to their HQM values f̂ and ĥ as detailled

in [7, p 240]. The ordered poll points are then evaluated with an opportunist strategy. Iteration k is

interrupted as soon as a new feasible incumbent solution is found. With the progressive barrier [6],

the iteration is not interrupted if only a new infeasible incumbent solution is found. Algorithm 2

summarizes a Mads iteration with HQM.

Algorithm 2: Iteration k of Mads with an HQM

Given the true functions, their static surrogates f, cj , f̃ , c̃j : Rn 7→ R, j ∈ J, and starting point x0 ∈ X
1. Standard search step
2. Poll step

2.1. HQM construction

choose a poll set Pk and compute f̃(y) and c̃(y) for each y ∈ Pk

set µ and r using Equation (9) and let Y = B∞(µ; ρr) ∩ V k

if |Y| ≥ n+ 2 then construct the m+ 1 HQM f̂k(x), ĉk1(x), . . . , ĉ
k
m(x)

if |Y| < n+ 2 then set f̂k(x)← f̃(x), ĉk1(x)← c̃1(x), . . . , ĉkm(x)← c̃m(x)
2.2. Ordering

order the trial points in Pk according to the values f̂k(x) and ĥk(x)
evaluate the functions of the true Problem (1) at points of Pk with an opportunist strategy

3. Standard parameter update step and termination

Figure 2 illustrates these steps on an example in R2. The dark circles represents the poll set P k

and the white circles . The central graph shows the center µ and the box B∞(µ; r). The graph on the

right shows the region B∞(µ; ρr) to construt Y. The points y4 and y5 are not used in Y.

4 Computational experiments

To test our approach, we need optimization problems that are accompanied by a static surrogate, and

that are not contaminated by numerical noise, otherwise the quadratic models would be irrelevant.

The experiments are conducted on three multidisciplinary optimization (MDO) problems from two

families, and on a water treatment engineering problem, using version 3.8.0 of the Nomad software

package [22].

Four ordering strategies are compared for the poll step of Mads. The most basic one is called success
and does not use any models at it orders the trial point by increasing angle with the last direction of

success [5]. The second one is called quad and only uses quadratic models; it is the default in NOMAD
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Figure 2: Construction of Y with ratio parameter ρ = 2

when no static surrogate is provided. The third one is called static and used exclusively the provided

static surrogate. Finally, the last one is called hqm and correspond to the new strategy proposed in the

present work. Results are presented summarized through data profiles [29] that show the proportion

of problem solved within a fixed tolerance τ as a function of the number of calls to the true simulation.

Three values of τ are tested.

4.1 Multidisciplinary optimization problems

In MDO, disciplines are interconnected in such a way that the input of one discipline is the output of the

others. Several iterations are necessary to stabilize input and output values. Two precision parameters

are used here to define the true and the surrogate problem. A threshold ε > 0 on the magnitude of

the difference between consecutive iterations, and a bound nmax on the number of allowed iterations.

We first consider the Simple MDO 2n Variables [40] family of problems minx a
∗
1(x) + a∗2(x) for

x ∈ X = [−100; 100]2n, with 2n variables where

a1 =
x2

1 − 2x1 + 1 +
∑n
i=2(2x2

i − 2xi−1xi + 1)

1 + 0.5a2
, a2 =

(
2n∑

i=n+1

(2x2
i − 2xi−1xi + 1)

)
√

1 + 0.5a1 .

The stars appearing in a∗1 and a∗2 indicate that the values converged during the MDO process within

the tolerance parameters: ε = 10−6, nmax = 10, 000 for the true problem, and ε = 1, nmax = 5 for the

static surrogate. Two instances are tested, each from 100 randomly generated starting points with 10

random seeds for a total of 1, 000 runs per problem. Figure 3 show data profiles for 3 values of the

tolerance parameter τ on the Simple MDO 10 Variables (on top) and Simple MDO 16 Variables (on

bottom) problems.

Without any surprise, the success ordering strategy is outperformed by the others. For τ = 10−3,

hqm and stat are faster than quad, but for a large number of evaluations quad solves more problems

than stat. hqm and stat dominate quad when τ = 10−5. hqm dominates stat for that tolerance, but

even more with τ = 10−7: hqm solves 25% more problems than stat on the problem with 10 variables

and 55% more on the problem with 16 variables.

We next consider the Simplified Wing design optimization problem [39] involving aerodynamic,

structural and performance disciplines. The problem has 10 bounded variables and 10 inequality

constraints The parameters defining the true and static surrogate problems are ε = 10−12 and nmax =

100 for the true problem, and ε = 10−1 and nmax = 5 for the static surrogate. The data profiles of

Figure 4 are generated from 100 starting points and 10 random seeds. Similar conclusions are drawn

from the three graphs. The success ordering strategy is once again non-competitive. The three other

are comparable, with a slight preference for the stat strategy. These results suggest that the correction

brought by HQM is not always dominant.
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Figure 3: Data profiles on the Simple MDO 10 Variables and Simple MDO 16 Variables problems

0 500 1000 1500

Function evaluations

0

0.2

0.4

0.6

0.8

1

Po
rti

on
 o

f p
ro

bl
em

s 
so

lve
d

 = 1e-03

0 500 1000 1500

Function evaluations

0

0.2

0.4

0.6

0.8

1

Po
rti

on
 o

f p
ro

bl
em

s 
so

lve
d

 = 1e-05

0 500 1000 1500

Function evaluations

0

0.2

0.4

0.6

0.8

1

Po
rti

on
 o

f p
ro

bl
em

s 
so

lve
d

 = 1e-07

quad
static
hqm
success

Figure 4: Data profiles on the Simplified Wing problem

4.2 The Lockwood problem

Lockwood [27, 28] is a pump-and-treat groundwater remediation problem from Montana Lockwood

Solvent Groundwater Plume Site [27] with 6 bounded variables and 2 inequality constraints. A static

surrogate is obtained by altering two parameters within the blackbox, with a fifth of the execution times

compared to the true problem. The results illustrated in Figure 5 are obtained from 100 randomly

generated starting points. The top the profiles are standard data profiles. In order to take into account

the computational time of the static surrogate, the plots on the bottom are data profiles in whicht

the horizontal axis is the elapse CPU time in seconds on an PC (Intel(R) Core(TM) i7-6700 CPU @

3.40GHz 8.00 GB RAM) under linux.

The data profiles separates the ordering strategies into two groups: the pair that uses the static

surrogate, and the pair that does not. The former systematically dominates the latter for all three

values of τ . The overall best strategy is HQM. Once again, the pair of strategies using the static

surrogate are dominant, and the combined use of the static surrogate with the quadratic models give

the best results.

5 Discussion

This work proposed a way to combine a static surrogate as input for a quadratic model of an opti-

mization problem, to be used within the poll step of the Mads algorithm. Numerical comparisons were
performed on three MDO problems, and on the Lockwood engineering test problem. The overall
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Figure 5: Data profiles on the Lockwood problem (vs number of evaluations on top, and time on bottom)

conclusion is that the HQM benefits from the global exploration aspect of the static surrogate and

of the local performance of the quadratic model. The static surrogates is useful to identify a bassin

containing a good solution, and the quadratic models helps in accelerating the convergence within that

bassin.

Further research may combine a static surrogate with other types of dynamic models. In addition

of quadratic models, some dynamic models of Talgorn et al. [37] may be useful to guide the global

search step or the local poll step of Mads.
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