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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2019
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3000, chemin de la Côte-Sainte-Catherine
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Abstract: The open-pit mine production scheduling problem aims to optimize the net present value of a
mining asset. Several solution methods have been proposed to find the most profitable mining sequence. Such
methods entail determining which mining blocks from those used to represent the related mineral deposit
should be extracted and when. However, little is reported in the technical literature that considers the
material flow once mined and, more specifically, incorporating stockpiling as part of the mine scheduling
strategy, thus adding technical intricacies due to the difficulty of correctly modeling the materials’ blending
once sent into a stockpile.

In this paper, a new model is provided to address the topic of open-pit mine production scheduling
considering multiple destinations for the mined material, including stockpiles, and accounting for multi-
element uncertainty. Unlike conventional models, the proposed model allows for an accurate estimation of
the resulting grade of the stockpile without using unrealistic assumptions or non-linear constraints. A solution
approach based on extending the Bienstock and Zuckerberg algorithm to the stochastic optimization and two
heuristics is presented and applied to different real-size instances. Results show that this approach provides a
feasible integer solution within less than 1.7% of optimality in a reasonable time. Properties and limitations
of the model presented are also discussed, and recommendations for further research are made.

Keywords: Open-pit optimization, stochastic mathematical programming, Langrangian relaxation, stock-
pile, multi-element mineral deposit, long-term production planning, Tabu search

Résumé : Le problème de planification de la production des mines à ciel ouvert vise à optimiser la valeur
actuelle nette d’un projet minier. Plusieurs méthodes de solution ont été proposées pour trouver la séquence
minière la plus rentable. Ces méthodes consistent à déterminer quels blocs parmi ceux utilisés pour représenter
le gisement minéral concerné doivent être extraits et à quel moment. Cependant, peu d’ouvrages dans la
littérature technique s’intéressent au flux du minerai une fois extrait et, plus spécifiquement, l’incorporation
du stockage dans la stratégie de planification de la mine, ajoutant ainsi de la complexité au problème et ce,
dû à la difficulté de modéliser correctement la notion de mélange une fois les matériaux arrivés à la pile de
stockage.

Dans cet article, un nouveau modèle est présenté dans le but de traiter le sujet de la planification de
la production des mines à ciel ouvert, prenant en compte plusieurs destinations pour le matériau extrait,
y compris les piles de stockage, et en tenant compte de l’incertitude multi-éléments. Contrairement aux
modèles conventionnels, le modèle proposé permet une estimation précise de la teneur résultante du stock
sans recourir à des hypothèses irréalistes ou à des contraintes non linéaires. Une méthode de résolution
basée sur l’extension de l’algorithme de Bienstock et Zuckerberg à l’optimisation stochastique ainsi que deux
heuristiques est présentée et appliquée à différentes instances de taille réelle. Les résultats montrent que cette
approche fournit une solution entière réalisable avec moins de 1,7% d’optimalité dans un délai raisonnable.
Les propriétés et les limites du modèle présenté sont également discutées et des recommandations pour des
recherches ultérieures sont formulées.
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the industry collaborator, and NSERC Discovery Grant 239019, and the industry members of the COSMO
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1 Introduction

The long-term production scheduling of open pit mines seeks to find an optimal mining sequence, which means

determining when, if ever, to extract each portion of the mineral deposit and where to send it among a given

set of possible destinations (waste dump, processing plants, leach pads, stockpiles, and so on), so that the

total net present value (NPV) of the operation is maximized. This scheduling is subject to some restrictions

such as limited resources, production requirements or spatial precedence constraints. This decision problem,

also called the open-pit mine production scheduling problem (OPMPSP), has been studied during the last

fifty years not only due to its complexity since it implies large data sets and multiple constraints, but also due

to its direct impact on a mining project’s profitability and success. Through the development of optimization

methods, researchers are trying to propose models that are increasingly accurate and close to reality on the

ground. However, efforts to include stockpiles in the optimization process are limited, as it is mathematically

challenging to assess the grade of the material inside the stockpile appropriately.

1.1 Models without stockpiling

Early attempts to solve the OPMPSP do not consider stockpiles as part of the problem and focus instead

on the extraction sequence. At that time, a three-dimensional model of blocks was already introduced to

represent deposits and discretize them into mining blocks. Drilling operations allow associating a set of at-

tributes to each block, such as metal grades, material type, density, etc. These attributes are estimated based

on interpolation using available surrounding samples. Conventional approaches reinforce their inaccuracy by

considering a single estimated value for each attribute and hence ignore both uncertainty and in-situ variabil-

ity. Such methods are said to be deterministic in the sense that they consider all attribute values as exact,

ignoring the related uncertainty and its sources. Johnson (1968) relaxes the integrity constraints and takes

advantage of the particular structure of the problem to apply the Dantzig-Wolfe decomposition. Dagdeleen

and Johnson (1986) propose an exact method based on the Lagrangian relaxation of resource constraints

and use the sub-gradient method to adjust the multipliers. Many authors have since then proposed methods

to make large instances computationally tractable. While Ramazan (2007) developed the Fundamental Tree

Algorithm to optimally aggregates blocks into groups, Whittle (1988) and Tabesh and Askari-Nasab (2011)

use different aggregation heuristics to reduce the size of the problem. However, aggregation often leads to

infeasible solutions once the disaggregation is done and original variables are restored (Boland et al., 2009),

and thus, compromises the usefulness itself of the methods. Topal (2003) eliminates some binary variables

by defining the earliest and the latest time of extraction for each block. Caccetta and Hill (2003) use the ul-

timate pit limit for preprocessing and apply a branch-and-cut algorithm to solve the problem. Ramazan and

Dimitrakopoulos (2004) relax the integrity of the variables associated with waste blocks. Using a sliding time

window was also a popular method (Dimitrakopoulos and Ramazan, 2008; Cullenbine et al., 2011; Lamghari

and Dimitrakopoulos, 2016). Other approaches rely on heuristics and metaheuristics. Denby and Schofield

(1994) use a genetic algorithm, while Shishvan and Sattarvand (2015) present a metaheuristic based on an

ant colony optimization. Lamghari et al. (2015) propose a hybrid method based on linear programming (LP)

and variable neighborhood local search. Decomposition methods also seem to be particularly efficient when

applied to OPMPSP (Tachefine, 1997; Chicoisne et al., 2012; Bienstock and Zuckerberg, 2009, 2010). The

Bienstock-Zuckerberg (BZ) algorithm, in particular, proved its efficiency to solve optimally the LP relaxation

of the OPMPSP. Taking advantage of the special structure of the problem, their decomposition method can

tackle large instances with an arbitrary number of side constraints. Munoz et al. (2017) document proves

the correctness of the Bienstock-Zuckerberg (BZ) algorithm and shows that it can be generalized to handle

more problems arising in the context of mine planning.

Despite considerable advances in deterministic optimization methods, ignoring the uncertainty present in

several parameters, especially in the metal content, severely compromises the robustness of these methods and

directly affects the mining project’s performance (Dowd, 1994; Baker and Giacomo, 1998). To address the

geological uncertainty and represent the in-situ variability of the grades, multiple equally probable scenarios

of the orebody’s geological profile are used simultaneously as inputs for the OPMPSP (Goovarets, 1997;
Boucher and Dimitrakopoulos, 2009). Accounting for metal uncertainty adds a level of complexity to the

optimization process but presents also many benefits discussed, inter alia, by Ravenscroft (1992), Dowd
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(1994, 1997), Godoy and Dimitrakopoulos (2004), Menabde et al. (2007), Albor and Dimitrakopoulos (2010),

Ramazan and Dimitrakopoulos (2013), Marcotte and Caron (2013), and Behrang et al. (2014). Overall, the

stochastic optimization increases the reliability of scheduling and its chances of meeting production targets

through more realistic modeling and risk management. It also leads to higher NPVs (in the order of 15-

30%) compared to those obtained by deterministic models (Dimitrakopoulos, 2011). Different approaches

to handle metal uncertainty have been proposed in the literature. Formulations minimizing deviations from

production targets over multiple orebody simulations have been introduced for example by Godoy (2003),

Albor and Dimitrakopoulos (2009) and Goodfellow and Dimitrakopoulos (2013). Menabde et al. (2007)

add to their model constraints to ensure that the production targets are met on average. Boland et al.

(2008) propose a multistage stochastic programming approach. Benndorf and Dimitrakopoulos (2013) adopt

a stochastic integer mathematical programming (SIP) to deal with multi-element uncertainty. The authors

also manage to minimize deviation from production requirements. Lamghari and Dimitrakopoulos (2012)

suggest an efficient metaheuristic solution approach based on a diversified Tabu search while Lamghari et al.

(2014) propose a variable neighborhood descent heuristic and Albor and Dimitrakopoulos (2010) generate

a set of nested pits, group these pits into pushbacks and then produce the long-term production scheduling

based on the pushback designs obtained. Brika et al. (2018) propose an adaptation of the BZ algorithm

to the stochastic optimization combined with two heuristics to solve efficiently an OPMPS problem under

multi-element uncertainty and dealing with different destinations. The work presented herein is an extension

of the later paper.

1.2 Models with stockpiling

Stockpiles have long been excluded from the mine planning optimization process, despite their significant

role in the material flow post-extraction and the different advantages they provide for mining companies.

Indeed, it is mathematically challenging to correctly model the material-flow inside the stockpile considering

the limitation of conventional optimization methods. Some mine planning software packages (Whittle, 2010;

Mintec, 2013, MineMax, 2016) consider stockpiling as part of open pit mine scheduling. However, due to

their modeling techniques, they do not provide optimal solutions.

In this context, academic researchers have proposed different models to remedy the identified deficiencies.

To model the grade within the stockpile, it is typically assumed that material, once sent to the stockpile, is

mixed automatically and homogeneously, and when reclaimed, it no longer has the quality that it entered the

stockpile, but henceforth the current average quality of the stockpile. This assumption implies constraints to

ensure the preservation of material regarding tonnage and quality grade and thus, often results in models with

non-convex nonlinear constraints. However, it is important to stress that this assumption of homogeneous

mixing is unrealistic; rather, the material is stacked into successive layers. Bley et al. (2012) propose exact

algorithmic approaches to solve two different nonlinear integer models considering one stockpile and taking

advantage of the special structure of such specific models. They relax the nonlinear stockpiling constraints

and introduce an aggressive branching pattern to limit their violation to be arbitrarily close to zero. Then,

they apply a primal heuristic to repair the solution and make it a fully feasible solution. Goodfellow and

Dimitrakopoulos (2016, 2017) and Montiel and Dimitrakopoulos (2015) propose global optimization models

that consider all the interrelated aspects of the mineral value chain simultaneously in a stochastic context.

Their method combines different metaheuristics such as simulated annealing, particle swarm optimization,

and differential evolutions. They also develop a policy to select the destination of each block once it is

extracted. Comparisons with the deterministic equivalent of the proposed optimizer and a commercial mine

planning software show the outperformance of their method.

Although correctly capturing the material flow inside a stockpile with respect to the homogenous mixing

assumption requires nonlinear models, due to their inherent complexity, researchers prefer to have recourse

to linear models at the expense of solution accuracy. Smith (1999) solves a short-term production scheduling

considering stockpiling and blending. He approximates, with a piecewise linear formulation, the quadratic

terms in the original model representing the product of the grade inside a stockpile and the quantity with-

drawn from it in each period. Akaike and Dagdelen (1999) do not consider blending in stockpiles and assume
that there is an infinity of stockpiles; in other terms, that each block has its associated stockpile and thus,
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the trackability of each block is preserved from its extraction to its final destination, through to stockpile.

This assumption is unrealistic, though it alleviates the nonlinearity. Later, Ramazan and Dimitrakopoulos

(2013) and Smith and Wicks (2014) adopt the same assumption but in two different contexts. The first

paper uses a stochastic framework to reflect uncertainty in the geological and economic input data. Instead,

the second paper considers a deterministic context in which the model is solved using a sliding time window

heuristic. Yarmuch and Ortiz (2011) define two stockpiles, one for the high-grade ore and another for the

low-grade, and then solve the problem period by period, readjusting the grade inside the stockpiles at the end

of each period. Tabesh et al. (2015) linearize the problematic constraints by defining a “sufficient” number

of stockpiles, where each stockpile covers material within a tight grade range. Unfortunately, the authors do

not provide any numerical results. Lamghari and Dimitrakopoulos (2015) introduce a new formulation to

solve the OPMPSP under metal uncertainty and considers multiple destinations, including stockpiles. The

nonlinearity is avoided by estimating the corresponding average grade for each stockpile and adjusting it suc-

cessively. To manage geological risk, the surplus over ore production targets is indirectly penalized through

the costs imposed by sending ore material to the stockpiles. Moreno et al. (2017) analyze different stockpiling

models, most of which are aforementioned, and propose a new linear-integer model. The authors show that

this model is a close approximation of the nonlinear-integer equivalent model presented by Bley et al. (2012).

However, they also assume homogeneous mixing of the material in a single stockpile in each period.

In this context, the objective of this paper is to propose a new linear mixed integer model that can tackle

large instances of the OPMPSP with stockpiling (OPMPSP+S) and under metal uncertainty. This model

does not consider the homogeneous mixing assumption and does not require approximations to handle the

blending constraints properly. The remainder of the paper is organized as follows: Section 2 presents an

existing model to solve the OPMPS that does not incorporate stockpiles before introducing a new model

with stockpiling. Section 3 outlines a reformulation of the proposed model to fit the Bienstock-Zuckerberg

algorithm’s framework. In Section 4, a three-step solution approach is described. Computational results

of application on actual case studies are presented in Section 5. Section 6 explains the limitations of the

proposed model and suggests recommendations to address them. Conclusions follow in Section 7.

2 Mathematical formulation

This section first presents a mathematical formulation of a model that does not incorporate stockpiling before

introducing stockpiles in a new model.

2.1 Open pit mine production scheduling without stockpiling

The first subsection brings in notation and the following section introduces the mathematical model.

2.1.1 Notations

Sets:

• B= {1 . . .B }: set of blocks;

• T = {1 . . .T }: set of time periods, which discretize the life of the mine;

• M= {1 . . .M }: set of processing plants;

• W = {1 . . .W }: set of waste dumps;

• D = M∪W= {1 . . .D}: set of destinations including the waste dumps and the processing plants;

• R= {1 . . .R}: set of ore properties (i.e. geological elements);

• S= {1 . . .S }: set of possible scenarios of the orebody. Each scenario has the same probability of

occurrence and represents a different simulation of the geological profile of each block;

• Γ+
b and Γ−

b : respectively the set of immediate successors and predecessors of block b.
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Parameters:

• pb,d,t,s is the discounted profit obtained, if block b is sent to destination d in period t under scenario s.

If the destination is a processing plant, the profit is equal to the value of the metal content recovered of

the block less the processing and selling costs. If the block is sent to the waste dump, it is equal to 0.

Note here that the mining cost of the block is computed separately;

• grb,s is the grade of block b for element r under scenario s;

• Tmaxm,t and Tminm,t are respectively the expected maximum and minimum ore tonnages sent to

processing plant m at period t;

• Gmaxr
m,t and Gminr

m,t are respectively the expected maximum and minimum grades for resource r

sent to processing plant m at period t;

• mcb,t is the discounted cost of extracting a block b at period t;

• cut and clt are respectively the discounted unit costs of upper and lower deviations from Tmaxm,t and

Tminm,t;

• cur
t and clrt are respectively the discounted unit costs of upper and lower deviations from Gmaxr

d,t and

Gminr
d,t;

• Qb is the tonnage of block b;

• Mmax is the maximum mining capacity per period.

Variables:

• yatb,d,t is a binary variable which takes 1 if the block b is completely extracted and sent to destination d

at time t, 0 otherwise;

• qum,t,s and qlm,t,s are continuous variables representing respectively the upper and lower deviation

from ore tonnage production target at period t sent to processing plant m under scenario s;

• qur
m,t,s and qlrm,t,s are continuous variables representing respectively the upper and lower deviation

from production target r at period t sent to processing plant m under scenario s.

2.1.2 Mathematical model

Following the description and the notation given in the previous sections, the problem can be formulated as

a two-stage stochastic mixed integer programming model (Birge and Louveaux, 1997).

Objective function:

(P) max Z=
1

S

B∑
b=1

D∑
d=1

T∑
t=1

S∑
s=1

(pb,d,t,s −mcb,t)yb,d,t

−
M∑

m=1

T∑
t=1

S∑
s=1

(cutqum,t,s + cltqlm,t,s)−
1

S

M∑
m=1

T∑
t=1

S∑
s=1

R∑
r=1

(
cur

t qu
r
m,t,s + clrt ql

r
m,t,s

)
(1)

Constraints:

T∑
p=1

D∑
d=1

yatb,d,p ≤ 1 ∀b ∈ B (2)

t∑
p=1

D∑
d=1

yatb,d,p ≤
t∑

p=1

D∑
d=1

yata,d,p ∀ (a, b) ∈ B2 where a ∈ Γ−
b , t ∈ T (3)

B∑
b=1

Qb×yatb,m,t,s − qum,t,s ≤ Tmaxm,t ∀b ∈ B,m ∈M, t ∈ T , s ∈ S (4)

B∑
b=1

Qb×yatb,m,t,s + qlm,t,s ≥ Tminm,t ∀b ∈ B,m ∈M, t ∈ T , s ∈ S (5)
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B∑
b=1

Qb×
(
grbs − Gmaxr

m,t

)
×yatb,m,t − qur

m,t,s ≤ 0 ∀m ∈M, t ∈ T , s ∈ S, r ∈ R (6)

B∑
b=1

Qb×
(
grbs − Gminr

m,t

)
×yatb,m,t + qlrm,t,s ≥ 0 ∀m ∈M, t ∈ T , s ∈ S, r ∈ R (7)

B∑
b=1

Qb×

(
D∑

d=1

yatb,d,t

)
≤Mmax ∀t ∈ T (8)

yatb,d,t ∈ {0, 1} ∀b ∈ B, d ∈ D, t ∈ T (9)

qum,t,s, qlm,t,s ≥ 0 ∀m ∈M, t ∈ T , s ∈ S (10a)

qur
m,t,s, ql

r
m,t,s ≥ 0 ∀m ∈M, t ∈ T , s ∈ S, r ∈ R (10b)

The objective function (1) combines two goals. The first aims to maximize the discounted profit generated

by the deposit exploitation over the simulated orebody models. The second one aims to minimize deviations

from production targets considering all the scenarios.

The first constraint (2) ensures that each block cannot be extracted more than once. Constraint (3)

represents the precedence constraints and ensures that a block cannot be mined if not all the overlaying

blocks are already mined. Ore tonnage deviations from ore production targets are defined in inequations (6)

and (7). Similarly, constraints (4) and (5) compute the grade deviations from respectively the maximum

and minimum expected grades. The constraint (8) limits the mining capacity. Finally, constraint (9) and

constraints (10) represent the integrity and the non-negativity constraints respectively.

2.2 A new linear model that considers stockpiling

In this section, a new model OPMPS+S that considers stockpiling is presented. Unlike conventional models,

this model doesn’t assume that material in the stockpile is automatically mixed and becomes homogeneous.

Instead of that and due to new variables introduced in Section 2.2.1, each block is tracked from its extraction

to its final destination. The same notation presented in Section 2.1 is used, and some additional notation is

defined in what follows:

2.2.1 Notation

Parameters:

• rcb,m,t is the discounted cost of rehandling a block b from stockpiles to processing plant t at time t.

Variables:

• zatb,m,t0,t1
is a binary variable that takes 1 if b extracted and sent to stockpile at time t0 and then sent

to processing plant t at time t1 with (t0 < t1).

With this new formulation, a stockpile is created for and associated with each period t1 and each processing

plant t. All the ore stocked in this stockpile during periods anterior to t1 will be completely sent to processing

plant t only in period t1.

2.2.2 Mathematical model

The OPMPS+S model is obtained from the formulation in Section 2.1.2 by adding terms (written

between “{}”) associated with new variables. The numbers of equivalent constraints in both models are

preserved. Those of the new model are differentiated by an apostrophe.
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Objective function:

(Ps) max
1

S

B∑
b=1

D∑
d=1

T∑
t=1

S∑
s=1

(pb,d,t,s −mcb,t)× yb,d,t

−
M∑

m=1

T∑
t=1

S∑
s=1

(cutqum,t,s + cltqlm,t,s)

− 1

S

M∑
m=1

T∑
t=1

S∑
s=1

R∑
r=1

(
cur

t qu
r
m,t,s + clrt ql

r
m,t,s

)
(1’)

+

{
1

S

B∑
b=1

M∑
m=1

T−1∑
t0=1

T∑
t1=t0+1

S∑
s=1

(pb,m,t1,s
−mcb,t0 − rcb,m,t1)× zb,m,t0,t1

}

Constraints:

For each b ∈ B:
T∑

t0=1

D∑
d=1

yatb,d,t0 +

{
T−1∑
t0=1

T∑
t1=t0+1

M∑
m=1

zatb,m,t0,t1

}
≤1 (2’)

For each (a, b) ∈ B2 where a ∈ Γ−
b and t ∈

{
1 . . . T − 1

}
:

t∑
t0=1

D∑
d=1

yatb,d,t0 +

{
t∑

t0=1

T∑
t1=t0+1

M∑
m=1

zatb,m,t0,t1

}
≤

t∑
t0=1

D∑
d=1

yata,d,t0 +

{
t∑

t0=1

T∑
t1=t0+1

M∑
m=1

zata,m,t0,t1

}
(3a’)

For each (a, b) ∈ B2 where a ∈ Γ−
b and t = T :

T∑
t0=1

D∑
d=1

yatb,d,t0 +

{
T−1∑
t0=1

T∑
t1=t0+1

M∑
m=1

zatb,m,t0,t1

}
≤

T∑
t0=1

D∑
d=1

yata,d,t0 +

{
T−1∑
t0=1

T∑
t1=t0+1

M∑
m=1

zata,m,t0,t1

}
(3b’)

For each m ∈M, s ∈ S and t = 1:

B∑
b=1

Qb×yatb,m,1 − qum,1,s ≤ Tmaxm,1 (4a’)

B∑
b=1

Qb×yatb,m,1 + qlm,1,s ≥ Tminm,1 (5a’)

For each m ∈M, s ∈ S and t ∈
{

2 . . . T
}

:

B∑
b=1

Qb ×

(
yatb,m,t +

{
t−1∑
t0=1

zatb,m,t0,t

})
− qum,t ≤ Tmaxm,t (4b’)

B∑
b=1

Qb×

(
yatb,m,t +

{
t−1∑
t0=1

zatb,m,t0,t

})
+ qlm,t ≥ Tminm,t (5b’)

For each m ∈M, t = 1, s ∈ S and r ∈ R:

B∑
b=1

Qb×(grbs − Gmaxr
m,t)×yatb,m,1 − qur

m,1.s ≤ 0 (6a’)

B∑
b=1

Qb × (grbs − Gminr
m,t)× yatb,m,1 + qlrm,1.s ≥ 0 (7a’)
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For each m ∈M, t ∈
{

2 . . . T
}

, s ∈ S and r ∈ R:

B∑
b=1

Qb×(grbs − Gmaxr
m,t)×

(
yatb,m,t +

{
t−1∑
t0=1

zatb,m,t0,t

})
− qlm,t ≤ 0 (6b’)

B∑
b=1

Qb×(grbs − Gminr
m,t)×

(
yatb,m,t +

{
t−1∑
t0=1

zatb,m,t0,t

})
+ qlrm,t,s ≥ 0 (7b’)

For each t ∈
{

1 . . . T − 1
}

:

B∑
b=1

Qb×

(
D∑

d=1

yatb,d,t +

{
T∑

p=t+1

M∑
m=1

zatb,d,t,s

})
≤Mmax (8a’)

For t = T :
B∑

b=1

Qb×
D∑

d=1

yatb,d,T≤Mmax (8b’)

For each b ∈ B, d ∈ D, t ∈ T :

yatb,d,t ∈
{

0, 1
}

(9a’)

For each b ∈ B, m ∈M, t0 ∈ {1 . . . T − 1} and t1 ∈ {t0 + 1, . . . T}.

zatb,m,t0,t1 ∈
{

0, 1
}

(9b’)

For each m ∈M, s ∈ S and t ∈ T :

qum,t,s, qlm,t,s ≥ 0 (10a’)

For each m ∈M, t ∈ T , s ∈ S and r ∈ R:

qur
m,t,s, ql

r
m,t,s ≥ 0 (10b’)

The objective function (1’) remains the same but the profit generated by the blocks sent from the stockpile

to the processing plants is added, and rehandling costs are also subtracted. The reserve constraint (2’)

considers now the possibility of sending the block to the stockpile. Constraints (4’)–(7’) have two different

expressions to embrace the fact that rehandling material from the stockpile cannot occur in the first period.
Similarly, constraints (3’) and (8’) have two expressions since sending materiel to the stockpile in the last

period is impossible. Constraint (9’b) also forces the new variables zatb,m,t0,t1
to be binary. Constraints (10’)

remain unchanged.

3 Reformulation

In this section, a reformulation of the model described in Section 2.2 is presented. This step is essential

to apply the Bienstock-Zuckerberg algorithm that will be discussed in the next section. Two new binary

variables are defined as follows:

• ybyb,d,t =
∑t

p=1 y
at
b,d,p. This variable takes 1 if block b is extracted and sent to destination d by time t

(at t or earlier), 0 otherwise.

• zbyb,m,t0,t1
=
∑t0

p=1 z
at
b,m,p,t1

. By definition, it takes the value of 1 if block b is extracted and sent to

stockpile by time t0 (at t0 or earlier) and then sent to processing plant m at time “t1” with (t0 < t1),

0 otherwise.
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Then, variables yat and zat can be eliminated and replaced respectively by variables yby and zby considering

the following system of equalities

yatb,1,1 = ybyb,1,1 ∀b ∈ B

yatb,1,t = ybyb,1,t − zbyb,M,t−1, T ∀b ∈ B, t = 2 . . . T

yatb,d,t = ybyb,d,t − ybyb,d−1,t ∀b ∈ B, d = 2 . . . D, t = 1 . . . T

zatb,1,t0,t0+1 = zbyb,1,t0,t0+1 − ybyb,D,t0
∀b ∈ B, t0 = 1 . . . T − 1

zatb,1,t0,t1 = zbyb,1,t0,t1 − zbyb,M,t0,t1−1 ∀b ∈ B, t0 = 2 . . . T − 1, t1 = t0 + 2 . . . T

zatb,m,t0,t1 = zbyb,m,t0,t1
− zbyb,m−1,t0,t1

∀b ∈ B,m = 2 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 1 . . . T

Using this transformation, an equivalent formulation can be obtained. In what follows and for reasons of

brevity, only the reformulations of reserve constraints and slope constraints are shown. The substitution

of the objective function and remaining constraints is trivial and will not, therefore, be detailed herein.

Also, henceforth, the “by” index will be omitted to simplify notation and y and z will refer to yby and zby

respectively,

zb,M,t−1,T ≤ yb,1,t ∀b ∈ B, t = 2 . . . T (11a)

yb,d−1,t ≤ yb,d,t ∀b ∈ B, d = 2 . . . D, t = 1 . . . T (11b)

yb,D,t ≤ zb,1,t,t+1 ∀b ∈ B, t = 1 . . . T − 1 (11c)

zb,m−1,t0,t1 ≤ zb,m,t0,t1 ∀b ∈ B,m = 2 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 1 . . . T (11d)

zb,M,t0,t1−1 ≤ zb,1,t0,t1 ∀b ∈ B,m = 2 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 2 . . . T (11e)

Constraints (11a)–(11e) correspond to reserve constraint (11’) in the original formulation. Slope con-

straints (3’) are replaced by constraints (12a) and (12b).

zb,M,t,T ≤ za,M,t,T ∀ (a, b) ∈ B2, a ∈ Γ−
b , t = 1 . . . T − 1 (12a)

yb,D,T ≤ ya,D,T ∀ (a, b) ∈ B2, a ∈ Γ−
b (12b)

Due to the reformulation introduced above, the reserve constraints (11) and the slope constraints (12)

can be represented as precedence relationships in a directed graph G = (V,A) where the set of nodes V
corresponds to the decision variables “y” and “z” and an arc (a, b) ∈ A means the value of the decision

variable associated with node “a” should be equal or lower than that of node “b”. Figure 1 illustrates the

different type constraints for a given time of extraction t and a pair of blocks (a, b) where the block b is a

predecessor of the block a.

4 Solution approach

The solution approach adopted herein is a three-step method. It is an adaptation of the algorithm presented

in Brika et al. (2018) to handle the stockpiling. In what follows, a general description of the methodology is

presented. Section 4.1 describes the first step which is an extension of the algorithm introduced in Bienstock

and Zuckerberg (2009) to the stochastic optimization. It aims to solve optimally the linear relaxation of

the problem. Then, a greedy heuristic illustrated in Section 4.2 is applied to round the fractional solution

previously obtained and make it integer. Finally, in Section 4.3, a Tabu search heuristic allows to improve

the quality of this new integer solution. Since no major changes are added to the method introduced in Brika

et al. (2018), only a brief description of the three algorithms will be presented. For further details, the reader

is referred to the latter paper.

4.1 Solving the linear relaxation

The mathematical formulation of the problem described in Section 3 can be illustrated in a more compact

form as follows

Z = max pty + ctq



Les Cahiers du GERAD G–2019–05 9

s.t. yi ≤ yj ∀ (i, j) ∈ A (13)

My + Hq ≤ d (14)

y ∈ {0, 1}n, q ≥ 0 (15)

where “p” represents the vector of the discounted profit, “c” the vector of the discounted unit cost of de-

viation, “y” both the “y” and the “z” variables for the sake of simplicity and “q” the deviation variables.

Constraints (13) represent all the precedence constraints (both slope and reserve constraints), while con-

straints (14) regroup the different side constraints (blending constraints, mining capacity constraints, etc.).

The efficiency of the Bienstock-Zuckerberg algorithm lies on this particular structure. Indeed, once the re-

source constraints are relaxed, the problem boils down to a maximum closure problem, which can be solved

in polynomial time (Hochbaum, 2001). Nevertheless, there is one critical issue remaining: relaxing the side

constraints is insufficient since it leads to infeasible solutions. Instead of that, the algorithm uses the La-

grangian relaxation that limits the violation of the relaxed constraints by adding appropriate penalties in the

objective function. These penalties are continuously adjusted until the algorithm converges. More formally,

at each iteration, a maximum closure problem is solved, and the solution provides a new partition that, when

intersected with the previous partition, allows one to model some constraints of the LP as one. Indeed, the

algorithm forces the variables in the same group of the partition to be equal, thereby considerably reducing

the size of the problem. It can be compared to an aggregation, but the main difference is the fact that

individual properties of the blocks over all scenarios are preserved. The solution of the LP, in turn, aims to

update the penalties by replacing them with the new dual variables of the side constraints, and so on, until

the algorithm converges and an optimal solution is obtained. However, this solution is fractional and needs

to be rounded.

Constraint (12a) Constraint (11b) Constraint (11d)

Constraint (11a) Constraint (11c) Constraint (11e)

Figure 1: Precedence constraints
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4.2 Rounding heuristic

Once a fractional solution is obtained, a rounding heuristic is applied to make it integer. It is a greedy

two-step heuristic that takes up ideas from the TopoSort heuristic proposed in Chicoisne et al. (2012) and

extends the rounding heuristic introduced in Brika et al. (2018) to handle the stockpiling. The first step

consists in sorting the blocks according to a topological ordering with respect to a weight vector w. This

ordering defines a feasible extraction sequence b1, b2, . . . , bn where bi represents a mining block and where

a block bi will appear before bj in the sequence, if it satisfies either bi is a predecessor of bj or wi < wj . To

calculate the weights, a function equivalent to the one proposed by Chicoisne et al. (2012) is adopted. For

each b ∈ B, the weight is estimated as follows

wb = zb,M,1,T +

T−1∑
t=2

t× (zb,M,t,T − zb,M,t−1,T ) + T ×
(
yb,D,T − zb,M,T−1,T

)
+ (T + 1)×

(
1− yb,D,T

)
,

where y and z are the values of the LP solution obtained by the decomposition method. The weight wb can

be interpreted as the estimated extraction time of the block b. A weight equal to T + 1 corresponds to

a block that will not be extracted. The second step consists in rounding the fractional solution following

the weighted topological ordering. From this point, the heuristic proposed herein is completely different by

nature from the one proposed in Chicoisne et al. (2012). The latter one is a constructive heuristic suitable

only for a deterministic context where there are only hard constraints that represent upper bounds to satisfy.

For its part, the current stochastic model handles soft constraints by allowing their violation and contains

both upper and lower bounds for each production target. Also, instead of starting from an empty solution,

the algorithm starts from an initial feasible solution obtained by simply rounding the fractional LP solution.

The blocks that were completely extracted in the same period are by now fixed. Only the extraction and

processing times and the destinations of the remaining blocks can be modified. Then, the algorithm tries to

improve the current solution by moving a non-fixed block at once following the topological ordering. The

only difference with the algorithm introduced in Brika et al. (2018) is the fact that the option of sending a

block to different stockpiles should now be considered.

4.3 Tabu search

The last step of the method consists in applying successively T times a Tabu search to improve the quality

of the integer solution obtained by the Rounding Heuristic. Starting from the first period, once iteration t

is reached, all blocks scheduled in earlier periods (i.e. {b ∈ B|tb0 < t}). are considered fixed, and only the

remaining blocks can be reschudeled. A neighborhood is then formed by all the solutions obtained from the

current solution by either postponing to t + 1 the extraction of one block originally scheduled in period t or

pushing forward to t the extraction of one block originally scheduled in period t+1. However, it is important

to stress the fact that only candidates that do not violate the precedence constraints are retained.

5 Numerical results

This section presents the numerical experiments achieved to assess the efficiency and robustness of the so-

lution approach introduced in this paper. This method has been tested on six instances with sizes ranging

between 4,734 blocks and five periods and 132,672 blocks and 12 periods. For each one of them, ten equiprob-

able scenarios are used to represent their geological profiles, and thus, illustrate the in-situ variability and

metal uncertainty. In what follows, the instances and the different parameters used in the tests are first

described. Then, the computational results are provided.

5.1 Instances and parameters

5.1.1 Benchmark instances

Table 1 and Table 2 provide an overview of the instances and the main differences between them. The

six instances are grouped into three benchmark datasets. The first set S1 comprises three small to large
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size instances from multi-element iron deposits that contain two processing plants each. All must satisfy

minimum and maximum expected grades for each geological element. The second set S2 consists of two

instances representing two different actual deposits: a copper (Cu) deposit and a gold (Au) deposit. These

instances consider two processors: one for the high-grade and another one for the low-grade. As opposed to

the first set, only one geological element is considered, and for each processor, there is a minimum expected

grade to be satisfied. The third and last set S3 also consists of one medium-size copper deposit. The only

difference with the second set is the fact that the instance considers a single processor.

Table 1: Overview of the five instances

Instances Number of blocks
Number of
periods (T)

in years
Destinations Nature of the deposit

S1

I1
33,168
Block size: 25 x 25 x 2 meters
Block weight: 3125 tonnes

5
2 processors,
1 waste dump Multi-element iron ore deposits: iron

content (Fe), silica content (SiO2),
alumina content (Al2O3), phosphorus
content (P), and the loss on ignition (LOI)I2

4,734
Block size: 25 x 25 x 12 meters
Block weight: 18750 tonnes

5
2 processors,
1 waste dump

I3
132,672
Block size: 25 x 25 x 2 meters
Block weight: 3125 tonnes

5
2 processors,
1 waste dump

Iron ore deposit considering a contaminant
SiO2

S2

C1
22,549
Block size: 20 x 20 x 10 meters
Block weight: 10000 tonnes

12
2 processors,
1 waste dump

Copper deposit

G1
48,821
Block size: 15 x 15 x 10 meters
Block weight: 5625 tonnes

10
2 processors,
1 waste dump

Gold deposit

S3 C2
20,626
Block size: 20 x 20 x 10 meters
Block weight: 10800 tonnes

10
1 processors,
1 waste dump

Copper deposit

Table 2: Overview of the constraints for each instance

Instances
Mining
Capacity

Ore production target Side constraints
Number of side

constraints
Number of arcs in the

maximum closure problemLower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

S1
I1 X X X X X 1025 3,588,082
I2 X X X X X 1025 326,646
I3 X X X X 420 12,144,028

S2
C1 X X X 276 8,777,675

G1
X X X 230 13,913,619

S3 C2 X X X 120 3,591,254

5.1.2 Parameters

The economic parameters used to calculate the objective function coefficients are presented in Table 3. They

were discussed a priori with industrial partners. Those used to calculate the penalties for deviating are

presented in Table 4 and were chosen after trying several combinations so that there is a balance between

a very high selectivity and a permissive one that would affect the products’ homogeneity. Furthermore, no

cut-off grade is used, therefore the solver is free to consider a block as ore or waste.
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5.2 Implementation

All algorithms were coded in C++ and the tests were run on an Intel (R) Core(TM) i5-8250U CPU computer

(1.60 GHz) with 8 GB of RAM operating under Windows 10. Recall that, before obtaining an integer solution,

the first step consists in applying an extended version of the BZ algorithm (ExtBZ) to solve iteratively a

maximum-flow subproblem then a reduced LP. The pseudoflow algorithm of Hochbaum (2008) is used for

solving maximum-flow subproblems, and the LP is solved using Cplex 12.7 with the default settings. The

second step consists in simply rounding (SR) the fractional solution as described above in Section 4.2 and

then using the integer solution obtained as an initial solution for the rounding heuristic (RH). The later

heuristic does not have any parameters. Finally, for the Tabu search (TS), two parameters were defined

based on preliminary tests. The number of iterations during which a move remains tabu is fixed at 0.6N

where N is the number of blocks that can be moved at each iteration. The second parameter is the stop

criterion. It represents the maximum number of successive non-improving iterations and was fixed to 0.3N.

Table 3: Economic parameters

Iron Copper Gold

Mining cost $5/tonne $1/tonne $1/tonne

Low-grade
processor

Processing cost $5/tonne $2.25/tonne $6/tonne
Recovery 100 percent 55 percent 45 percent
Cost of taking ore from the stockpile $0.50/tonne $0.45/tonne $0.45/tonne

High-grade
processor

Processing cost $6/tonne $9/tonne $15/tonne
Recovery 100 percent 90 percent 95 percent
Cost of taking ore from the stockpile $0.5/tonne $0.45/tonne $0.45/tonne

Metal revenue
$26/tonne for the low-grade
and
$30/tonne for the high-grade

$1.7/pound $28.2/gram

Discount rate 10 percent 10 percent 10 percent

Table 4: Costs of deviation from production targets ($/tonne)

Fe SiO2 Al2O3 P LOI Cu Au Ore production

S1 10 20 20 10 1 25
S2 and S3 20 2,000 25 for Copper/100 for Gold deposit

5.3 Numerical results

In this section, the performance of the proposed method is tested on six benchmark instances described in

Section 5.1.1. Table 5 provides a summary of the running times and a comparison of %Gap used to assess

the quality of solutions. The measure %Gapfinal is the gap calculated with respect to the upper bound

provided by ExtBZ: %Gapfinal =
ZLR−Z∗

ZLR
where Z∗ and ZLR are respectively the value of the solution

provided by the algorithm evaluated and the linear relaxation optimal value obtained by ExtBZ. Another

measure %Diff is used to represent the percent difference between the value of the solution produced by the

initial solution used as input and produced by the previous heuristic, and that produced by each improvement

heuristic X (SR, RH and TS) to assess their efficiencies.

Results in Table 5 indicate that, for all instances except the largest one, ExtBZ was able to solve the LP

relaxation to optimality in a few minutes. For the largest instance S1:I3, after a certain point, the convergence

went very slowly, and it took one hour and a half to reach 10−5% of optimality, and then, more than four

hours to reach optimality. On the other hand, the time required to run RH after getting the optimal LP

relaxation solution is relatively negligible. Despite its greedy nature, the heuristic performs very well (all

instances were within 1, 7% of optimality) even when the initial solution provided by SRH is very bad.

Finally, the running time of TS is large compared to its efficiency to improve the solution provided by RH.

This is because evaluating the solution value of all the neighbors using this method is very time-consuming,
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especially for the instances that have a long lifetime of mine. The improvement obtained by TS is limited

but still merits consideration. Overall, the table shows that, combined, the two heuristics do a very good job

of improving the solution obtained by ExtBZ.

Table 5: Summary of the average gaps and running times of the solutions found by Cplex, the Bienstock-Zuckerberg extension
and the different heuristics

Instances
ExtBZ SR RH TS

Time Gap(%) Time Gap(%) Diff (%) Time Gap(%) Diff (%) Time Gap (%) Diff (%)

S1
I1 23 mn 0 3 s 45.3 - 6 s 0.6 44.7 12 mn 0.2 0.4
I2 3 mn 44 s 0 1 s 2.2 - 2 s 0.4 1.8 4 mn 30 s 0.3 0.1
I3 1h 30 mn* 10−5 1 mn 18.1 - 2 mn 0.3 17.7 45 mn 0.2 0.1

S2
C1 13 mn 0 9 s 12.7 - 8 s 1.6 11.1 15 mn 1.2 0.4
G1 28 mn 48 s 0 20 s 55.9 - 22 s 4.6 51.3 7 min 1.7 2.9

S3 C2 4 mn 33 s 0 3 s 98.8 - 5 s 13.9 84.9 5 mn 15 s 1.5 12.4

6 Limitation and recommendation

The model proposed considers neither a homogeneous mixing of the material inside a stockpile nor approx-

imations of its grade. However, the current formulation can give rise to questions about its practicality. It

allows having several stockpiles in operation at the same period. For example, if T is the lifetime of the mine

and M the number of processing plants, the number of stockpiles by the end of period t with (t < T ) can

reach a maximum of M × (T − t). Even if some mines can hold a large number of stockpiles simultaneously,

it is not necessarily always the case. This section proposes three solutions to address this issue, which can be

adopted either jointly or separately.

The first option is appropriate for a context in which the material degradation is important. Indeed, the

material within the stockpile undergoes time-dependent changes that affect its properties and decrease its

value (Rezakhah and Newman, 2018). To reduce the degradation, the model can be modified so that the

duration of stockpiling for each block is limited. Indeed, the variables associated with stockpiles presented

in Section 3 have two indexes for the time; one for the extraction time (t0) and another for the processing

time (t1). Removing variables associated with (t0, t1) where t1 − t0 > Dmax implicitly forces the blocks to

not be stockpiled longer than Dmax periods. This solution significantly reduces the size of the problem and,

therefore, facilitates its resolution.

The second option would consist of limiting the number of stockpiles in operation per period. For this

option, some constraints and variables should be added to the model presented in Section 3. Let N t
max be the

maximum number of stockpiles that can be open simultaneously by the end of period t where (1 ≤ t ≤ T −1)

and wm,t0,t1 be a binary variable that takes 1 if the stockpile corresponding to the material intended to be

sent at period t1 to processing plant m is in operation during period t0, 0 otherwise. The following constraints

are added

wm,t0−1,t1 ≤ wm,t0,t1 ∀m = 1 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 1 . . . T (16)

M∑
m=1

T∑
t=t0+1

wm,t0,t ≤ N t0
max ∀t0 = 1 . . . T − 1 (17)

B∑
b=1

z̃b,m,t0,t1 ≤ N × wm,t0,t1 ∀m = 1 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 1 . . . T (18)

where N is a big number and

z̃b,m,t0,t1 =


zb,m,t0,t1 − zb,m−1,t0,t1 ∀b ∈ B,m = 2 . . .M, t0 = 1 . . . T − 1, t1 = t0 + 1 . . . T

zb,1,t0,t1 − zb,M,t0,t1−1 ∀b ∈ B,m = 1, t0 = 2 . . . T − 1, t1 = t0 + 2 . . . T

zb,1,t0,t0+1 − yb,D,t0 ∀b ∈ B,m = 1, t0 = 1 . . . T − 1, t1 = t0 + 1
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The constraints (16) can be interpreted as precedence constraints and constraints (17) and (18) as side

constraints. There will be (T − 1) constraints (17) and M ×
∑T−1

t=1 (T − t) = M × (T−1)×T
2 constraints (18).

However, if T is big, adopting this option is no more interesting since the side constraints’ number can quickly

become too large and question the proposed method’s usefulness.

The third option would consist of limiting to Nmax the number of the stockpiles that have been opened

during the lifetime of the mine no matter if they were in operation simultaneously or not. For that, new

binary variables wm,t are introduced. They take 1 if the stockpile of material intended to be sent to processing

plant m at period t has been opened, 0 otherwise. The following constraints are also added

M∑
m=1

T∑
t=2

wm,t ≤ Nmax (19)

B∑
b=1

t−1∑
t0=1

z̃b,m,t0,t ≤ N × wm,t ∀m = 1 . . .M, t = 2 . . . T (20)

Unlike the second option, the number of the additional side constraints remains limited. There will be

only one constraint of type (19) and M × (T − 1) constraints of type (20).

7 Conclusions

The paper proposes a new method for integrating stockpiles into strategic mine planning. This approach is

completely different from those proposed in the literature. It has the advantage of maintaining the program

linear. Moreover, the proposed modeling allows to preserve the structure of a precedence graph, which makes

the use of the BZ algorithm possible. By introducing new variables, the formulation proposed bypasses

the unrealistic assumption of homogeneous mixing of the material in a single stockpile in each period, and

the non-linearity of the most precise models thus far in the literature. A solution approach has also been

presented, it consists in applying first an adaptation of the Bienstock-Zuckerberg (BZ) algorithm to obtain

an optimal solution of the linear relaxation, and then applying successively a greedy rounding heuristic (RH)

and a Tabu search (TS). The method is an extension of the one recently proposed in Brika et al. (2018)

for another variant of the problem, without stockpiling. Numerical results show that the proposed method

managed to solve all the instances within 1,7% of optimality in a reasonable time and in a notably shorter

period required by CPLEX to solve only the linear relaxation of the problem. Recommendations were

provided to reduce further the running times and respond to some limitations of the model. An interesting

step for future research would involve integrating some preprocessing techniques to fix some variables and

using stabilization methods to accelerate the convergence of the BZ algorithm, thereby reducing significantly

the running time.
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