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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2018-10
https://www.gerad.ca/en/papers/G-2018-10
https://www.gerad.ca/en/papers/G-2018-10




A robust optimization approach for the winner determination
problem with uncertainty on shipment volumes and carriers’
capacity

Nabila Remli a

Amine Amrouss a

Issmail El Hallaoui a, b

Monia Rekik a, c, d
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l’accès au travail et enquêterons sur votre demande.
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Abstract: This paper addresses the winner determination problem (WDP) for TL transportation procure-
ment auctions under uncertain shipment volumes and uncertain carriers’ capacity. It extends an existing
two-stage robust formulation proposed for the WDP with uncertain shipment volumes. The paper identifies
and theoretically validates a number of accelerating strategies to speed up the convergence of a basic con-
straint generation algorithm proposed in the literature. Experimental results prove the high computational
performance of the proposed new algorithm and the relevance of considering uncertainty on the carriers’
capacity when solving the WDP.
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1 Introduction

Combinatorial auctions are increasingly used market mechanisms for the strategic procurement of Total

Truckload (TL) transportation services. Truckload procurement markets generally imply two main actors:

(i) shippers who need to outsource all or a part of their transport operations, and (ii) carriers who possess

the required assets to offer transport services (Caplice and Sheffi, 2006). A strategic procurement implies

that the shipper seeks for a long-term engagement with a set of carriers (one to three years). In an auction

context, the shipper is the auctioneer. It presents its transportation requests to a set of carriers that are

invited to participate in the auction, possibly after a pre-selection phase. The participating carriers compete

by submitting bids on the shipper requests (shipments). In a combinatorial auction, bids are permitted on a

package of shipments. So, either all the shipments of the bid are allocated, or nothing at all. Combinatorial

bidding enables thus carriers to optimize their network by minimizing empty routes and balancing loads,

exploiting thus the economies of scale and scope characterizing TL markets (Lee et al., 2007; Song and

Regan, 2005). This would result in interesting transportation rates for the shipper.

During the auction process, three main decisional problems are addressed: the bid construction problem

(also called bid generation problem), the Winner Determination Problem (WDP), and the pricing problem

(Abrache et al., 2007). The bid construction problem is faced by the carrier and consists in determining the

set of profitable and promising bids it should submit to the auction. The WDP and the pricing problem must

rather be solved by the shipper (or more generally, the auctioneer). The WDP consists in determining the set

of winning bids that optimize the shipper objective(s). The pricing problem determines the price that should

be allocated to each winning carrier. Our paper addresses the WDP in a combinatorial TL transportation

procurement auction.

The majority of published papers dealing with WDP in TL transportation services procurement auctions

assume a deterministic environment where all data is assumed known with certainty. However, such an as-

sumption seems unrealistic: the auction is run at the strategic phase and intends to build long-term contracts

with the winning carriers. Even efficient forecasting systems cannot predict the exact volumes to be shipped

between different locations for the upcoming one to three years, nor the exact available carriers’ capacity.

As will be pointed out by our literature review, the research on uncertain WDP for the procurement of

TL transportation services is still embryonic. To the best of our knowledge, all the published papers address

a unique uncertain parameter related to the shipment volumes requested by shippers. In the following, this

problem is referred to as WDP-SD (WDP with Stochastic Demand). Moreover, the solution approaches

proposed to date for WDP-SD still need to be improved to solve large instances in reasonable computing

times. Our paper aims at filling some of these gaps by: (1) addressing a novel problem with an additional
uncertain parameter: the carriers’ capacity, (2) proposing a new algorithm to speed up the convergence of

a basic constraint generation algorithm proposed in the literature for the WDP-SD and efficiently solve the

new problem addressed, and (3) analyzing the relevance of considering uncertainty on carriers’ capacity on

the auction outcomes. To the best of our knowledge, this is the first time that uncertainty on both shipment

volumes and carriers’ capacity is addressed and analyzed.

In the following, the problem dealing with uncertainty on both shipper demand and carriers’ capacity is

referred to as WDP-SDC (WDP with Stochastic Demand and Capacity). Considering uncertainty on carriers’

capacity is important. Indeed, carriers generally do not use very elaborated approaches when generating their

package bids. Risk seeking carriers aim to win as much contracts as possible leaving the task of managing their

capacity to the operational level. Other carriers, if less risky, have generally some difficulties to accurately

predict their available capacity on a daily or weekly basis given the complexity of their transportation network

and the existence of a variety of commitments with other shippers.

Our paper extends the two-stage robust formulation proposed by Remli and Rekik (2013) for WDP-SD.

We investigate a number of strategies to accelerate the convergence of the exact solution algorithm presented

therein so that the two uncertain parameters could be simultaneously addressed. Our experimental results

clearly prove the efficiency of the proposed strategies. First, when compared to the basic constraint generation

algorithm proposed in Remli and Rekik (2013), our new algorithm requires less than half of the time needed



2 G–2018–10 Les Cahiers du GERAD

for 70% of the instances solved in Remli and Rekik (2013). It also solves the 15 instances that were not

solved in Remli and Rekik (2013). Second, our algorithm performs very well for the 180 new instances we

generate for WDP-SDC. The average computational time is about 1.73 hours and we were able to solve to

optimality instances including up to 100 auctioned contracts, 40 carriers and 800 bids.

Our experimental study also analyzes the impact of considering uncertainty on carriers’ capacity on the

auction outcomes. This is firstly done by comparing transportation costs, winning bids and winning carriers

under two contexts: a context where only demand on shipment volumes is uncertain and a context where

both shipper’s demand and carriers’ capacity are uncertain. Our results prove that adding this new uncertain

parameter results in a substantial change in the first stage decisions (winning carriers, contracts assigned to

bidding carriers) and in transportation costs. So, addressing uncertainty on carriers’ capacity with robust

optimization, although making the problem harder to solve, results in first-stage decisions that would have

been different if only uncertainty on demand was considered. We further investigate the latter observation

by considering the optimal first-stage solutions obtained under the SD (when only demand is uncertain) and

the SDC (when both demand and capacity are uncertain) contexts and computing the transportation costs

yielded by the corresponding recourse problem for a set of randomly generated scenarios. Our results prove

that the first-stage solution under the SDC context always yields monetary savings when compared to the

cost resulting from the first-stage solution under the SD context. The relative monetary saving exceeds 41%

for some instances.

The remainder of the paper is as follows. Section 2 is a literature review on recent research dealing

with uncertainty in WDP for TL services procurement. Section 3 describes the two-stage robust formulation

proposed for WDP-SDC. It briefly recalls the deterministic and the two-stage robust formulations proposed by

Remli and Rekik (2013) for WDP-SD. Section 4 identifies and theoretically validates a number of accelerating

strategies for the exact algorithm presented in Remli and Rekik (2013). Section 5 presents our computational

results. Finally, Section 6 summarizes our findings and opens on future research avenues.

2 Literature review

Almost ten years ago, Caplice and Sheffi (2006) pointed out the uncertainty characterizing transportation

services and called for “improved robustness in the WDP”. While there has been a growing trend the last years

to treat OR/MS problems in uncertain contexts, research in the field of transport procurement auctions and

more particularly WDP problems remains limited. Our literature review identified only four recent papers

dealing with stochastic WDP in TL transportation procurement: two papers employ stochastic programming

concepts and the two others use the robust optimization paradigms.

Ma et al. (2010) were the first to propose a two-stage stochastic integer programming model with recourse

for the WDP with uncertain shipment demands. The first-stage decision variables define the lanes won by

each participating carrier (this decision is taken in an uncertain environment, before the actual volumes

are known). The second-stage decision variables (or recourse variables) assign shipment volumes to each

carrier on each lane won (volumes are computed once the demands are revealed). Ma et al. (2010) handle

uncertainty by considering a finite number of scenarios. Each scenario is assumed to occur with a probability

according to a discrete distribution. The proposed stochastic program determines winning carriers so that

the total expected cost is minimized. An equivalent deterministic mixed integer programming (MIP) model

is proposed in which recourse variables and demand constraints are replicated to take into account all the

generated scenarios. This model is solved with the commercial solver CPLEX. The experimental study

considers instances including up to 600 lanes, 50 bidders and 10 bids per bidder. The number of scenarios

vary between 3 and 40 depending on the problem size. The authors observed that an increase in the number

of scenarios yields a considerable increase in computing times. Solution times range from 7 seconds to 19

hours for the largest instance (150 lanes, 30 bidders, 5 bids per lane and 10 scenarios).

Zhang et al. (2014) extend the two-stage stochastic model of Ma et al. (2010) and propose what they call

a refined formulation. Their model additionally considers a continuous decision variable to enable situations

where the carrier is assigned a shipment volume lower than its minimum volume requirement. The proposed
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solution approach is based on a Monte Carlo procedure combined with the Sample Average Approximation

(SAA) technique, as is common for two-stage stochastic models including a huge number of scenarios. The

Monte Carlo approach (MCA) is employed to generate representative samples. The SAA technique consists

in replacing the set of all plausible scenarios in the stochastic model by a sample of scenarios and solving the

equivalent deterministic MIP. Shapiro (2008) observed that the quality of the approximation improves with

the size of the sample. A trade-off should thus be managed between the model solvability and the solution

quality. Based on this, Zhang et al. (2014) test their solution approach on a set of moderately sized instances

including up to 300 lanes, 25 carriers and 10 bids per carrier. For all the instances, the stochastic solution

is generated by solving the equivalent deterministic model for 10 samples of size 10 using CPLEX 12.4.

Solution times range between 94 and 1761 seconds for the largest instance (300 lanes, 25 carriers and 10 bids

per carrier).

Remli and Rekik (2013) consider almost the same problem setting as in Ma et al. (2010) but model

it using robust optimization techniques. It is assumed that no probability distribution is available on the

uncertain demands. Uncertainties are rather represented using interval numbers. Inspired by the work of

Bertsimas and Sim (2003, 2004), the authors also consider the concept of budget of uncertainty to handle

realistic contexts and avoid uncommon worst-case scenarios. The budget of uncertainty is a parameter pre-

specified by the shipper that restricts the total deviation of demands from their nominal values (Gabrel et al.,

2014). A constraint generation algorithm is developed to solve the two stage robust formulation. At each

iteration, a master problem and a recourse problem, both modelled as MIPs, are solved using CPLEX 12.4.

The experimental study considers instances including up to 600 lanes, 120 carriers and 10 bids per carrier.

Solution times vary between 57 and 25065 seconds (almost 7 hours). 15 instances remain unsolved within 10

hours (these instances correspond to a problem setting with 200 lanes, 80 carriers and 20 bids per carrier).

Recently, Zhang et al. (2015) proposed a two-stage robust formulation for the WDP under uncertain

shipment volumes. The problem setting is almost the same as in Remli and Rekik (2013) except that

shortages in the volumes assigned to carriers are permitted but penalized (as in Zhang et al. (2014)) and

no constraints on minimum and maximum volumes assigned to winning carriers are imposed by the shipper.

Zhang et al. (2015) prove that their robust model remains valid if a lane can be attributed to more than one

carrier. The authors apply a central limit theorem based approach to construct the demand uncertainty set

where only the mean and the variance of the shipping demands are to be known. Their approach handles the

cases where demand on lanes are either independent or correlated. Two solution approaches are presented

and compared: (1) a constraint generation algorithm following the same principle as that proposed by Remli

and Rekik (2013) but in which the recourse problem is more complex (it cannot be reduced to a MIP as

in Remli and Rekik (2013) given the definition of the uncertainty set); and (2) the B&B procedure of

CPLEX 12.4 applied to an equivalent MIP reformulation of the two-stage robust model. The experimental

study considers five problem tests and the largest instance includes 180 lanes, 20 carriers and 10 bids per

carrier. The reported results prove that the MIP reformulation based approach largely outperforms the

constraint generation approach. It requires 12.38 seconds to solve the largest instance.

3 The stochastic winner determination problem

3.1 Context and assumptions

We consider a TL market where a single shipper (the auctioneer) has to outsource a number of its TL

transportation operations to a set of external carriers (the bidders) under uncertain shipment volumes and

uncertain carriers’ capacity. A shipper request is defined by a lane (i.e., an origin-destination pair) and a

volume to be shipped on it. The auction being run at the strategic phase, shipment volumes are not known

with certainty at this step. As in Remli and Rekik (2013), we propose to represent this uncertainty by

interval numbers while using the concept of budget of uncertainty introduced by Bertsimas and Sim (2003,

2004). The demand on a lane is thus assumed to lie within an interval, and the total deviation of uncertain

demands from their nominal values is restricted to a pre-specified value, namely the budget of uncertainty.
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The shipper submits its requests to the participating carriers. The latter make offers in forms of combi-

natorial bids. Each bid gathers the set of lanes the carrier offers to serve, the price asked for shipping one

volume unit on each lane, and bounds on the minimum and maximum volumes to transport. The minimum

volume restriction guarantees the winning carrier to be allocated a minimum volume at the proposed price.

The maximum volume restriction translates the carriers’ capacity. Uncertainty is thus added on this param-

eter. Following the same principle as for the demand, we represent this uncertainty by interval numbers. The

carriers’ capacity is assumed to lie within an interval and the total deviation of the uncertain capacity from

its nominal value is restricted to a pre-specified value: the budget of uncertainty. Observe that budgets of

uncertainty are constant parameters pre-fixed by the shipper. They are different depending on the nature of

the uncertain parameter. The budget of uncertainty on the shipment volumes is closely related to the level of

sophistication of the forecasting system used by the shipper. The budget of uncertainty on the carriers’ ca-

pacity is based on the carrier reliability and its past performance with the shipper. As in Ma et al. (2010) and

Remli and Rekik (2013), we associate a performance factor (taking a value in [-1,1]) with each participating

carrier to model its service quality (on-time delivery, percentage of cancellation, for example). We propose to

determine the budget of uncertainty based on this performance factor: the higher is the performance factor

value, the less reliable is the carrier and the larger is the value of the corresponding budget of uncertainty.

The objective of the WDP is to select bids and associated volumes that minimize the shipper trans-

portation costs, such that the worst demand and the worst capacity -delimited by the associated budget of

uncertainty- are satisfied. In case winning bids are not able to meet all the demand or respect the carriers’

capacity, the shipper has the possibility to call a carrier from the spot market to ensure the shipment of

the remaining unsatisfied demands. We assume that the transportation price available at the spot market is

always larger than the price asked by the carriers participating in the auction.

As in Ma et al. (2010) and Remli and Rekik (2013), we consider XOR bids (Nisan, 2006). That is, each

carrier can submit any number of bids it wants but, in the final allocation, it can be awarded at most one

bid. XOR bidding enables the carrier well exploiting and managing its available capacity when generating

bids. Indeed, if OR bidding were to be permitted, the carrier should take into account the fact that two or

more OR bids may win forcing it to divide its available capacity between them. As in Ma et al. (2010) and

Remli and Rekik (2013), we also assume that each lane is restricted to be served by at most one winning

carrier. Such a constraint forces the shipper to engage with a single strategic carrier on each lane. Relaxing

such a constraint would probably, in some cases, result in lower transportation costs (by combining bids from

different carriers). However, in practice, dealing with a single contract server is more easily manageable for

both the shipper and the services in charge at pick-up and delivery locations. Finally, the shipper is assumed

to set minimum and maximum volumes to allocate to each winning carrier as well as a minimum and a

maximum values on the number of winners.

Observe that our problem context is the same as that considered by Remli and Rekik (2013) except that

we add uncertainty on the carriers’ capacity. This was done on purpose so that comparison between the

basic constraint generation algorithm proposed in Remli and Rekik (2013) and our new algorithm is possible.

Our paper also intends to study the effect of adding a new uncertain parameter on the new algorithm

computational performance and on the auction outcomes. Studying the impact of relaxing some of the

problem constraints (such as XOR bidding, or single lane contracting) is left for future work.

Hereafter, we present the notation and terminology used and that will be adopted throughout the paper.
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Notation

T set of carriers (bidders) UVtb capacity of carrier t in bid b

L set of lanes UV tb nominal value of the capacity of carrier t in bid b

dl demand on lane l ∈ L ÛV tb maximum deviation on the capacity of carrier t in
bid b

dl nominal value of dl ctb price asked by carrier t in bid b for transporting one
unit volume on each lane l ∈ Ltb

d̂l maximum deviation of dl cel cost of shipping one unit volume on lane l by a spot
carrier

Γ budget of uncertainty pt performance factor of carrier t
Bt set of bids of carrier t ∈ T qt minimum volume to allocate to carrier t if it wins
Ltb set of lanes that carrier t offers to serve in bid b Qt maximum volume to allocate to carrier t if it wins
altb a constant parameter: altb = 1 if l ∈ Ltb; altb = 0,

otherwise
Nmin minimum number of winning carriers

LVtb minimum volume guaranteed to carrier t if bid b wins Nmax maximum number of winning carriers

3.2 Deterministic model

As in Remli and Rekik (2013), we propose to model the deterministic WDP using the following three sets of

decision variables:

xtb = 1 if bid b offered by carrier t wins; 0, otherwise.
ytb = the volume assigned to carrier t on each lane covered by winning bid b.
el = the volume assigned to spot carriers on lane l.

The deterministic winner determination problem is thus formulated using model (W) as follows:

(W)



min
∑
t∈T

∑
b∈Bt

(1 + pt)ctb ytb +
∑
l∈L

cel el

s.t.
∑
t∈T

∑
b∈Bt

altb ytb + el ≥ dl, l ∈ L

LVtb xtb ≤ ytb ≤ UVtb xtb, t ∈ T, b ∈ Bt∑
b∈Bt

xtb ≤ 1, t ∈ T

∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

qt
∑
b∈Bt

xtb ≤
∑
b∈Bt

ytb ≤ Qt

∑
b∈Bt

xtb, t ∈ T

xtb ∈ {0, 1}, ytb ≥ 0, t ∈ T, b ∈ Bt
el ≥ 0, l ∈ L

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

The objective function (1) minimizes the shipper transportation cost. Constraints (2) ensure that the

volume requested by the shipper on each lane is satisfied either by the bids submitted in the auction or

through the spot market. Constraints (3) translate the minimum and maximum volume restrictions on

the volume allocated to a carrier if the corresponding bid wins. Constraints (4) model the XOR bidding.

Constraints (5) ensure that each lane l is assigned to one participating carrier at most. Constraint (6) sets

bounds on the number of winning carriers. Constraints (7) specify the minimum and maximum volume that

each carrier t ∈ T is allowed to ship if it wins. Constraints (8) and (9) are binary, respectively, non-negative,

constraints on xtb, respectively, ytb and el variables.
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3.3 Robust model

As in Remli and Rekik (2013), we propose to model the stochastic WDP as a two-stage robust formulation

where variables xtb representing the winning bids are the first-stage variables and variables ytb, respectively,

el representing the volumes of shipments allocated to winning, respectively, spot carriers are the second-stage

variables (also called recourse variables).

We consider here uncertainty on both the demand and the carriers’ capacity. Recall that uncertainty

on these parameters is modelled by interval numbers. Namely, each demand dl on lane l ∈ L is known to

belong to an interval [dl− d̂l, dl + d̂l], where dl is the nominal demand and d̂l ≥ 0 is the maximum deviation.

This is combined with the concept of budget of uncertainty Γd which restricts the total deviation of the

demands from their nominal values to a prefixed value Γd. Remli and Rekik (2013) observed that when the

budget of uncertainty Γd is integer -which we assume in the rest of the paper-, it represents the number of

lanes for which the demand deviates from its nominal value and takes the worst value (i.e., the greatest one)

dl = dl + d̂l (we refer the reader to Remli and Rekik (2013) for more details).

To address uncertainty on the carriers’ capacity, we define an interval [UVtb− ÛVtb, UVtb+ ÛVtb], for each

carrier t ∈ T and each bid b ∈ Bt, where UV tb is the nominal capacity and ÛV tb ≥ 0 is the corresponding

maximum deviation. For each carrier t, a budget of uncertainty Γt is considered to restrict the total deviation

of the capacities from their nominal values to Γt. As for the demand, when the budget of uncertainty Γt
is integer -which we assume in the rest of the paper- it represents the number of bids submitted by carrier

t for which the capacity deviates from its nominal value and takes the worst value (i.e., the lowest one)

UVtb = UVtb − ÛVtb.

Hence, for given values of the vector Γ = (Γd, (Γt)t∈T ), the robust winner determination problem, denoted

Wrob(Γ), consists in selecting the winning bids and the associated volumes at the minimum cost, such that

the worst demands -delimited by Γd- and the worst capacities -delimited by Γt, t ∈ T - are satisfied. It is

formulated as follows:

Wrob(Γ)



min opt(R(x,Γ))
s.t.

∑
b∈Bt

xtb ≤ 1, t ∈ T∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

xtb ∈ {0, 1}, t ∈ T, b ∈ Bt
where opt(R(x,Γ)) represents the optimum value of the recourse problem:

R(x,Γ)

{
max

(d,UV )∈U(Γ)
min

(y,e)∈Y(x)

∑
t∈T

∑
b∈Bt

(1 + pt)ctbytb +
∑
l∈L

celel

The uncertainty set U(Γ) is defined by:

U(Γ) = {d ∈ R|L| : dl = dl + zl d̂l, l ∈ L, z ∈ Z(Γd),

UVtb ∈ R|T |×|Bt| : UVtb = UV tb − ζtb ÛV tb, t ∈ T, b ∈ Bt, ζ ∈ Z ′(Γt), t ∈ T}

where

Z(Γd) = {z ∈ R|L| :
∑
l∈L

zl ≤ Γd, 0 ≤ zl ≤ 1, l ∈ L}

and

Z ′(Γt) = {ζ ∈ R|T |×|Bt| :
∑
b∈Bt

ζtb ≤ Γt, t ∈ T, 0 ≤ ζtb ≤ 1, t ∈ T, b ∈ Bt}
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The feasible set Y(x) includes all vectors (y, e) satisfying the following constraints:∑
t∈T

∑
b∈Bt

altb ytb + el ≥ dl, l ∈ L (10)

ytb ≥ LVtb xtb, t ∈ T, b ∈ Bt (11)

ytb ≤ UVtb xtb, t ∈ T, b ∈ Bt (12)∑
b∈Bt

ytb ≥ qt
∑
b∈Bt

xtb, t ∈ T (13)

∑
b∈Bt

ytb ≤ Qt

∑
b∈Bt

xtb, t ∈ T (14)

ytb ≥ 0, t ∈ T, b ∈ Bt; el ≥ 0, l ∈ L

The problem Wrob(Γ), described above, is a min-max-min problem that is difficult to solve in its current

form. Following the same steps as in Remli and Rekik (2013), it can be reformulated using the following MIP

model. Details of the different steps are given in the appendix.

Wrob(Γ)′



min A

s.t. A ≥
∑
l∈L

dlu
σ
l +

∑
l∈L

d̂ls
σ
l +

∑
t∈T

∑
b∈Bt

xtbqtg
σ
t −∑

t∈T

∑
b∈Bt

xtbQth
σ
t +

∑
t∈T

∑
b∈Bt

LVtbxtbv
σ
tb−∑

t∈T

∑
b∈Bt

UV tbxtbw
σ
tb +

∑
t∈T

∑
b∈Bt

ÛV tbxtbf
σ
tb, σ ∈ S

∑
b∈Bt

xtb ≤ 1, t ∈ T

∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

A ≥ 0, xtb ∈ {0, 1}, t ∈ T, b ∈ Bt

(15)

(16)

(17)

(18)

where S is the set of the extreme points (uσ, sσ, vσ, wσ, fσ, gσ, hσ), σ = 1...|S| of the recourse problem Q′(x,Γ)

formulated as :

Q′(x,Γ)



max
∑
l∈L

dlul +
∑
l∈L

d̂lsl +
∑
t∈T

∑
b∈Bt

LVtbxtbvtb −
∑
t∈T

∑
b∈Bt

UV tbxtbwtb

+
∑
t∈T

∑
b∈Bt

ÛV tbxtbftb +
∑
t∈T

∑
b∈Bt

xtbqtgt −
∑
t∈T

∑
b∈Bt

xtbQtht

s.t. ∑
l∈L

altbul + vtb − wtb + gt − ht ≤ (1 + pt)ctb, t ∈ T, b ∈ Bt

ul ≤ cel, l ∈ L∑
l∈L

zl ≤ Γd

sl ≤ cel zl, l ∈ L
sl ≤ ul, l ∈ L∑
b∈Bt

ζtb ≤ Γt, t ∈ T

ftb ≤M ζtb, b ∈ Bt, t ∈ T
ftb ≤ wtb, b ∈ Bt, t ∈ T
zl ∈ {0, 1}; sl, ul ≥ 0, l ∈ L
vtb, wtb, ftb, gt, ht ≥ 0, ζtb ∈ {0, 1} t ∈ T, b ∈ Bt
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The variables ul, vtb, wtb, gt, ht are the dual variables of the minimization problem associated with con-

straints (10)–(14). Observe that variables sl, l ∈ L and ftb, t ∈ T, b ∈ Bt are introduced to linearize the

recourse problem which is originally bilinear (as described in the appendix). Adding these variables requires

defining a big constant M to link ftb and ζtb variables. For, sl and zl linking constraints, we use cel as a

constant big M as suggested in Remli and Rekik (2013). More details on the recourse problem linearization

are given in the appendix.

4 Solution approaches

The solution approach we propose to solve WDP-SDC uses a constraint generation algorithm inspired by the

algorithm of Remli and Rekik (2013). The experimental results reported in Remli and Rekik (2013) show

that solution times become relatively huge for large instances. The authors explain this by an increase in the

total number of iterations. They also noticed that most of the computing time is used to solve the master

problem. Based on these observations, this section proposes a number of improvement strategies to speed-up

the algorithm convergence. We first adapt the constraint generation algorithm proposed by Remli and Rekik

(2013) to our new WDP-SDC problem. Then, we describe the acceleration strategies.

4.1 Basic constraint generation algorithm for WDP-SDC

Algorithm 1, hereafter, adapts the constraint generation algorithm, initially proposed by Remli and Rekik

(2013) for WDP-SD, to solve WDP-SDC to optimality.

Algorithm 1 Basic constraint generation algorithm for WDP-SDC

Step 0: Initialization
Define and solve the problem W0(Γ) containing no extreme point of the recourse problem (we suppose that u0 = v0 = w0 =
g0 = h0 = z0 = ζ0 = 0).
Set LB0 ← −∞, UB0 ← +∞, r ← 0. Go to Step 1.

Step 1: Solve the master problem

Wr(Γ)



min A

s.t. A ≥
∑
l∈L

dlu
i
l +

∑
l∈L

d̂l u
i
l z
i
l +

∑
t∈T

∑
b∈Bt

xtbqtg
i
t −

∑
t∈T

∑
b∈Bt

xtbQth
i
t +

∑
t∈T

∑
b∈Bt

LVtbxtbv
i
tb−∑

t∈T

∑
b∈Bt

UV tbxtbw
i
tb +

∑
t∈T

∑
b∈Bt

ÛV tbxtbw
i
tbζ

i
tb, i = 0 . . . r

∑
b∈Bt

xtb ≤ 1, t ∈ T

∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

A ≥ 0, xtb ∈ {0, 1}, t ∈ T, b ∈ Bt

and denote (xr, Ar) its optimal solution. Update LBr ← Ar, and go to Step 2.

Step 2: For the fixed assignments xr, solve the recourse problem Q′(xr,Γ) and denote
(ur+1, vr+1, wr+1, gr+1, hr+1, zr+1, ζr+1) its optimal solution. Set

UBr ← min{UBr−1,
∑
l∈L

dlu
r+1
l +

∑
l∈L

d̂lu
r+1
l zr+1

l +
∑
t∈T

∑
b∈Bt

xrtbqtg
r+1
t −

∑
t∈T

∑
b∈Bt

xrtbQth
r+1
t +

∑
t∈T

∑
b∈Bt

LVtb x
r
tbv

r+1
tb −

∑
t∈T

∑
b∈Bt

UV tb x
r
tb w

r+1
tb +

∑
t∈T

∑
b∈Bt

ÛV tb x
r
tb w

r+1
tb ζr+1

tb }

if UBr = LBr then
return (xr, Ar) as an optimal solution to the problem Wrob(Γ);

else
r ← r + 1. Go to Step 1.

end if
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The idea of Algorithm 1 is to start solving a relaxation of Wrob(Γ)′ including none of constraints (15).

Constraints (15) are then added iteratively (the iterator counter is denoted r), one at a time, until an optimal

solution is found. Generating a constraint (15) at an iteration r implies finding an extreme point in S. This is

done by solving the recourse problem Q′(xr,Γ) to optimality, where xr is an optimal solution of a relaxation

of the master problem Wrob(Γ)′ at iteration r, denoted Wr(Γ). At each iteration, a lower bound LB and an

upper bound UB for the original problem Wrob(Γ)′ are updated and compared. The algorithm terminates

when LB = UB, which proves the optimality of the obtained solution.

At each iteration r, the lower bound LB is updated and takes the value, denoted Ar, of the optimal

objective function of Wr(Γ). Obviously, Ar is a valid lower bound since Wr(Γ) is a relaxation of Wrob(Γ) (it

includes less constraints). Besides, the optimal solution xr of Wr(Γ) is a feasible first-stage solution (it satis-

fies constraints (16)–(18)). It can thus be used to solve the recourse problem Q′(xr,Γ) and obtain a feasible

dual second-stage solution, denoted (ur+1, vr+1, wr+1, gr+1, hr+1, zr+1, ζr+1). Recall that it is assumed that

the recourse problem is always feasible. Hence, at iteration r, one can derive the value of the objective func-

tion of Wrob(Γ)′ in a feasible solution, which is given by :
∑
l∈L

dlu
r+1
l +

∑
l∈L

d̂lu
r+1
l zr+1

l +
∑
t∈T

∑
b∈Bt

xrtbqtg
r+1
t −∑

t∈T

∑
b∈Bt

xrtbQth
r+1
t +

∑
t∈T

∑
b∈Bt

LVtb x
r
tbv

r+1
tb −

∑
t∈T

∑
b∈Bt

UV tb x
r
tb w

r+1
tb +

∑
t∈T

∑
b∈Bt

ÛV tb x
r
tb w

r+1
tb ζr+1

tb . This con-

stitutes an upper bound for the original minimization problem Wrob(Γ)′.

4.2 Accelerating the basic constraint generation algorithm

Our main observation with regard to Algorithm 1 is that models Wr+1(Γ) and Wr(Γ) solved at iterations

r and r + 1, respectively, differ only by a unique constraint of type (15). This constraint is generated

through solving the recourse problem Q′(xr,Γ) associated with the optimal solution xr of Wr(Γ). Our main

improvement strategy consists in generating multiple valid inequalities for Wr(Γ) within the same iteration.

This would help improve the quality of the lower bounds (LBr) and decrease the total number of iterations

of the algorithm. One can also notice that model W0(Γ) solved at the first iteration (r = 0) includes no cuts

of type (15). We propose thus to add a valid cut when initiating the algorithm. Finally, we propose to bound

the objective value of model Wr(Γ) at each iteration r by appropriate values. We roughly present hereafter

the new constraint generation algorithm we propose (Algorithm 2). More details on each step are given in

the following subsections.
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Algorithm 2 Improved constraint generation algorithm

Step 0: Initialization
Set LB−1 ← −∞, UB−1 ← +∞, LB0 ← −∞, and UB0 ← +∞.
Set r ← 0, D0 = ∅, X0,LS = ∅.
Step 1: Generate an initial cut as described in Algorithm 3 (see Section 4.2.2). Go to Step 2.

Step 2: Solve the master problem

Wr(Γ)



min A

s.t. A ≥
∑
l∈L

dlu
ik

l +
∑
l∈L

d̂l u
ik

l zi
k

l +
∑
t∈T

∑
b∈Bt

xtbqtg
ik

t −
∑
t∈T

∑
b∈Bt

xtbQth
ik

t +
∑
t∈T

∑
b∈Bt

LVtbxtbv
ik

tb−

∑
t∈T

∑
b∈Bt

UV tbxtbw
ik

tb +
∑
t∈T

∑
b∈Bt

ÛV tb xtb w
ik
tb ζ

ik
tb , i = 0 . . . r; k = 0 . . .Ki

∑
b∈Bt

xtb ≤ 1, t ∈ T

∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

LBr−1 ≤ A ≤ UBr−1

A ≥ 0, xtb ∈ {0, 1}, t ∈ T, b ∈ Bt

(19)

(20)

where Kr = |Dr−1|+ |Xr−1,LS | − 1 if r 6= 0, and K0 = 0. Denote (xr, Ar) its optimal solution.
Dr = ∅. In set Dr, store all the intermediary feasible solutions encountered while solving Wr

rob(Γ)′. Solutions are placed in
a descending order with respect to the corresponding objective value (see Section 4.2.3).
Update LBr ← Ar, and go to Step 3.

Step 3: For the fixed assignments xr, solve the recourse problem Q(xr,Γ). Denote

(u(r+1)0 , v(r+1)0 , w(r+1)0 , g(r+1)0 , h(r+1)0 , z(r+1)0 , ζ(r+1)0 ) its optimal solution and Θr the corresponding optimal
objective function value.
Set UBr ← min{UBr−1,Θr}.
if UBr = LBr then

return (xr, Ar) as an optimal solution to problem Wrob(Γ)
else

go to Step 4.
end if

Step 4: Generate Local Search (LS) solutions as described in Algorithm 4 (see Section 4.2.4).
Xr,LS = ∅. Store LS solutions in set Xr,LS . Go to step 5.
Step 5:
for xrk ∈ Dr \ {xr} ∪Xr,LS (k = 1 . . . |Dr| − 1 + |Xr,LS |) do

Solve the recourse problem Q(xrk ,Γ) and denote (u(r+1)k , v(r+1)k , w(r+1)k , g(r+1)k , h(r+1)k , z(r+1)k , ζ(r+1)k ) its optimal
solution.

end for

r ← r + 1 and go to Step 2.

4.2.1 Valid inequalities

Theorem 1 Any feasible solution x̃r of the restricted master problem Wr(Γ) at an iteration r generates a

valid cut for problem Wrob(Γ)′, of the form:

A ≥
∑
l∈L

dlũ
r+1
l +

∑
l∈L

d̂lũ
r+1
l z̃r+1

l +
∑
t∈T

∑
b∈Bt

xtbqtg̃
r+1
t −

∑
t∈T

∑
b∈Bt

xtbQth̃
r+1
t

+
∑
t∈T

∑
b∈Bt

LVtbxtbṽ
r+1
tb −

∑
t∈T

∑
b∈Bt

UV tbxtbw̃
r+1
tb +

∑
t∈T

∑
b∈Bt

ÛV tb x
r
tb w̃

r+1
tb ζ̃r+1

tb

where (ũr+1, ṽr+1, w̃r+1, g̃r+1, h̃r+1, z̃r+1, ζ̃r+1) is an optimal solution of the recourse problem Q′(x̃r,Γ).

Proof. Let x̃r be a feasible solution of the restricted master problem Wr(Γ) at iteration r. Clearly, x̃r

is a feasible first-stage solution of the original (non-restricted) problem Wrob(Γ)′. As one can observe,
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the feasible set associated with the recourse problem Q′(x̃r,Γ) is independent of x̃r (x̃r appears only

in the objective function). Hence, solving the recourse problem Q′(x̃r,Γ) yields an extreme point s̃ =

(ũr+1, ṽr+1, w̃r+1, g̃r+1, h̃r+1, z̃r+1, ζ̃r+1) of S and thus an inequality of type (15) that is valid for Wrob(Γ)′.

Based on Theorem 1, we propose to add an initial cut to initiate the algorithm (Step 1 of Algorithm 2)

as well as a number of valid cuts at each iteration of the algorithm. This is done by considering intermediate

feasible solutions at each iteration r that are either straightforwardly derived from the B&B procedure used

for solving the restricted master problem, or constructed using local search techniques.

4.2.2 Initial cut

Recall that Algorithm 1 is used to solve Wrob(Γ)′ for a pre-fixed value of the budget of uncertainty Γ =

(Γd, (Γt)t∈T ). In our case, Γd represents the number of lanes l for which the demand deviates from its

nominal value and takes the greatest value dl = dl + d̂l. Similarly, Γt, t ∈ T represents the number of bids

b ∈ Bt submitted by carrier t for which the capacity deviates from its nominal value and takes the lowest

value UVtb = UVtb − ÛVtb.

The objective of Wrob(Γ)′ consists in selecting the winning bids and the associated volumes at the mini-

mum cost, such that the worst demands -delimited by Γd- and the worst capacities -delimited by Γt, t ∈ T -

are satisfied. In Algorithm 1, the initialization step (step 0) starts with no feasible first-stage solution x and

consequently with no cuts of type (15). We propose here to initiate the process with a first cut generated

using Algorithm 3.

Algorithm 3 first defines a scenario of demands ω̃d and carriers capacities ω̃t, t ∈ T that are likely to be

considered when solving the recourse problem (the highest Γd demands and the lowest Γt, t ∈ T capacities).

The deterministic WDP with these scenarios is then solved and the corresponding optimal first stage solution

x0 is retained. As stated in Theorem 1, any first-stage feasible solution (and so x0) can be used to solve the

recourse problem and generate a valid cut for Wrob(Γ)′.

Algorithm 3 Generating an initial cut

Step 1 : Generate a scenario ω̃d = (d̃l)l∈L of demands as follows:

1. Place the lanes l ∈ L in a descending order with respect to their worst demand dl + d̂l,

2. Define L̃ as the set of the Γd first lanes in the ordered set L,

3. ∀l ∈ L̃, set d̃l = dl + d̂l,

4. ∀l ∈ L \ L̃, set d̃l = dl.

Step 2 : For each carrier t ∈ T , generate a scenario ω̃t = (ŨV tb)b∈Bt
of capacities as follows:

1. Place the bids b ∈ Bt in an ascending order with respect to their worst capacity UVtb − ÛVtb,
2. Define B̃t as the set of the Γt first bids in the ordered set Bt,

3. ∀b ∈ B̃t, set ŨV tb = UVtb − ÛVtb,
4. ∀b ∈ Bt \ B̃t, set ŨV tb = UVtb.

Step 3 : Solve the deterministic WDP with demand scenario ω̃d and capacity scenarios ω̃t, t ∈ T . Let x0 its optimal solution.

Step 4 : Solve the recourse problem Q(x0,Γ) and let (u0
0
, v0

0
, w00 , g0

0
, h0

0
, z0

0
, ζ0

0
) its optimal solution.

The initial cut is the one given by:

A ≥
∑
l∈L

dlu
00

l +
∑
l∈L

d̂lu
00

l z
00

l +
∑
t∈T

∑
b∈Bt

xtbqtg
00

t −
∑
t∈T

∑
b∈Bt

xtbQth
00

t

+
∑
t∈T

∑
b∈Bt

LVtbxtbv
00

tb −
∑
t∈T

∑
b∈Bt

UV tbxtbw
00

tb +
∑
t∈T

∑
b∈Bt

ÛV tb xtbw
00

tb ζ̃
00

tb
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4.2.3 Bundle cuts

Both the master and the recourse problems are solved using the branch-and-bound procedure of the com-

mercial solver CPLEX. By tuning some parameters in CPLEX, one can simply collect the pool of all integer

feasible solutions encountered during the B&B procedure. These solutions are referred to in the following as

Cplex Intermediate or CI solutions.

As depicted in Step 2 of Algorithm 2, at each iteration r, when solving the restricted master problem

Wr(Γ), all the feasible solutions encountered during the B&B procedure are stored in set Dr. These solutions

are placed in a descending order with respect to the associated objective function value. The last element of

Dr corresponds to the optimal solution xr.

Based on Theorem 1, each feasible solution in Dr is used to generate a valid inequality that will be added

to the restricted master problem at the next iteration (r + 1). Observe that in Algorithm 2, the optimal

solution xr ∈ Dr is omitted at Step 5. This is done to avoid solving the recourse problem Q(xr,Γ) twice

(Problem Q(xr,Γ) was already solved at Step 3 to test the solution optimality).

4.2.4 Local search based cuts

A more elaborated way to derive additional feasible first-stage solutions consists in using local search tech-

niques. These are referred to in the following as Local Search Intermediate, or LS, solutions.

Assume that we are at iteration r and at Step 4 of Algorithm 2. The optimal solution xr of Wr(Γ)

is already known as well as the set Dr of all CI solutions. We aim to generate additional feasible first-

stage solutions that: (i) are within a neighbourhood N (xr) of the current optimal solution xr, and (ii)

have similarities with the best NBmem first-stage solutions generated with the algorithm. NBmem is a

parameter to be fixed. Algorithm 4 describes the main steps used to generate LS solutions at an iteration r

of Algorithm 1. To alleviate the algorithm description, let β denote the total number of bids submitted in

the auction. That is, β =
∑
t∈T |Bt|.
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Algorithm 4 Generating LS solutions at iteration r

Step 0: Initialization
Dr,mem = Dr−1,mem

Step 1: Update Dr,mem

if |Dr| < NBmem then
Replace the first |Dr| solutions of Dr,mem with all the CI solutions of Dr

else
Replace the solutions of Dr,mem with all the last NBmem solutions of Dr

end if

Step 2: Local search
Let αr a β-vector such that ∀t ∈ T, b ∈ Bt, αrtb =

∑
x∈Dr,mem xtb.

Set φr =

∑
t∈T

∑
b∈Bt

xrtb
2

.
i← 0
while i < NBLS do
N (xr) = ∅.
Let xr be a β-vector.
Randomly select a subset of bids B̃r of size φr such that B̃r = {(t, b), t ∈ T, b ∈ Bt : xrtb = 1}
for (t, b) ∈ B̃r do
ξ ← random[0, 1].

if ξ <
αr
tb

NBmem then
xrtb = 1

else
xrtb = 0

end if
end for
N (xr) = {x : ∀(t, b) ∈ B̃r, xtb = xrtb}
Solve Wr

rob(Γ)′ on the restricted set N (xr) and let xr∗ its optimal solution.

XLS = XLS ∪ {xr∗}.
i← i+ 1.

end while

Step 3: Update Dr,mem

if |XLS | < NBmem then
Replace the first |XLS | solutions of Dr,mem with all the LS solutions of XLS

else
Replace the solutions of Dr,mem with NBmem solutions randomly selected in XLS .

end if

Algorithm 4 first defines an ordered set Dr,mem including the best NBmem feasible solutions obtained

until the end of iteration r. If the number of CI solutions obtained after solving W r(Γ) (i.e., |Dr|) is larger

than NBmem, Dr,mem will include the best CI solutions in Dr. However, if |Dr| < NBmem, only the first

NBmem solutions of Dr,mem (the worst ones) are replaced with the newest solutions of Dr.

Based on set Dr,mem, we construct a β − vector αr such that: ∀t ∈ T, b ∈ Bt, α
r
b =

∑
x∈Dr,mem xtb.

Vector αr identifies the number of times a bid b ∈ Bt, t ∈ T is a winning bid for the best NBmem first-stage

solutions encountered until iteration r. To define a neighbourhood N (xr) of xr, we force φr bids that were

winning at iteration r (such that xrtb = 1) to be either winning or losing bids, depending on set Dr,mem. φr

is a parameter set to
∑

t∈T

∑
b∈Bt

xr
tb

2 . Hence, a neighbour xr ∈ N (xr) of xr will have 50% of its components

with a value deriving from the current optimal solution xr and from the best solutions in Dr,mem.

Formally, let B̃r be a randomly selected subset of φr pairs (t, b) such that xrtb = 1. Observe that B̃r can

always be defined given our definition of parameter φr. For each pair (t, b) in B̃r, a neighbour x will have

its component xrtb fixed to either 0 or 1 depending on the probability of occurrences of 1 in the solutions of

Dr,mem. More precisely, for each (t, b) ∈ B̃r, a random number ξ is uniformly generated within the interval

[0, 1]. If ξ <
αr

tb

NBmem , then xrtb = 1. Otherwise, xrtb = 0. By this way, a winning bid b ∈ Bt, t ∈ T in the

current optimal solution xr is more likely to remain winning in the neighbour xr if it won in the majority

of the best feasible solutions of Dr,mem. For example, assume that bid b′ ∈ Bt, t ∈ T is a winning bid in xr

and in all the feasible solutions of Dr,mem. Then, αrtb′ = |Dr,mem| = NBmem. So, any randomly generated

number ξ in [0, 1] will respect the condition ξ <
αr

tb

NBmem = 1 and xrtb′ = 1.
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Finally, the restricted master problem Wr(Γ) is solved in the neighbourhood N (xr) of xr. Its optimal

solution is an LS solution. The process is iterated until the number of desired LS solutions (referred to as

NBLS) is reached.

Generating an LS solution at an iteration r requires the resolution of a complex MIP but on a set of

restricted variables (the variables within N (xr)). Fixing a number of variables xb simplifies indeed the model

resolution. For example, given the XOR restriction, each carrier can win at most one bid. Hence, if a bid b

submitted by a carrier t wins (xb = 1) then all the variables xtb′ associated with all the other bids b′ submitted

by t will take a null value. Moreover, it is not rare that the same feasible solution appears several times in

Dr,mem which creates a redundancy in the cuts generated in the master problem. We tried to avoid such

redundancy by testing the presence of a solution before adding the corresponding cut to the master problem.

We noted that Cplex presolve made it as well and faster. Note however that one should keep redundant

solutions in Dr,mem when generating LS solutions to be consistent with the neighbourhood definition.

4.2.5 Bounding constraints

As depicted in Algorithm 2, we propose to add a new cut (constraint (20)) to bound the value of the objective

function A at each iteration.

Proposition 2 The following inequality is valid for the master problem Wr(Γ) at iteration r: LBr−1 ≤ A ≤
UBr−1.

Proof. Observe that LBr−1=Ar−1 where Ar−1 is the optimal objective function of the restricted master

problem at the previous iteration (r − 1). Problem W(r−1)(Γ) is a relaxation of Wr(Γ) (it includes less

constraints). Hence, Ar−1 = LBr−1 is a valid lower bound for Wr(Γ).

Besides, UBr−1 = min{UBr−2,Θr−1} where Θr−1 is the optimal objective function of the recourse prob-

lem Q(xr−1,Γ) solved for the optimal solution xr−1 of W(r−1)(Γ). It follows that UBr−1 corresponds to the

best objective function value obtained for the unrestricted problem Wrob(Γ) up to iteration (r − 1). The

optimum value will thus have a value lower than or equal to it.

It is worth mentioning that in addition to the improvement strategies presented above, we tried a number of

other heuristic and accelerating methods that have proven their efficiency for other problems as reported in the

literature. For instance, we obtain no conclusive results when selecting a dominant cut in the recourse prob-

lem (Fischetti et al., 2010) or when using the Relaxed Induced Neighbourhood Search (Danna et al., 2005).

5 Experimental study

The objective of this section is threefold. First, we evaluate the impact of the improvement strategies we

propose on the basic constraint generation algorithm performance. This is done by comparing the performance

of our new algorithm to that proposed by Remli and Rekik (2013) for the instances of WDP-SD tested therein.

Second, we analyze the computational performance of the new algorithm for WDP-SDC. Third, we study

the relevance of adding uncertainty on the carriers’ capacity, on auction outcomes and transportation costs.

5.1 Computational performance of Algorithm 2 for WDP-SD

In this section, we consider the same instances reported in Remli and Rekik (2013) for WDP-SD. Recall that

in Remli and Rekik (2013), 360 instances were generated. These instances are grouped in eight instance sets

|L| − |T | − B, where |L| represents the number of lanes submitted by the shipper to the auction, |T | is the

number of participating carriers, and B is the number of bids offered by each carrier (it is assumed that all

carriers submit the same number B of bids). For each instance set |L| − |T | −B (45 instances in total), nine

different values of the budget of uncertainty Γd are considered. These values range from 10% to 90% with a
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step of 10%. Finally, for each value of Γd, five instances are randomly generated within the corresponding

instance set.

As in Remli and Rekik (2013), all the MIP and LP models are solved with CPLEX 12.4 (with its default

parameters) on a 3.00 GHz Intel Core 2 Duo PC with a 4.00 Go RAM.

Table 1 gives for each value of the budget of uncertainty Γd, the average number of iterations (#iter.)

and the average running time in seconds (Time) required by each algorithm. These averages are computed

on the five generated instances of each instance set. A dash (′−′) in a cell indicates that no optimal solution

was identified within a time limit of 10 hours. The last two columns of Table 1 report the savings in the

number of iterations and computing times yielded by Algorithm 2 adapted to WDP-SD to Algorithm 1 (as

proposed in Remli and Rekik (2013)). These savings are presented as ratios. For example, for the instance set

50−20−10 and a budget of uncertainty Γd = 10%, the average number of iterations required by Algorithm 1

is 3.59 times greater than that required by Algorithm 2. Similarly, the computing time needed by Algorithm 1

is 1.46 times larger than that required by Algorithm 2. Observe that the results reported for Algorithm 2

correspond to the case where the parameter NBmem is set to 20 and NBLS to 2. These values were set after

a series of experiments.

Table 1: Results of Algorithm 2 vs Algorithm 1

Algorithm 1 Algorithm 2 Ratio:Alg.1/Alg.2

|L| − |T | −B Γd(%) # iter. Time (s) # iter. Time (s) # iter. Time (s)

10 130.6 57 36.4 39 3.59 1.46
20 126.0 58 36.4 39 3.46 1.49
30 114.8 63 33.2 33 3.46 1.91
40 101.4 51 30.2 28 3.36 1.82

50-20-10 50 88.2 41 26.8 26 3.29 1.58
60 82.6 36 26.4 24 3.13 1.50
70 83.0 35 25.0 21 3.32 1.67
80 81.2 33 25.6 22 3.17 1.50
90 81.6 32 24.8 20 3.29 1.60

10 285.8 572 75.8 355 3.77 1.61
20 251 494 68.2 290 3.68 1.70
30 226.4 448 64.2 259 3.53 1.73
40 199.4 381 56.8 209 3.51 1.82

50-20-20 50 178.2 319 51.0 161 3.49 1.98
60 175 307 49.2 156 3.56 1.97
70 172.4 293 50.8 157 3.39 1.87
80 173 308 49.0 156 3.53 1.97
90 172.6 298 50.4 166 3.42 1.80

10 303.6 556 68.4 205 4.44 2.71
20 285 570 66.0 194 4.32 2.94
30 259.8 594 57.6 151 4.51 3.93
40 245 599 54.2 141 4.52 4.25

100-40-10 50 225.8 553 50.6 121 4.46 4.57
60 206 510 46.0 100 4.48 5.10
70 190.4 434 43.8 89 4.35 4.88
80 185.4 411 40.6 83 4.57 4.95
90 183.6 404 42.6 89 4.31 4.54

10 1122.7 15623 183.6 5304 6.11 2.95
20 1037 13888 168.4 4696 6.16 2.96
30 946 11975 163.2 4212 5.80 2.84
40 856 9710 149.8 3641 5.71 2.67

100-40-20 50 755.7 7816 135.2 2956 5.59 2.64
60 660 7005 126.0 2448 5.24 2.86
70 617.5 6703 119.8 2170 5.15 3.09
80 613.7 6111 118.6 2154 5.17 2.84
90 609.7 5666 137.0 2958 4.45 1.92

10 632.4 2841 199.0 1075 3.18 2.64
20 612.2 2471 193.0 1013 3.17 2.44
30 593.8 2291 188.0 964 3.16 2.38
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Table 1: Results of Algorithm 2 vs Algorithm 1

Algorithm 1 Algorithm 2 Ratio:Alg.1/Alg.2

|L| − |T | −B Γd(%) # iter. Time (s) # iter. Time (s) # iter. Time (s)

40 571.4 2029 181.8 914 3.14 2.22
200-80-10 50 552 1890 176.8 846 3.12 2.23

60 531.8 1706 169.2 772 3.14 2.21
70 505.2 1599 161.0 700 3.14 2.28
80 472.6 1461 156.8 645 3.01 2.27
90 469.6 1571 157.0 636 2.99 2.47

10 − − 437.8 9321 − −
20 − − 401.2 7706 − −
30 − − 379.2 6736 − −
40 869 24120 344.2 5438 2.52 4.44

200-80-20 50 805 18818 319.4 4768 2.52 3.95
60 754 12678 305.8 4020 2.47 3.15
70 685 8840 247.2 3406 2.77 2.60
80 623.5 5565 227.0 2756 2.75 2.02
90 628.5 5253 223.4 2691 2.81 1.95

10 993 13334 292.3 3568 3.40 3.74
20 987 13320 291.0 3524 3.39 3.78
30 976.2 12996 287.5 3522 3.40 3.69
40 958 11221 280.5 3365 3.42 3.33

500-100-10 50 939 10454 274.3 3271 3.42 3.20
60 915.5 9935 266.8 3180 3.43 3.12
70 880.5 9452 259.5 3012 3.39 3.14
80 834.5 8536 244.0 2744 3.42 3.11
90 825.2 9395 241.3 2684 3.42 3.50

10 1196 25065 292.2 4355 4.09 5.76
20 1189 22065 280.4 4150 4.24 5.32
30 1174.5 20459 269.4 4066 4.36 5.03
40 1156.5 17096 286.8 3882 4.03 4.40

600-120-10 50 1125.5 15891 260.8 3957 4.32 4.02
60 1098 16651 268.6 3600 4.09 4.63
70 1067 16401 256.2 3597 4.16 4.56
80 1006.5 12886 233.6 3584 4.31 3.60
90 995.5 13335 229.6 3520 4.34 3.79

The results of Table 1 clearly show that Algorithm 2 largely outperforms Algorithm 1 assessing thus

the efficiency of the improvement strategies proposed in this paper. First, observe that Algorithm 2 always

requires less time than Algorithm 1. As depicted in the column Ratio, the time needed by Algorithm 1

is divided by more than 2 for 245 instances over the 345 (71%) that are solved by both algorithms. The

computing time is divided by more than 4 (≥ 3.93) for 80 of these instances.

Second, when examining the 345 instances that are solved by both algorithms, the average computing

time required by Algorithm 2 is 1857 seconds (almost 0.5 hour) with a maximum of 5438 seconds (1.5 hours)

for the largest instance. However, 6443 seconds (1.8 hours) are required on average by Algorithm 1 and the

largest instances takes almost seven hours on average. Finally, Algorithm 2 solves all the 15 instances, that

were not solved by Algorithm 1, within almost 2.2 hours, on average. The time required by Algorithm 2 to

solve all the 360 instances averages 2109 seconds (almost 0.6 hours).

The results of Table 1 confirm the observations made in Section 4.2 with regard to the sensitivity of

Algorithm 1 computing times to the number of iterations. Indeed, our main improvement strategies consist

in adding a multitude of valid inequalities to the master problem at each iteration so that the lower bound

increases more rapidly and the total number of iterations decreases. The results of Table 1 clearly prove that

these cuts do the work we want them to do. This can be observed through the values reported in the column

Ratio (under #iter).

Improving the algorithm performance by adding cuts to the master problem was also motivated by the

results reported in Remli and Rekik (2013) regarding the percentage of time that was allocated to the master
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problem with respect to the recourse problem. Indeed, between 75% and 99% of the total time required

by Algorithm 1 was dedicated to solve the master problem. For Algorithm 2, the percentage of total time

allocated to the master problem slightly decreases but remains relatively large (between 74.1% and 98.8%).

This was not totally expectable since with Algorithm 2, more recourse problems are solved at each iteration

(one problem for each generated cut). This result however confirms that the recourse problem is much more

easier to solve than the master problem. Table 5 in the appendix details all the results obtained for both

algorithms (computing times, number of iterations, the percentage of time used to solve the master problems

and the percentage of time used to solve the recourse problems).

5.2 Computational performance of Algorithm 2 for WDP-SDC

In this section, we generate 180 new instances to tackle the WDP-SDC. We use the same terminology as in

Section 5.1 to represent an instance set. Four instance sets |L|− |T |−B are generated by varying the number

of contracts |L| (50 and 100), the number of carriers |T | (20 and 40) and the number of bids per carrier B

(10 and 20). For all the instances, the bid price ctb is uniformly generated within the interval [10, 40] and the

spot price cel within [50, 100]. Minimum and maximum volumes qt and Qt are uniformly generated within

the intervals [10, 15] and [60, 75], receptively. The generated bids cover on average between 20% and 30% of

the lanes. Regarding the uncertain parameters, the nominal demand dl is uniformly generated within the

interval [10, 50] and the nominal capacity UV tb within [40, 75]. The maximum deviation d̂l, respectively,

ÛV tb, is set as d̂l = α× dl, respectively, ÛV tb = α× UV tb, where α is randomly generated within [0.1, 0.5].

The minimum volume LVtb is uniformly generated within the interval [10, 20]. For the new instances, we

impose no limit on the maximum number of winning carriers. Five instances are generated in each set

|L| − |T | − B. The new instances are available on https://drive.google.com/file/d/1I8mMjrsAhuQq_

jxfn5bGYLkCeyVIWCLN/view?usp=sharing.

For each instance, nine different values of the budget of uncertainty of demand Γd are considered. These

values are obtained by varying Γd from 10% to 90% with a step of 10%. The budget of uncertainty Γt of a

carrier t is fixed to a unique value derived from the performance factor pt. Recall that the performance factor

pt takes a value within [−1, 1] and models the carrier t service quality as evaluated by the shipper. The higher

is this value, the less reliable is the carrier, and the larger the value of Γt is. Formally, Γt = 0.5(1+pt)B, ∀t ∈ T .

Hence, when pt = −1, the carrier t is reliable and the value of Γt = 0 meaning that all the capacity submitted

by the carrier in all its B bids take their nominal values as initially proposed by the carrier. In the opposite,

a value of pt equal to 1 (the carrier is totally unreliable) results in Γt = B meaning that for all the B bids,

the capacity will take its worst value (the smallest one).

Table 2 gives for each value of the budget of uncertainty Γd, the average number of iterations (#iter.) and

the average running time in seconds (Time) required by Algorithm 2 to solve the new instances generated for

WDP-SDC. These averages are computed on the five generated instances of each instance set. It also reports

the average percentage of time required by the master and the slave problems, respectively.

The results of Table 2 show that Algorithm 2 performs well for WDP-SDC problems. An average time of

6243 seconds is required to solve the 180 instances. Computational times increase with the number of lanes,

the number of carriers and the number of bids. Algorithm 2 requires only 115 seconds to solve small-sized

instances. It solves instances including up to 100 new contracts, 40 carriers and 800 bids in less than 4.5

hours, on average with a maximum computational time of 9.27 hours. It fails however in solving problems

including 200 contracts, 80 carriers and 10 bids to optimality -which was not the case for the WDP-SD- within

a time limit of ten hours. This proves the complexity resulting from considering two uncertain parameters

when solving the WDP and questions the relevance of considering uncertainty on carriers’ capacity. The next

section discusses this point.

https://drive.google.com/file/d/1I8mMjrsAhuQq_jxfn5bGYLkCeyVIWCLN/view?usp=sharing.
https://drive.google.com/file/d/1I8mMjrsAhuQq_jxfn5bGYLkCeyVIWCLN/view?usp=sharing.
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Table 2: Results of Algorithm 2 for WDP-SDC

|L| − |T | −B Γd(%) # iter. Time (s) % Master % Slave

10 142.6 409.4 97.8 2.2
20 126.4 285.2 98.2 1.8
30 107.6 213.2 97.9 2.1
40 88.4 179.6 96.2 3.8

50-20-10 50 74.4 145.2 96.5 3.5
60 68.8 125.8 96.9 3.1
70 68.6 120.2 97.9 2.1
80 68.2 126.6 97.2 2.8
90 68.4 115.0 98.9 1.1

10 163.4 1015.4 99.1 0.9
20 140.0 687.2 98.7 1.3
30 130.6 571.0 98.2 1.8
40 114.0 463.2 96.3 3.7

50-20-20 50 92.4 319.6 98.9 1.1
60 92.2 321.8 98.7 1.3
70 92.0 318.0 99.0 1.0
80 83.2 289.6 99.0 1.0
90 86.0 331.6 99.2 0.8

10 813.0 11097.0 99.6 0.4
20 685.8 8270.8 99.5 0.5
30 527.2 6602.0 99.5 0.5
40 393.6 5278.4 99.4 0.6

100-40-10 50 357.4 3983.8 99.3 0.7
60 336.2 6133.0 99.6 0.4
70 286.8 13828.2 99.7 0.3
80 312.2 11716.0 99.6 0.4
90 304.8 12168.0 99.7 0.3

10 845.6 33401.8 99.7 0.3
20 698.2 21542.2 99.6 0.4
30 566.0 15021.2 99.6 0.4
40 502.0 11607.4 99.5 0.5

100-40-20 50 504.0 13616.0 99.5 0.5
60 426.6 10285.0 99.6 0.4
70 428.2 10646.4 99.6 0.4
80 437.0 11720.0 99.6 0.4
90 445.2 11779.0 99.6 0.4

5.3 Relevance of considering uncertainty on carriers’ capacity

To the best of our knowledge, all published papers addressing stochastic WDP for TL transportation services

procurement auctions consider uncertainty on shipment volumes only. As pointed out in Section 5.2, adding

a second uncertain parameter makes the problem harder to solve. So, is it relevant to deal with this second

parameter of uncertainty? Or would the uncertainty on demand be sufficient and yield almost the same

auction outcomes? To answer these questions, we consider two contexts: a first context, denoted SD, cor-

responding to WDP-SD, where only demand is uncertain and the carriers’ capacity takes its nominal value.

The second context, denoted SDC, corresponds to WDP-SDC and assumes that both demand and capacities

are uncertain. We consider the set of the new generated instances of Section 5.2 and compute the auction

outcomes for each instance under each context with Algorithm 2.

Table 3 displays for each instance set, each value of Γd, and each context, the average objective function

value (column Obj.), the average percentage of winning carriers (column Win.), and the average percentage

of lanes allocated to the spot market. These averages are computed over the five instances of each instance

set. Recall that each carrier is allowed to win at most one bid (given the XOR constraints). So the number

of winning carriers represents also the number of winning bids. We also report in the last three columns

more explicit comparative results between the SD and the SDC contexts. Adding this information enables

highlighting the changes in the first-stage solutions between the two contexts. More specifically, for each
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instance, we first compute the relative difference (in percentage) between the total cost incurred under the

SDC and the SD contexts (Obj
SDC−ObjSD

ObjSD ). We report in Table 3 under the column 6= Obj, the average

relative difference over the five instances of each instance set. The columns 6= Win and 6= Spot report the

difference in the number of winning carriers, respectively, the number of lanes allocated to the spot market,

between both contexts. These differences are normalized with regard to the number of participating carriers,

respectively, the number of contracts of each instance set.

Table 3: Impact of adding uncertainty on the carriers’ capacity on the auction outcomes

Context SD Context SDC SDC vs SD

|L| − |T | −B Γd(%) Obj. Win. Spot Obj. Win. Spot 6= Obj. 6= Bids 6= Spot

10 27314.48 48.0% 20.0% 31048.02 46.0% 19.6% 13.9% 4.0% 7.6%
20 29954.52 45.0% 23.6% 34804.60 44.0% 18.8% 16.5% 3.0% 8.8%
30 31407.62 43.0% 21.6% 37086.92 45.0% 18.4% 18.4% 6.0% 4.8%
40 31826.14 45.0% 18.0% 37881.38 41.0% 20.0% 19.3% 6.0% 7.6%

50-20-10 50 31865.34 41.0% 21.2% 37970.58 43.0% 17.6% 19.5% 10.0% 9.2%
60 31865.34 42.0% 18.8% 37970.58 42.0% 18.8% 19.5% 4.0% 7.2%
70 31865.34 39.0% 23.6% 37970.58 41.0% 19.2% 19.5% 8.0% 8.4%
80 31865.34 36.0% 24.0% 37970.58 42.0% 18.4% 19.5% 10.0% 8.0%
90 31865.34 40.0% 20.4% 37970.58 42.0% 18.4% 19.5% 6.0% 6.0%

10 25238.76 36.0% 18.4% 29764.38 42.0% 18.4% 17.5% 10.0% 4.8%
20 27471.14 43.0% 19.6% 33343.66 37.0% 16.0% 20.9% 10.0% 4.4%
30 28678.66 40.0% 16.0% 35942.82 36.0% 16.8% 24.9% 8.0% 5.6%
40 28983.38 39.0% 18.0% 37412.48 39.0% 16.0% 28.6% 4.0% 2.0%

50-20-20 50 28983.38 40.0% 18.8% 37597.62 42.0% 16.0% 29.2% 8.0% 5.2%
60 28983.38 35.0% 19.2% 37597.62 43.0% 15.2% 29.2% 8.0% 7.2%
70 28983.38 38.0% 15.6% 37597.62 42.0% 16.0% 29.2% 6.0% 2.0%
80 28983.38 40.0% 20.0% 37597.62 39.0% 20.0% 29.2% 11.0% 6.4%
90 28983.38 41.0% 16.4% 37597.62 41.0% 16.8% 29.2% 10.0% 6.0%

10 60191.58 35.5% 32.0% 69740.26 37.5% 28.2% 15.9% 10.0% 6.2%
20 65964.76 39.0% 26.2% 77694.50 35.0% 28.6% 17.8% 4.0% 7.6%
30 67853.70 40.5% 29.2% 82007.92 36.5% 26.2% 21.0% 6.0% 8.6%
40 69928.44 44.0% 28.6% 83945.36 31.0% 26.8% 20.1% 13.0% 7.0%

100-40-10 50 69231.30 37.0% 27.6% 85023.28 33.5% 23.2% 22.8% 5.5% 5.2%
60 63948.96 40.0% 24.6% 85138.52 35.5% 25.6% 38.0% 15.5% 8.6%
70 69145.08 36.5% 27.8% 84781.70 33.0% 23.2% 22.7% 5.5% 5.8%
80 69829.40 44.5% 28.2% 84781.70 39.0% 27.4% 21.5% 12.5% 5.6%
90 69115.74 37.0% 26.6% 85021.62 30.5% 24.8% 23.1% 7.5% 4.2%

10 56187.96 44.0% 33.8% 65470.04 31.0% 34.0% 16.6% 13.0% 4.6%
20 61389.04 36.0% 29.0% 73738.96 33.5% 26.2% 20.2% 8.5% 8.0%
30 64098.72 30.5% 31.4% 75820.88 33.0% 25.4% 18.4% 6.5% 7.6%
40 65209.86 35.0% 26.6% 77829.76 37.5% 21.8% 19.5% 5.5% 5.6%

100-40-20 50 65249.84 36.0% 24.8% 78357.48 37.5% 21.8% 20.2% 7.5% 5.0%
60 65249.84 43.0% 27.4% 78541.42 36.5% 26.6% 20.5% 9.5% 4.0%
70 65166.22 40.5% 29.6% 78074.82 36.0% 21.0% 20.0% 6.5% 8.6%
80 65166.22 40.0% 29.6% 78721.00 35.0% 22.2% 21.0% 8.0% 7.4%
90 65249.84 39.0% 26.6% 78963.76 33.5% 23.2% 21.2% 8.5% 3.8%

The results of Table 3 prove that adding uncertainty on the carriers’ capacity results in a substantial

change in the first stage solution when compared to the case where only uncertainty on demand is addressed.

This can be deduced from the changes in the number of winning carriers and the number of contracts allocated

to the spot market. Moreover, one should mention that the total cost resulting from considering uncertainty

on both demand and capacity is always larger than that obtained with uncertain demand only. As depicted

in Table 3, the relative deviation in percentage of this total cost is on average equal to 21% and reaches 38%

for some instances. Hence, determining the winning carriers at the strategic level while ignoring the possible

variation of their capacity would result in a considerable underestimation of the expected transportation cost.

To go more in deep with the latter observation, the rest of the section investigates the impact of considering

uncertainty on carriers’ capacity on the transportation costs under randomly generated scenarios. To this
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end, we consider for each instance, the optimal first-stage solutions (winning bids) obtained under the SD

context, xSD, respectively the SDC context, xSDC , with a value of Γd = 50% (an intermediate value). Then,

we randomly generate for each instance set |L|−|T |−B, 30 plausible scenarios ω ∈ Ω of demand and carriers’

capacity within the corresponding intervals [d− d̂, d+ d̂], and [UVt− ÛVt, UVt+ ÛVt], t ∈ T . For each scenario

ω ∈ Ω, we determine the transportation costs yielded by xSD, denoted by CSD, and that yielded by xSDC ,

denoted by CSDC . These costs are obtained by solving the deterministic model (W ), fixing x variables to

either xSD or xSDC values and considering the demands and the capacities of scenario ω. Table 4 reports

for each instance the average deviation (Av.) in percentage of CSDC with respect to CSD, computed as
CSDC−CSD

CSD and the corresponding standard deviation (Std). These averages and standard deviations are

computed over the 30 scenarios considered for each instance set.

Table 4: Cost savings resulting from considering an SDC context versus an SD context

|L| − |T | −B Instance Av. (%) Std

1 -21.64% 6.15%
2 -6.87% 8.91%

50-20-10 3 -31.14% 3.93%
4 -2.39% 7.02%
5 -34.56% 3.65%

1 -3.32% 4.04%
2 -9.56% 6.77%

50-20-20 3 -30.37% 5.56%
4 -41.22% 6.74%
5 -8.14% 6.20%

1 -19.17% 6.37%
2 -28.35% 2.30%

100-40-10 3 -25.97% 2.60%
4 -21.78% 3.25%
5 -12.76% 2.47%

1 -6.75% 6.21%
2 -10.68% 4.54%

100-40-20 3 -15.01% 2.68%
4 -13.03% 6.73%
5 -19.47% 1.76%

As one can see from Table 4, considering uncertainty on carriers’ capacity yields important savings in

transportation costs at the operational level when compared to the case where only uncertainty on demand

is taken into account at the first-stage strategic level. Average savings exceed 10% for 20 instances over the

24 considered. A saving of 41% is obtained for instance 4 of 50− 20− 20.

6 Conclusion

In this paper, we propose a number of improvement strategies to accelerate the convergence of the basic

constraint generation algorithm proposed by Remli and Rekik (2013) to solve a two-stage robust winner

determination problem with uncertain shipment volumes. Our experimental study clearly proves the efficiency

of the proposed strategies. To the best of our knowledge, the proposed new algorithm shows the best

computational performance to date in terms of computing times and instances size.

Our paper is also the first to consider two uncertain parameters when solving the WDP, namely shipment

volumes and carriers’ capacity. We propose a two-stage robust formulation extending that proposed by Remli

and Rekik (2013). Our experimental results prove that our improved constraint-generation algorithm succeeds

in solving small and medium sized instances of this new problem in a reasonable time. We also investigate the

relevance of adding this second parameter of uncertainty. Our results are conclusive. Considering uncertainty

on carriers’ capacity when solving the WDP, although making the problem more complex, induces changes
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in the first stage decisions, avoids underestimating costs at the strategic level, and results in substantial

savings at the operational level when compared to the case where only uncertainty on shipment volumes is

considered.

Of course, a number of interesting research avenues remains to be investigated in combinatorial auction

design for the procurement of transportation services under uncertainty. A first extension of this paper would

be to study the impact of a number of business constraints and auction rules on the auction outcomes such as

the XOR constraints, the maximum number of winning carriers, etc. Uncertainty should also be considered

when solving the bid construction problem, a decisional problem that is faced by each participating carrier

to help it decide on the lanes to submit in a bid and the corresponding ask price.

A Linearization of the recourse problem and reformulation of the
master problem

This section gives details on how the final formulations of the master and the recourse problems presented

in Section 3.3 were obtained. As already mentioned, this is based on the paper by Remli and Rekik (2013).

In Section 3.3, the robust winner determination problem Wrob(Γ) is first formulated as:

Wrob(Γ)



min opt(R(x,Γ))
s.t.

∑
b∈Bt

xtb ≤ 1, t ∈ T∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

xtb ∈ {0, 1}, t ∈ T, b ∈ Bt

where opt(R(x,Γ)) represents the optimum value of the recourse problem:

R(x,Γ)

{
max

(d,UV )∈U(Γ)
min

(y,e)∈Y(x)

∑
t∈T

∑
b∈Bt

(1 + pt)ctbytb +
∑
l∈L

celel

The uncertainty set U(Γ) is defined by:

U(Γ) = {d ∈ R|L| : dl = dl + zl d̂l, l ∈ L, z ∈ Z(Γd),

UVtb ∈ R|T |×|Bt| : UVtb = UV tb − ζtb ÛV tb, t ∈ T, b ∈ Bt, ζ ∈ Z ′(Γt), t ∈ T}

where

Z(Γd) = {z ∈ R|L| :
∑
l∈L

zl ≤ Γd, 0 ≤ zl ≤ 1, l ∈ L}

and

Z ′(Γt) = {ζ ∈ R|T |×|Bt| :
∑
b∈Bt

ζtb ≤ Γt, t ∈ T, 0 ≤ ζtb ≤ 1, t ∈ T, b ∈ Bt}

As depicted in Section 3.3, the feasible set Y(x) includes all vectors (y, e) satisfying the constraints (10)-(14)

as follows: ∑
t∈T

∑
b∈Bt

altb ytb + el ≥ dl, l ∈ L

ytb ≥ LVtb xtb, t ∈ T, b ∈ Bt
ytb ≤ UVtb xtb, t ∈ T, b ∈ Bt
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∑
b∈Bt

ytb ≥ qt
∑
b∈Bt

xtb, t ∈ T

∑
b∈Bt

ytb ≤ Qt

∑
b∈Bt

xtb, t ∈ T

ytb ≥ 0, t ∈ T, b ∈ Bt; el ≥ 0, l ∈ L

The optimal solution of the recourse problem can be obtained by considering its dual (using the strong

duality theorem). The dual of the inner minimization problem R(x,Γ) is:

Q(x,Γ)



max
∑
l∈L

dlul +
∑
l∈L

d̂lulzl +
∑
t∈T

∑
b∈Bt

LVtbxtbvtb −
∑
t∈T

∑
b∈Bt

UV tbxtbwtb

+
∑
t∈T

∑
b∈Bt

ÛV tbxtbwtbζtb +
∑
t∈T

∑
b∈Bt

xtbqtgt −
∑
t∈T

∑
b∈Bt

xtbQtht

s.t. ∑
l∈L

altbul + vtb − wtb + gt − ht ≤ (1 + pt)ctb, t ∈ T, b ∈ Bt

ul ≤ cel, l ∈ L∑
l∈L

zl ≤ Γd∑
b∈Bt

ζtb ≤ Γt, t ∈ T

zl ∈ {0, 1};ul ≥ 0, l ∈ L
vtb, wtb, gt, ht ≥ 0, ζtb ∈ {0, 1} t ∈ T, b ∈ Bt

where the variables ul, vtb, wtb, gt, ht are the dual variables of the minimization problem associated with

constraints (10)-(14).

Problem Q(x,Γ) is bilinear. This problem can however be linearized given the assumption that Γd and

Γt, t ∈ T take integer values and that the recourse problem is feasible and bounded (Gabrel et al., 2014).

Indeed, Gabrel et al. (2014) prove that under the latter assumptions, there is an optimal solution for the

recourse problem such that zl and ζtb variables are in {0, 1}. Hence, the product ulzl can be replaced by a new

variable sl and constraints must be added to enforce sl to be equal to ul if zl = 1 and 0, otherwise. Similarly,

the product wtbζtb can be replaced by a new variable ftb and constraints must be added to enforce ftb to be

equal to wtb if ζtb = 1 and 0, otherwise. This results in the linear formulation Q′(x,Γ) presented in Section 3.3:

Q′(x,Γ)



max
∑
l∈L

dlul +
∑
l∈L

d̂lsl +
∑
t∈T

∑
b∈Bt

LVtbxtbvtb −
∑
t∈T

∑
b∈Bt

UV tbxtbwtb

+
∑
t∈T

∑
b∈Bt

ÛV tbxtbftb +
∑
t∈T

∑
b∈Bt

xtbqtgt −
∑
t∈T

∑
b∈Bt

xtbQtht

s.t. ∑
l∈L

altbul + vtb − wtb + gt − ht ≤ (1 + pt)ctb, t ∈ T, b ∈ Bt

ul ≤ cel, l ∈ L∑
l∈L

zl ≤ Γd

sl ≤ cel zl, l ∈ L
sl ≤ ul, l ∈ L∑
b∈Bt

ζtb ≤ Γt, t ∈ T

ftb ≤M ζtb, b ∈ Bt, t ∈ T
ftb ≤ wtb, b ∈ Bt, t ∈ T
zl ∈ {0, 1}; sl, ul ≥ 0, l ∈ L
vtb, wtb, ftb, gt, ht ≥ 0, ζtb ∈ {0, 1} t ∈ T, b ∈ Bt
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The optimal solution of the recourse problem Q′(x,Γ) is reached at an extreme point of its feasible set

(the problem is feasible and bounded). So, the robust problem Wrob(Γ) can be rewritten as:

Wrob(Γ)′



min A

s.t. A ≥
∑
l∈L

dlu
σ
l +

∑
l∈L

d̂ls
σ
l +

∑
t∈T

∑
b∈Bt

xtbqtg
σ
t −

∑
t∈T

∑
b∈Bt

xtbQth
σ
t +

∑
t∈T

∑
b∈Bt

LVtbxtbv
σ
tb−∑

t∈T

∑
b∈Bt

UV tbxtbw
σ
tb +

∑
t∈T

∑
b∈Bt

ÛV tbxtbf
σ
tb, σ ∈ S

∑
b∈Bt

xtb ≤ 1, t ∈ T

∑
t∈T

∑
b∈Bt

altb xtb ≤ 1, l ∈ L

Nmin ≤
∑
t∈T

∑
b∈Bt

xtb ≤ Nmax

A ≥ 0, xtb ∈ {0, 1}, t ∈ T, b ∈ Bt

where S is the set of the extreme points (uσ, sσ, vσ, wσ, fσ, gσ, hσ), σ = 1...|S| of the recourse problem

Q′(x,Γ)

B Detailed results for Algorithms 2 and 1 for WDP-SD

Table 5: Complete results of Algorithms 2 and 1 for WDP-SD

Algorithm 1 Algorithm 2

|L| − |T | −B Γd(%) # iter. Time (s) % Master % Slave # iter. Time (s) % Master % Slave

50-20-10 10 130.6 57 83.6 16.4 36.4 39 74.3 25.7
20 126.0 58 89.3 10.8 36.4 39 77.5 22.5
30 114.8 63 91.4 8.6 33.2 33 76.6 23.4
40 101.4 51 89.2 10.9 30.2 28 74.1 25.9
50 88.2 41 85.2 14.8 26.8 26 78.1 21.9
60 82.6 36 75.9 24.1 26.4 24 82.4 17.6
70 83.0 35 93.0 7.0 25.0 21 84.9 15.1
80 81.2 33 89.4 10.6 25.6 22 83.7 16.3
90 81.6 32 81.5 18.5 24.8 20 76.5 23.5

50-20-20 10 285.8 572 98.0 2.0 75.8 355 93.3 6.7
20 251.0 494 95.1 4.9 68.2 290 94.5 5.5
30 226.4 448 95.8 4.3 64.2 259 92.4 7.6
40 199.4 381 95.0 5.1 56.8 209 92.7 7.3
50 178.2 319 97.5 2.5 51.0 161 94.0 6.0
60 175.0 307 99.4 0.6 49.2 156 92.3 7.7
70 172.4 293 99.2 0.8 50.8 157 93.0 7.0
80 173.0 308 99.7 0.3 49.0 156 94.3 5.7
90 172.6 298 99.3 0.7 50.4 166 93.8 6.2

100-40-10 10 303.6 556 98.0 2.0 68.4 205 92.0 8.0
20 285.0 570 98.2 1.8 66.0 194 90.0 10.0
30 259.8 594 98.1 1.9 57.6 151 93.2 6.8
40 245.0 599 98.2 1.8 54.2 141 90.2 9.8
50 225.8 553 98.0 2.0 50.6 121 88.3 11.7
60 206.0 510 99.0 1.0 46.0 100 89.3 10.7
70 190.4 434 98.2 1.8 43.8 89 87.1 12.9
80 185.4 411 97.9 2.1 40.6 83 89.8 10.2
90 183.6 404 98.5 1.5 42.6 89 82.5 17.5

100-40-20 10 1122.7 15623 99.7 0.3 183.6 5304 98.6 1.4
20 1037.0 13888 99.7 0.3 168.4 4696 98.4 1.6
30 946.0 11975 99.6 0.4 163.2 4212 98.4 1.6



24 G–2018–10 Les Cahiers du GERAD

Table 5: Complete results of Algorithms 2 and 1 for WDP-SD

Algorithm 1 Algorithm 2

|L| − |T | −B Γd(%) # iter. Time (s) % Master % Slave # iter. Time (s) % Master % Slave

40 856.0 9710 99.6 0.4 149.8 3641 98.3 1.7
50 755.7 7816 99.6 0.4 135.2 2956 98.3 1.7
60 660.0 7005 99.7 0.3 126.0 2448 98.2 1.8
70 617.5 6703 99.9 0.2 119.8 2170 98.3 1.7
80 613.7 6111 99.8 0.2 118.6 2154 98.4 1.6
90 609.7 5666 99.9 0.1 137.0 2958 98.8 1.2

200-80-10 10 632.4 2841 96.6 3.4 199.0 1075 95.1 4.9
20 612.2 2471 96.5 3.5 193.0 1013 95.2 4.8
30 593.8 2291 96.7 3.3 188.0 964 94.9 5.1
40 571.4 2029 97.6 2.4 181.8 914 94.7 5.3
50 552.0 1890 96.9 3.1 176.8 846 94.3 5.7
60 531.8 1706 96.7 3.3 169.2 772 94.5 5.5
70 505.2 1599 95.5 4.5 161.0 700 94.3 5.7
80 472.6 1461 96.3 3.7 156.8 645 93.4 6.6
90 469.6 1571 95.9 4.1 157.0 636 94.6 5.4

200-80-20 10 - - - - 437.8 9321 98.7 1.3
20 - - - - 401.2 7706 98.7 1.3
30 - - - - 379.2 6736 98.2 1.8
40 869.0 24120 99.9 0.1 344.2 5438 98.2 1.8
50 805.0 18818 99.9 0.1 319.4 4768 98.2 1.8
60 754.0 12678 99.8 0.3 305.8 4020 98.0 2.0
70 685.0 8840 99.6 0.4 247.2 3406 98.0 2.0
80 623.5 5565 99.8 0.2 227.0 2756 97.5 2.5
90 628.5 5253 99.5 0.5 223.4 2691 97.8 2.2

500-100-10 10 993 13334 99.0 1.1 292.3 3568 96.7 3.3
20 987.0 13320 99.4 0.6 291.0 3524 96.9 3.1
30 976.2 12996 99.3 0.7 287.5 3522 96.8 3.2
40 958.0 11221 99.3 0.7 280.5 3365 96.8 3.2
50 939.0 10454 99.4 0.6 274.3 3271 96.6 3.4
60 915.5 9935 99.1 0.9 266.8 3180 96.7 3.3
70 880.5 9452 99.3 0.8 259.5 3012 96.6 3.4
80 834.5 8536 99.2 0.8 244.0 2744 96.3 3.7
90 825.2 9395 99.1 0.9 241.3 2684 96.6 3.4

600-120-10 10 1196.0 25065 99.6 0.4 292.2 4355 97.2 2.8
20 1189.0 22065 99.7 0.3 280.4 4150 97.8 2.2
30 1174.5 20459 99.7 0.3 269.4 4066 97.9 2.1
40 1156.5 17096 99.7 0.3 286.8 3882 97.6 2.4
50 1125.5 15891 99.7 0.3 260.8 3957 98.0 2.0
60 1098.0 16651 99.7 0.3 268.6 3600 96.5 3.5
70 1067.0 16401 99.6 0.4 256.2 3597 98.6 1.4
80 1006.5 12886 99.7 0.3 233.6 3584 96.2 3.8
90 995.5 13335 99.7 0.3 229.6 3520 92.6 7.4
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