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3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-88
https://www.gerad.ca/en/papers/G-2017-88
https://www.gerad.ca/en/papers/G-2017-88




A high-order, data-driven frame-
work for joint simulation of
categorical variables

Ilnur Minniakhmetov a

Roussos Dimitrakopoulos b

a COSMO – Stochastic Mine Planning Laboratory, Montréal
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Abstract: Relatively recent techniques for categorical simulations are based on multi-point statistical ap-
proaches where a training image is used to derive complex spatial relationships using patterns. However,
simulated geological realizations are driven by the training image utilized, while the spatial statistics of
the hard data is ignored. This paper presents a data-driven high-order simulation approach based upon
the approximation of high-order spatial indicator moments. The high-order spatial statistics are expressed
as functions of spatial distances similar to variogram models for two-point methods. It is shown that the
higher-order statistics are connected with lower-orders via boundary conditions. Using an advanced recur-
sive B spline approximation algorithm, the high-order statistics are reconstructed from hard data. Finally,
conditional distribution is calculated using Bayes rule and random values are simulated sequentially for all
unsampled grid nodes. The main advantages of the proposed technique are its ability to simulate without
a training image, which reproduces the high-order statistics of hard data, and to adopt the complexity of
the model to the information available in the hard data. The approach is tested with a synthetic dataset
and compared to a conventional second-order method, sisim, in terms of cross-correlations and high-order
spatial statistics.
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1 Introduction

Stochastic, or geostatistical simulations, are often required in reservoir modeling, and the quantification of

geological uncertainty, pollutants in contaminated areas, and other spatially dependent geologic and environ-

mental phenomena. During the past decades, Gaussian simulation techniques have been used for geostatistical

simulations (Matheron 1971; David 1977, 1988; Journel and Huijbregts 1978; Cressie 1993; Kitanidis 1997;

Goovaerts 1998; Caers 2005; Webster and Oliver 2007; Remy et al. 2009; Chiles and Delfiner 2012). The

choice of the Gaussian distribution is driven by several factors. First of all, the Gaussian variables can be

fully described by a small amount of parameters, such as the first-order statistics (i.e. average values), and

the second-order statistics (i.e. covariance or variogram). Secondly, the small number of parameters allows

one to run simulations on grids with many million nodes.

Natural phenomena are known to exhibit non-Gaussian distributions and have complex non-linear spatial

patterns (Guardiano and Srivastava 1993; Tjelmeland 1998; Dimitrakopoulos et al. 2010), which cannot

be adequately described by second-order statistics. To overcome these limitations, multiple point spatial

simulation (MPS) methods were introduced in the 1990’s (Guardiano and Srivastava, 1993; Journel 1993,

Strebelle, 2002; Journel 2003; Zhang et al., 2006; Chuginova and Hu, 2008; Straubhaar et al. 2010; Toftaker

and Tjelmeland 2013; Strebelle and Cavelius 2014; others). The additional information is taken into account

via training images (TI), which are not conditioned on the available data, but contain additional information

about complex spatial relations of the attributes to be simulated. To retrieve this information from the

training image, the similarity between the local neighborhood of an unsampled location and the training

image is calculated in explicit or implicit form. Based on this similarity measure, the value of a node from

the training image with the most similar neighborhood is assigned to the unsampled location being simulated.

Generally, most of the multi-point simulation techniques are a Monte-Carlo sampling of values from the TI

in some form or another. No spatial models are used and, importantly, no spatial information from the hard

data is retrieved. As a result, simulations of attributes reflect the TI. In cases where there are relatively large

datasets, conflict between the hard data and TI’s statistics is clearly observed and the resulting simulations do

not reproduce the spatial statistics of the hard data (Dimitrakopoulos et al. 2010; Pyrcz and Deutsch 2014).

Several attempts have been made to incorporate more information from the hard data. Some authors

suggest using replicates from the hard data in addition to TI (Mariethoz and Renard 2010), however, in

practice, it is hard to find any replicates for three-point relations when data is sparse. Others (Mariethoz

and Kelly 2011) apply affine transformations to better condition the hard data; however, TI is still used as

the main source of information. Another approach is to construct TI based on the hard data (Yahya 2011),

but the resulting simulations may be biased from the method chosen for the TI construction.

Mustapha and Dimitrakopoulos (2010a, 2010b) proposed to use the high-order spatial cumulants as

the extension of variogram models to capture complex multi-point relations during the simulation of non-

Gaussian random fields. The technique estimates the third- and the fourth-order spatial statistics from hard

data and complements them with higher-order statistics from TI. However, this technique is based on the

approximation of conditional distribution using Legendre polynomials, which are smooth functions and are

not capable of an adequate approximation of the discrete distribution of categorical variables.

The problem of describing complex multi-point relations of categorical variables was addressed in Var-

gas (2006, 2010). The author uses high-order indicator statistics to characterize spatially distributed rock

bodies. In this paper, this idea is developed by introducing the connection between different orders into the

mathematical model. For example, consider a third-order spatial indicator moment of a stationary random

field, which is a function of two-lags. When one of the lags is equal to zero, the third-order indicator moment

becomes the second-order indicator moment. Besides that, instead of exponential functions the B-spline func-

tions are used to estimate high-order spatial indicator moments. It is known (Evans et al. 2009; Babenko

1986), that B-spines provide optimal (in term of accuracy) estimation of equicontinuous functions defined

on compacts. Finally, a new recursive algorithm is proposed for better approximation of high-order spatial

statistics with nested boundary conditions of lower-level relations. Then, as shown in sub-sequent sections,

the conditional distribution for the given neighborhood is calculated from high-order indicator moments and

the category is simulated.
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The proposed method works without any TI, however, additional information from TI can be incorporated

as the secondary condition during the approximation step, for example the conditions on derivatives or the

order of continuity. In this case, the high-order spatial indicator moments are fully driven by hard data.

The paper is organized as follows. First, high-order spatial indicator moments are introduced as a function

of distances between points for two-point and multi-point cases. Then, a mathematical model for recursive

approximation of high-order spatial indicator moments is proposed. Finally, the simulation algorithm using

the proposed model is developed and tested on fully-known datasets. Discussion and conclusions follow.

2 High-order spatial indicator moments

Material extracted in a mining complex undergoes various transformations before the concentrated or refined

product is shipped. Understanding the effect of these transformations, as well as the associated cash flows,

can help develop better planning strategies and provide a more realistic assessment of their impact. Therefore,

this section focuses on developing realistic models of material flow in a mining complex, starting by discussing

general concepts and then describing a particular implementation for a multi-pit copper mining complex.

Let (Ω, F, P ) be a probability space. Consider a stationary ergodic random vector Z = (Z1, Z2, . . . ZN )T ,

Z : Ω → SN , defined on a regular grid D = {x1,x2 . . .xN},x ∈ Rn, n = 2, 3, where Ω is a space of

all possible outcomes, F contains all combinations of Ω, SN is a set of states represented by categories

S = {s1, s2, . . . sK}, and P is the probability measure, or probability. For example, probability of Z1 being

at a state sk is defined as:

P (Z1 = sk) ≡ P ({ω ∈ Ω : Z(ω) ∈ sk ⊗ SN−1}) (1)

Without loss of generality, assume that sk = k, k = 1 . . .K. It can be shown, that the probability is equivalent

to spatial indicator moment:

P (Zi0 = k0, Zi1 = k1, . . .) = E(Ik0(Zi0), Ik1(Zi1), . . .) ∀i0, i1 . . . = 1 . . . N, ∀k0, k1, . . . = 1 . . .K, (2)

where E is the expected value operator and Ik(Zi) is an indicator function

Ik(Zi) =

{
1, Zi = k
0, Zi 6= k0

. (3)

From now on, indicator moments are denoted as:

Mk0k1,...(Zi0 , Zi1 , . . .) = E(Ik0(Zi0), Ik1(Zi1), . . .). (4)

2.1 Second-order spatial indicator moment

Consider two random variables Zi0 and Zi1 separated by the lag h1 = xi1 − xi0 . Due to the stationarity

assumption, their second-order spatial indicator moment for categories k0, k1 can be expressed as a function

of the lag h1:

Mk0k1(Zi0 , Zi1) = Mk0k1(h1). (5)

For the sake of demonstration, consider data from the Stanford V reservoir case study (Mao and Journel

1999) on Figure 1a and its categorization on Figure 1b, size of image is Nx ×Ny pixels. Let Wi,j be a value

at pixel (i, j) of the categorized image, where i = 1 . . . Nx, j = 1 . . . Ny. If the image Wi,j describes statistical

properties of the random vector Z, then the estimation of indicator moment M̂k0k1(h1) on the lag h1 = (h, 0)

can be calculated using pairs {Wi,j ,Wi+h,j}. From now on, consider that the direction of h1 is e1 = (1, 0)

and fixed, then Mk0k1(h1) is the function of distance h.

The sections of the function Mk0k1(h) for fixed h equal to 0, 5, and 40 pixels are shown on Figure 2a-c,

respectively. Figure 2d presents the sections of the function Mk0k1(h) for fixed values k0, k1. Each line

correspond to one of the 3x3 possible combinations of k0 and k1.
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Figure 1: Image of continuous field and its categorization.

Figure 2: The estimation of the second-order spatial indicator moment M̂k0k1
(h): (a) zero-distance h = 0 indicator moments;

(b) indicator moments on the lag h = 5; (c) indicator moments for far separated points h = 40; (d) the sections with different
combinations of k0, k1 depends on h. Each line on (d) corresponds to value in one of 3x3 cells in (a), and its evolution across
different lag separation (b) and (c).

It is not hard to see that for h = 0 only diagonal elements are not equal to zero:

Mk0k1(0) = P (Zi0 = k0, Zi0 = k1) = P (Zi0 = k0)δk0,k1 = Mk0δk0,k1 , (6)

where δk0,k1 is Kronecker delta and Mk0 is the marginal distribution. Moreover, for two distant locations

h→∞ the values Zi0 and Zi1 can be considered as independent random variables and the indicator moment

can be factorized:

Mk0k1(h→∞) = Mk0Mk1 . (7)

That can be traced in the function behavior on Figure 2d. These functions represent two-point spatial

cross-relations, similar to indicator covariances, and satisfy boundary conditions (6) and (7).
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2.2 High-order spatial indicator moments

In the multi-point case, consider n+1 random variables Zi0 and Zil , l = 1 . . . n, then, the spatial configuration

is defined by vectors hl = xil − xi0 , l = 1 . . . n. From now on, consider that directions of hl are defined and

fixed, then the spatial indicator moments are the functions of distances hl = ‖hl‖ , l = 1 . . . n.

Therefore, the high-order spatial indicator moment can be expressed as follows:

Mk0k1...kn(Zi0 , Zi1 , . . . Zin) = Mk0k1...kn(h1, h2, . . . hn). (8)

Hereafter, the following concise notation is used: k = k0 . . . kn,h = h1, . . . , hn.

Similar to the case of the second-order statistics, boundary conditions can be expressed through lower-

order:

Mk(h1, . . . , hp = 0, . . . , hn) = Mk\kp(h\hp)δk0,kp , ∀p ∈ 1 . . . n, (9)

where h\hp denotes all the lags h excluding the lag hp. Similarly for k\kp.

If the directions are quite different, then additional boundary conditions are valid:

Mk(h1, . . . , hp →∞, . . . , hn)=Mk\kp(h\hp)Mkp , ∀p ∈ 1 . . . n. (10)

Thus, the high-order spatial indicator moments are bounded with lower-order moments and this information

should be taken into account during simulation.

For example, in case of three-point relations, for the image Wi,j the sampling third-order spatial indicator

moment M̂k0k1k2(h1, h2) of random variables separated by the vectors h1, h2 with directions e1 = (1, 0) and

e2 = (0, 1) can be calculated using triplets {Wi,j ,Wi+h1,j ,Wi,j+h2
}. The indicator moment M̂111(h1, h2)

is shown on Figure 3. The values of the function M̂111(h1, h2) on boundaries(h1, 0), (h1, 50), (0, h2), and

(50, h2) correspond to two-point statistics shown on Figure 2d.

Figure 3: The third-order spatial indicator moment M̂111(h1, h2).

3 Mathematical model

In this paper, multi-dimensional B-spline approximation under constrains (8) and (9) is used to model

the high-order spatial indicator moments Mk(h). Consider the fixed categories k0, . . . kn, then, the function

Mk(h) is a multi-dimensional function which values are known at the limited number of points

hd = (hd1, . . . , h
d
n),d = 1 . . .m estimated from the hard data. The calculation of sampling indicator mo-

ments M̂k(hd) is presented in the subsequent section. Then, the function Mk(h) can be approximated using

the following recursive model:

Mk(h) = M0
k(h) + δMk(h), (11)
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M0
k(h) =

1∑n
p=1 e

−ahp + e−a(1−hp)

[
n∑
p=1

Mk0...kn(h1, . . . , hp = 0 . . . , hn)e−ahp+

+

n∑
p=1

Mk0...kn(h1, . . . , hp →∞ . . . , hn)e−a(1−hp)

]
, ∀p = 1 . . . n, (12)

δMk(h) =
∑ω

i1=1
· · ·
∑ω

in=1
αi1,...,inBi1,r(h1) . . . Bin,r(hn), (13)

where user-defined parameter a determines the influence of the boundary conditions, αi1,...,in are coefficients

of B-splines approximation, and Bi,r(t) is i-th B-splines of order r on uniformly divided knot sequence

{t0, t1, t2, . . . , tp}, where knots are separated by step dt = (tp− t0)/p, t0 = 0, and tp are equal to the minimal

lag distance at which the variables can be considered as independent.

The coefficients αi1,...,in are found using least-square algorithm to fit points:

δMk(hd) = M̂k(hd)−M0
k(hd), d = 1 . . .m, (14)

under zero boundaries constrains:

δMk(h1, . . . , hp = 0, . . . , hn) = 0,
δMk(h1, . . . , hp →∞, . . . , hn) = 0, ∀p = 1 . . . n

. (15)

In this paper, the additional regularization condition of minimum curvature (Wang et al., 2006) is used to

avoid overfitting.

The high-order moments are recursively constructed by starting from the second-order indicator mo-

ments. First, second-order indicator moments Mk0kp(hp), p = 1 . . . n are calculated from the basic variogram

model (David 1977). Then, the trend M0
k0,k1,k2

(h1, h2, h3) is calculated using equation (12) and relations

to the lower-orders (9) and (10). Further, the residuals δMk0,k1,k2
(hd1, h

d
2, h

d
3) can be estimated from sam-

pling indicator moments M̂k0,k1,k2
(hd1, h

d
2, h

d
3) and equation (14). These residuals are used as points in the

B-spline approximation (13) of the multi-dimensional function δMk0,k1,k2
(h1, h2, h3) under zero-boundary

constrains (15). Finally, the third-order spatial indicator moments are retrieved using equation (11). The

same procedure is recursively repeated for fourth, fifth, and higher-orders until the desired order is achieved.

3.1 Calculation of sampling statistics

The octant model is used (Figure 4) to estimate the sampling indicator moments M̂k(hd) from the hard data.

The neighborhood area of each hard data sample is divided into Nφ = 8 sectors representing Nφ directions.

Then, each sector is divided into Nr lags and forms an Nr ×Nφ bin template. Only one point within each

bin is randomly chosen to construct a replicate. Finally, the values M̂k(hd) are estimated from replicates

using law of large numbers:

M̂k(hd) =
1

Nhd

N
hd∑

j=1

Ik0(zji0) . . . Ikn(zjin), d = 1 . . .m, (16)

where the sum is taken over all Nhd replicates with the spatial configuration hd, data samples zji0 . . . z
j
in

in

the replicate j are separated by lags hd, and d is the index of different spatial configurations hd.

It should be noted, that replicates separated by at least half the variogram range should be used for the

law of the large numbers to be applicable.

The amount of information about high-order statistics that can be retrieved from data crucially depends

on the number of categories K, the total number of data samples N and the level of correlation between

values. It is not hard to see that the higher order of statistics considered are, the larger the number of samples

available should be.

In order to have an adequate number of replicates for a particular order m of statistics, the minimum

number of replicates Nrepl(m) ≤ Nhd ,∀hd is set up by the user. However, more advanced techniques based

on an entropy or information theory should be considered (Arndt 2004). Having a minimum number of

replicates Nrepl(m) for the given order of statistics m, the optimal number of lags Nopt
r is calculated.
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Figure 4: Octant model for calculation of the sampling joint distribution M̂k(hd).

4 Simulation algorithm

Combining all of the above, the new data-driven algorithm is formulated as follows:

Algorithm 1

1. Starting from two-point statistics m = 2 until stopping criteria is reached

(a) Define the minimum number of replicates Nrepl(m) for given order m.

(b) Scan the hard data using the octant model (Figure 4) with different Nr starting with the number of the radial
divisions Nr = 2 and find the higher Nr for which the average number of replicates is bigger than Nrepl(m).

(c) If Nr = 2 and the average number of replicates is less than Nrepl(m), then exit the loop.

(d) Save all the replicates for obtained Nr and the order of statistics m.

(e) Increase the order of statistics m = m+ 1.

2. Define a random path visiting all the unsampled nodes.

3. For each node xi0 in the path:

(a) Find the closest data samples xi1 ,xi2 , . . .xin . The categories at these nodes are denoted by k1, . . . kn.

(b) For all k0 = 1 . . .K calculate the high-order spatial indicator moments M̂k(hd) using formula (15) from the replicates
found in step 1 and recursive model (11)–(13). Note that k1, . . . kn are fixed. For the orders higher than maximum
order m consider δMk(h) ≡ 0.

(c) Calculate the conditional distribution from joint distribution:

P [Zi0 = k0|Zi1 = k1 . . . , Zin = kn] = AMk(h), (17)

where coefficient A is the normalization coefficient:

A = 1/
K∑

k0=1

Mk(h). (18)

(d) Draw a random value zi0 from this conditional distribution (17) and assign it to the unsampled location xi0 .

(e) Add zi0 to the set of sample hard data and the previously simulated values.

4. Repeat Steps 3a-e for all the points along the random path defined in Step 2.

5 Simulation results

The proposed approach is tested on the data set from the Stanford V reservoir case study (Figure 1a). This

image is discretized on categories 0, 1 and 2, and is used as a reference image (Figure 5a). Hard data

is randomly selected from the image and shown in Figure 5b. This represents 520 points (5% of the image

points). The results are compared with sequential indicator simulation algorithm (sisim; Journel and Alabert,

1990; Deutsch and Journel, 1998).
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Figure 5: Case study with 520 data samples: (a) the reference image, (b) data samples.

The simulation results for the case with 520 data samples are shown in Figure 6. Neither the training

image nor the reference image (Figure 5a) are used during the simulation and are presented herein only for

the sake of comparison. Simulations are done in two modes: using only boundary conditions (Figure 6b),

and using both conditions (14) and (15) (Figure 6c).

Figure 6: Case study with 520 data samples: (a) sisim simulation result, (b) the simulation using proposed algorithm with only
boundary conditions, (c) the simulation result using both boundary conditions and high-order statistics from data. Subfigure
(d) shows histograms for data samples, the reference image, sisim simulation, and the simulation using the proposed technique
presented by blue, light blue, yellow and red bars, respectively.

In the case of using just boundary conditions, the result is smooth and the width of channels is overesti-

mated because all high-order statistics are derived from the second-order statistics. However, sisim simulation

results (Figure 6a) are less connected and the channels can be hardly detected. The result obtained with

the account of higher-order statistics from data (Figure 6c) reproduces the channels quite well with adequate

dimensions of geometrical bodies.
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On Figure 6c, the histograms for data samples, the reference image, sisim simulation, and the simulation

using the proposed technique are shown by blue, light blue, yellow, and red bars, respectively. The deviations

from the distribution in hard data are small for both sisim and proposed algorithm simulations.

The second-order statistics are compared in Figure 7a. The direction e1 = (1, 0) is used. The indicator

moments M01( h1) of simulations using sisim and the proposed algorithm are reproduced well. Nevertheless,

the third-order statistics M012( h1, h2) of the reference image (Figure 7b), simulation using sisim algorithm

(Figure 7c), and the result of the proposed technique (Figure 7d) are quite different.

The third-order spatial indicator moments are calculated using directions e1 = (1, 0) and e2 = (0, 1).

Some similarities of patterns can be traced in the bottom part of Figure 7b and d, which correspond to

statistics of the reference image and the simulation using the proposed algorithm. However, the point of

interest is the reproduction of the high-order spatial statistics of the hard data.

Figure 7: Case study with 520 data samples. (a) Second-order spatial indicator moment M01( h1) using directions e1 = (1, 0)
for data samples, the reference image, sisim simulation, and the simulation using proposed technique are presented by black
dots, and green, blue, red lines, respectively. The third-order spatial indicator moment M012( h1, h2) using directions e1 = (1, 0)
and e2 = (0, 1) for: (b) the reference image, (c) sisim simulation result, (d) the simulation using both boundary conditions and
high-order statistics from data.

Colors show the number of triplets found in data using template on Figure 4.

The surface on Figure 8 is a 3D view of Figure 7d. Dots represent the statistics calculated from the hard

data. Colors show the number of triplets used for the calculation of the third-order spatial indicator moment

M012( h1, h2). The higher the number of triplets, the more reliable the value of the point is. The spatial

indicator moment M012( h1, h2) of the simulation using the proposed algorithm tends to fit more reliable

points and is consistent with the boundary conditions (Figure 8).
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Figure 8: The third-order spatial indicator moment M012( h1, h2) using directions e1 = (1, 0) and e2 = (0, 1) for the simulation
using both boundary conditions and high-order statistics from data.

6 Conclusions and future work

This paper presented a new data-driven high-order sequential method for the simulation of categorical random

fields. The sequential algorithm is based on the B-spline approximation of high-order spatial indicator

moments that are consistent with each other. The main distinction from commonly used MPS methods is

that, in the proposed technique, conditional distributions are constructed using high-order spatial indicator

moments as the functions of distances based on hard data. The simulations herein are generated without a

TI. Note that in applications with relatively large numbers of data, as in the simulation of mineral deposits,

the higher-order statistics are deduced from hard data. The option of adding a TI to a dataset is available

for sparse datasets.

The basic concept of the algorithm is to use recursive approximation models with enclosed boundary

conditions, which are derived from the nested nature of high-order spatial indicator moments presented

herein. To provide robust estimation the regularized B-splines are used.

Another important aspect is the different amount of information that can be retrieved for different levels

of relations. In the proposed method, each order of spatial statistics is approximated using the appropriate

number of B-splines to provide robustness to the algorithm and to avoid overfitting. Thus, lower-order

statistics are estimated with higher resolution than the higher-order statistics.

The simulation algorithm is tested on the categorized data from the Stanford V reservoir case study

and compared with results of the sisim algorithm. No TI is used during simulations. According to the

results, the proposed method reproduces the complex spatial patterns, such as channels, and preserves high-

order statistics.

The proposed technique is fully data-driven; however, the information from the TI can be incorporated

with the suggested model as a trend to capture high-frequency features of the TI. Further research is con-

cerned with the application to 3D models, improving the efficiency, testing for unbiasedness of the proposed

approximation model, and generalization to the continuous random fields.
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