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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2017-86
https://www.gerad.ca/en/papers/G-2017-86
https://www.gerad.ca/en/papers/G-2017-86




Stochastic mining supply chain
optimization: A study of inte-
grated capacity decisions

Iain Farmer a

Roussos Dimitrakopoulos a,b

a COSMO Stochastic Mine Planning Laboratory & Depart-
ment of Mining and Materials Engineering, McGill University,
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Abstract: The mining value chain comprises many inter-related components, from mines to transportation,
to customers. When the individual components are optimized separately the value that can be generated from
the enterprise suffers. Optimization of the mining value chain requires a shift away from conventional methods
of optimization and towards the simultaneous optimization of all related aspects, including: the mine’s
extraction sequence, material destination decisions, material transport decisions, and equipment capacities.
Further, if these decisions are to be robust, they must be made while considering sources of uncertainty and
managing the related technical risk.

The contributions included in this paper are meant to assist strategic planning and evaluation of mining
projects under uncertainty. Specifically, the simultaneous integration of capacity decisions in long-term
scheduling is meant to provide a tool that generates a NPV-optimal mine sequence and destination policy
that is also synchronized with equipment capacities selected while being robust to two sources of uncertainty,
geological uncertainty and metal price uncertainty.
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1 Introduction

The mining value chain is the route by which raw materials are extracted from within the earth and trans-

formed into marketable products. A mining complex is a set of mines, processors, transport mechanisms

and stockpiles that can be considered as a stand-alone unit within the broader supply network. The global

mining supply chain is comprised of many such mining complexes that vary in their degree of complexity

and inter-connectivity.

Typically, a mining complex is controlled by a managing entity with the goal of maximizing the net

present value (NPV) of cash flows generated by the complex as a whole. Cash flows are estimated based on a

model of the mine plan which is optimized under certain assumptions and subject to certain constraints. The

conventional approach to optimization within the industry has focused on optimizing each component of the

mining complex on its own (sequentially) rather than considering the enterprise as a whole (simultaneously).

This approach ignores the important inter-dependence of components within the mining complex. The

traditional approach also does not incorporate various sources of uncertainty prohibiting any notion of risk-

resiliency in design considerations. Further, conventional mine planning ignores capital investments and

their relationships to operational capacities, instead they consider fixed capacities as static constraints for

the optimization.

This paper builds upon recent work in stochastic mine planning which focuses on the simultaneous global

optimization of mining complexes under uncertainty (Goodfellow and Dimitrakopoulos, 2016; Montiel and

Dimitrakopoulos, 2015). Within the mining complex framework, the task of creating an optimal mine plan

involves determining the following: an extraction sequence for selective mining units (blocks) in each mine, a

destination policy dependent on material type and attribute values, and the quantity of material flow between

destinations. Notably, these decisions simultaneously contemplate material blending, stockpiling, and time

value of money. In the stochastic context these decisions must also contemplate sources of uncertainty to

manage technical risk. If the optimization is extended to consider capital expenditure decisions, these also

must be incorporated within the model along with the corresponding adjustments to the relevant constrains.

Goodfellow (2014) and Montiel (2015) propose an integrated model of the mining complex that is able to

consider the simultaneous stochastic optimization of the entire mineral value chain while including capacity

decisions. Unlike conventional models, value is calculated based on products sold and not at the level of

mining blocks. This unlocks the power of material blending and allows for complex revenue calculations to

be considered. The model described by Goodfellow is extended in this paper to make three main contributions:

1. The simultaneous optimization of mining and processing capacities in the pre-production stage under

geological uncertainty;

2. The incorporation of metal price uncertainty in optimization of second-stage material movement deci-

sions;

3. The inclusion of various financial contracts in product-based revenue calculations.

The idea is to create a globally-optimal plan for the entire mineral value chain that will remain robust

under uncertainty. The first-stage variables determine the decisions made in an uncertain environment, these

decisions must remain robust over the distribution of possible outcomes. The values of the second-stage

variables are determined after uncertainty has be unveiled, and the optimal value is chosen based on the

revealed information.

One of the important contributions of Goodfellow and Montiel is the method by which material flow

is modeled within the mining complex. The formulation moves away from calculating attributes at the

block level and instead tracks attributes as they move through the value chain. As materials move from

one destination to another, blending and other interactions can easily be accounted for at a level of detail

that far exceeds what was accomplished in prior works. This ability allows for economic values, and other

characteristics of interest, to be calculated where they are realized instead of assigning each block values

before materials are extracted, stockpiled, blended, transported, processed and sold.
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Capacity decisions represent a trade-off between the amount of capital outlay required and the operational

constraints of the project. The most common approach to mine design is to set mining and processing

capacities based on comparisons with existing projects with similar characteristics. This approach is not

necessarily optimal since it does not tailor the investment decisions to the specific traits of the project at hand.

This work will deal with integrating plant sizing decisions within the global mine optimization framework.

Only recently have there been attempts to incorporate capacity optimization in the stochastic mine plan-

ning framework. Montiel and Dimitrakopoulos (2015) allow the optimizer to alter the processing capacity

between different operating modes whereby process throughput and recovery can change between two pre-set

levels. This is a metaheuristic approach that enables better alignment between the mine schedule and the

processor’s capabilities under geological uncertainty, but it does not incorporate capital investment decisions.

Goodfellow and Dimitrakopoulos (2016) implement dynamic mining capacities by allowing the optimizer the

ability to purchase loading and hauling equipment but the approach does not integrate processing capac-

ity decisions.

The limitations of these prior attempts at including capacity optimization in stochastic mine planning is

that they approach the optimization problem from a pre-constrained starting point – either the processing or

the mining capacity has already been fixed to some extent. Mining and processing capacities are inherently

interrelated so it only makes sense to optimize them simultaneously; this is especially true for an operation

that is in the planning stage while there is still the flexibility to make these important design choices. Setting

mining capacity determines the maximum quantity of material (ore and waste) that can be extracted from

the mines considered in the complex. The capital outlay required in order to produce at the desired mining

capacity is generally related to the purchase of equipment such as trucks, shovels, loaders, etc. The amount

of ore that can be mined under the mining capacity constraint will have an effect on the optimal processing

capacity (and vice versa). Determining the processing capacity involves establishing the optimal trade-off

between capital outlay and the size for each the (possibly many) processing streams. An approach presented

here is to allow the optimizer to decide the optimal mining and processing capacities simultaneously as the

LOM schedule is generated.

Another contribution made in this work is the inclusion of flexibility in revenue calculation. In many

instances a mining company is forced to raise external funds to build their project, this is especially true

for “junior” or “mid-tier” companies that do not have the cash reserves for a large capital outlay. These

funds are invariably accompanied by additional encumbrances impacting the project’s revenue stream. In

terms of the mathematical model used in this paper, the value of attributes, may not be constant. Due to

the restrictive use of block values in traditional formulations, it was not possible accommodate a change in

revenue calculations. The formulation set forth by Goodfellow (2014) can accommodate complex revenue

structures due to the generality of its mechanism of hereditary attribute calculation. This paper extends the

mechanism to include attribute-and-variable-dependant revenue calculations. The contribution allows for a

mining complex optimization that considers project encumbrances brought on by the financing of the asset.

In summary, this work attempts to reconcile plant capacity decisions within the stochastic optimization of

mining complexes while also incorporating metal price uncertainty. Additionally, it includes the ability to

make revenue calculations flexible in order to properly manage various financial contracts that accompany

mining projects.

In the following sections, first, the mathematical model utilized is presented. Then, mining project

financing effects on optimization is addressed, and is followed by the integration of metal price uncertainty.

The application of the proposed approach is then applied at a copper-gold mining complex with a precious

metal streaming agreement. Conclusions and suggestions for future research follow.

2 Model formulation

The model is formulated as a two-stage mixed integer stochastic optimization (Birge and Louveaux, 2011);

where the first-stage variables are scenario-independent and the second-stage (recourse) variables are scenario

dependant. The second-stage variables are used to manage technical risk through penalizing deviations from

pre-set targets.



Les Cahiers du GERAD G–2017–86 3

2.1 Model components

Following the framework described by Goodfellow (2014), a mining complex is comprised of a set of mines

m ∈M, and processing destinations P. The mines are discretized into blocks b ∈ Bm which are characterized

by their material type and attribute values βp,b,s, where p ∈ P refers to primary attributes and s ∈ S is one

of the scenarios used to represent the deposit.

Material flow is modeled using a graph structure with nodes N (sources/destinations in the mining

complex) connected by arcs representing allowable incoming-outgoing (I (ı) ⊆ N , O (ı) ⊆ S ∪ P) pairs.

Each material type is subdivided into a number of different clusters, based on the values of the block’s

multiple attributes. Material types are clustered using the k-means++ algorithm as a preprocessing step

(Arthur and Vassilvitskii, 2007). The Euclidian distance is used as the similarity metric and the number of

clusters to use is a modelling decision.

The optimization model has four types of decision variables. A first-stage mine sequencing variable is

what determines the period t ∈ T in which each block is extracted. After a block is extracted a choice must

be made regarding which destination it is sent to. Much like grade binning discussed in (Lane, 1964; Wooller,

2007), the pre-processing step of material clustering allows for robust destination policies to be established.

Destination policy decisions are determined by the another first-stage variable which establishes where to

send blocks belonging to each cluster in a given period. A second-stage variable determines the proportion

of the tonnage held at each location i ∈ S ∪ P is that is sent to location j ∈ S ∪ P period t ∈ T and under

scenario s ∈ S.

The variable vh,t,s ∈ R is used to account for the quantity/value of hereditary attributes, derived as

a function of primary attributes vp,i,t,s ∈ R at locations within the mining complex. Notably, primary

attributes must be additive (e.g., tonnage) to sum attributes over destinations in order to calculate the

non-additive hereditary attributes (e.g., metal grade) as material moves through the value chain.

In order to do this both the cost, and the incremental increase contributed by the capacity decision must

be considered in the objective function and constraints of the model. To accomplish this an additional variable

is added to integrate capacity decisions within the optimization. The first-stage variable wk,t ∈ {Lk,t,Uk,t}
establishes the amount of extra capacity gained from capital expenditure option k ∈ K which must be

purchased at a price, pk,t. The objective function can then be written as follows to account for the purchase

of extra capacity. Notably this formulation assumes a linear relationship between incremental capacity and

incremental cost, however pk,t can be made to be a function of the number of capacity increases in order to

account for economies of scale.

Objective Function:

max

{
1

|S|
∑
s∈S

∑
t∈T

∑
h∈H

ph,t · vh,t,s Expected NPV

−
∑
t∈T

∑
k∈K

pk,t · wk,t Capital Expenditure

− 1

|S|
∑
s∈S

∑
t∈T

∑
h⊆H

c+h,t · d
+
h,t,s+c

−
h,t·d

−
h,t,s

}
Deviation Penalties

(1)

The goal of mine complex optimization is to maximize NPV (identified by the first term in the above

objective function). However, maximizing a project’s NPV without regard for uncertainty, as is the case

with the traditional mine planning approach, is misleading. The traditional approach does not account

for uncertainty and thus cannot guarantee that the results it predicts are realistic. The third term in the

objective function shown above is used to manage risk through the use of penalties that are assigned when

deviations from targets occur. In this way the objective function of the stochastic optimization searches for

a solution that has both high expected NPV and low risk of failing to meet targets. This gives the stochastic

solution its robustness under uncertainty.
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Part two of the objective function includes the simultaneous optimization of capacity decisions within

the optimization. The capacity limits are allowed to be expanded for a cost. Adjustments to the model’s

constraints are required to allow the available capacity to grow after a capacity decision is made. Hereditary

attribute constraints provide the mechanism by which deviations from upper Uh,t and lower Lh,t target ranges

are calculated as shown in Equations (2) and (3). When capacity optimization is included in the model the

target ranges can be adjusted by the increment of each capacity option k ∈ K.

vh,t,s − d+h,t,s ≤ Uh,t +

t∑
t
′=t−λk+τk

κk,h · wk,t′ ∀h ∈ H,t ∈ T, s ∈ S (2)

vh,t,s + d−h,t,s ≥ Lh,t +

t∑
t
′=t−λk+τk

κk,h · wk,t′ ∀h ∈ H,t ∈ T, s ∈ S (3)

Capital expenditure constraints ensure that a capital expenditure option is exercised only once for one-

time options, and between the lower Lk,t and upper Uk,t limits for multiple-purchase options.∑
t∈T

wk,t ≤ 1 ∀k ∈ K1 ⊆ K (4)

Lk,t ≤ wk,t ≤ Uk,t ∀k ∈ K, t ∈ T (5)

By including the above constraints, the model is able to handle multiple capital expenditure options.

These decisions are considered simultaneously with the other mine planning variables in the optimization.

The desired outcome of the methods proposed in this paper is an integrated mine plan that includes: a block

extraction sequence, a material destination policy, a material flow plan, and an optimal capital allocation, all

optimized in sync with each other while being robust under uncertainty as represented by the set of scenarios

s ∈ S. Ideally such an optimization would be carried out at the feasibility, or detailed engineering, stage of

a project when there is flexibility to establish the mine’s design before construction begins.

2.2 Solution methods

Given that the mine complex optimization model is very large, metaheuristic methods are the necessary tools

used in order to obtain a solution. Metaheuristics do not guarantee convergence to mathematical optimality,

but instead they are powerful tools that can generate good-quality solutions in an acceptable amount of time.

The solutions are better than those generated by traditional mine planning methods in that they are much

better at meeting production forecasts (due to their ability to manage risk), and in that they achieve better

value (Ramazan, 2013).

This paper employs the simulated annealing metaheuristic (Kirkpatrick, 1984) with a number of various

perturbation mechanisms that helps the algorithm explore the solution space as thoroughly as possible.

Capacity optimization makes the solution more difficult since capacity decisions have a significant effect on

the remainder of other decision variables. For this reason, including capacity decisions makes it necessary to

consider measures in order to ensure the solution does not get trapped in local optima (Cicirello, 2007). A

further detailed discussion on metaheuristics and mathematical optimization methods inherent to the solution

methods applied to the optimization performed are outside the scope of this work. For a comprehensive

discussion on metaheuristics and solution methods applied to mine complex optimization the reader is referred

to: Blum and Roli (2003); Caccetta and Hill (2003); Dimitrakopoulos and Montiel (2013); Goodfellow (2014);

Lamghari and Dimitrakopoulos (2016).

3 Project financing’s effect on optimization

Another contribution made in this work is the inclusion of flexibility in revenue calculation. In many instances

a mining company is forced to raise external funds to build their project, this is especially true for “junior”

or “mid-tier” companies that do not have the cash reserves for a large capital outlay. These funds are
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invariably accompanied by additional encumbrances impacting the project’s revenue stream. In terms of the

mathematical model used in this paper, the value of attributes ph,t, may not be constant.

The mining industry’s inability to manage uncertainty has been a major contributor in preventing it from

generating attractive risk-adjusted rates of return (Ball and Brown, 1980; McClain et al. 1996; Tufano, 1998).

This has forced mining companies to increasingly seek less traditional sources of capital as the availability of

debt and equity has become more and more scarce (Dionne and Garand, 2003). Such sources include royalty,

streaming and offtake agreements as outlined in Table 1.

Table 1: Non-traditional sources of capital that impact project revenue

Type Description

Royalties

Gross Revenue (GR) The miner pays a percentage of gross (top-line) revenue to its royalty partner in exchange
for an initial capital investment

Net Smelter Return (NSR) The miner pays a percentage of net revenue to its royalty partner in exchange for an
initial capital investment.

Net Profit Interest (NPI) The miner pays a proportion of the project’s net profits to its royalty partner (usually
only after it has recovered its capital costs) in exchange for an initial capital investment.

Streaming Agreements
Metal Streams Streams provide the right to purchase a proportion of production of one or more of the

mine’s metals at a discounted price in exchange for an initial capital investment. Streams
are well suited to mines with significant co-product production. Precious metals are the
most common metals subject to streaming agreements; for example, a Cu-Au mine may
wish to stream future gold production in order to fund production of the main metal,
copper.

Offtake Agreements
Metal Offtakes Offtake agreements give the offtake buyer the right to purchase future metal or concen-

trate production from the mine in exchange for an upfront payment. The payment is
usually intended either as pre-payment for a portion of the future metal delivery or to
secure a joint-venture interest in the project.

Given that the financing alternatives outlined in Table 1 impact the revenue structure of the mineral

complex, they must be accounted for in project optimization; the change in revenue calculation will impact

the final LOM plan, resulting in different values for the decision variables.

4 Including metal price uncertainty in mine complex optimization

By including uncertainty in the input prices the optimization is able to manage market volatility by making

decisions that can take advantage of opportunities during high-price periods. Conversely, in weaker periods,

stockpiles can act as a buffer to shield the operation from selling in low-price environments. Without the

inclusion of market price uncertainty within the optimization, these operational flexibilities are wasted.

Past attempts at including metal price uncertainty have focused on determining pushback, or ultimate

pit designs (Castillo and Dimitrakopoulos, 2014; Meagher, Sabour, and Dimitrakopoulos, 2009) and have

fallen short of generating an integrated LOM plan robust to price uncertainty. The main reason that price

uncertainty is not considered in simultaneous stochastic mine optimization is the large number of simulations

required to represent uncertainty which can be in the order of 100-1000 (Briggs et al., 2012). Including this

many scenarios increases the solution time prohibitively.

This paper proposes a two-part optimization whereby the entire mine complex is optimized first under

geological uncertainty, then this schedule is fixed and used as an input to a second optimization where

only down-stream decisions are optimized under metal price uncertainty. This procedure reflects a mine’s

operational reality in which the long-term LOM plan is optimized at a given starting point, and the down-

stream decisions are taken in subsequent years when price uncertainty is revealed. Notably, this approach to

incorporating metal price uncertainty assumes knowledge of the entire path of each metal price scenario, i.e.
material movement decisions made in a given year are based on the (assumed-to-be known) paths of metal
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prices in future years. Although there is a theoretical argument against this approach, in practical terms the

approach suffices as long as autocorrelation is not the driving force driving prices. Thus, in this work the full

set of metal price simulations is used and the model is solved as-is.

To model market uncertainty metal price simulations are generated using a stochastic reduced-form model.

The simulation methods proposed are based on commonly used pricing models for each type of commodity

(Schwartz, 1997). Due to the important influence of supply and demand, base metals can be simulated

using a mean reverting process with Poisson jump diffusion. The typical model for precious metal prices is

a trending Geometric Brownian Motion model with Poisson jump diffusion. The trend component is used in

precious metal price modeling to account for a positive correlation with inflation.

Apart from the large increase in the size of the optimization brought about by the inclusion of another set

of simulations, the difficulty in incorporating metal price uncertainty at the same time that the block-wise

mining sequence is optimized is that the metal extracted is not necessarily being mined in the same period in

which it is sold. For these reasons metal price uncertainty is included in a second stage of the optimization

as follows. First, an optimal mining schedule, plant capacity, and destination policy is determined using

the model described above. Then, the block extraction sequence and material destination policies are fixed

while metal price uncertainty is included and the problem is re-optimized to establish the best material

movement and transportation decisions in each period. This approach allows the optimization the ability to

create a mine plan that is robust to geological uncertainty while also including the ability to “plan” material

movement decisions that consider metal price volatility.

5 Case study: Application at a Cu-Au mine with a precious metal
streaming agreement

The case study presented below illustrates an application of simultaneous stochastic capacity optimization

within the mining complex framework. Geological uncertainty is incorporated through the use of ten orebody

simulations and a second optimization is run in order optimize downstream decisions under metal price

uncertainty using 100 copper price simulations and 100 gold price simulations. Revenue is calculated based

on a gold streaming agreement whereby a portion of the mine’s gold production is sold to a customer at

a fixed price. The mining complex used in this case study produces two products, copper and gold. The

complex comprises a single open pit mine that holds four main material types: oxide, sulphide, transition,

and waste. Of these, the two materials containing the bulk of the mine’s profit – sulphide and transition –

are further split into two categories based on the grade of the main metal of interest, copper. The mining

complex has six processing destinations and one stockpile. The processing destinations include: a sulphide

and oxide dump leach; an oxide, sulphide and transition heapleach; and a sulphide processing plant. Each of

these processing destinations is fed directly from the mine, with the sulphide plant accepting additional feed

from a stockpile as shown in the material flow diagram in Figure 1. Copper electrolyte solution is produced

at the sulphide dump leach and the sulphide heap leach, this solution is then converted into cathode copper

at the solvent extraction electrowinning (SX-EW) plant. Gold metal is recovered from leachate which is

produced at the oxide dump leach, oxide heap and transition heap leach. The sulphide processing plant

produces a copper-gold concentrate containing 30% copper and 5-30g/t gold. This product accounts for the

greatest proportion of the mine’s revenue.

Non-linear grade-recovery functions are used at the process destinations. The curves allow a realistic

modelling of the relationship between the head-grade into a particular process and the amount of metal that

can be effectively output from the process. This is a benefit of the formulation that is impossible to consider

all other models that rely on predetermined block values. The copper and gold recovery curves used in this

study are provided. Looking at the copper grade-recovery curve, it is important to note that recoveries for

grades in the range of 0-0.4% vary considerably between the different process destinations. The average

copper grade of the project used in this case study is 0.3% which make the grade-recovery relationship an

important factor in the optimization of the LOM schedule and capacity decisions.
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Figure 1: Material flow diagram for the mining complex used in the case study

The parameters used in this case study are presented in Table 2. Note that the mining and milling

capacities outlined in the table are used a base case for illustrative purposes, these will be optimized

within the model.

Figure 2: Grade-recovery curves for copper

Figure 3: Grade-recovery curves for gold
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Table 2: Assumptions and inputs used in the mining complex optimization

Type Value

Geological Model
Number of blocks 493,290
Block dimensions 25x25x10m
Metals of interest Cu, Au
Block tonnage 13,000 – 15,000 tonnes/block

Financial
Copper price $2.88/lb
Gold Price $1,480/oz
Discount rate 8%
Mining cost $2.60/tonne
Milling cost $29.37/tonne
Heap leach cost $5.35-7.74/tonne
Dump leach cost $4.87/tonne

Optimization
Geological discount rate 10%
Deviation penalties 5-100 per unit deviation (depending on constraint)
Objective function Max NPV

Operational
Mining capacity 20,000,000 tonnes/year
Milling capacity 6,000,000 tonnes/year
Mill stockpile capacity 10,000,000 tonnes
Sulphide leach capacity 8,100,000 tonnes/year
Metal recovery Variable, based on recovery curves

5.1 Stochastic capacity optimization results

For comparison purposes, a base case mine plan using a deterministic optimization model with fixed capacities

(as shown in Table 2) was generated. The deterministic solution was generated using the same model as

described above but only using a single estimated orebody model as input (no simulations). Figure 4 shows

the resulting sulphide mill input tonnage for the deterministic optimization. Notably the fixed capacity of six

million tonnes per year is not expected to be exceeded over the life of the operation. However, the risk analysis,

created by running a number of simulations through the base case schedule, shows that these expectations

are likely not to be met. Contrary to the deterministic schedule, the stochastic schedule, incorporating and

managing geological uncertainty, is able to reliably meet production targets within the tight specified range.

Although the stochastic LOM plan shown in Figure 4 does a good job meeting production targets at the

sulphide mill, the optimization is based on a fixed throughput level and mining capacity. By incorporating

capacity decisions, the optimizer can seek to maximize the trade-off of sending increasing or decreasing these

capacities and sending the material elsewhere. The “best” mill capacity is the optimal trade-off between

the extra capital cost and the increased cash flow from the metal recovered by the larger mill. The results

presented below cover the following operational decisions: scheduling (including pit limits), destination policy,

material flow, and capital expenditure/operational capacity selection. In this case, the optimization was no

longer forced to abide by the mining and processing constraints laid out in Table 2; instead the capacities are

simultaneously optimized along with the rest of the mining complex. The milling capacity is modeled as a

one-time decision made in year 1 with a two-year lag time. This allowed for a two-year pre-production period

during which mill construction, stripping, stockpiling and leaching could occur, with milling only allowed to

commence in year-3. During this 3-year ramp-up period mining capacity was allowed to increase, reaching

its maximum level in year 3 at which point it is fixed for the remainder of the LOM. Table 3 provides the

capital costs and capacity parameters used in the stochastic optimization model.

Using a 26-core 2.60GHz Intel Xeon CPU and 128GB of RAM the optimization took 37 hours and 7

minutes. Figure 5 shows the results from the simultaneous stochastic optimization with capacity integration.

The optimized design called for a 4,800,000 tonne per year milling capacity at the sulphide mill. The resulting

mining capacity started at 5,000,000 tonnes in year 1 as construction was allowed to commence, increasing

to 18,000,000 tonnes in year-2, and reaching a maximum capacity of 25,000,000 tonnes in year-3 until the
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Figure 4: Top – risk analysis of deterministic optimization. Bottom – risk analysis of stochastic optimization incorporating
geological uncertainty

Table 3: Capital costs assumed for incremental mining and milling capacities

Mining Milling

Incremental Capacity
1,500,000 tonnes/year 200,000 tonnes/year

Cost per Increment
$4,000,000 $10,000,000

Lead Time
0 years 2 years

Life
LOM LOM

remainder of the LOM in year-16. Notably the optimizer selected a higher mining rate and a lower milling

rate than what otherwise would have been assumed for the capex-constrained model. This is due to the fact

that the resulting optimal schedule is able to selectively feed the sulphide mill with high-grade material while

making better use of the dump leach and heapleach facilities which have a lower operating cost. Notably,

these decisions are being made in large part based on the grade-recovery relationship outlined in Figure 2

and Figure 3, something that is impossible if traditional block-based economic values are used.

The results of the optimization show that the stochastic schedule is robust to geological uncertainty and

does a good job at feeding the mill within a narrow range. This avoids both financial losses due to missing
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Figure 5: Mining capacity (top) and sulphide mill capacity (bottom) selection for stochastic optimization with integrated capacity
decisions. (note the scale change on the vertical axis)

targets and extra costs associated with overusing the sulphide stockpile. These benefits can be seen when

comparing the financial results of the schedules as shown in Figure 6.

The deterministic optimization used for the basis of comparison is performed using the same formulation

but with only single estimated inputs. Based on the risk analysis, the NPV that the deterministic optimization

predicts has an 80% chance of falling short of its estimate. The risk analysis forecasts an NPV that is 1%

($20,000,000) lower than the one predicted using the estimated model. This is due to its inability to manage

the grade-related risk inherent to the underlying geology. This causes the deterministic schedule to largely

misclassify material which leads to a misguided schedule, destination policy and material flow decisions. The

schedule that is optimized simultaneously with capacity decisions shows a 12% ($290,000,000) increase over

the stochastic schedule that does not integrate capacity optimization.

The pit design and extraction sequence generated by the optimization is presented in Figure 7. These

designs can be compared to the stochastic schedule that did not integrate capacity optimization. Each period

is represented by a different colour moving from cold to hot colours as years progress. The empty blocks at

the bottom of the pit represent uneconomic material that was left behind. Also of note is that the final pit

is larger than the one generated when the model was constrained to a fixed mining capacity of 20,000,000

tonnes per year. This again is due to the new schedule’s ability to selectively send material to the sulphide
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Figure 6: NPV results of capacity optimization applied to optimization of a mining complex under geological uncertainty
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mill and make better use of the upgraded 25,000,000 tonne per year mining capacity by sending material to

stockpiles and leach pads which do not have a strict capacity requirements like the mill.

Two other important aspects of the resulting LOM plan generated by the optimization are the material

destination policy and the inter-destination decisions. As noted previously, the mine plan based on simulta-

neous capacity optimization decides to make more use of heap leach and stockpiling in order to favour higher

grades at the mill. The impact of the optimization on these variables is shown in Appendix I.

Schedule without Capacity Optimization Schedule with Capacity Optimization

Figure 7: Cross-sections of the mining sequences and pit designs for long term mine schedules with and without capacity
optimization under geological uncertainty (colours represent periods of extraction)Capital costs assumed for incremental mining
and milling capacities

5.2 Stochastic optimization with variable capacities, a precious metal streaming agree-
ment, and two types of uncertainty

As noted above, selling contracts can be important encumbrances for many mining projects. If the com-

modities produced by a certain project are subject to such an agreement, it becomes necessary to account

for the change in revenue calculation within the optimization. In this section the same mining complex is

considered but a precious metal streaming agreement is applied to a proportion of the gold produced, and

both geological and commodity price uncertainty is included.

The parameters used to model copper and gold price uncertainty are given in Table 4. Copper price is

modeled using a mean-reverting process and gold price is predicted with a trend model. Here metal price

uncertainty is included in a second stage of the optimization. First, an optimal mining schedule, plant

capacity, and destination policy is determined using the model described above. Then, the block extraction

sequence and material destination policies are fixed while metal price uncertainty is included and the problem

is re-optimized to establish the best material movement and transportation decisions in each period. This

approach allows the optimization the ability to create a mine plan that is robust to geological uncertainty

while also including the ability to “plan” material movement decisions that consider metal price volatility.

Using the parameters from Table 4 produces the simulation profiles for copper and gold shown in Figure 8

and Figure 9 respectively.
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Table 4: Parameters used to model metal price uncertainty

Parameter Value and Comments
Copper
Initial price, S0 US$2.88/lb, the same as the reverting level

Reversion level, Ŝ $2.88/lb, 5-yr real reverting level in 2015 dollars
Annual volatility, σ 9%, average annual volatility over 25 years
Mean reverting speed, α 0.5,
Average jump frequency, µP 2 per year, 25-yr average number of Cu price shocks
Average jump size, β 3%

Gold
Initial price, S0 US$1480/oz, price assumption used by operation
Annual volatility, σ 5%, average annual volatility over 25 years
Annual drift, η 0.5%, 5-year moving average drift over 25 years
Average jump frequency, µP 2 per year
Average jump size, β 5%

Figure 8: Copper price simulations (periods represent years)

The copper price simualtions shown above show a clear pattern of mean reversion. This model is used

for copper because the metal’s price is heaviliy influenced by supply-demand dynamics which are driven by

the metal’s relatively stable marginal cost of production. Gold’s use as an inflation hedge means that the

real growth rate of its price can be expected to match the pace of inflation. The simulations below use only

a small trend value in order to ensure that the ratio of metal values (Cu/Au) remains relatively stable over
the life of mine.

Figure 9: Gold price simulations (periods represent years)
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The streaming agreement considered herein provides the miner with an upfront payment of $800,000,000

in exchange for 80% of the mine’s LOM gold production at a price of $620/oz. The remaining 20% of the

mine’s gold belongs to the operation and is assumed to be sold at the market price of $1,480/oz. The effect

that this agreement has on the value resulting from the optimization can be seen in Figure 10.

Figure 10: NPV risk analysis of optimization with gold stream under metal price and geological uncertainty

Notably, the expected NPV drops $1.57B due to the stream and the mine life is shortened due to the

corresponding reduction in the economic value of each block. This is reflected in the histogram shown in

Figure 11 which illustrates the distribution of possible values of the gold stream based on the 200 (100 Cu

and 100 Au) price simulations that used to optimize down-stream decision variables. Although the project

has lost significant value through the gold stream contract, the inclusion of metal price uncertainty was able

to shield a portion of the total potential loss. Without including metal price uncertainty, the stream would

have accounted for an expected loss of $1.68B compared to the same optimization excluding a stream. This

benefit is due the optimizer’s ability to seek to recovery more metal during high-price periods and favor

low-cost, lower-grade ore during low-price periods.

Figure 11: Distribution of values for the gold stream (to the stream owner) based on metal price simulations
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6 Conclusions

This paper addresses stochastic optimization and simultaneous integration of inter-related capacity decisions

within the mining complex framework. Specifically, the mining complex is considered from the perspective of

the planning stage and the optimizer is allowed to select both mining and milling capacities. The approach

shows that eliminating arbitrary capacity restrictions at the outset of a project can unlock significant value

that may otherwise have been loss. This study was conducted under geological uncertainty through the use

of multiple orebody simulations in order to create a risk-robust schedule with higher probability of meeting

the optimizer-set capacity targets. The result is a mine plan that has higher expected value with lower

expected risk.

Throughout this study it was discovered that progressively reducing the flexibility of the capacity decision

within a narrowing realistic range greatly improved the stability of the final solution. However, this approach

means that the optimization has to be attempted a number of times in order to evaluate different options

and to ensure an adequate approximation of optimality. In addition, this paper considered the impact that

project financing can have on revenue calculation. A streaming contract was considered in the case study

and the change in revenue calculation was included in the optimization. The resulting schedule was able

to shield some of the potential losses to the stream owner by favouring high metal production in high-price

periods and seeking low-cost, lower-grade tonnes during low-price periods.

In addition to mining and processing capacities, the capacities of auxiliary components of the mining

complex can be incorporated in the optimization. These are typically components that are not critically

related to production, but still play a part in the overall profitability of the operation. In most hard rock

operations, the processing bottleneck is milling capacity, but other constraints of interest may include be:

leach pad height, water use, down-stream transport, acid consumption, emission limits, fleet size fluctuation,

equipment limits in various pits, or any combination of these factors. Regardless of the bottleneck, the model

can incorporate it, and its corresponding capital cost, in the optimization.

Appendix I: Material flow of optimized schedules (Tonnes)
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M., and Ljubojev, M. (2014). Effect of stage development of mining operations on maximization the net present value
in long-term planning of open pits. Mining and Metallurgy Engineering Bor(4), 33–48.

Labys, W. C., Lesourd, J., and Badillo, D. (1998). The existence of metal price cycles. Resources Policy, 24(3), 147–
155.

Lamghari, A., and Dimitrakopoulos, R. (2012). A diversified Tabu search approach for the open-pit mine production
scheduling problem with metal uncertainty. European Journal of Operational Research, 222(3), 642–652.

Lamghari, A., and Dimitrakopoulos, R. (2016). Progressive hedging applied as a metaheuristic to schedule production
in open-pit mines accounting for reserve uncertainty. European Journal of Operational Research, 253(3), 843–855.

Lamghari, A., Dimitrakopoulos, R., and Ferland, J. A. (2014). A variable neighbourhood descent algorithm for the
open-pit mine production scheduling problem with metal uncertainty. Journal of the Operational Research Society,
65(9), 1305–1314.

Lane, K. F. (1964). Choosing the optimum cut-off grade. Colorado school of mines quarterly, 59(4), 811–829.

Leite, A., and Dimitrakopoulos, R. (2007). Stochastic optimisation model for open pit mine planning: application
and risk analysis at copper deposit. Mining Technology, 116(3), 109–118.

McClain, K. T., Humphreys, H. B., and Boscan, A. (1996). Measuring risk in the mining sector with ARCH models
with important observations on sample size. Journal of Empirical Finance, 3(4), 369–391.

Meagher, C., Sabour, S. A., and Dimitrakopoulos, R. (2009). Pushback design of open pit mines under geological and
market uncertainties. Orebody Modelling and Strategic Mine Planning, 297–304.

Menabde, M., Froyland, G., Stone, P., and Yeates, G. (2004). Mining schedule optimisation for conditionally simulated
orebodies. Paper presented at the Proceedings of the international symposium on orebody modelling and strategic
mine planning: uncertainty and risk management.

Moel, A., and Tufano, P. (2002). When are real options exercised? An empirical study of mine closings. Review of
Financial Studies, 15(1), 35–64.

Montiel, L., and Dimitrakopoulos, R. (2013). Stochastic mine production scheduling with multiple processes: Appli-
cation at Escondida Norte, Chile. Journal of Mining Science, 49(4), 583–597.

Montiel, L., and Dimitrakopoulos, R. (2015). Optimizing mining complexes with multiple processing and transporta-
tion alternatives: An uncertainty-based approach. European Journal of Operational Research, 247(1), 166–178.

Mular, A. L., and Poulin, R. (1998). CAPCOSTS: A handbook for estimating mining and mineral processing equip-
ment costs and capital expenditures and aiding mineral project evaluations (Vol. 47): Canadian Mineral Processors
Division of Canadian Institute of Mining, Metallurgy, and Petroleum.

Otto, J., Batarseh, M. L., and Cordes, J. (2000). Global mining taxation comparative study: Institute for Global
Resources Policy and Management, Colorado School of Mines.

Pirrong, C. (2011). Commodity price dynamics: A structural approach: Cambridge University Press.

Ramazan, S., and Dimitrakopoulos, R. (2004). Traditional and new MIP models for production scheduling with
in-situ grade variability. International Journal of Surface Mining, 18(2), 85–98.

Ramazan, S., and Dimitrakopoulos, R. (2013). Production scheduling with uncertain supply: a new solution to the
open pit mining problem. Optimization and Engineering, 14(2), 361–380.

Ravenscroft, P. (1992). Risk analysis for mine scheduling by conditional simulation. Transactions of the Institution
of Mining and Metallurgy. Section A. Mining Industry, 101.

Ripley, B. D. (2009). Stochastic simulation: John Wiley and Sons.

Rostami, J., Ozdemir, L., and Neil, D. M. (1995). Performance prediction: a key issue in mechanical hard rock mining.
Paper presented at the International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.

Samanta, B., Sarkar, B., and Mukherjee, S. (2002). Selection of opencast mining equipment by a multi-criteria
decision-making process. Mining Technology, 111(2), 136–142.

Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. The
Journal of Finance, 52(3), 923–973.



20 G–2017–86 Les Cahiers du GERAD

Seymour, F. (1995). Pit limit parameterization from modified 3D Lerchs-Grossmann algorithm. Preprints-society of
mining engineers of AIME.

Shafiee, S., and Topal, E. (2010). An overview of global gold market and gold price forecasting. Resources Policy,
35(3), 178–189.

Sick, G., and Cassano, M. (2012). Forward Copper Price Models A Kalman Filter Analysis.

Slade, M. E. (2001). Valuing managerial flexibility: An application of real-option theory to mining investments.
Journal of Environmental Economics and Management, 41(2), 193–233.

Smit, H. T., and Trigeorgis, L. (2012). Strategic investment: Real options and games: Princeton University Press.

Stone, P., Froyland, G., Menabde, M., Law, B., Pasyar, R., and Monkhouse, P. (2004). Blasor–blended iron-ore
mine planning optimisation at Yandi. Paper presented at the Orebody Modelling and Strategic Mine Planning”,
Proceedings of the International Symposium, AIMM.

Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathe-
matical Geology, 34(1), 1–21.

Switzer, P., and Green, A. A. (1984). Min/max autocorrelation factors for multivariate spatial imagery. Computer
science and statistics, 13–16.

Topal, E. (2008). Early start and late start algorithms to improve the solution time for long-term underground mine
production scheduling. Journal of the Southern African Institute of Mining and Metallurgy, 108(2), 99–107.

Tufano, P. (1998). The determinants of stock price exposure: Financial engineering and the gold mining industry.
The Journal of Finance, 53(3), 1015–1052.

Underwood, R., and Tolwinski, B. (1998). A mathematical programming viewpoint for solving the ultimate pit
problem. European Journal of Operational Research, 107(1), 96–107.

Vallee, M. (2000). Mineral resource+ engineering, economic and legal feasibility. CIM bulletin, 93(1038), 53–61.

Wharton, C. (1997). The Effect of Minimum Mining Width on NPV. Paper presented at the Proceedings of the 1997
Whittle Conference,“Optimizing with Whittle”, Perth, WA.

Wharton, C. (2004). The use of extractive blending optimisation for improved profitability. Orebody Modelling and
Strategic Mine Planning. Perth, 69–76.

Whittle, G. (2004). Global asset optimisation. Orebody Modelling and Strategic Mine Planning.

Wooller, R. (2007). Optimising multiple operating policies for exploiting complex resources-an overview of the COMET
scheduler. Orebody modelling and strategic mine planning, AusIMM Spectrum Series, 14.

Zhang, J., and Dimitrakopoulos, R. (2014). Optimising a mineral supply chain under uncertainty with long-term sales
contracts. Paper presented at the Orebody Modelling and Strategic Mine Planning Symposium.


	Introduction
	Model formulation
	Model components 
	Solution methods

	Project financing's effect on optimization
	Including metal price uncertainty in mine complex optimization
	Case study: Application at a Cu-Au mine with a precious metal streaming agreement 
	Stochastic capacity optimization results
	Stochastic optimization with variable capacities, a precious metal streaming agreement, and two types of uncertainty

	Conclusions

