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Abstract: Let γ(G) and ι(G) be the domination and independent domination numbers of a graph G,

respectively. In this paper, we define the Price of Independence of a graph G as the ratio ι(G)
γ(G) . Firstly,

we bound the Price of Independence by values depending on the number of vertices. Secondly, we consider
the question of computing the Price of Independence of a given graph. Unfortunately, the decision version
of this question is Θp

2-complete. The class Θp
2 is the class of decision problems solvable in polynomial time,

for which we can make O(log(n)) queries to an NP-oracle. Finally, we restore the true characterization of
domination perfect gaphs, i.e. graphs whose the Price of Independence is always 1 for all induced subgraphs,
and we propose a conjecture on futher problems.

Keywords: Domination, independent domination, forbidden induced subgraphs, computational complexity
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1 Introduction

1.1 Basic definitions and notations

We use standard notations and definitions, as you can find them in the reference book by Diestel [14]. Graphs

are undirected and simple. V and E denote the vertex and the edge sets of a graph G. Given a vertex v,

the set of adjacent vertices from v, i.e. its neighbors, is denoted by N(v) while a vertex is pendant if it has

only one neighbor. ∆(G) is the maximum degree in the graph G. For a given vertex set X, G[X] denotes

the subgraph of G induced by X. Moreover, for two given graphs G and H, G is called H-free if H does not

appear as an induced subgraph of G. Therewith, we say that G is (Hi)
k
i=0-free when G is H1-free, H2-free,

. . . and Hk-free for some graphs H1, H2, . . . ,Hk. A vertex cover of a graph G = (V,E) is a set C of vertices

such that every edge in E has at least one endpoint in C. The minimum cardinality of a vertex cover in G,

denoted by τ(G), is the vertex cover number and a vertex cover with such a cardinality is called minimum.

A dominating set of a graph G = (V,E) is a set D of vertices such that every vertex v ∈ V \D has at

least one neighbor in D. We denote by γ(G) the minimum cardinality of a dominating set in the graph G and

this value is called the domination number of G. A dominating set with such cardinality is called minimum.

A set D of vertices is stable or independent if the subgraph induced by D contains no edge. An independent

set X of a graph G = (V,E) is maximal if for every vertex v ∈ V \ X, X ∪ {v} is not independent. A

dominating set D of graph G is called independent if D is stable, or equivalently [4, 5], an independent

dominating set is a maximal independent set. The independent domination number of a graph G, denoted

by ι(G), is the minimum cardinality of an independent dominating set in G. Moreover, if the cardinality of

an independent dominating set is minimum then this set is called minimum.

1.2 Previous works

The class of graphs such that the domination number and the independent domination number are equal for all

induced subgraphs received a lot of attention in the last decades. Actually, Sumner and Moore [29] introduced

the notion of domination perfect graph, as a graph G such that γ(H) = ι(H), for all induced subgraph H of G.

Several authors [1, 6, 15, 19, 21, 24, 28, 29, 30] tried to find sufficient or necessary conditions to characterize

this class of graphs. Sumner [28] stated that a graph is domination perfect if and only if γ(H) = ι(H) only

for all induced subgraph H with γ(H) = 2, and supposed impossible to provide a finite list of forbidden

induced subgraphs characterizing domination perfect graphs. Nevertheless, a first characterization with a list

of 4 forbidden induced subgraphs was given by Zverovich and Zverovich [35]. However, Fulman [16] pointed

out a counterexample. Then, another characterization with a list of 17 forbidden induced subgraphs was
proposed again by Zverovich and Zverovich [36].

Theorem 1 (Zverovich and Zverovich [36]) Let G be a graph. Then G is domination perfect if and only

if G is (Gi)
17
i=1-free, where graphs Gi are depicted in Figure 1.

Camby and Plein [10] claimed a failure in Theorem 1 and proposed a new characterization of domination

perfect graphs.

Theorem 2 (Camby and Plein [10]) Let G be a graph. Then G is domination perfect if and only if G is

(Hi)
9
i=0-free, where graphs Hi are depicted in Figure 2.

Zverovich [34] extended the concept of (domination) perfect graphs by considering the difference between

two invariants bounded by a constant, instead of an equality of invariants. These classes are called k-

bounded classes of dominant-independent perfect graphs. Zverovich found a characterization in terms of

finite list of forbidden induced subgraphs for the k-bounded classes of independent-independent domination

perfect graphs and the k-bounded classes of independent-domination perfect graphs. Moreover, he proposed

the following conjecture : the k-bounded classes of independent domination-domination perfect graphs can

be characterized by a finite list of forbidden induced subgraphs.

Naturally, several graph invariants were investigated for comparison. Cardinal and Levy [12, 22] intro-

duced a new concept : the Price of Connectivity for the vertex cover problem. They defined it as the ratio
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G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

G13 G14 G15 G16

G17

Figure 1: An illustration of graphs Gi, for i = 1, . . . 17.

H0 H1 H2 H3 H4

H5 H6 H7 H8 H9

Figure 2: An illustration of graphs Hi, for i = 0, . . . 9.

between the connected vertex cover number and the vertex cover number. Camby, Cardinal, Fiorini and

Schaudt [9] studied this Price of Connectivity in terms of structural and computational complexity results

while Camby and Schaudt [11] translated the notion to the domination problem and obtained similar works.

Analogously, Belmonte, van ’t Hof, Kamiński and Paulusma [2, 3] study the Price of Connectivity for feedback

vertex set in hereditary graph classes whereas Hartinger, Johnson, Milanič and Paulusma [20] investigated

the ratio for cycle transversals. Moreover, Chiarelli, Hartinger, Johnson, Milanič and Paulusma [13] designed

polynomial-time algorithms for connected vertex cover, connected feedback vertex set and connected odd

cycle transversal for certain classes of graphs, using the Price of Connectivity.

In this paper, we define the Price of Independence of any graph G as follows :

PoI(G) =
the independent domination number of G

the domination number of G
=
ι(G)

γ(G)
.

Rad and Volkmann [31] obtained some upper bound on the Price of Independence, depending on the

maximum degree :

Theorem 3 (Rad and Volkmann [31]) Let G be a connected graph.

• If 3 6 ∆(G) 6 5, then PoI(G) 6 ∆(G)
2 .

• If ∆(G) > 6, then PoI(G) 6 ∆(G)− 3 + 2
∆(G)−1 .
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Moreover, they conjectured that

PoI(G) 6
∆(G)

2
for all graphs G. (1)

Wang and Wei [32, 33] confirmed it in the class of trees and bipartite graphs while Goddard, Henning, Lyle

and Southey [18] proved it in the class of cubic graphs. Furthermore, Southey and Henning [26] improved

the result : PoI(G) 6 4
3 for connected cubic graphs, except for K3,3. Furuya, Ozeki and Sasaki [17] pointed

out a counterexample for (1) but they also showed that for every graph G, PoI(G) 6 ∆(G)− 2
√

∆(G) + 2.

However, for any value of ∆(G), ∆(G) − 2
√

∆(G) + 2 > ∆(G)
2 . Besides, Bollobás and Cockayne [7] proved

that, for k > 3, PoI(G) 6 k − 2 for all K1,k-free graphs G. Therefore, the following questions remain : is

there other class of graphs in which the conjecture (1) is true? Is there another upper bound on the Price of

Independence, depending possibly on the class of graphs?

In this paper, we find tight bounds on the Price of Independence, depending only on the number of

vertices in the graph. Moreover, we prove that the following decision problem is Θp
2-complete : for every

fixed rational number r > 1, given a n-vertex graph G such that r 6 n
4 , is PoI(G) 6 r? Loosely speaking, it

means that deciding whether the ratio of ι(G) and γ(G) is bounded by some rational number r is as hard as

computing both ι(G) and γ(G) explicitly. Finally, we investigate the characterization of domination perfect

graphs and further works.

2 Our contribution

2.1 Upper bound on the Price of Independence

Theorem 4 Let G be a graph on n > 4 vertices. Then

1 6 PoI(G) 6
n

4
.

Moreover, both bounds are tight.

Notice that, when ∆(G) > n
2 , then the above upper bound on the Price of Independence is better than

∆(G)
2 , i.e. the best known.

Proof. Let G be a graph. To prove the upper bound, we distinguish several cases depending on the value

of γ(G).

We assume that γ(G) > 4. Since ι(G) 6 n, trivially we obtain that

PoI(G) 6
n

4
.

If γ(G) = 1 then G contains a single dominating vertex, in particular an independent dominating set of

cardinality only 1. Therefore, PoI(G) = 1.

We suppose that γ(G) = 2. Let D = {d1, d2} be a minimum dominating set of G. If d1d2 /∈ E, then D is

an independent dominating set and PoI(G) = 1. Now, d1d2 ∈ E. We consider N [di] the closed neighborhood

of di, for i = 1, 2, i.e. N [di] = N(di) ∪ {di}. Assume that |N [d1]| 6 dn/2e and |N [d2]| 6 dn/2e. Because D

is a dominating set, V ⊆ N [d1]∪N [d2]. Observe that d1 and d2 appear in both sets N [d1] and N [d2]. Hence

n 6 dn/2e+ dn/2e − 2 6 n− 1, a contradiction.

So, without loss of generality, we have |N [d1]| > dn/2e. We apply a greedy algorithm to find an indepen-

dent dominating set A in G[V \N [d1]]. Since A ∪ {d1} is an independent dominating set of G,

ι(G) 6 |A ∪ {d1}| < n−
⌈n

2

⌉
+ 1 =

⌊n
2

⌋
+ 1.
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Hence

ι(G) 6
n

2
.

Accordingly,

PoI(G) 6
n
2

2
=
n

4
.

Now, the last case is when γ(G) = 3. Let D = {d1, d2, d3} be a minimum dominating set of G. We need

to prove that ι(G) 6 3n/4. Consider N [di] the closed neighborhood of di. We assume that |N [di]| 6 n/4 for

every i = 1, 2, 3. Since D is a dominating set of G,

V ⊆
3⋃
i=1

N [di],

then n 6 3n/4, a contradiction. So, without loss of generality, we have that |N [d1]| > n/4. Now, we apply a

greedy algorithm to find an independent dominating set A in G[V \N [d1]]. Thus

ι(G) 6 |A|+ |{d1}| < n− n

4
+ 1 =

3n

4
+ 1,

this strict inequality implies the large desired inequality.

Moreover, the upper bound is tight. Indeed, the double star S(k, k), graph on n = 2k+2 vertices obtained

by adding an edge between the center of two stars K1,k (see Figure 3), satisfies the property : its domination

number is 2 while its independence domination number is k + 1 = n
2 . Thus, PoI(S(k, k)) = n

4 .

Figure 3: The double star S(5, 5) on 12 vertices.

2.2 Complexity result

The class Θp
2, also denoted by PNP[log], is the class of decision problems solvable in polynomial-time by a

deterministic Turing machine, that can make O(log n) queries to a NP-oracle, where n is the size of the input.

The following complexity result is inspired from [11].

Theorem 5 Let r > 1 be a positive rational number. Given a graph G on n vertices such that r 6 n/4, the

problem of deciding whether ι(G)/γ(G) 6 r is Θp
2-complete.

Since ι(G) and γ(G) can be computed by applying logarithmically an NP-oracle via a binary search,

clearly the decision problem associated to the compute of the Price of Independence is in the class Θp
2.

Theorem 5 means that deciding whether the ratio of ι(G) and γ(G) is bounded by some constant r is as hard

as computing both invariants explicitly, it remains true even if r is not part of the input.

Our reduction is from the decision problem whether τ(G) > τ(H), for two given graphs G and H. The

latter is known to be Θp
2-complete by Spakowski and Vogel [27].

Beforehand, we prove the two following lemmas.

Lemma 1 Given a graph G with n > 2 vertices and m > 0 edges, one can construct in linear time a graph G′

such that γ(G′) = n+ τ(G) and ι(G′) = n+m.
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Proof. For each vertex v ∈ V (G), we associate m + 3 vertices v, v′, v′′1 , v
′′
2 , . . . , v

′′
m+1 in V (G′), and for each

edge e ∈ E(G), we associate a vertex e of V (G′). So, we may consider V (G) and E(G) as subsets of V (G′).

We define

E(G′) =
⋃

e=uv∈E(G)

{ue, ve} ∪
⋃

v∈V (G)

{vv′, v′v′′1 , v′v′′2 , . . . , v′v′′m+1}.

Let D be a minimum dominating set of G′. Without loss of generality, we can suppose that v′ ∈ D for

every v ∈ V (G) because v′ has many pendant vertices. If e ∈ D for some e = uv ∈ E(G), then D \ {e}
dominates all vertices of G′ except e, since u′, v′ ∈ D. So, (D \ {e}) ∪ {u} is a minimum dominating set of

G′. Accordingly, we may suppose that D ∩E(G) = ∅. In that case, D ∩ V (G) is a vertex cover of G, proving

that γ(G′) = |D| > n+ τ(G).

Conversely, if C is a vertex cover ofG then {v′|v ∈ V (G)}∪C is a dominating set ofG′, so γ(G′) 6 n+τ(G).

This gives the first equality.

For the second, clearly
⋃
v∈V (G){v′} ∪ E(G) is an independent dominating set of G′, so ι(G′) 6 n+m.

Conversely, let I be a minimum independent dominating set of G′. Suppose that v′ /∈ I, for one v ∈ V (G),

then every pendant vertices v′′1 , v
′′
2 , . . . , v

′′
m+1 must be in I. Moreover, for other vertex u ∈ V (G) \ {v}, we

need at least one vertex in I to dominate u′. Thus, ι(G′) = |I| > (m + 1) + (n − 1) = m + n, proving the

second equality.

Lemma 2 Given a graph G with n vertices and m edges, one can construct in linear time a graph G′ such

that γ(G′) = n+ 1, ι(G′) = n+ 1 + τ(G) and there exists a vertex belonging in every minimum dominating

set and in every minimum independent dominating set.

Proof. We construct G′ by attaching two pendant vertices v1 and v2 to each vertex v ∈ V (G), and adding a

disjoint star K1,s of center x, with s arbitrarily linearly large.

Trivially, V (G)∪{x} is a dominating set of G′, so γ(G′) 6 n+1. On the other hand, let D be a minimum

dominating set of G′. Without loss of generality, we may assume that for every vertex v ∈ V (G), v ∈ D,

since v has two pendant vertex. Moreover, we need one vertex in D to dominate the star. Thus γ(G) = n+1.

It remains to compute ι(G′). Let C be a minimum vertex cover ofG. Then {x}∪(V (G)\C)∪{u1, u2|u ∈ C}
is clearly an independent dominating set of G′. So ι(G′) 6 n+ 1 + τ(G). Let I be a minimum independent

dominating set of G′. Clearly, I ∩ V (K1,s) = {x}. The set V (G) ∩ I must be stable in G′, especially in G,
hence V (G) \ I is a vertex cover of G. For every vertex v ∈ V (G), either v ∈ I or v1 and v2 belongs to I. In

other words, for every vertex v ∈ V (G) \ I, v1 and v2 must be in I. So, ι(G′) = |I| > 1 + n + τ(G). Thus

ι(G′) = n+ 1 + τ(G).

Notice that the center x of the star K1,s is always in every minimum dominating set and in every minimum

independent dominating set.

Proof of Theorem 5. Let r = r1/r2 > 1 be a fixed rational number, with r1 and r2 positive numbers.

It remains to prove the Θp
2-hardness. We reduce our problem from the Θp

2-complete decision problem of

deciding, given two graphs G and H, whether τ(G) > τ(H) [27]. Let (G,H) be an instance of the latter.

Step 1. We consider Gr2 the graph obtained by taking r2 disjoint copies of G, and similarly for Hr1 . Let

nG = |V (G)|, mG = |E(G)| and nH = |V (H)|. Clearly, τ(Gr2) = r2τ(G), |V (Gr2)| = r2nG and

|E(Gr2)| = r2mG. Moreover, τ(Hr1) = r1τ(H) and |V (Hr1)| = r1nH .

Step 2. We apply Lemma 1 to Gr2 to get G′r2 and we obtain

γ(G′r2) = |V (Gr2)|+ τ(Gr2)

= r2τ(G) + r2nG,

ι(G′r2) = |V (Gr2)|+ |E(Gr2)|
= r2(nG +mG).
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Now, we apply Lemma 2 to Hr1 to get H ′r1 and we obtain

γ(H ′r1) = |V (Hr1)|+ 1

= r1nH + 1,

ι(H ′r1) = |V (Hr1)|+ 1 + τ(Hr1)

= r1nH + 1 + r1τ(H).

Step 3. Let r̄ = dre. Notice that r̄ is a positive integer. We construct a new graph U by taking the disjoint

union of r̄ copies of G′r2 and r̄ copies of H ′r1 . By the construction of U ,

γ(U) = r̄γ(G′r2) + r̄γ(H ′r1)

= r̄(r2τ(G) + r2nG) + r̄r1nH + r̄

= r̄r2τ(G) + r̄(r2nG + r1nH + 1)

ι(U) = r̄ι(G′r2) + r̄ι(H ′r1)

= r̄r2(nG +mG) + r̄(r1nH + r1τ(H) + 1)

= r̄r1τ(H) + r̄(r2(nG +mG) + r1nH + 1).

Step 4. Let

ϕ1 = r2(nG +mG) + r1nH + 1

ϕ2 = r2nG + r1nH + 1.

Let p = max{|ϕ1 − (r̄ + 1)ϕ2|, |ϕ2 − ϕ1|} and

a = p((r̄ + 1)r2 − r1) + (ϕ1 − (r̄ + 1)ϕ2)

b = p(r1 − r2) + (ϕ2 − ϕ1).

By definition of p, a > |ϕ1−(r̄+1)ϕ2|((r̄+1)r2−r1)+(ϕ1−(r̄+1)ϕ2) > |ϕ1−(r̄+1)ϕ2|((r̄+1)r2−r1−1)

and b > |ϕ2 − ϕ1|(r1 − r2) + (ϕ2 − ϕ1) > |ϕ2 − ϕ1|(r1 − r2 − 1). Since r1 > r2 and (r̄+ 1)r2 > r1, then

a and b are two non-negative integers. Furthermore, a, b ∈ O(ϕ1 + ϕ2).

Moreover, we can easily verify that

a+ (r̄ + 1)b+ r̄ϕ1 = r̄pr1 and a+ b+ r̄ϕ2 = r̄pr2. (2)

Finally, we construct a new graph U ′ from U as follows. Let P a be the graph obtained from the induced

path with vertex set {u1, u2, . . . , ua} by attaching a pendant vertex to every member of {u1, u2, . . . , ua}.
Let v be a vertex in U belonging in every minimum dominating set and in every minimum independent

dominating set (such a vertex always exists, since r1 > 0). Let P b be the graph obtained from a clique

with vertex set {v1, v2, . . . , vb} by attaching r̄+1 pendant vertices to every member of {v1, v2, . . . , vb−2}
and by attaching 2r̄ − 1 pendant vertices to vb−1 and to vb. (If b = 1 then P b is the star K1,r̄+1 of

center v1). Let U ′ be the graph obtained from the disjoint union of U , P a and P b by putting an edge

between v and v1. The described procedure can be done in linear time in the size of the graph U , i.e.

in the size of the input because a, b ∈ O(ϕ1 + ϕ2). By the construction of U ′, it follows that

γ(U ′) = γ(U) + a+ b

= r̄r2τ(G) + a+ b+ r̄ϕ2

(2)
= r̄r2τ(G) + r̄pr2

and

ι(U ′) = ι(U) + a+ (r̄ + 1)b

= r̄r1τ(H) + a+ (r̄ + 1)b+ r̄ϕ1

(2)
= r̄r1τ(H) + r̄pr1.



Les Cahiers du GERAD G–2017–83 7

Since r = r1/r2, we have
ι(U ′)

γ(U ′)
=
r̄r1τ(H) + r̄pr1

r̄r2τ(G) + r̄pr2
= r

τ(H) + p

τ(G) + p
.

Accordingly, ι(U ′)/γ(U ′) 6 r if and only if τ(H) 6 τ(G). This completes the proof.

2.3 Characterization of domination perfect graphs and further work

Camby and Plein [10] claimed that graphs H5 and H6 are counterexamples for Theorem 1 since ι(H5) =

3 = ι(H6). However, it is incorrect as Figure 4 illustrates. Accordingly, the Camby-Plein’s characterization

of domination perfect graphs does not hold anymore. Notice that their algorithm to find an independent

dominating set from a given dominating set is still valid in the class of (Hi)
9
i=0-free graphs. A natural question

follows : is there a polynomial-time algorithm to transform a dominating set into an independent dominating

set, without increasing its cardinality, in the class of (Gi)
17
i=1-free graphs ?

H5 H6

Figure 4: White vertices indicate a minimum independent dominating set in graphs H5 and H6.

As it is done for the Price of Connectivity, we define PoI-near-perfect graphs for a threshold t and

critical graphs for the Price of Independence. A graph is PoI-near-perfect for the threshold t if PoI(H) 6 t

for all induced subgraphs H of G while a graph G is critical if for all proper induced subgraphs H of G,

PoI(H) < PoI(G). The former is a generalization of domination perfect graphs whereas the latter is used

in the list of forbidden induced subgraphs for the characterization of PoI-near-perfect graphs.

We use the computer aided graph theory system GraphsInGraphs [8], called GIG, to find critical graphs

up to 10 vertices. We retrieve them for the characterization of domination perfect graphs, as it is shown

in Theorem 1. Moreover, due to GIG, we establish the following conjecture on PoI-near-perfect graphs

for threshold t = 3
2 . Forbidden induced subgraphs are listed in Annex 1. Critical graphs are given in g6

format by McKay and Piperno [23]. Since GIG pointed out all critical graphs up to 10 vertices, the following

conjecture is valid, except if there exist critical graphs on more vertices.

Conjecture 1 Let G be a graph. The following assertions are equivalent :

• for every induced subgraph H of G, PoI(H) 6 3
2 ,

• G is G-free, where the family G of 172 graphs is described in Annex 1.

Annex 1

Table 1 gives critical graphs in g6 format [23] from family G in Conjecture 1. We found them by searching

graphs G satisfying PoI(G) > 3
2 and PoI(H) 6 3

2 for all proper induced subgraph H of G.



8 G–2017–83 Les Cahiers du GERAD

Table 1: Critical graphs for the characterization of PoI-near-perfect graphs with threshold 3
2

in g6 format.

1 G??CZc 44 I@?A WKgw 87 I ? gxjfg 130 IAGOW}]Xw
2 G??MPk 45 I@??WYbSw 88 I`?@Ol]jW 131 IC?ha|]iw
3 G??ZKs 46 I@?COxfvG 89 I ?HOl]jW 132 IAGOZM f̂o
4 G??xuK 47 I??R@qNˆG 90 I?QO`Tfmg 133 I@`G`Ljdw
5 G?GTa[ 48 I?GAKovvG 91 I?L@CLZlg 134 ICW?jEN\W
6 G?ClQk 49 I@?E?wnvG 92 I@OCWilTw 135 I?SqHUN[w
7 G?Kta[ 50 I ?@Ol]jW 93 I?Q@gptiw 136 I@OXOlfew
8 G?OxuK 51 I ?GTpv\o 94 IGC?XL\lg 137 I@OOzKnfW
9 G?r@xw 52 I?@Hohxhw 95 IAG?g]trg 138 IPDIPKVuW

10 G?`zro 53 I?SoOLrbw 96 I@@GREV]g 139 I`H?oyfVg
11 Gs`zro 54 I?o@hgN|G 97 I@I?Wd\ww 140 IWCOYZRJw
12 H??E@KZ 55 I?SGHMZ\g 98 IGCOP\Vjg 141 Ig?WsMxXw
13 H??RC\x 56 I?@b?oW`w 99 IC?`Q|]jW 142 I Kq?\Nkw
14 H?@HcLx 57 I??]?ozxW 100 I GGKtv\o 143 I@DIcknYw
15 H??guLx 58 I@G?gZbvG 101 IQ?GOKzpw 144 I@GT\XˆVo
16 H??ZC\x 59 I?AQOplkw 102 I?L?jEL{g 145 I Kpc\rRw
17 H?CRZYr 60 IAG?gZb̂ G 103 I?OahqNˆG 146 I?d bAVYw
18 H GOC\r 61 I??XT@V}G 104 IE@@XWZzG 147 I]?GOGzpw
19 H@?ISll 62 I?HOPeN{g 105 IA @XhLlg 148 I@QG`EjTw
20 H ?Glhj 63 IH?GoL\hw 106 IAGCWwvrW 149 IAGWXMZXw
21 H?DPSLx 64 I?AH`rJ\W 107 IC@@XhZjW 150 ICGHI|]hw
22 H?O ze\ 65 IGC ˆM[w 108 I ? wxjnG 151 IOP?X{}sw
23 H?Obc}] 66 I@AAWhlew 109 I G?wxffW 152 I@DHIUVYw
24 H?HOs\r 67 IAGORK x̂g 110 IQ?@Wxlfg 153 I@ Qywnhw
25 H@?iyyj 68 I?@HeUt]W 111 IAGKPlffW 154 I@`HOlZhw
26 HG?WtLZ 69 I?@PO|xfg 112 I@HG ljfg 155 I@OYKsnXw
27 HG?Wuqf 70 I?AQP{}uW 113 I`?D\XˆVo 156 IQO[KpfMw
28 HG?YtKz 71 I?op \F{W 114 IG@POqF}G 157 IAGYXlfew
29 H@Aiyyj 72 IAC@XYVZW 115 I?DPRAlsw 158 I`H?wyfUw
30 H@Iaywˆ 73 IE?@XW ẑG 116 I?Sq@EN[w 159 I`GXGtfew
31 HC Zzx{ 74 Ig?WoMxXw 117 I@GSQL]jW 160 Io?WrAF]G
32 I????cKwW 75 I??qoyN]W 118 I@CaQYVZg 161 I?ope?N{W
33 I???GSopW 76 I?@HpYV]W 119 IH?GqL\hw 162 I]?GOKzpw
34 I??GE?jDw 77 I?@PpYN]W 120 I?L?jEtqw 163 IQQ@Gpfew
35 I???WWoow 78 I@OOrKnfW 121 IGCHaLNlW 164 IQQ@Gs{ow
36 I???XOSow 79 Io?WsLf]W 122 I@OGhMjtW 165 II HkGxpw
37 I??@Grdug 80 IQ??OK}rW 123 IACh?]VYw 166 I OpdpNbw
38 I??AhYZˆG 81 I`??Oxffg 124 IGCHILZlW 167 IoCOZdlbw
39 I??OPHAeW 82 I@CaCEmVW 125 IGC lT\Rw 168 I` XIURZG
40 I??OPHBeW 83 I?GQSHxlg 126 IAGO\fLXw 169 ISP@xyN[w
41 I??Gc`JHw 84 IG?GpL\lg 127 I@P@G}]Yw 170 I@G\\XˆVo
42 I?GOONXxg 85 I@@D?xJnG 128 IAH@G}]Xw 171 I KtbdNbw
43 I?KA?MurW 86 I?`?pLxlg 129 I@OPO|ffg 172 I?mtb| }ˆ
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